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Abstract

A structured model of the HPA axis that includes the glucocorticoid receptor (GR)
is considered. The model includes nonlinear dynamics of pituitary GR synthesis. The

nonlinear e�ect arises from the fact that GR homodimerizes after cortisol activation

and induces its own synthesis in the pituitary. This homodimerization makes possible

two stable steady states (low and high) and one unstable state. The model includes

also delay on stress. It is shown that concurrence between trajectories of dynamical

system, which are produced by the unstable manifold and the value of delay time τ
produce slow oscillating asymptotic periodic oscillations of cortisol with a period, which

is grater then 2τ . It is shown that such oscillations exist only in an interval τ1 < τ < τ2,
where exact formulas for τ1 and τ2 has been obtained. Such oscillation arise when an

initial values of stress are lager of some threshold.

Keywords: hypothalamic-pituitary-adrenal axes • asymptotic periodic oscillations • neg-
ative feedback • di�erence � di�erential delay equations • normal state.

1 Introduction

We consider HPA dynamics which includes stored CRH, circuiting CRH and ACTH,
cortisol and glucocorticoid receptor that plays a role of 'dispatcher' that drives by distri-
butions of hormones in the system. Our model incorporate a self�upregulation of CRH
release, a negative and positive feedback e�ect on cortisol in CRH synthesis and a delay
in ACTH � activated on cortisol synthesis [12]. Remind that hypothalamic � pituarity �
adrenal (HPA) axis ia neuroendocrine system that regulates hormones. The regulation is
mediated by the inhibition of peptide hormones such as corticotropin � releasing hormone
(CRH) and adrenocorticotropic hormone (ACTH) by circulating glucocorticoids such as
cortisol (CORT ).

Notice that in this paper, we have not begun with local linear stability theory, because
as noted by our experience suggests that, while as sited in [14]: 'Many experimentalists have
excellent intuition about rates of change at their �ngertips, the abstraction of eigenvalues
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presents a road block'. Our model includes three equilibria states for HPA system, one of
which is unstable and another two are stable. We developed a dynamical model of HPA
axis to describe interactions between key hormones and the glucocorticoid receptor (GR).
Notice that well known mediate feedback activity of cortisol. For example, in [8] it has been
considered a model when in HPA system arise two attracting limit cycles over which cortisol
and that ACTH oscillate with an ultraradian (hourly) rhythms. For our model, there are two
oscillating states, one with lower cortisol level is associated with the normal state. Within
this model, stress�induced secretion of CRH can trigger transition between normal and
diseased states, respectively. Such simple attractor of the dynamical system of hyperbolic
that contains two attractive �xed points and one repelling �xed point of codimension 1
(saddle type point) forms slow oscillating asymptotic periodic oscillations of cortisol in the
HPA axis.

In the present paper, we follow to [11] and discuss HPA axis model of [12] that capture
the basic feedback mechanism and includes an intracellular glucocorticoid receptorGR as one
of the four state variables of the dynamical system, where variables [CRH], [ACTH], [GR]
and [COR] de�ne concentrations. Here, [GR] is bounded to cortisol. The resulting complex
COR − −GR] determines general behaviour of solutions of the model. It turns out that
GR := Φ[COR]), where Φ is a given nonlinear function (see, [11], Fig.1) which plays the
mane role in the quantitative behavior of limit distributions of cortisol in a physiological
system.

We de�ne [GR] := u and assume that: (1) Φ(I) ⊂ I for each u ∈ I, where I is an open
bounded interval. Then from (1) it follows that all solutions of the problem are bounded for
all t > 0. The phase diagram [11] shows that a state variable [GR] is a cubic type function
of the concentration [COR] := u of cortisol. Hence, for a certain stress region, the system
exhibits two stable steady states and one unstable steady state.

It will be shown that a corresponding dynamical system in R3 (3D - dimensional
space)can be reduced to the planar system with two delay equations:

ẋ(t) = y(t)− ρ1x(t), (1)

ẏ(t) = −f(x(t− 1))− ρ2y(t), (2)

where ρ1 and ρ2 are given parameters. A function f is determined from a graphics of a
function Φ : I → I, which is determined from phase diagram of 'pitchfork' type that follows
from computer experiments in [10].

Thus, HPA mathematical model can be reduced to the study of solutions for system
(58,59). Equivalently, the planar system can be reduced to an autonomous second order
di�erential� di�erence delay equation:

ẍ+ (ρ1 + ρ2)ẋ(t) + ρ1ρ2x(t) = −f(x(t− 1)), τ := 1 (3)

that explains oscillating behavior for solutions of delay di�erential di�erence equations. It is
known that the delay system has a nonconstant periodic solutions with a period grater then
2 [9].

Below, using these mathematical results, we found that (for the HPA axis) there are
slow oscillating asymptotically periodic solutions, which describe distributions of cortisol. It
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will be found a role of delay in the HPA problem. It turns out that oscillating solutions are
stable if and only if

τ1 < τ < τ2, (4)

where delay τ1 and τ2 are estimated exactly and ones depend on given parameters of the
physiological problem. It will be found exact analytical formulas for τ1 and τ2, depending
on parameters.

2 Postulation of problem

The HPA axis has three components which represent the hypothalamus, pituitary and
adrenal. The equation for the hypothalamus is:

dC

dT
=
Kc + F

1− O
Kn

−KcdC, (5)

where −KcdC describes a constant degradation rate of CRH. Following [12] we assume that
O
Kn
� 1. Then from (5) we arrive et

dC

dT
= (Kc + F )

(
1 +

O

Kn

)
−KcdC. (6)

(Here, all undetermined constants can be found in [12]). Next, from (6) it follows that if
C = Kc+F

Kcd
, then we can put dC

dT
≡ 0 with accuracy O(ε), where ε = O

Kn
.

We write for the hypothalamus [12]

ċ =
1 + f

1 + o
k1

− kcdc, (7)

for the pituitary

ȧ =
c

1 + or
k2

− kada, (8)

Equation (8) models the degradation rate of ACTH and ACTH production terms with a
cortisol inhibition factor,

ṙ =
(or)2

k + (or)2
+ kcr − krdr (9)

For the adrenal we have

ȯ = −o+ a(t− τ) (10)

with delay response τ .
If in (8) we put c := a (for uni�cation with [5]) and consider only equilibrium ċ = 0,

then we obtain the well-known model [5]

ȧ(t) =
A

1 + p2o(t)r(t)
− p3a(t), (11)
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ṙ(t) = − p4
p4 + (o(t)r(t))2

+ 1 + p5 − p6r(t), (12)

ȯ(t) = −o(t) + a(t− τ). (13)

as a particular case of the model [12] to the model [5]. Thus, we have a projection of
trajectories of the dynamical system from R4 into R3. The assumption ċ = 0 determines
only c � null-cline that describes a curve

1 + f

1 + o
k1

− kcdc = 0 (14)

The projection on R3 require that must be at least o
k1
� 1. We neglect this small term in

the �rst approximation.
Remind [12] that stress to the HPA axis (f) stimulates the hypothalamus to secrete

CRH(c). Further, CRH(c) signals the induction of ACTH synthesis (a) in the pituitary.
Thus, our assumption means that a velocity of stimulation of ACTH signals is constant,
i.e. c = 1+f

kcd
. Mathematically, it means that the function µ = or can be considered as a

parameter (et lest asymptotically). E�ect of changing of parameters on c � null-cline has
been considered by Kim et. al. [8].

3 Determination of �xed points for the HPA problem

It is known that these equations have three positive steady states (there is also negative
state which is not used). These steady states arise beacons of homodimerization of the GR
with cortisol. From ([12], Fig.1) it follows that o = f1(p6) and r = f2(p6), where another
parametres are �xed. Here, f1 and f2 are multivalued functions.

dC

dT
= (Kc + F )

(
1 +

O
Kn

)
−KcdC. (15)

Next, from (6) it follows that if C = Kc+F
Kcd

, then we can put dC
dT

= 0 with accuracy O(ε),

where ε = O
Kn

.
As a result, we can consider the following approximation [5]:

ȧ(t) =
A

1 + p2o(t)r(t)
− p3a(t), (16)

ṙ(t) = − p4
p4 + (o(t)r(t))2

+ 1 + p5 − p6r(t), (17)

ȯ(t) = −o(t) + a(t− τ). (18)

The main role hear plays equation (17), which describes the production of GR in the pitu-
itary. The term − p4

p4+(o(t)r(t))2
+ 1 is in Michaelis-Menten form (see, [12] beacons we assumed

that the bound glucocorticoid receptor (or) in the dimensionless form dimerizes with fast
kinetics, so that the amount of dimer is in constant quasi-equilibrium and ones depends on
the excess of or. The model also assumes that cortisol (o) and the glucocorticoid receptor

4



(r) bind to each other with very fast kinetics, which is compared to the rate of change of
the 4 state variables (A, C, O, and R), so that OR stays in quasi-equilibrium as well. These
are reasonable assumptions, given that high a�nity receptor-ligand kinetics are often much
faster than enzyme kinetics, as is assumed in the Michaelis-Menten equation (see, [12]. Equa-
tion (17) models a linear production term Kcr and a degradation term −KrdR for pituitary
GR production. Below, in the dimensional form for the model, these coe�cients are de�ned
as 1 and p6, respectively.

4 Remark 1

Notice that (c) represents the level of circuiting CRH, (a) de�nes the level of circuiting
ACTH, (r) describes the level of glucocorticoid receptor in the pituitary, and (o) is the
level of circuiting cortisol. In equations for (a) and (r), the cortisol - receptor complex (or)
is assumed to form and dissociate under fast dynamics [8]. Below mathematically it will
be proved that it is indeed true beacons there are so-called slow oscillating distributions of
cortisol [8]. It has been shown that this level can be approximated as 'steady state' by the
production (or).

Indeed, let us de�ne µ = or. Then the origin problem in R3 can be unfolds as the system
in R3, so that

ȧ =
A

1 + p2µ
− p3a, (19)

ṙ = − p4
p4 + µ2

+ 1 + p5 − p6r, (20)

ȯ = −o+ a, (21)

µ̇ = ȯr + ṙo, (22)

where, in (21), a := a(t) or a := a(t− τ).
From these equations it follows that �xed points lie on the curves

a =
1

p3

(
A

1 + p2µ

)
, (23)

r =
1

p6

(
− p4
p4 + µ2

+ 1 + p5

)
. (24)

Since �xed points lie on diagonal o = a, multiplying these relations and substituting o = a,
and putting at a �xed point µ̇ = 0, we obtain that µ is a solution of 4 � order algebraic
equation. Indeed,

or = µ =
1

p6p3

(
A

1 + p2µ

)(
− p4
p4 + µ2

+ 1 + p5

)
. (25)

Let ν = A
p6p3

. Then from (25) we arrive at

p4µ
4 + µ3 + (p2p4 − (1 + p5))µ

2 + p4µ− νp5p4 = 0. (26)
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From Descartes' rule it follows that this equation has 3 or 1 positive roots and 1 negative
root which can not be considered. Descartes' rule means that the number of positive roots
of the polynomial is either equal to the number of sign di�erences between coe�cients, or is
less than it by an even number. From this property it follows that if we assume that

p2p4 < 1 + p5, (27)

then (26) has 3 positive roots µ1, µ2, µ3. Then from (23),(29) we can �nd three �xed point
of the problem.

Thus, there are on the hyperplane µ̇ = 0 in R4 � space that is included in R4 � space,
where µ can be considered as a parameter. Since the basis in R4 is not a family of independent
vectors, we can use this observation to �nd conditions when trajectories of the dynamical
system in R4 are attractive by trajectories in R3. If this is true, then the function µ(t) in
R4 is a constant function in R3. A condition when it is possible can be easy found. Indeed,
let λ1, λ2, λ3, λ4 be eighenvalues of the problem. It means that

ȧ = λ1a, ṙ = λ2r, ȯ = λ3o, µ̇ = λ4µo. (28)

From these equations it follows that

µ̇ = λ4µ = ȯr = (λ2 + λ3)λ. (29)

From (??kjjjjh')) it follows that if λ2 + λ3 < 0, then µ̇ → 0 as t → +∞. It means that µ
can be considered as a parametre in asymptotic sence.

5 Geometric method of determination of �xed points of

the problem

Now we assume that there is a component o = o∗ of a �xed point in R3. Then from equation
(20) for cortisol we see that ṙ ≡ 0 if G(r, o) ≡ 0, where �nd from (17) the (o, r) - nullcline
structure that is determined as a curve r := r(o) such that G(r(o), o) ≡ 0 for each admissible
o from some interval (corresponding numerical simulation is in ([8], Fig.4)). To make it, we
assume that there is a component of �xed

G(r, o) := −p6o2r3 + (1 + p5)o
2r2 − p4p6r + p4p5 = 0, (30)

where o can be considered as a parameter. Thus, there is (multi-valued) curve r := r(o)
such that G(r(o), o) ≡ 0 for each positive �xed o. This curve has been found by numerical
simulation in ([8], Fig.4)). The curve has S � form as graphic of a cubic polynomial.

6 Applications of the singularity theory for the HPA

problem

If we �nd from (30) the curve S = r(o), then on this curve ṙ = 0 that follows from the second
equation of the HPA problem for the function r(t). Results of computer experiments can
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be found in [8]. On this curve, which has S � form (that leads to bistability), the function
r(t) is constant.

The behaviour of the RG receptor can be analyzed by the singulary theory [?]. The
graphic r := r(o) is multi-valued, and ones form S � form curve as shown, for example, in
([10], Fig. 3). From [13] it follows that there is irreversibility if

G = Gr = Grr = 0, Grrr 6= 0. (31)

From equation G(r, o) = 0 it follows that there are one or three �xed points for each �xed
positive a. From equation Grr = 0, i.e.,

−3p6o
2r + (1 + p5)o

2 = 0, o 6= 0 (32)

it follows that we have here the vertical in�ection point value r = 1+p5
3p6

, which is independent

on o as a parameter. Ignition and extinction points in the (r − o) locus (see, [10]) are
determined by the solutions G = Gr = 0 with Grr 6= 0.

They satisfy to the quadratic equation

−(1 + p5)o
2r2 + 2p4p5r − 3p4p5 = 0 (33)

that leads to the values

r1,2 =
−p4p5 ±

√
(p4p5)2 − 3(1 + p5)p4p5
−(1 + p5)

. (34)

In the cae of bistability, these points separate three �xed states (one unstable saddle point
is between two stable states). From here we see that the inequality

(p4p5)
2 ≥ 3(1 + p5)p4p5 (35)

must be satis�ed (it is necessary condition) for the bistability to exist.
Notice that according to Descartes' rule of signs the number of the positive roots of a

polynomial is equal to the number of sign changes in the coe�cients or less than the sign
changes by a multiple of 2. Hence polynomial (30) has one or three positive roots. These
roots lie on the curve r(o). Intersection of this curve with the line o = a (which follows from
(18)) we obtain that µ = ar(a). Here, µ = (µ1, µ2, µ3). Using (52,) we �nd �xed points of
the problem, which are pk = (ak∗, a

k
∗, r

k
∗ = r(ak∗)), k = 1, 2, 3.

Notice also that according interpretation in ([12], Fig. 3) it has been obtained the
variations of steady state for GR and cortisol r, respectively, with a as the parameter. There
are three intervals I1, I3 and I2. If a ∈ I1

⋃
I3, then there are two attractive �xed points. If

a ∈ I2, we obtain a repelling �xed point.

7 2D nonlinear dynamics

Let us consider the system of equations

ȯ(t) = −o(t) + a(t− τ), (36)
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ȧ(t) = −f [o(t)]− p3a(t). (37)

Then

ȧ(t− τ) = −f [o(t− τ)]− p3a(t− τ). (38)

De�ne a(t− τ) = y(t). Then from (60) it follows that

ẏ(t− τ) = −f [o(t− τ)]− p3y(t), (39)

In (58) we de�ne (for uni�cation with [9]) o(t) = x(t). Then (58), (61) can be written as

ẋ(t) = y(t)− x(t), (40)

ẏ(t− τ) = −f [o(t− τ)]− p3y(t). (41)

ẏ(t) = y(t)− x(t), (42)

Consequently, the �rst equation can be written as

ẏ(t) =
A

1 + p2o(t)r(o(t))
− p3y(t). (43)

Notice that on each plane ẏ(t) ≡ 0 the following functional relation r(t) ≡ Φ(o(t)) is sat-
is�ed, where Φ is known irreversible function. Remind that a function Φ represents the
glucocorticoid receptor (GR) that is included in the HPA axis (see, [12], Fig.3(a)) that in-
cludes the glucocorticoid. The nonlinear e�ect arises when GR homodimerizes (after cortisol
activation) and induces its own synthesis in the pituitary. The form of graphics Φ(o) plays
the main role in the qualitative study of solutions. The graphic has S form that allows to
�nd three �xed points. Two of these �xed points are attracting, but one of the points o∗
must be repelling in R1..

Indeed, below it will be shown that if o∗ is attracting, then there in reality four �xed
point (see prev stable solutions. So that there are no of oscillating solutions. If a unique
�xed point o∗ is repelling then this point plays role of separator. Behaviour of a solution
depends on an amplitude of initial data which is given on interval [−τ, 0). Let h(t) be an
initial function on [−τ, 0). Then if 0 < h(t) < o∗, a solution tends to a constant solution
o(t)→ o1 < o3 as t→ +∞. If h(t) > o∗ on interval −τ, 0) then o(t)→ o1 < o3 as t→ +∞.
As a result, existence both of delay and repelling �xed point leads to the possibility of
oscillating solutions of the problem if the initial data on −τ, 0) are large enough.

8 Planar case on RG null�isocline

Now, we return to the mathematical aspects of the problem. As shown above, there is i.e.,
to the equation (43). De�ne

−f(o) :=
A

1 + p2or(o)
, (44)
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where r(o) is de�ned by RG form of the RG curve. Then equation (43) can be rewrite as

ẏ(t) = −f(o)− p3y(t). (45)

Next, an important observation is that both equations (43) and (60) are equivalent to the
system of equations

ẋ(t) = y(t)− ρ1x(t), (46)

ẏ(t) = −f(x(t− τ)− ρ2y(t), (47)

where for (46) we put ρ1 = 1, ρ2 = p3, τ = 1. Then from [9] it follows that system (46), (50)
has a monotonic periodic solution with a period grater then 2 and, respectively, 2τ � for the
origin physiological problem.

Here, the following conditions must be satis�ed: (i) a and b are positive constant, 0(ii)
u f(u) > 0 for all u 6= 0, (iii) there is a positive constant χ such that f(u) ≥ −χ for all u,

ḟ(0) >
(ρ1 + ρ2)γ

sin γ
, (48)

where γ satis�es 0 < γ < π, and

coth γ =
1

γ
(γ − ρ1ρ2)(ρ1 + ρ2). (49)

Remind that, for the physiological problem, ρ1 = 1 and ρ2 = p3. Hence, the condition (i) is
satis�ed. Next, the inequality (60) becomes

ḟ(0) >
(1 + p3)γ

sin γ
. (50)

Notice that in [9] there is only a unique �xed point 0. In our situation, there are three �xed
points (o1, o2, o3), where o1 and o3 must be attractive �xed points, and o2 = o∗ be a repelling
�xed point. So that inequality (62) becomes

ḟ(o∗) >
(ρ1 + ρ2)γ

sin γ
. (51)

Further, the point o∗ must be repelling. For example, in the limit γ → 0 we obtain ḟ(o∗) >
1 + p3 and, hence, the condition of the local unstability is satis�ed. Since, p3 ≥ 0, this �xed
point must be repelling at least for small δ. In conclusion, the condition (iii) is the condition
of local instability as it will be shown below.

9 Analyses

De�ne α = ρ1 + ρ2,β = ρ1ρ2, ν = ḟ(0). Then the characteristic equation is

λ2 + αλ+ β + νe−λ = 0, (52)

where we assume that τ = 1. If τ 6= 1 then the problem is reduced to the characteristic
equation:
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Figure 1: Slow oscillating distributions of cortisol

.

z2 + ατz + βτ 2 + ντ 2e−z = 0, (53)

where z = λτ , ν → ντ 2, α→ ατ , and β → βτ 2, and we assume that τ 6= 0.
Further, we use results from ([9], Lemma 1). If α, β, ν be positive, and if α2 ≥ 2β, then

the following three conditions are equivalent: (1) Equation (52) has at least one solution.
(2) The characteristic equation has precisely one solution λ with <λ > 0 and 0 < =λ < π.
(3) The following inequality is true

ν >
αν1

sin ν1
, (54)

where 0 < ν1 < π and

coth ν1 =
1

α

(
ν1 −

β

ν1

)
. (55)

Notice that there are many details about behaviour of trajectories of the dynamical system.
We formulate this behaviour as distributions of concentrations of hormones a and o on the
(o− a) � plane, where o is the distribution of cortisol. For example, there is an estimation

ḟ(0) >
ρ1ρ2

emin (ρ1,ρ2) − 1
, (56)

where 0→ o∗ and ρ1 = 1, ρ2 = p3, so that

ḟ(o∗) >
p3

emin (1,p3) − 1
. (57)

Then a component o(t) has properties as follows: (1) Zeroes for a graphic o(t) form an
in�nite series tk, k = 1, 2, ..., with o(tk) = 0, tk+1 − tk > 1 and ȯ(t2k−1) < 0, ȯ(t2k) > 0, and
ȯ(t2k−1) < 0, ȯ(t2k) > 0, and a(t2k−1) < 0, a(t2k) > 0, and a(t2k−1 + 1) < 0, a(t2k + 1) > 0;
(2) A function eαto(t) is monotonic increasing on an interval (t2k, t2k + 1) and monotonic
decreasing on (t2k−1, t2k−1 + 1), where α = 1 + p3 (see, Fig. 1).
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10 A necessary and su�cient condition for existence of

slow periodic solutions

If τ 6= 1, then we obtain the characteristic equation

z2 + ατz + βτ 2 + ντ 2e−z = 0, (58)

where z = λτ . De�ne α̂ = ατ, β̂ = βτ 2 and ν̂ = ντ 2. Next, we must verify the assumption
α̂2 > 2β̂2 from ([9], Lemma 1). Evidently that this assumption is satis�ed foe each τ 6= 0.

Further, we assume that

π2 +
α̂2

4
− β̂2 > 0. (59)

From (59) it follows the necessary condition on delay

τ <
2π√

4β − α2
. (60)

From (60) we obtain that must be 2β < α2 < 4β that leads to the natural condition p3 > 1.
The condition (59) allows to apply Lemma 1 from [9]. It means that characteristic

equation (58) has precisely one solution z with < z > 0 and 0 < = z < π. Here, ν̂ must be
such that

ν̂ >
α̂ν̂1

sin ν̂1
, (61)

where 0 < ν̂1 < π, and

coth ν̂1 =
1

α

(
ν̂1 −

β

ν̂1

)
(62)

(see, [9], conditions (2),(3) from Lemma 1). From (62) it follows that

ντ 2 >
αν1τ

3

sin ν1τ 2
. (63)

In the limit τ → 0, from (63) it follows that

τ >
α

ν
+O(τ 2). (64)

Remind that ν = ḟ(o∗), where o∗ is repelling �xed point of f . Together with (62) it gives

1 + p3

ḟ(o∗)
< τ <

2π√
4β − α2

. (65)

Inequality (65) gives necessary and su�cient conditions for existence of slow periodic solu-
tions for the HPA problem in 2D approximation.
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11 Conclusion

In this paper, it has been considered physiological and mathematical mechanisms of forma-
tion of ultraradian oscillations in the HPA axis. It is shown that here the main role plays
the nonlinear connection between cortisol COR and the glucocorticoid receptor GR that
forms a homodimer [?, 3]. A coception of transcriptional regulation is that the GR feedback
control works rather slowly compare to other cellular processes.

The corresponding di�erential�di�erence equations with delay argument have slow os-
cillating periodic solutions. The delay has been included because, for example, mammalian
cells one can expect at least a delay of the down regulation in the range of 15 minute up
to 2 hours (see,[14, 11]. It is proved that at least mathematically) this hypothesis has been
con�rmed as slow oscillating 2τ (or larger) periodic distributions of cortisol (Fig.1). Here
we follows to a mechanistic ODE system model of the glucocorticoid feedback mechanisms
within the anterior pituitary gland cell, adding to this model the delay τ .

It is shown that important factor is the consequence between extracellular events such
as changes in the CRH and cortisol induced inhibitory e�ect on anterior pituitary gland
cells, which already occur after a few seconds [4, 1]. As a result, the slow oscillating periodic
solutions of the mathematical mode explains qualitatively a phenomenon that can not be
explained means of the genomic feedback mechanism [11]. An exact interval τ1 < τ < τ2 for
existence of slow oscillating periodic distributions for cortisol it has been found.

References

[1] Losel R., Wehling M.: Nongenomic actions of steroid hormones, Nat. Rev. Mol. Cell.
Biol., 4, 46â��56, 2003.

[2] Alberts B., Johnson A., Lewis J., Ra� M., Roberts K., Walter P., Molecular Biology of
the Cell: Reference Edition: Garland, Science, 2007.

[3] Drouin J., Sun Y.L., Tremblay S., Lavender P., Schmidt T. J., de Lean A., Nemer M.,
Homodimer formation is rate-limiting for high a�nity DNA binding by glucocorticoid
receptor. Molecular Endocrinology, 6, 1299�1309,1992.

[4] Norman A.W., Mizwicki M.T., Norman D.P.: Steroid-hormone rapid actions membrane
receptors and a conformational ensemble model. Nat. Rev. Drug. Discov., 3,27-41,2004.

[5] Rankin J., Walker J., Windle R., Lightman S.L., Terry J.R., Characterizing Dynamic
Interactions between Ultradian Glucocorticoid Rhythmicity and Acute Stress Using the
Phase Response Curve, PLoS. ONE. 7,2, 30978. doi:10.1371/journal.pone.0030978.

[6] S. Gupta, E. Aslakson, B. M. Gurbaxani and S. D. Vernon, Inclusion of the gluco-
corticoid receptor in a hypothalamic pituitary adrenal axis model reveals bistability,
Theoretical Biology and Medical Modelling, 4,8,2007.

[7] K. Sriram, M. Rodriguez-Fernandez, F. J. Doyle, III 1 , Modeling Cortisol Dynamics in
the Neuro-endocrine Axis Distinguishes Normal, Depression, and Post-traumatic Stress
Disorder (PTSD) in Humans, PLoS. Comput. Biol. 2012 8,2,2012, 1002379. Published
online 2012 Feb 16. doi: 10.1371/journal.pcbi.1002379

12



[8] L. U. Kim, M. R. Orsogna, and T. Chou, Perturbating the Hypothalamic Pituarity
Adrenal Axis: the Hypatalamic- Pituarity-Adrenal Axis: A mathematival model for
interpratating PTSD tests, Computer Psychiatria, 2018, 28-49.

[9] U. an der Heiden, Periodic Solutions of a Nonlinear Second Order Di�erential Equation
with Delay, Journal of mathematical analysis and applications, 70, 599-609, 1979.

[10] S. Jelic, Z. Cupic, L. Kolar-Anic, Mathematical modeling of the hypothalam-
icâ��pituitaryâ��adrenal system activity, Mathematical Biosciences, 197,173-197,
2005.

[11] C.A Zarzer, M.G Puchinger, G. Kohler and P. Kugler, Di�erentiation between genomic
and non-genomic feedback controls yields an HPA axis model featuring Hypercorti-
solism as an irreversible bistable switch, Theoretical Biology and Medical Modelling,
10,65,2013.

[12] Gupta S., Aslakson E., Gurbaxani B.M., Vernon S.D., Inclusion of the glucocorticoid
receptor in a hypothalamic pituitary adrenal axis model reveals bistability, Theoretical
Biology and Medical Modelling, 4,8, 2007.

[13] P. Gray, S.K. Scott, Chemical Oscillations and Instabilities-non-linear Chemical Kinet-
ics, Clarendon, Oxford, 1990.

[14] Computational Endocrinology, Editors: Duncan J. MacGeror, Gareth Leng, Masterclass
in Neuroendocrino;oly, Series, Wiley Bleckwell, 2016.

13


