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Abstract 

3D imaging is essential for the study and analysis of a wide variety of structures in numerous ap-

plications. Coherent photonic systems such as Optical Coherence Tomography (OCT) and Light 

Detection and Ranging (LiDAR) are state of the art approaches, and their current implementation 

can operate in regimes that range from under a few millimeters to over more than a kilometer. 

We introduce a general method, which we call Universal Photonics Tomography (UPT), for ana-

lyzing coherent tomography systems, in which conventional methods such as OCT and LiDAR 

may be viewed as special cases. We demonstrate a novel approach based on the use of phase 

modulation combined with multirate signal processing to collect positional information of ob-

jects beyond the Nyquist limits. Depending on the location of the phase modulator in the system, 

and associated modulation scheme, we can improve the axial resolution or the maximum meas-

urement distance (unambiguous range).  

 

Introduction 

Coherent signal processing is a powerful tool for real time 3D imaging of objects at distances 

ranging from a few hundred microns to several hundred meters with corresponding resolutions1. 

Optical Coherent Tomography (OCT)2 is a well-developed imaging technique for objects at short 

distances with micron level resolution, hence is useful for various biomedical applications3,4. OCT 

has two different forms Time Domain OCT (TD-OCT) and Fourier Domain OCT (FD-OCT)5. The 

FD-OCT has been implemented exploiting two different approaches; the first one being Spectral 

Domain (SD-OCT) that utilizes a broadband source with spectrum analyzer. The second approach 

is the Swept Source (SS-OCT) that utilizes a tunable laser source combined with a photodetector. 

Among the different implementations, SS-OCT is the most promising, and can provide axial 

resolutions of 5 um and depth information up to a few millimeters10. Other variants of OCT such 

as Doppler OCT also exist for specialized applications where velocity measurement is also 

required6. 

For measurements of 3D objects at long distances ranging from a few meters to kilometers, a Light 

Detection and Ranging (LiDAR)7,8 technique is employed using a modulated source and a 

photodetector. LiDAR has several applications, for example: surveying9,10, forestry11, atmospheric 

physics12, and autonomous vehicles13. The most common scheme to implement LiDAR is by 



measuring time of flight of pulsed lasers. A more recently developed technique is frequency 

modulated continuous wave LiDAR8 (FMCW LiDAR) that uses a frequency chirp. The chirped 

signal is transmitted to the object and its replica is made to interfere with the returned signal, 

reflected from the object. The beat frequency is then used to determine the distance to the object. 

It is worth noting that the technique of SS-OCT and FMCW lidar resemble each other in terms of 

using a frequency sweep and measure distances using coherent detection14. The difference arises 

from the manner of frequency sweep, where in SS-OCT a particular frequency interferes with itself 

while in FMCW LiDAR different frequencies can interfere with each other due to time lag.  

In this regard, it is possible to view these methods as part of a more general universal framework: 

a coherent interferometer that has the capability of optical modulation in different sections of the 

system. The prevailing techniques can all be viewed as special cases depending on the source, 

modulation format, and detection procedure. In one case, a laser, quadratic phase modulation and 

fast photodetector will implement FMCW LiDAR, whereas a frequency sweep and a slow 

photodetector becomes SS-OCT. According to conventional understanding, improvements to 

these technologies based on hardware have reached the point of diminishing returns15. Research 

has consequently shifted to alternative methods, such as superior processing algorithms, and 

complex modulation/detection schemes, in a bid to improve the resolution and depth 

performance16-20.The primary advantage of this universal framework, which we call Universal 

Photonics Tomography (UPT), is that it can enable formulation of novel reconfigurable 

functionalities and capabilities to these existing techniques. In this work we demonstrate one such 

example, where the phase modulator in OCT can be exploited to scan multiple times and can be 

used to detect objects over longer distances by changing the resolution and depth parameters of 

the tomography system. These parameters are a direct consequence of Nyquist criterion with 

length (or time) and frequency forming Fourier pairs. They determine the limitations and effective 

cost of the system, and their relations are given by Eq. 1, where the axial resolution (𝑙𝑜) is mainly 

determined by the bandwidth (𝐵) of laser sweep while the maximum distance (𝐿) by the frequency 

resolution (𝜐𝑜).  

 𝑙𝑜 = 𝑐/𝐵     ;    𝐿 = 𝑐/2𝜐𝑜 (1) 

Nearby object imaging is limited by the axial resolution 𝑙0 (determined by the optical bandwidth) 

and far object imaging is limited by maximum distance 𝐿 (determined by the frequency resolution). 

We mathematically develop this tomography system from first principles and show how the 

fundamental resolution and depth limitations can be pushed using phase modulation and multirate 

filter bank interpretation. 

Results 

Multirate filter banks are sets of filters, decimators and interpolators used widely in conventional 

digital systems21. Usually, decimators downsample the signal after passing through analysis filters. 

This compressed information is stored or transmitted via a channel. On the other end of channel, 

the signal is interpolated or upsampled and passed through synthesis filters to retrieve the original 

information. The process of downsampling means decreasing the resolution of system which is 

similar to an undersampled tomography system. The tomography systems are also discrete, and 



analog filters can be implemented by phase modulation of the optical carrier signal and by digital 

processing after detection. Hence, the imaging system can be considered as multirate filter bank 

with each scanning cycle representing a single channel and carrying object information in a 

compressed form. Here, we demonstrate a 2-channel filter bank implementation which results in a 

twofold improvement in both length and frequency resolution of the tomography system. Using 

this scheme, both near and far objects as well as their density profiles can be measured with 

improved parameters. In this way it is more versatile than conventional approaches. 

Formulation  

I. Universal Photonics Tomography 

The setup for our implementation of UPT, without the phase modulators, is shown in Fig. 1a. 

The normalized interference term (see Supplementary Information, S-I) measured at the 

photodetector is given by, 

Fig. 1 | Structure for Universal Photonics Tomography (UPT). a, Base case: Setup for our 
implementation of UPT without phase modulators which resembles the Swept Source OCT in single mode 
fiber. b, First case: Phase modulator is added in the sample arm to the base case. A waveform generator 
(not shown) is used to give slow modulation which assists to improve the resolution in length domain. c, 
Second case: Phase modulator is added just after the tunable laser to the base case. A signal generator 
(not shown) is used to give fast modulation which assists to increase the maximum unambiguous range. d, 
Schematic for the working of UPT and the required post-processing in the filter bank form. The horizontal 
dashed lines indicate photodetection. The transfer functions are in frequency domain for the first case while 
in length (i.e., time) domain for the second case. 



 
𝑃𝑖𝑛𝑡𝑓(𝑘) = ∑ �̅�(𝑖) exp (

 𝑗2𝜋

2𝑁 + 1
𝑘𝑖)

𝑁

𝑖=−𝑁

 (2) 

where �̅�(𝑖) consists of reflection and transmission coefficients in the 𝑖-th surface present at a 

particular position with its magnitude determined from Fresnel equations22 and the transmitted 

optical power to the object, 𝑁 is the total number of surfaces present,  and each value of 𝑘 

represents a frequency in laser sweep. The negative arguments of the summation represent the 

conjugate part of the interference. �̅�(𝑖) can be obtained by taking the Discrete Fourier Transform 

(DFT) of 𝑃𝑖𝑛𝑡𝑓. The position, 𝑖,  of the non-zero elements of �̅�(𝑖) give the optical distance of the 

surface, while their magnitude can be used to determine the optical index of the layer which in 

turn can be used to extract the true physical distance. 

II. Frequency dependent slow modulation 

Next we add a phase modulator to the sample arm and use a signal generator, as shown in 

Fig. 1b, to introduce a phase modulation ϕ(𝑡). Assuming that the modulation is slow compared to 

the time taken (time bin) by the laser to measure a single frequency, the DFT (transformation from  

𝑘 to 𝑛) of the interference term (𝑃𝑖𝑛𝑡𝑓) is given by, 

 2𝑁 Ӻ[𝑃𝑖𝑛𝑡𝑓(𝑘)](𝑛) = |𝐹|2𝑎(𝑛) ∗ ℎ(𝑛) + |𝐹|2𝑎∗(−𝑛) ∗ ℎ∗(−𝑛) (3) 

where |𝐹|2𝑎(𝑛) = �̅�(𝑖) for 𝑛 > 0 and |𝐹|2 is the transmitted optical power to the object. ℎ(𝑛) = 

Ӻ[exp(𝑗ϕ(𝑘Δ𝑡))], where Ӻ[.] is the DFT function and Δ𝑡 (time bin) is the time taken to measure 

the power at a single frequency. Eq. 3 can be truncated to 𝑛 > 0 regime and then normalized by  

|𝐹|2 to give 𝑢(𝑛)  (see Supplementary Information, S-II). 

 𝑢(𝑛) = 𝑎(𝑛) ∗ ℎ(𝑛) (4) 

Eq. 4 resembles a filter ℎ(𝑛) applied to 𝑎(𝑛) in a linear system with convolution in length (i.e., 

time) domain. A transfer function can then be defined in frequency domain, and this provides the 

opportunity to apply digital signal processing on the depth information. 

III. Frequency independent fast modulation 

In this case, we place the phase modulator just after the laser, as shown in Fig. 1c. We use 

fast modulation which repeats after every sweep frequency i.e., it is periodic with Δ𝑡. It can then 

be shown that the interference term is given by, 

 

𝑃𝑖𝑛𝑡𝑓(𝑘) = ∑ �̅�(𝑖)�̅�(𝑖) exp (
 𝑗2𝜋𝜐𝑜𝑙𝑜𝑘𝑖

𝑐
 )

𝑁

𝑖=−𝑁

  (5) 

where �̅� (𝑖) is the autocorrelation function of the phase modulation (see Supplementary 

Information, S-III). Eq. 5 can be written in the convolution form. 

 𝑢(𝑛) = �̃�(𝑛) ∗ ℎ(𝑛) (6) 



Here the 𝑃𝑖𝑛𝑡𝑓 has been replaced by 𝑢(𝑛) and variable 𝑘 is replaced 𝑛. �̃�(𝑛) = Ӻ[�̅�(𝑖)], and ℎ(𝑛) = 

Ӻ[�̅�(𝑖)] determines the filter coefficients (see Supplementary Information, S-III). Note that here 

the convolution is in frequency domain, as opposed to previous case. Hence, the transfer function 

can be implemented in length domain. 

IV. Multirate Filter Bank 

 Eq. 4 and Eq. 6 represents a linear system in which multirate signal processing can be used 

to increase the resolution of the system as shown in Fig. 1d. By performing multiple scans, axial 

resolution is improved in the first case while maximum depth is increased in the second case. The 

first case may arise when bandwidth of laser is limited while second case may arise when 

frequency resolution is limited. These two cases are equivalent to the presence of a downsampled 

block in the system. Analysis filters are implemented using phase modulators while the synthesis 

filters and upsampling blocks are implemented digitally. In the result section, we demonstrate a 2-

channel filter bank for both the cases. 

For slow modulation we use a linear phase modulation, which is effectively a 𝑧-1 transfer function 

in Z domain (see Supplementary Information, S-IV). This results in a lazy-filter bank. For fast 

modulation, sinusoids are the only cost-effective option. The transfer function then corresponds to 

a Bessel function (first kind, zeroth order) of a sinusoid (see Supplementary Information, S-IV). 

Fig. 2 | Experimental demonstration of UPT without modulators (Base Case). a, The objects used are 
a couple of microscope slides placed one behind the other. b, The measured interference pattern on the 
photodetector as a function of frequency sweep. c, Fourier transform (FT) of the interference pattern. The 
four larger peaks predict the distances of the surfaces present. The smaller peaks (barely visible) are due 
to autocorrelation of the sample arm signal in the interferogram and can be removed by balanced 
photodetection.  



The synthesis filters can be calculated from the perfect reconstruction conditions of filter banks, 

as given by Eq. 7 and Eq. 8. 𝐾 is an integer and corresponds to the delay due to signal processing. 

 
[
𝐹𝑜(𝑧)
𝐹1(𝑧)

] =
2𝑧−𝐾

∆(𝑧)
[
𝐻1(−𝑧)
−𝐻𝑜(−𝑧)

] 

 

(7) 

 ∆(𝑧) =  𝐻𝑜(𝑧)𝐻1(−𝑧) − 𝐻𝑜(−𝑧)𝐻1(𝑧) (8) 

Experimental Results 

The results demonstrate the working principal of the device, which is developed in the section 

above, under the universal framework. We then experimentally demonstrate how various 

modulation schemes provides the opportunity for novel detection and post-processing strategies. 

I.    Universal Photonics Tomography 

To demonstrate the UPT, we use two microscope slides as objects (Fig. 2a), one placed directly in 

front of the other, hence a total of four different interface surfaces separating two different media 

(namely air and glass). The microscope slides are about 1mm thick, and the two slides are placed 

about 12 cm apart. The refractive index of glass is assumed to be 𝑛𝑔𝑙𝑎𝑠𝑠 ≈ 1.5 , and the refractive 

index of air is taken to be 𝑛𝑎𝑖𝑟 ≈ 1.0. Fig. 2b shows the detected interferogram after using an offset 

equal to its mean. The bandwidth is 5 nm at a wavelength of 1.55 µm and resolution (𝜐𝑜) is 0.3 

pm. As shown in Fig. 2c, the Fourier transform clearly distinguishes the four surfaces and gives 

accurate distances of all surfaces. 

II.    Increasing Axial Resolution 

To demonstrate how to increase the axial resolution we use a microscope slide and a mirror behind 

it, as shown in Fig. 3a. We create a situation where the bandwidth of laser is not high enough to 

clearly distinguish the two surfaces of the slide. The laser sweeps a bandwidth of 1 nm with 0.2 

pm resolution. This results in an axial resolution (𝑙𝑜) of 2.4 mm, while the normalized distance 

between the slide surfaces is 3 mm. This measurement referred to as unmodulated signal, (curve 

Ch 0 in Fig. 3b, green curve and Fig. 3d green curve) corresponds to conventional SS-OCT, but 

the surfaces are barely resolvable due to limited bandwidth of the tunable laser source. . Next, we 

use a waveform generator to provide a linear phase modulation to the sample arm, as shown in 

Fig. 3c. The interferogram that is obtained can distinguish the surfaces better or worse depending 

on the position of surfaces, but the resolution (𝑙𝑜) remains the same (Fig. 3b blue curve and Fig. 

3d blue curve). Now we combine the two signals, treating them as two different channels of a 

multirate filter bank (Fig. 3e). This improves 𝑙𝑜 from 2.4 mm to 1.2 mm. The surfaces can be 

distinguished much more easily now, and their position are known twice more accurately than 

before. Hence the axial resolution of the synthesized signal with a 1 nm bandwidth optical source 

is equal to that of a single channel system with a 2 nm source, a 100% improvement! Further, note 

that multiple channels can be used to improve the axial resolution even more. This is a highly 

significant result, as it provides the best path to ultrahigh resolution devices by a large margin.   

 



III. Increasing Maximum Depth 

For a simple demonstration on how to increase the maximum unambiguous depth, we again use 

the microscope slide with a mirror behind it (see Fig. 3a). We define a balanced point which is the 

zero position in the length domain and physically represents the point where delay of reference 

signal is equal to that of signal from the object. The microscope slide is used as a reference, which 

Fig. 3 | Demonstration of UPT for increasing axial resolution (First Case). a, The objects are a 
microscope slide and a mirror with the former in front of the later. b, The measured interference pattern of 
the unmodulated channel 0 (green curve) and modulated channel 1 (blue curve) as function of frequency.  
c, Schematic of the linear modulation given to Channel 1 (Ch 1). d, Fourier transform (FT) of Ch 0 (green 
curve) and Ch 1 (blue curve). e, Synthesized distance estimation of the objects by combining both the 
channels as part of a lazy-filter bank. The resulting curve has twice better length resolution compared to 
the ones detected in the individual channels. 



is at 2.51 m from the balanced point, while the mirror, which is at 3.41 m from the balanced point, 

is the target object. Here we consider the situation when the resolution of laser sweep is limited to 

0.4 pm, which corresponds to maximum unambiguous depth (𝐿) equal to 3 m, and the position of 

the target (mirror) is beyond it. We first measure this object with 50 MHz sinusoidal phase 

modulation as shown in Fig. 4b green curve. The peak for mirror appears at 2.62 m which is an 

aliasing artifact that arises due to undersampled measurement. To predict the true position of the 

target we perform a second measurement where the transfer function of the phase modulation has 

a zero at the unaliased position of the target but not at the aliased position. If the target peak 

disappears then it indicates that the target is indeed at much further distance, otherwise the original 

peak gives the correct position. Thus, we use adaptive phase modulation and signal processing to 

determine the position of a single target which is often the requirement of a conventional LiDAR 

system. This is a valuable method as it is often difficult to determine the accurate transfer function 

of the optical modulation due to nonlinearity,  variable 𝑉𝜋 , RF impedance mismatch, etc., but this 

method only requires the knowledge of zero crossings of the transfer function.  In our case, an 80 

MHz sinusoidal phase modulation gives a transfer function that has a zero at 3.41 m and we show 

that this makes the 2.62 m peak disappear (Fig. 4b blue curve). Therefore, we can conclude that 

Fig. 4 | Demonstration of UPT for increasing maximum unambiguous depth (Second case). a, 
Schematic depicting the voltage applied to phase modulation as laser frequency is tuned. b, Fourier 
transform of the measured power when phase modulator is given 50 MHz sinusoidal signal at channel 0 
(green curve) and 80 MHz sinusoidal signal at channel 1 (blue curve). These both are combined to predict 
the true position of the mirror, which is beyond the Nyquist limit c, Fourier transform of the measured power 
when a mirror is actually placed in the aliased position of the original mirror. Comparing the 80 MHz RF 
modulation between the blue and brown curves show the effect of length dependent transfer function that 
differently affects the two peaks that are at different physical positions, even though they show up at the 
same place in Fourier domain due to aliasing. d, Synthesized signal by combining the two channels and 
passing them through the synthesis filters. The peak at 3.41 m  predict the true position of the mirror.   



position of the target is actually at 3.41 m.  We also demonstrate in Fig. 4c that the peak would not 

have disappeared if the true position of the mirror were actually at 2.62 m, by physically placing a 

mirror at this position. Also, the 50 MHz and 80 MHz measurements can be treated as two different 

channels in a multirate filter bank and combined, as shown in Fig. 4d, to give a graph that has 

twice the maximum unambiguous range than individual channels. This method will perform better 

for more complex objects but also require an accurate structure of the analysis of the transfer 

function produced by phase modulation (see Supplementary Information, S-IV). Hence, we 

showed that distances up to 6 m can be measured by using laser sweep resolution which 

corresponds to only maximum depth of 3 m in the unmodulated case. As mentioned above, 

multiple channels (scans) can be used to increase the limit even more. Also, for simple targets, 

adaptive measurements can be performed which will require lesser number of channels and can 

still measure much farther positions of the target. This is a highly significant result for the same 

reasons. 

Discussion 

We have demonstrated UPT which is a universal method to measure depth and position of objects 

at various distances by adjusting the laser sweep frequency and bandwidth. We implemented a 

system, that validates the SS-OCT as a special case under the UPT framework,  which is limited 

in depth by the tuning frequency resolution of the laser, and which is limited in spatial resolution 

by the bandwidth of the laser. In this case, improving the performance of the device would 

necessitate simultaneously increasing the tunable bandwidth of the laser, as well as the tuning 

resolution, while also increasing the output power so the spectral power density is maintained. 

This is an uneconomical prospect at best. The bandwidth and frequency resolution of a tunable 

laser is limited by size, power, material properties, etc.23,24. Improving them directly will make the 

system bulky, cost ineffective and difficult to implement. As an alternative, we used the UPT 

framework to design and demonstrate an alternative approach that improves the resolution and 

depth performance through the use of slow and fast modulation of the optical carrier. This only 

requires a simple phase modulator and waveform/signal generator which are far more economical 

and much easier to integrate in the system. By making multiple scans, ultrahigh resolutions can be 

achieved both in frequency and length domain. The only drawback in this method is the extra time 

taken to perform multiple scans. The design is agnostic to the type of phase modulators used, which 

can be mechanical, acousto-optic, electro-optic, etc. In our experiments, we used Lithium Niobate 

phase modulators25 which have promising specifications of low 𝑉𝜋 and high RF bandwidths.   

This multichannel detection scheme has no theoretical limit. But for long distances the detected 

power might drop below the noise levels of the photodetectors. Another practical challenge exist 

is the imprecision in the frequency sweep. If all the frequency values reported by the laser do not 

have constant frequency difference, the Fourier transform will be noisy when making a 

measurement near or beyond the Nyquist limit. We observe this in the second case where the noise 

floor is due to the improperly spaced frequency values. The power on the photodetector comprises 

of the DC term (reference autocorrelation), the sample autocorrelation and the interference term 

(cross-correlation). To efficiently extract the interference term with high SNR, it is important to 

filter out the remaining two terms. One way is to attenuate the signal in the sample arm and subtract 



the mean of the total interference power. This method can still produce small peaks in the Fourier 

transform due to presence of autocorrelation term, which can also be observed in our base case 

(Fig. 2). The better way to remove the other two terms is using balanced photodetection, where 

subtracting the two interference powers cancels out the two unnecessary terms. 

To implement synthesis filters, it is essential that Δ(𝑧) as described in Eq. 8 is invertible. This is 

not the case when sinusoidal phase modulation is given to only to one channel with no modulation 

on the other. Hence, for second case, both channels should have sinusoidal modulation. Other 

modulation shapes can also be used if the speed of waveform generator permits.  Under the UPT 

framework other novel configurations are also possible, for example, using intensity modulators 

instead of phase modulators to implement more complex filters, or developing the system similar 

to SD-OCT and using optical modulation to virtually improve the bandwidth of the source and 

frequency resolution of the spectrum analyzer. 

From an engineering standpoint the most significant results are the improvements in axial 

resolution and maximum depth measurement without increasing the signal bandwidth and 

frequency resolution of tunable laser. This is because many factors form a hard limit on the source 

bandwidth in conventional systems. Specifically, these include source limitations, transparency 

windows of the optical components, and power tolerance. Similarly, frequency resolution is 

limited by factors depending on the tunable laser, for example, external cavity lasers require large 

cavities for small free spectral range. Operation under the UPT framework bypasses all these 

hardware challenges without the use of exotic and costly equipment. 
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Methods 

Universal Photonics Tomography 

The laser used for performing all the experiments is the 81608A Tunable Laser Source from 

Keysight which can give frequency resolution up to 0.1 pm and has a narrow linewidth (<10 kHz). 

The photodetector is the 81635A Dual Optical Power Sensor, also from Keysight. The phase 

modulator employed in both the cases is the Thorlabs Lithium Niobate 40 GHz phase modulators 

(LN27S-FC). The linear waveform is produced using Keysight B2960 series power supply while 

the sinusoidal signal is generated using Keysight MXG series 6 GHz Analog Signal Generator. 

The entire setup (excluding objects) is built upon SMF-28 single mode fiber.  
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Supplementary Information 

S-I. Universal Photonics Tomography 

In this supplementary material, we use complex field to model signals at various parts in the system. First, 

we consider the field that is reflected from an object whose position and depth is under investigation. 

Then we look at the interference of this reflected signal with a reference signal. Initially, the base case 

without any phase modulator is formulated and it is shown how the discrete Fourier transform of 

frequency sweep gives positional information of the object. Later we discuss the effect of phase 

modulator at two different positions.  

Consider a heterogenous object with multiple optical media and their corresponding surface present only 

at an effective optical distance of 𝑖𝑙𝑜 from the first surface. Since a reflected beam will pass through each 

section twice (once in the transmission direction, and once in the reflected direction), the effective optical 

path length of each section is defined as twice the distance multiplied by the effective index of the 

medium. 𝑖 is an integer in [1, 𝑁-1]. 𝑙𝑜 determines the axial resolution of the imaging system. A complex 

field 𝐹, with a certain carrier frequency 𝜐, is incident on this sample. The reflection from the 𝑖𝑡ℎ surface is 

given by equation (1). 

 𝑟𝑖 = 𝑎(𝑖)𝐹 exp(𝑗Φ𝑖) (9) 

𝒂 is a vector with reflection coefficients from each surface as its components. The reflection coefficient 

can be calculated from Fresnel equations. In theory, 𝑎(𝑖) can have contributions from surfaces other than 

the 𝑖𝑡ℎ surface. This is because of multiple reflection in between the surfaces that give the same delay as 

the 𝑖𝑡ℎ surface would have produced. But these extra terms can be neglected because usually 𝑟 (reflection 

coefficient) << 𝑡 (transmission coefficient) which will attenuate the multiple reflections. If 𝑖𝑡ℎ surface is 

absent the 𝑎(𝑖) can be considered to be zero. Φ𝑖 is the phase accumulated depending over the effective 

length and the carrier frequency 𝜐. Scattering is neglected to keep the formulation simple. The total 

reflection coming from the object is given by equation (2) 

 

𝑟𝑡𝑜𝑡𝑎𝑙 =∑𝑟𝑖

𝑁

𝑖=1

 (10) 

The field in the sample arm will be proportional to 𝑟𝑡𝑜𝑡𝑎𝑙. The proportionality constant depends on 1) 

coupling coefficient of the 3db fiber coupler, losses, etc. which are neglected as they are scaling terms, 

and 2) sample arm length, which is assumed to be equal to that of reference arm and is also neglected. 

 

𝑟𝑠𝑎𝑚𝑝𝑙𝑒 =∑𝑎(𝑖)𝐹 exp(𝑗Φ𝑖)

𝑁

𝑖=1

 (11) 

The field in the reference arm is given by equation (4). 

 𝑟𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 𝐹 (12) 

Let 𝑃 be the power detected by the photodetector. 

 𝑃 = 〈|𝑟𝑠𝑎𝑚𝑝𝑙𝑒 + 𝑟𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒|
2
〉 (13) 

The interference term is given by equation (6). 



 

𝑃𝑖𝑛𝑡𝑓 = |𝐹|
2 〈∑𝑎(𝑖) exp(𝑗Φ𝑖)

𝑁

𝑖=1

+∑𝑎∗(𝑖)𝐹 exp(−𝑗Φ𝑖)

𝑁

𝑖=1

〉 
 

(14) 

〈– 〉 is the time average. Assume a new set of phases with mapping Φ𝑖 → Φ𝑖 for 𝑖 > 0, −Φ−𝑖 → Φ𝑖 for 

𝑖 < 0 and Φ0 = 0. Also mapping 𝑎(𝑖) → �̂�(𝑖) for 𝑖 > 0,  𝑎∗(−𝑖) → �̂�(𝑖) for 𝑖 < 0 and �̂�(0) = 0. 

 

𝑃𝑖𝑛𝑡𝑓 = |𝐹|
2  〈 ∑ �̂�(𝑖) exp(𝑗Φ𝑖)

𝑁

𝑖=−𝑁

 〉 

 

(15) 

The effective distance between the 1𝑠𝑡 and 𝑖𝑡ℎ surface (as defined before) is 𝑖𝑙𝑜 for 𝑖 > 0. Performing 

mapping for Φ𝑖 as above, it can be shown that equation (8) holds for all possible values of 𝑖. 

 

 Φ𝑖 =
 2𝜋𝜐𝑙𝑜𝑖

𝑐
  (16) 

As the light reflected from 𝑖𝑡ℎ surface will be delayed by 
𝑙𝑜𝑖

𝑐
 the integration time at the photodetector 

will keep reducing as surfaces gets farther. Assuming Δ𝑡 to be time for which the laser is active for a 

given frequency 

 

𝑃𝑖𝑛𝑡𝑓 = |𝐹|
2  ∑ ∫ �̂�(𝑖) exp (

 𝑗2𝜋𝜐𝑙𝑜𝑖

𝑐
 )

Δ𝑡

𝑙𝑜𝑖
𝑐

𝑁

𝑖=−𝑁

 𝑑𝑡 (17) 

 It is safe to assume that 
𝑙𝑜𝑁

𝑐
≪ 𝛥𝑡 as time taken by the system to measure one frequency (~100 µs) is 

significantly less than the time taken by light to travel as long as a kilometer (<5 µs). Also, the area of 

the integral and |𝐹|2 can be normalized with �̂�(𝑖) resulting in �̅�(𝑖) 
 

𝑃𝑖𝑛𝑡𝑓 = ∑ �̅�(𝑖) exp (
 𝑗2𝜋𝜐𝑙𝑜𝑖

𝑐
 )

𝑁

𝑖=−𝑁

  (18) 

For a swept laser, we can measure discrete frequencies. As we have 2𝑁 + 1 terms in the summation, we 

measure the interference term at 2𝑁 + 1 frequencies with resolution 𝜐𝑜. For an integer 𝑘 in [0,2𝑁] 

 𝜐 = 𝜐𝑜𝑘 

 

(19) 

To comply with the Nyquist sampling condition, the frequency resolution is chosen such that 
𝜐𝑜lo

c
=

1

2𝑁+1
 

and the laser measures at 2𝑁 + 1 points. Then the discretized version of interference term is given by 

equation (12). 

 

𝑃𝑖𝑛𝑡𝑓(𝑘) = ∑ �̅�(𝑖) exp (
 𝑗2𝜋

2𝑁 + 1
𝑘𝑖)

𝑁

𝑖=−𝑁

 

 

(20) 

Equation (12) represents the inverse Discrete Fourier Transform between the measured power and 

reflection coefficients. Taking 2𝑁 + 1 point DFT of 𝑃𝑖𝑛𝑡𝑓 give back the information on the object. Note 



that only the positive part of �̅� is needed to obtain 𝑎. The position of non-zero elements of 𝑎 give the 

optical distance of the surface, while their magnitude can be used to determine the optical index of the 

layer which in turn can be used to extract the true physical distance. 

S-II. Frequency dependent slow modulation 

Now, described as first case, we add a phase modulator to the sample arm and use a waveform generator 

to give a phase modulation ϕ(𝑡). The modulation given here is slow and is assumed to be constant during 

Δ𝑡, the time during which laser is active and the photodetector integrates for a particular frequency in the 

same time period. This makes the phase modulation act like a filter as shown below.   

 In addition to the base case, the field in the sample arm has an extra phase modulation term and is given 

by equation (13). 

 

𝑟𝑠𝑎𝑚𝑝𝑙𝑒 =∑𝑎(𝑖)𝐹 exp(𝑗Φ𝑖)

𝑁

𝑖=1

exp(𝑗ϕ(t)) (21) 

 

The interference term is then given by equation (14). 

 

𝑃𝑖𝑛𝑡𝑓 = |𝐹|
2 〈∑𝑎(𝑖) exp(𝑗Φ𝑖) exp(𝑗ϕ(t))

𝑁

𝑖=1

+∑𝑎∗(𝑖)𝐹 exp(−𝑗Φ𝑖)

𝑁

𝑖=1

exp(−𝑗ϕ(t))〉 (22) 

As the modulation depends on time, which also governs the carrier frequency, the time integration limits 

are frequency dependent. 

 

𝑃𝑖𝑛𝑡𝑓(𝑘) = |𝐹|
2  ∑∫ 𝑎(𝑖) exp (

 𝑗2𝜋𝜐𝑜𝑙𝑜𝑘𝑖

𝑐
 ) exp(𝑗ϕ(t))

(𝑘+1)Δ𝑡

𝑘Δ𝑡+
𝑙𝑜𝑖
𝑐

𝑁

𝑖=1

 𝑑𝑡 

+ |𝐹|2  ∑∫ 𝑎∗(𝑖) exp (
−𝑗2𝜋𝜐𝑜𝑙𝑜𝑘𝑖

𝑐
 ) exp(−𝑗ϕ(t))

(𝑘+1)Δ𝑡+
𝑙𝑜𝑖
𝑐

𝑘Δ𝑡+
𝑙𝑜𝑖
𝑐

𝑁

𝑖=1

 𝑑𝑡 

(23) 

 

If ϕ(𝑡) is slowly varying in Δ𝑡 and 
𝑙𝑜𝑁

𝑐
 << Δ𝑡 

 

𝑃𝑖𝑛𝑡𝑓(𝑘) = |𝐹|
2∑𝑎(𝑖) exp (

 𝑗2𝜋𝜐𝑜𝑙𝑜𝑘𝑖

𝑐
 ) exp(𝑗ϕ(𝑘Δ𝑡))

𝑁

𝑖=1

                   

+ |𝐹|2∑𝑎∗(𝑖) exp (
 −𝑗2𝜋𝜐𝑜𝑙𝑜𝑘𝑖

𝑐
 ) exp(−𝑗ϕ(𝑘Δ𝑡))

𝑁

𝑖=1

  

 

(24) 

As 𝑎(𝑖) is single sided, we can assume 𝑎(𝑖) = 0 for −𝑁 + 1 ≤ 𝑖 ≤ 0.  



 

𝑃𝑖𝑛𝑡𝑓(𝑘) = |𝐹|
2 ∑ 𝑎(𝑖) exp (

 𝑗2𝜋𝜐𝑜𝑙𝑜𝑘𝑖

𝑐
 ) exp(𝑗ϕ(𝑘Δ𝑡))

𝑁

𝑖=−𝑁+1

                   

+ |𝐹|2 ∑ 𝑎∗(𝑖) exp (
 −𝑗2𝜋𝜐𝑜𝑙𝑜𝑘𝑖

𝑐
 ) exp(−𝑗ϕ(𝑘Δ𝑡))

𝑁

𝑖=−𝑁+1

  

 

(25) 

Let �̃�(𝑘) = exp(𝑗ϕ(𝑘Δ𝑡)) and the 2𝑁 point DFT of �̃�(𝑘) be ℎ(𝑛). For satisfying Nyquist criterion we 

should have 
𝜐𝑜lo

c
=

1

2N
 and laser must sweep over 2𝑁 points. Taking 2𝑁 DFT on both side 

 2𝑁 Ӻ[𝑃𝑖𝑛𝑡𝑓(𝑘)](𝑛) = |𝐹|
2𝑎(𝑛) ∗ ℎ(𝑛) + |𝐹|2𝑎∗(−𝑛) ∗ ℎ∗(−𝑛) 

 

(26) 

If ℎ(𝑛) is base limited and its support is very small compared to 2𝑁, the second term is 

negligible for 𝑛 > 0. Hence the length domain information is truncated to 𝑁 points. No 

information is lost in this process as 𝑁 points are enough to get all information on 𝑎(𝑛) , similar 

to the case without modulation. This truncated signal can be normalized and given by 𝑢(𝑛). 

 𝑢(𝑛) = 𝑎(𝑛) ∗ ℎ(𝑛) (27) 

Now taking the Z-transform on both sides 

 𝑈(𝑧) = 𝐴(𝑧)𝐻(𝑧) (28) 

The capital letters 𝑈, 𝐴 and 𝐻 in the above equation are Z-transform of their corresponding small 

letter. Hence, phase modulation can be interpreted as a transfer function and 𝐴(𝑧) can be 

obtained back by dividing 𝑈(𝑧) by 𝐻(𝑧). 

S-III. Frequency independent fast modulation 

Now, described as second case, we place the phase modulator just after the laser, and provide a 

modulation ϕ(𝑡) that is fast when compared to ∆𝑡 and its time period is comparable to time equivalent 

length resolution 𝑙𝑜/𝑐. Also, this modulation repeats after every sweep frequency. We consider the 

interference term again as done previously and formulate how phase modulation again becomes a filter 

but with inverted domain compared to the first case.  

Considering interference term in this case, equation (15) thus becomes equation (21) 

 

𝑃𝑖𝑛𝑡𝑓(𝑘) = |𝐹|
2  ∑∫ 𝑎(𝑖) exp (

 𝑗2𝜋𝜐𝑜𝑙𝑜𝑘𝑖

𝑐
 ) exp(𝑗ϕ (𝑡 −

𝑙𝑜𝑖

𝑐
)) exp(−𝑗ϕ(t))

Δ𝑡

𝑙𝑜𝑖
𝑐

𝑁

𝑖=1

 𝑑𝑡 

+|𝐹|2  ∑∫ 𝑎∗(𝑖) exp (
−𝑗2𝜋𝜐𝑜𝑙𝑜𝑘𝑖

𝑐
 ) exp (−𝑗ϕ(𝑡 −

𝑙𝑜𝑖

𝑐
)) exp(𝑗ϕ(t))

Δ𝑡

𝑙𝑜𝑖
𝑐

𝑁

𝑖=1

 𝑑𝑡 

(29) 

   

Define the auto-correlation function �̅�(𝑖) such that 



 

�̅�(𝑖) =

{
  
 

  
 1

Δ𝑡
∫ exp (𝑗ϕ(𝑡 −

𝑙𝑜𝑖

𝑐
)) exp(−𝑗ϕ(t))

Δ𝑡

0

𝑑𝑡 ;        𝑖 > 0

1                                                                              ;        𝑖 = 0

1

Δ𝑡
∫ exp (−𝑗ϕ(𝑡 −

𝑙𝑜𝑖

𝑐
)) exp(𝑗ϕ(t))

Δ𝑡

0

𝑑𝑡 ;        𝑖 < 0

 (30) 

Also defining �̅�(𝑖) as before 

 

𝑃𝑖𝑛𝑡𝑓(𝑘) = ∑ �̅�(𝑖)�̅�(𝑖) exp (
 𝑗2𝜋𝜐𝑜𝑙𝑜𝑘𝑖

𝑐
 )

𝑁

𝑖=−𝑁

  (31) 

Similar to before,  
𝜐𝑜lo

c
=

1

2𝑁+1
 and laser sweeps to 2𝑁 + 1 points. Let �̃�(𝑛) and ℎ(𝑛) be the 2𝑁 + 1 point 

DFT of �̅�(𝑖) and �̅�(𝑖) respectively. Changing the variable from 𝑘 to 𝑛 and 𝑃𝑖𝑛𝑡𝑓 to 𝑢 

  𝑢(𝑛) = �̃�(𝑛) ∗ ℎ(𝑛) (32) 

Note that equation (19) and equation (24) look same, but the former is convolution in length domain 

while the latter in frequency domain. Hence, the interpretation of transfer function will be domain 

inverted compared the previous case. Taking the Z -transform results in 

 𝑈(𝑧) = 𝐴(𝑧)𝐻(𝑧) (33) 

S-IV Multirate Filter Bank 

 Equation (20) corresponds to a transfer function block with the Z-transform in frequency domain. 

As the maximum bandwidth of the laser is usually limited, it may cause the resolution in length domain 

(axial resolution) to be less than desired, resulting in under sampling. Let the laser have a bandwidth that 

is 𝑀 times smaller than required so that the axial resolution is down sampled by a factor of M from the 

desired 𝑙𝑜. This can be depicted by a block diagram as shown in fig. 1d main. The block diagram 

resembles a single channel of M channel filter bank. If we make the measurement M times with M 

different synthesis filters (𝐻𝑚), the ideally sampled signal can be reconstructed using analysis filters (𝐹𝑚). 

On the other hand, equation (25) corresponds to a transfer function block with the Z-transform in length 

domain. The same multirate filter bank analysis can be used to deal with under sampling problem. In this 

case, downsampling is in frequency domain as the resolution of sweeping laser is limited. Hence, the 

filter bank can be used to reconstruct the signal with increased frequency resolution and detect object at 

greater depth without aliasing. 

For demonstration purpose we discuss the situation when M=2. The perfect reconstruction (PR) of 𝑎(𝑛) 

is said to be achieved when 𝑦(𝑛) = 𝑎(𝑛 − 𝐾), i.e., 𝑦(𝑛) is perfect replica of  𝑎(𝑛) and is with a shift of 

𝐾 points. This removes both aliasing and distortion from the reconstruction. For two channel filter bank, 

the PR condition is given by 

 
[
𝐹𝑜(𝑧)
𝐹1(𝑧)

] =
2𝑧−𝐿

∆(𝑧)
[
𝐻1(−𝑧)
−𝐻𝑜(−𝑧)

] (34) 

where ∆(𝑧) is given by 

 ∆(𝑧) =  𝐻𝑜(𝑧)𝐻1(−𝑧) − 𝐻𝑜(−𝑧)𝐻1(𝑧) (35) 



The simplest implementation of this is the lazy filter bank, in which the first channel is detected without 

any modulation while the second channel shifts the input by one time step. 

 𝐻𝑜(𝑧) = 1   ;    𝐻1(𝑧) = 𝑧
−1    

∆(𝑧) = −2𝑧−1    ;       𝐾 = 1 

𝐹𝑜(𝑧) = 𝑧
−1   ;    𝐹1(𝑧) = 1    

(36) 

For the first case, 𝑧 = exp (
−𝑗2𝜋𝑘

2𝑁+1
 ). Let total time of scan be 𝑇 = 𝑁Δ𝑡. As only half of required number 

of points are scanned the phase modulation should be 

 
exp(𝑗𝜙(𝑡)) = exp (

−𝑗𝜋𝑡

𝑇
) (37) 

This corresponds to a linear phase modulation from 0 to 𝜋 phase shift in time 𝑇 and thus the voltage 

provided by signal generator vary from 0 to 𝑉𝜋 in this time. For large 𝑁 (of the order of 10,000), the 

assumption that 𝜙(𝑡) varies slowly in Δ𝑡 holds.  

For the second case we assumed that the frequency of the modulation is comparable to 𝑐/𝑙𝑜, which can be 

of the order of 10s of megahertz. It is difficult as well as cost ineffective to produce arbitrary waveforms 

at such high frequency. The easiest modulation is sinusoidal, produced using an RF signal generator. 

 exp(𝑗𝜙(𝑡)) = exp(𝑗𝐴 sin(2𝜋𝑓𝑚𝑡)) (38) 

𝑓𝑚 is the sinusoidal phase modulation frequency and 𝐴 is its amplitude. This gives  

 
�̅�(𝑖) = 𝐽0 (2𝐴 sin (

𝜋𝑓𝑚𝑖𝑙𝑜
𝑐

) ) 

 

(39) 

𝐽0 is the Bessel function of first kind and zeroth order. The corresponding filter coefficients and transfer 

function can be calculated from equation (31). To carry out the filter bank analysis, it is important that 

Δ(𝑧) is invertible. For this purpose, the amplitude (𝐴) and modulation frequency (𝑓𝑚) can be engineered 

so as to make the analysis filter stable. Alternatively, other types of waveforms can be used, but that 

would require high speed analog waveform generators.  

 

 


