# On Factorization of Multivectors in $\mathrm{Cl}(3,0), \mathrm{Cl}(1,2)$ and $\mathrm{Cl}(0,3)$, by Exponentials and Idempotents 

E. Hitzer<br>International Christian University, College of Liberal Arts, Mitaka, Tokyo, Japan

## ARTICLE HISTORY

Compiled August 25, 2021


#### Abstract

In this paper we consider general multivector elements of Clifford algebras $C l(3,0)$, $C l(1,2)$ and $C l(0,3)$, and look for possibilities to factorize multivectors into products of blades, idempotents and exponentials, where the exponents are frequently blades of grades zero (scalar) to $n$ (pseudoscalar).


## KEYWORDS

Clifford algebra; factorization; idempotents

## 1. Introduction

The important role of the polar representation of complex numbers and quaternions is widely known. Here ${ }^{1}$ we endeavor to extend this approach to higher dimensional associative Clifford geometric algebras, which play important roles in geometry, physics and computer science $[1,2,10,16,24,28]$. Exponentials of hyper complex elements and blades also appear as kernels in complex, quaternionic and Clifford Fourier and wavelet transforms [17]. Important related questions are the computation of logarithms of multivectors [4], square roots [4,13,15,18,25], inverses [19], transformation rotors [23], and polar decompositions [27], etc. Concrete applications may therefore be to forward and reverse kinematic motions of robot arms, where such factorizations could be useful, or in drone controls. ${ }^{2}$ In earlier work the question of factorization into exponential factors, blades and idempotents for Clifford algebras $C l(p, q), n=p+q=1,2$ [22] has been studied. This motivates us to progress by extending [22] to the case $n=3$. But since the case $C l(2,1)$ is of particular complexity, we will treat it by itself in a subsequent paper.

Because subalgebras isomorphic to the algebra of hyperbolic numbers appear frequently, we include the description of hyperbolic planes of [22] again. Furthermore, the subalgebra structure, in particular that of even subalgebras, is seen to play an essential role, therefore we also study the even subalgebra of $C l(1,2)$ (and similarly of $C l(2,1))$, both isomorphic to $C l(2,0)$, split-quaternions or coquaternions. As far as

[^0]possible we aim at explicit, step by step verifiable proofs. The arrangement of the sections by the Clifford algebra studied is by increasing complexity, which mainly stems from the increasing number of idempotents in the respective algebra. An introduction to Clifford geometric algebras is contained in [14], a concise mathematical definition in [6], and a comprehensive study relevant for mathematics and physics in [10].

A prime example of the type of factorization that we envision can be seen in (4.34), which has four exponential factors with a scalar, vector, bivector and a trivector in the respective exponent. But because all algebras under consideration are not division algebras, we necessarily have non-invertible multivectors and their factorizations are found to include non-invertible idempotents as factors (e.g. in (4.11)) or even their linear combinations (e.g. in (5.19)). Note that we also include the representation (2.11) for elements of a hyperbolic plane in our wider notion of exponential factors.

The paper is structured as follows. Section 2 reviews [22] hyperbolic numbers and their factorization in terms of exponentials and idempotents, and invertibility. Section 3 studies the important even subalgebras of $C l(1,2)$ (and $C l(2,1)$ ), providing essential results for the full blown study of $C l(1,2)$ following later. Section 4 studies the factorization of multivectors in Clifford algebras $C l(3,0)$ and $C l(0,3)$, which can be meaningfully grouped together, because their even subalgebras $C l_{2}(3,0)$ and $C l_{2}(0,3)$ are both isomorphic to quaternions.

In order to achieve a factorization of multivectors in $C l(1,2)$ in terms of exponential factors with blades as exponentials and idempotents (for non invertible multivectors), we take a direct approach in Section 5, making use of the study of the even subalgebra in Section 3. An alternative factorization in $C l(1,2)$, based on the isomorphism to $C l(3,0)$ appears in Appendix B. The paper concludes with Section 6, followed by acknowledgments and references.

## 2. Hyperbolic planes

Since subalgebras isomorphic to the algebra of a hyperbolic plane ${ }^{3}$ will occur repeatedly in our analysis, and to establish notation for later use in this paper, we reproduce this short study of hyperbolic planes from [22]. An element $u \neq 1$ that squares to $u^{2}=+1$ generates a hyperbolic plane $\{b+a u\}, a, b \in \mathbb{R}$ with basis $\{1, u\}$. A relevant alternative basis $\left\{i d_{-}, i d_{+}\right\}$is given by two not invertible idempotents

$$
\begin{align*}
& i d_{+}=\frac{1+u}{2}, \quad i d_{-}=\frac{1-u}{2}, \quad i d_{+}+i d_{-}=1, \quad i d_{+}-i d_{-}=u, \\
& i d_{+}^{2}=i d_{+}, \quad i d_{-}^{2}=i d_{-}, \quad i d_{+} i d_{-}=i d_{-} i d_{+}=0 . \tag{2.1}
\end{align*}
$$

Adopting the definitions

$$
\begin{equation*}
x^{0}=1, \quad 0!=1, \quad e^{x}=\sum_{k=0}^{\infty} \frac{x^{k}}{k!}, \tag{2.2}
\end{equation*}
$$

[^1]for powers of a general element $x$ and its exponential ${ }^{4}$, we obtain for $a \in \mathbb{R}$
\[

$$
\begin{equation*}
e^{a i d_{ \pm}}=1+\left(e^{a}-1\right) i d_{ \pm}, \quad e^{a u}=\cosh a+u \sinh a \tag{2.3}
\end{equation*}
$$

\]

General nonzero elements $m=b+a u$ of the hyperbolic plane can be classified by whether $|a|=|b|$ ( $m$ is not invertible), or $|a| \neq|b|$ ( $m$ is invertible). For $|a|=|b|$ we have the four subcases

$$
\begin{array}{ll}
b=a>0, & m=2 b i d_{+} \\
b=a<0, & m=2 b i d_{+}=-2|b| i d_{+} \\
b=-a>0, & m=2 b i d_{-}  \tag{2.4}\\
b=-a<0, & m=2 b i d_{-}=-2|b| i d_{-}
\end{array}
$$

Examples are for each line of $(2.4): 1+u=2(1+u) / 2=2 i d_{+},-2-2 u=-4(1+u) / 2=$ $4\left(-i d_{+}\right), 3-3 u=6(1-u) / 2=6 i d_{-},-4+4 u=-8(1-u) / 2=8\left(-i d_{-}\right)$. Thus according to (2.4) for $|a|=|b| \neq 0$ we can always represent $m$ as $^{5}$

$$
\begin{equation*}
m=2|b| h^{i d}(u), \quad \text { with } \quad h^{i d}(u) \in\left\{ \pm i d_{+}, \pm i d_{-}\right\} \tag{2.5}
\end{equation*}
$$

and therefore as

$$
\begin{equation*}
m=e^{\alpha_{0}} h^{i d}(u), \quad \alpha_{0}=\ln (2|b|) \tag{2.6}
\end{equation*}
$$

Note that $h^{i d}(u)^{2}=i d_{ \pm}$. Geometrically, the four values of $h^{i d}(u)$ specify four bisector directions, one in each quadrant of the hyperbolic plane. Because idempotents $i d_{ \pm}$are not invertible, all hyperbolic numbers with $|a|=|b|$ cannot be inverted.

For general (evidently nonzero) elements $m=b+a u$ with $|a| \neq|b|$ we can distinguish four subcases

$$
\begin{array}{ll}
b>|a| \geq 0, & m=b+a u \\
a>|b| \geq 0, & m=(a+b u) u \\
b<-|a| \leq 0, & m=-(-b-a u)  \tag{2.7}\\
a<-|b| \leq 0, & m=-(-a-b u) u
\end{array}
$$

Examples for (2.7) are line by line: $4 \pm u, \pm 1+4 u=(4 \pm u) u,-4 \mp u=-(4 \pm u), \mp 1-4 u=$ $-(4 \pm u) u$. Thus according to (2.7) for $|a| \neq|b|$ we can always represent any $m$ as

$$
\begin{equation*}
m=(\beta+\alpha u) h(u), \quad \text { with } \quad h(u) \in\{ \pm 1, \pm u\} \tag{2.8}
\end{equation*}
$$

such that $\beta>|\alpha| \geq 0$, and therefore $m$ can be factored as

$$
\begin{equation*}
m=e^{\alpha_{0}} m^{\prime}=e^{\alpha_{0}} e^{\alpha_{u} u} h(u), \quad \alpha_{0}=\frac{1}{2} \ln \left(\beta^{2}-\alpha^{2}\right), \quad \alpha_{u}=\operatorname{atanh}(\alpha / \beta) \tag{2.9}
\end{equation*}
$$

In the examples for (2.7) we have $\alpha= \pm 1, \beta=4, \alpha_{0} \approx 1.35, \alpha_{u} \approx \pm 0.255$. Note that $h(u)^{2}=1$ and therefore $h(u)^{-1}=h(u)$. Geometrically, the four possible values of $h(u)$

[^2]Table 1. Multiplication table of $C l_{2}(2,1)$.

|  | 1 | $e_{12}$ | $e_{23}$ | $e_{31}$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | $e_{12}$ | $e_{23}$ | $e_{31}$ |
| $e_{12}$ | $e_{12}$ | -1 | $-e_{31}$ | $e_{23}$ |
| $e_{23}$ | $e_{23}$ | $e_{31}$ | +1 | $e_{12}$ |
| $e_{31}$ | $e_{31}$ | $-e_{23}$ | $-e_{12}$ | +1 |

Table 2. Multiplication table of $C l_{2}(1,2)$.

|  | 1 | $e_{12}$ | $e_{23}$ | $e_{31}$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | $e_{12}$ | $e_{23}$ | $e_{31}$ |
| $e_{12}$ | $e_{12}$ | +1 | $e_{31}$ | $e_{23}$ |
| $e_{23}$ | $e_{23}$ | $-e_{31}$ | -1 | $e_{12}$ |
| $e_{31}$ | $e_{31}$ | $-e_{23}$ | $-e_{12}$ | +1 |

uniquely specify the four quadrants in the hyperbolic plane, delimited by two straight lines (bisectors) with directions $i d_{ \pm}$. The inverse of hyperbolic numbers with $|a| \neq|b|$ can always be easily computed as

$$
\begin{equation*}
m^{-1}=e^{-\alpha_{0}} e^{-\alpha_{u} u} h(u) \tag{2.10}
\end{equation*}
$$

In summary, any $m=b+a u \neq 0$ in the hyperbolic plane can be factorized as

$$
m=E(m)=E(a, b, u)=e^{\alpha_{0}}\left\{\begin{array}{lll}
h^{i d}(u) & \text { for } & |a|=|b|,  \tag{2.11}\\
e^{\alpha_{u} u} h(u) & \text { for } & |a| \neq|b| .
\end{array}\right.
$$

Equation (2.11) provides a first example of what we mean by exponential factorization. Note that we introduce the new notation $E(m)=E(a, b, u)$ to indicate the factorization (2.11) in terms of one or two exponential functions and eight possible values. The computation of the factorization (2.11) is based on (2.4) to (2.6) for the first four cases involving idempotents, i.e. $h^{i d}(u) \in\left\{+i d_{+},-i d_{+},+i d_{-},-i d_{i}\right\}$, and on (2.7) to (2.9) for the remaining four cases involving the hyperbolic exponential factor and $h(u) \in\{+1,-1,+u,-u\}$. The hyperbolic number $m$ is invertible if and only if $|a| \neq|b|$.

## 3. Even subalgebra of $C l(1,2)$

### 3.1. Isomorphisms of even subalgebras of $\operatorname{Cl}(1,2)$ (and $C l(2,1)$ )

As we will soon see in Section 4, quaternions isomorphic to the even subalgebras of $C l(3,0)$ and $C l(0,3)$ play a pivotal role in the factorization of these algebras. Similarly we can expect that the even subalgebra $C l_{2}(1,2)$ (and $\left.C l(2,1)\right)$ with basis $\left\{1, e_{12}, e_{23}, e_{31}\right\}$ of $C l(1,2)$ (and $\left.C l(2,1)\right)$ might be of high relevance. They have the following multiplication tables: Table 1 and Table 2 . These two tables are obviously isomorphic, if we identify $e_{23}=e_{12}^{\prime}, e_{31}=e_{31}^{\prime}, e_{12}=e_{23}^{\prime}$, where $\left\{e_{12}, e_{23}, e_{31}\right\} \subset C l_{2}(2,1)$ and $\left\{e_{12}^{\prime}, e_{23}^{\prime}, e_{31}^{\prime}\right\} \subset C l_{2}(1,2)$. This isomorphism is the reason, why we include the even subalgebra $\mathrm{Cl}_{2}(2,1)$, without extra effort.

Furthermore, the two tables are isomorphic to $C l(2,0)$ by identifying $e_{1}=e_{23}^{\prime}$, $e_{2}=e_{31}^{\prime}, e_{12}=e_{12}^{\prime}$, where $\left\{e_{1}, e_{2}, e_{12}\right\} \subset C l(2,0)$ and $\left\{e_{12}^{\prime}, e_{23}^{\prime}, e_{31}^{\prime}\right\} \subset C l_{2}(2,1)$. Alternatively, we can identify $e_{1}=e_{12}^{\prime}, e_{2}=e_{31}^{\prime}, e_{12}=e_{23}^{\prime}$, where $\left\{e_{1}, e_{2}, e_{12}\right\} \subset$ $C l(2,0)$ and $\left\{e_{12}^{\prime}, e_{23}^{\prime}, e_{31}^{\prime}\right\} \subset C l_{2}(1,2)$.

The isomorphism with $C l(2,0)$ does allow to utilize the factorization of $C l(2,0)$ derived in Section 5 of [22]. We recapitulate the result here ${ }^{6}$

$$
\begin{align*}
m & =m_{1} e_{1}+m_{2} e_{2}+m_{0}+m_{12} e_{12} \\
& = \begin{cases}e^{\alpha_{0}} e^{\alpha_{2} e_{12}}, \alpha_{0}=\ln (b), \alpha_{2}=\operatorname{atan} 2\left(m_{12}, m_{0}\right) & \text { for } m_{1}=m_{2}=0, \\
e^{\alpha_{0}^{\prime}} u^{\prime}, \quad \alpha_{0}^{\prime}=\ln (a), & \text { for } m_{0}=m_{12}=0, \\
(b+a u) e^{\alpha_{2} e_{12}}=E(a, b, u) e^{\alpha_{2} e_{12}}, & \text { otherwise }\end{cases} \tag{3.1}
\end{align*}
$$

where

$$
\begin{align*}
a & =\sqrt{\left(m_{1} e_{1}+m_{2} e_{2}\right)^{2}}=\sqrt{m_{1}^{2}+m_{2}^{2}}, \quad b=\sqrt{m_{0}^{2}+m_{12}^{2}}, \\
u^{\prime} & =\left(m_{1} e_{1}+m_{2} e_{2}\right) / a, \quad u=e^{\alpha_{2} e_{12}} u^{\prime}, \tag{3.2}
\end{align*}
$$

and $E(a, b, u)$ has been defined in (2.11). Because $a$ and $b$ are positive, the eight possible values of $E(a, b, u)$ reduce to only three, i.e. only the first line of (2.4) and the first two lines of (2.7) are relevant. We further observe about (3.1) that the third line subsumes the first for $a=0$, and the third line subsumes the second for $b=\alpha_{2}=0$. This means that $m \in C l(2,0)$, can always be factored in the form

$$
\begin{equation*}
m=(b+a u) e^{\alpha_{2} e_{12}}, \tag{3.3}
\end{equation*}
$$

with $a \geq 0$ and $b \geq 0$. And $m$ is always invertible, except when $a=b$. In (3.3) $u$ is a vector with positive unit square and $e_{12}$ is a bivector with negative unit square. In Appendix A we discuss an interesting alternative factorization which aims at a single exponential factor with bivector exponent, and explain why we still prefer (3.3) in the rest of this paper.

## 4. Factorization in $C l(3,0)$ and $C l(0,3)$

For the case of $C l(3,0)$, isomorphic to complexified quaternions (biquaternions) we refer to earlier work in [27]. In order to reveal the analogies and differences between $C l(3,0)$ and $C l(0,3)$, we treat both algebras with the same level of detail.

### 4.1. Computation and factorization of $m \bar{m}$

Following the approach in [4] and [27] we first compute the central multivector $m \bar{m}$, which we will use in the following Section 4.2 to turn $m$ (invertible, i.e. free of idempotent factors) into a unit norm multivecor $M, M \bar{M}=1$. As for notation, independent of the choice of vector space basis, unit vectors $u$, unit bivectors $i_{2}$, and the central unit pseudoscalar ${ }^{7} i=e_{123}$ in $C l(3,0)$ square to

$$
\begin{equation*}
u^{2}=+1, \quad i_{2}^{2}=-1, \quad i^{2}=-1 . \tag{4.1}
\end{equation*}
$$

[^3]While in $C l(0,3)$ they square to

$$
\begin{equation*}
u^{2}=-1, \quad i_{2}^{2}=-1, \quad i^{2}=+1 \tag{4.2}
\end{equation*}
$$

The even subalgebras of both $C l(3,0)$ and $C l(0,3)$ are isomorphic to quaternions $\mathbb{H}: C l_{2}(3,0) \cong C l_{2}(0,3) \cong \mathbb{H}$. That means general multivectors $m$ in $C l(3,0)$ and $C l(0,3)$ can always be represented as complex $\left(i^{2}=-1\right)$ or hyperbolic $\left(i^{2}=+1\right)$ (bi)quaternions ${ }^{8}$ :

$$
\begin{equation*}
m=p+i q \tag{4.3}
\end{equation*}
$$

where in both cases $p$ and $q$ are (isomorphic to) quaternions

$$
\begin{equation*}
p=a_{p} e^{\alpha_{p} i_{p}}, \quad q=a_{q} e^{\alpha_{q} i_{q}}, \quad a_{p}, a_{q} \in \mathbb{R}_{0}^{+}, \quad i_{p}^{2}=i_{q}^{2}=-1 \tag{4.4}
\end{equation*}
$$

with bivectors $i_{p}, i_{q} \in C l_{2}(3,0)$ or $\in C l_{2}(0,3)$.
Remark 4.1. Note that for $a_{q}=0$ or $a_{p}=0$ the factorization is already achieved ${ }^{9}$ in the form of

$$
\begin{align*}
& m=a_{p} e^{\alpha_{p} i_{p}}=e^{\alpha_{0}} e^{\alpha_{p} i_{p}}, \quad \alpha_{0}=\ln a_{p} \\
& \text { or } \quad m=i a_{q} e^{\alpha_{q} i_{q}}=i e^{\alpha_{0}^{\prime}} e^{\alpha_{q} i_{q}}, \quad \alpha_{0}^{\prime}=\ln a_{q} . \tag{4.5}
\end{align*}
$$

This also means, that for $a_{q}=0$ or $a_{p}=0$, the multivector $m$ can always be inverted as

$$
\begin{equation*}
m^{-1}=e^{-\alpha_{0}} e^{-\alpha_{p} i_{p}} \quad \text { or } \quad m^{-1}=i^{-1} e^{-\alpha_{0}^{\prime}} e^{-\alpha_{q} i_{q}} \tag{4.6}
\end{equation*}
$$

respectively.
In the rest of this section, we therefore assume that both $a_{p} \neq 0$ and $a_{q} \neq 0$.
Clifford conjugation [10,14,24] maps

$$
\begin{equation*}
i_{p} \rightarrow-i_{p}, \quad i_{q} \rightarrow-i_{q}, \quad i \rightarrow i \tag{4.7}
\end{equation*}
$$

Clifford conjugation applied to (4.4) is equivalent to quaternion conjugation. Therefore we obtain the central multivector

$$
\begin{align*}
m \bar{m} & =(p+i q)(\bar{p}+i \bar{q})=p \bar{p}+i^{2} q \bar{q}+i 2 \frac{1}{2}(p \bar{q}+q \bar{p}) \\
& =a_{p}^{2}+i^{2} a_{q}^{2}+i 2 a_{p} a_{q} \cos (p, q)=r_{0}+i r_{3} \in \mathbb{R}+i \mathbb{R} \tag{4.8}
\end{align*}
$$

and $\cos (p, q)$ being the cosine of the four-dimensional (4D) angle between quaternions $p, q$, because $\frac{1}{2} r_{3}=\frac{1}{2}(p \bar{q}+q \bar{p})$ expresses the inner (or scalar) product in four dimensions for quaternions. In $C l(0,3)$ the scalar part $r_{0}=a_{p}^{2}+i^{2} a_{q}^{2}=a_{p}^{2}+a_{q}^{2}$ will only be zero

[^4]if both $a_{p}$ and $a_{q}$ are zero, that is if $m$ itself is zero, but then the factorization result 0 would be trivial, and it would be contrary to our assumption for both $a_{p} \neq 0$ and $a_{q} \neq 0$.

Considering $C l(0,3)$, we thus have $|\cos (p, q)| \leq 1$, which means

$$
\begin{equation*}
r_{0}=a_{p}^{2}+a_{q}^{2} \geq\left|2 a_{p} a_{q}\right| \geq\left|r_{3}\right|=2\left|a_{p} a_{q} \cos (p, q)\right| \tag{4.9}
\end{equation*}
$$

For equality in (4.9) we would need $\left|2 a_{p} a_{q}\right|=2\left|a_{p} a_{q} \cos (p, q)\right|$, that is $\cos (p, q)= \pm 1$, and we would further need $a_{p}^{2}+a_{q}^{2}=\left|2 a_{p} a_{q}\right|$, i.e. $a_{p}=a_{q}$. Together this would mean that for equality in (4.9)

$$
\begin{equation*}
p= \pm q, \quad m=p(1 \pm i)=2 p \frac{1 \pm i}{2} \tag{4.10}
\end{equation*}
$$

where $\frac{1 \pm i}{2}$ is an idempotent in the hyperbolic case (i.e. in $C l(0,3)$ where $i^{2}=+1$ ).
This means, that in $C l(0,3)$ when equality in (4.9) holds, the not invertible multivector $m$ can be finally represented as

$$
\begin{align*}
m & =2 p i d_{ \pm}=2 a_{p} e^{\alpha_{p} i_{p}} i d_{ \pm}=e^{\alpha_{0}} e^{\alpha_{p} i_{p}} i d_{ \pm}=e^{\alpha_{0}} i d_{ \pm} e^{\alpha_{p} i_{p}} \\
\alpha_{0} & =\ln \left(2 a_{p}\right) \tag{4.11}
\end{align*}
$$

We have introduced the idempotent notation of (2.1), by setting there $u=i$, we note that with $i$ being central, $i d_{ \pm}$are also central, and we further note that due to the presence of the idempotent factor $m$ cannot be inverted in this case.

For the rest of this section, we therefore assume the case of true inequality $r_{0}>$ $\left|r_{3}\right|$ in (4.9) in the algebra $C l(0,3)$, which means that $r_{0}+i r_{3}$ can then always be represented as exponential $r_{0}+i r_{3}=e^{2 \alpha_{0}} e^{2 \alpha_{3} i}$. This assumption on $r_{0}, r_{3}$ for (4.9) is not needed in the case of $C l(3,0)$.

In $C l(3,0)$ with $r_{0}=a_{p}^{2}+i^{2} a_{q}^{2}=a_{p}^{2}-a_{q}^{2}$ and $r_{3}=2 a_{p} a_{q} \cos (p, q)$ it is possible that $m \bar{m}$ is zero without $m$ being zero, that is for $a_{p}=a_{q}$ and $\cos (p, q)=0$, that is the angle $\angle(p, q)=\pi / 2$, i.e. when $q=p \mathbf{f}$, with any pure quaternion $\mathbf{f}$. Then the factorization of $m$ can easily be given as:

$$
\begin{align*}
& m=p(1+i \mathbf{f})=2 p \frac{1+i \mathbf{f}}{2}=e^{\alpha_{0}} e^{\alpha_{2} i_{2}} \frac{1+i \mathbf{f}}{2} \\
& \alpha_{0}=\ln \left(2 a_{p}\right), \quad \alpha_{2}=\alpha_{p}, \quad i_{2}=i_{p}, \quad \mathbf{f}=p^{-1} q \tag{4.12}
\end{align*}
$$

with idempotent $\frac{1+i \mathbf{f}}{2}$, where $(i \mathbf{f})^{2}=i \mathbf{f} i \mathbf{f}=i^{2} \mathbf{f}^{2}=(-1)^{2}=+1$. In this case $m$ has no inverse because of the idempotent factor. In the rest of this section, we assume that $m \bar{m}$ will be different from zero.

We can now always factorize $m \bar{m}$ and furthermore compute its square root as

$$
\begin{equation*}
m \bar{m}=e^{2 \alpha_{0}} e^{2 \alpha_{3} i}, \quad \sqrt{m \bar{m}}=e^{\alpha_{0}} e^{\alpha_{3} i} \tag{4.13}
\end{equation*}
$$

with

$$
\begin{equation*}
e^{\alpha_{0}}=\left(r_{0}^{2}-i^{2} r_{3}^{2}\right)^{\frac{1}{4}}, \quad \alpha_{0}=\frac{1}{4} \ln \left(r_{0}^{2}-i^{2} r_{3}^{2}\right) \tag{4.14}
\end{equation*}
$$

and

$$
\alpha_{3}=\frac{1}{2}\left\{\begin{array}{lll}
\operatorname{atan} 2\left(r_{3}, r_{0}\right) & \text { for } \quad m \in C l(3,0)  \tag{4.15}\\
\operatorname{atanh}\left(r_{3} / r_{0}\right) & \text { for } \quad m \in C l(0,3)
\end{array} .\right.
$$

### 4.2. Factorization of normed multivector $M$ with $M \bar{M}=1$

Next, we divide $m$ by the central square root $\sqrt{m \bar{m}}$ and obtain the normed multivector

$$
\begin{equation*}
M=\frac{m}{\sqrt{m \bar{m}}}=m e^{-\alpha_{0}} e^{-\alpha_{3} i} \tag{4.16}
\end{equation*}
$$

with unit norm

$$
\begin{equation*}
M \bar{M}=1 \tag{4.17}
\end{equation*}
$$

Factorization of $M$ multiplied by $\sqrt{m \bar{m}}$ of (4.13) will then give the final factorization result for invertible $m$. The resulting form of $M$ will therefore be (similar to (4.3) and (4.4))

$$
\begin{equation*}
M=P+Q i=a_{P} e^{\alpha_{P} i_{P}}+i a_{Q} e^{\alpha_{Q} i_{Q}}=e^{\alpha_{P} i_{P}}\left(a_{P}+i a_{Q} e^{-\alpha_{P} i_{P}} e^{\alpha_{Q} i_{Q}}\right) \tag{4.18}
\end{equation*}
$$

with

$$
\begin{equation*}
M \bar{M}=1=a_{P}^{2}+i^{2} a_{Q}^{2} \tag{4.19}
\end{equation*}
$$

The two quaternions $P$ and $Q$ can always be computed explicitly as

$$
\begin{equation*}
P=\langle M\rangle_{\mathrm{even}}, \quad Q=\langle M\rangle_{\mathrm{odd}} i^{-1} \tag{4.20}
\end{equation*}
$$

with amplitudes

$$
\begin{equation*}
a_{P}=\sqrt{P \bar{P}}, \quad a_{Q}=\sqrt{Q \bar{Q}} \tag{4.21}
\end{equation*}
$$

unit bivectors

$$
\begin{align*}
& i_{P}=\frac{\langle P\rangle_{2}}{\left|\langle P\rangle_{2}\right|} \quad \text { with } \quad\left|\langle P\rangle_{2}\right|=\sqrt{-\langle P\rangle_{2}^{2}}  \tag{4.22}\\
& i_{Q}=\frac{\langle Q\rangle_{2}}{\left|\langle Q\rangle_{2}\right|} \quad \text { with } \quad\left|\langle Q\rangle_{2}\right|=\sqrt{-\langle Q\rangle_{2}^{2}} \tag{4.23}
\end{align*}
$$

and phase angles

$$
\begin{equation*}
\alpha_{P}=\operatorname{atan} 2\left(\langle P\rangle_{2} i_{P}^{-1},\langle P\rangle_{0}\right), \quad \alpha_{Q}=\operatorname{atan} 2\left(\langle Q\rangle_{2} i_{Q}^{-1},\langle Q\rangle_{0}\right) \tag{4.24}
\end{equation*}
$$

$$
\left.\left.\begin{array}{rl}
M \bar{M} & =e^{\alpha_{P} i_{P}}\left(a_{P}+i a_{Q} e^{-\alpha_{P} i_{P}} e^{\alpha_{Q} i_{Q}}\right)\left(a_{P}+i a_{Q} e^{-\alpha_{Q} i_{Q}} e^{\alpha_{P} i_{P}}\right) e^{-\alpha_{P} i_{P}} \\
& =e^{\alpha_{P} i_{P}}\left(a_{P}^{2}+i^{2} a_{Q}^{2}+i a_{P} a_{Q}\left(e^{-\alpha_{P} i_{P}}\right.\right.
\end{array} e^{\alpha_{Q} i_{Q}}+e^{-\alpha_{Q} i_{Q}}\right) e^{\alpha_{P} i_{P}}\right) e^{-\alpha_{P} i_{P}} .
$$

Because by construction $M \bar{M}=a_{P}^{2}+i^{2} a_{Q}^{2}=1$ we must have the second term in round brackets of line three of (4.25) to be zero

$$
\begin{equation*}
e^{-\alpha_{P} i_{P}} e^{\alpha_{Q} i_{Q}}+e^{-\alpha_{Q} i_{Q}} e^{\alpha_{P} i_{P}}=e^{-\alpha_{P} i_{P}} e^{\alpha_{Q} i_{Q}}+\left(e^{-\alpha_{P} i_{P}} e^{\alpha_{Q} i_{Q}}\right)^{\sim}=0 . \tag{4.26}
\end{equation*}
$$

Note that the tilde notation $(\ldots)^{\sim}$ for the Clifford algebra reverse $[10,14,24]$ could in this case (when only the even subalgebras are concerned) be replaced by the Clifford conjugation, hence $(\ldots)^{\sim}$ is also equivalent to the application of quaternion conjugation.

We now analyze $M$ further

$$
\begin{align*}
& M=a_{P} e^{\alpha_{P} i_{P}}+i a_{Q} e^{\alpha_{Q} i_{Q}}=e^{\alpha_{P} i_{P}}\left(a_{P}+a_{Q} i\left(e^{-\alpha_{P} i_{P}} e^{\alpha_{Q} i_{Q}}-0\right)\right) \\
& \quad \stackrel{(4.26)}{=} e^{\alpha_{P} i_{P}}\left(a_{P}+a_{Q} i\left(e^{-\alpha_{P} i_{P}} e^{\alpha_{Q} i_{Q}}-\frac{1}{2} e^{-\alpha_{P} i_{P}} e^{\alpha_{Q} i_{Q}}-\frac{1}{2}\left(e^{-\alpha_{P} i_{P}} e^{\alpha_{Q} i_{Q}}\right)^{\sim}\right)\right) \\
&=e^{\alpha_{P} i_{P}}\left(a_{P}+a_{Q} i \frac{1}{2}\left(e^{-\alpha_{P} i_{P}} e^{\alpha_{Q} i_{Q}}-\left(e^{-\alpha_{P} i_{P}} e^{\alpha_{Q} i_{Q}}\right)^{\sim}\right)\right), \tag{4.27}
\end{align*}
$$

where the term

$$
\begin{equation*}
\frac{1}{2}\left(e^{-\alpha_{P} i_{P}} e^{\alpha_{Q} i_{Q}}-\left(e^{-\alpha_{P} i_{P}} e^{\alpha_{Q} i_{Q}}\right)^{\sim}\right)=\left\langle e^{-\alpha_{P} i_{P}} e^{\alpha_{Q} i_{Q}}\right\rangle_{2} \tag{4.28}
\end{equation*}
$$

is a pure bivector. Multiplied with trivector $i$ we get a vector with length $\omega$ and unit direction $u, u^{2}=1=-i^{2}$ for $C l(3,0)$, and $u^{2}=-1=-i^{2}$ for $C l(0,3)$,

$$
\begin{equation*}
\omega u=i\left\langle e^{-\alpha_{P} i_{P}} e^{\alpha_{Q} i_{Q}}\right\rangle_{2}=i\left\langle\left(\frac{P}{a_{P}}\right)^{-1} \frac{Q}{a_{Q}}\right\rangle_{2}=i \frac{a_{P}}{a_{Q}}\left\langle P^{-1} Q\right\rangle_{2} . \tag{4.29}
\end{equation*}
$$

Thus in full generality, the normed invertible multivector $M$ can be represented by

$$
\begin{equation*}
M=e^{\alpha_{P} i_{P}}\left(a_{P}+a_{Q} \omega u\right)=\left(a_{P}+a_{Q} \omega u^{\prime}\right) e^{\alpha_{P} i_{P}}, u^{\prime}=e^{\alpha_{P} i_{P}} u e^{-\alpha_{P} i_{P}} . \tag{4.30}
\end{equation*}
$$

Note that unit vector $u^{\prime}$, is simply a rotated version of $u$. Computing

$$
\begin{align*}
M \bar{M} & =e^{\alpha_{P} i_{P}}\left(a_{P}+a_{Q} \omega u\right)\left(a_{P}-a_{Q} \omega u\right) e^{-\alpha_{P} i_{P}} \\
& =\ldots=a_{P}^{2}-u^{2} a_{Q}^{2} \omega^{2}=a_{P}^{2}+i^{2} a_{Q}^{2} \omega^{2}, \tag{4.31}
\end{align*}
$$

shows by comparison with (4.19), that $\omega^{2}=1$, i.e. $\omega=1$. Without restriction of generality, we can therefore express

$$
\begin{align*}
M & =e^{\alpha_{P} i_{P}}\left(a_{P}+a_{Q} u\right)=\left(a_{P}+a_{Q} u^{\prime}\right) e^{\alpha_{P} i_{P}}, \\
M \bar{M} & =a_{P}^{2}-u^{2} a_{Q}^{2}=a_{P}^{2}-u^{\prime 2} a_{Q}^{2}=1, \tag{4.32}
\end{align*}
$$

We thus end up with

$$
\begin{align*}
& M=e^{\alpha_{2} i_{2}} e^{\alpha_{1} u}=e^{\alpha_{1} u^{\prime}} e^{\alpha_{2} i_{2}}, \\
& \alpha_{1}=\left\{\begin{array}{ll}
\operatorname{atanh}\left(a_{Q} / a_{P}\right) \text { for } C l(3,0) \\
\operatorname{atan} 2\left(a_{Q}, a_{P}\right) \text { for } C l(0,3)
\end{array}\right\}, \quad \alpha_{2}=\alpha_{P}, \quad i_{2}=i_{P} . \tag{4.33}
\end{align*}
$$

We note that in $C l(3,0)$ due to $M \bar{M}=a_{P}^{2}-u^{2} a_{Q}^{2}=a_{P}^{2}-a_{Q}^{2}=1$, which should be compared with $\cosh \left(\alpha_{1}\right)-\sinh \left(\alpha_{1}\right)=1$, the hyperbolic plane case distinctions in (2.11) are not needed here.

And we finally have under the above assumptions (invertibility of $m$ ) the exponential factorization

$$
\begin{align*}
m & =M \sqrt{m \bar{m}}=e^{\alpha_{2} i_{2}} e^{\alpha_{1} u} e^{\alpha_{0}} e^{\alpha_{3} i} \\
& =e^{\alpha_{0}} e^{\alpha_{2} i_{2}} e^{\alpha_{1} u} e^{\alpha_{3} i}=e^{\alpha_{0}} e^{\alpha_{1} u^{\prime}} e^{\alpha_{2} i_{2}} e^{\alpha_{3} i} . \tag{4.34}
\end{align*}
$$

### 4.3. Factorization result for $\mathrm{Cl}(3,0)$ and $\operatorname{Cl}(0,3)$ and inverse

Summarizing all cases we end up with

$$
m=p+i q= \begin{cases}e^{\alpha_{0}} e^{\alpha_{2} i_{2}} & \text { for } q=0,  \tag{4.35}\\ i^{-1} e^{\alpha_{0}} e^{\alpha_{2} i_{2}} & \text { for } p=0, \\ e^{\alpha_{0}} e^{\alpha_{2} i_{2}} d_{ \pm} & \text {for } q= \pm p \text { in } C l(0,3), \\ e^{\alpha_{0}} e^{\alpha_{2} i_{2}} \frac{1+i \mathbf{i f}}{+} & \text { for } q=p \mathbf{f} \text { in } C l(3,0), \\ e^{\alpha_{0}} e^{\alpha_{1} u^{1}} e^{\alpha_{2} i_{2}} e^{\alpha_{3} i} & \text { otherwise. }\end{cases}
$$

where we have set in line three: $\alpha_{2}=\alpha_{p}, i_{2}=i_{p}$, and idempotents $i d_{ \pm}=(1 \pm i) / 2$, and in line four we refer to (4.12) for the unit bivector $\mathbf{f}$. The value of $i_{2}=i_{p}$ in lines one, and three to five, while in line two we have $i_{2}=i_{Q}$. We note that line one is a special case of line five for $\alpha_{1}=\alpha_{3}=0$. For $C l(3,0)$ line two is a special case of line five for $\alpha_{1}=0$ and $\alpha_{3}=-\pi / 2$. We may also interpret in $C l(0,3)$ line two is a special case of line five for $\alpha_{1}=0$ and by replacing $e^{\alpha_{3} i} \rightarrow h(1,0, i)=i=i^{-1}$. So essentially only lines three to five of (4.35) matter, and in both $C l(3,0)$ and $C l(0,3)$ we have one special case with idempotent factor (central in $C l(3,0)$ ) and one general case (line five) with full exponential factorization.

Except for $q= \pm p \quad$ in $\quad C l(0,3)$ and for $a_{p}=a_{q}, \cos (p, q)=0$ in $\quad C l(3,0)$ (equivalent to $q=p \mathbf{f}, \mathbf{f}$ a pure quaternion, respectively via isomorphism in $C l(3,0)$ a unit bivector), we can always invert $m$ and obtain

$$
m^{-1}= \begin{cases}e^{-\alpha_{0}} e^{-\alpha_{2} i_{2}} & \text { for } q=0,  \tag{4.36}\\ i e^{-\alpha_{0}} e^{-\alpha_{2} i_{2}} & \text { for } p=0, \\ \text { none } & \text { for } q= \pm p \text { in } C l(0,3), \\ \text { none } & \text { for } q=p \mathbf{f} \text { in } C l(3,0), \\ e^{-\alpha_{0}} e^{-\alpha_{1} u} e^{-\alpha_{2} i_{2}} e^{-\alpha_{3} i} & \text { otherwise. }\end{cases}
$$

where we have used in line five that according to (4.30) and (4.33)

$$
\begin{equation*}
u^{\prime}=e^{\alpha_{P} i_{P}} u e^{-\alpha_{P} i_{P}}=e^{\alpha_{2} i_{2}} u e^{-\alpha_{2} i_{2}} . \tag{4.37}
\end{equation*}
$$

## 5. Direct Factorization of $C l(1,2)$

In Appendix B we discuss factorization of $C l(1,2)$ using an isomorphism to $C l(3,0)$, but because in the resulting exponential factorization the exponentials are not pure blades ${ }^{10}$, we aim here for a direct factorization with pure blade exponentials, even though at first sight this appears more laborious. The procedure we use is similar to Section 4, but as may be expected there is a more delicate idempotent structure, which leads to more intricate results. To keep the computations elementary, we again work with an explicit orthonormal basis. This does not exclude the possibility to lift computations and results to an invariant basis independent level after gaining deeper algebraic understanding in the future, for which the present explicit results may then still serve as a kind of reference case. Furthermore, many Clifford multivector computer algebra systems begin with the definition of an orthonormal vector space basis.

### 5.1. Computation and factorization of $m \bar{m}$

With the intent to normalize $m$ we first compute $m \bar{m}$. In $C l(1,2)$ the central unit pseudoscalar squares to $i^{2}=-1$ and

$$
\begin{align*}
& e_{1}^{2}=-e_{2}^{2}=-e_{3}^{2}=e_{12}^{2}=e_{31}^{2}=-e_{23}^{2}=1 \\
& e_{1}=-i e_{23}, \quad e_{2}=i e_{31}, \quad e_{3}=i e_{12} \tag{5.1}
\end{align*}
$$

It allows us to rewrite a general multivector as

$$
\begin{align*}
m & =m_{0}+m_{1} e_{1}+m_{2} e_{2}+m_{3} e_{3}+m_{12} e_{12}+m_{31} e_{31}+m_{23} e_{23}+m_{123} i \\
& =m_{0}+m_{23} e_{23}+m_{12} e_{12}+m_{31} e_{31}+i\left(m_{123}-m_{1} e_{23}+m_{2} e_{31}+m_{3} e_{12}\right) \\
& =p_{0}+p_{23} e_{23}+p_{12} e_{12}+p_{31} e_{31}+i\left(q_{0}+q_{23} e_{23}+q_{12} e_{12}+q_{31} e_{31}\right) \\
& =p+i q \tag{5.2}
\end{align*}
$$

with suitable identifications of the eight coefficients of $m$ with four coefficients of $p$ and four coefficients of $q$, where both $p, q \in C l_{2}(1,2) \cong C l(2,0)$. We can therefore represent both $p$ and $q$ as

$$
\begin{array}{ll}
p=\left(b_{p}+a_{p} u_{p}\right) e^{\alpha_{2 p} e_{23}}, & b_{p}=\sqrt{p_{0}^{2}+p_{23}^{2}}, \\
q=\left(b_{q}+a_{q} u_{q}\right) e^{\alpha_{2 q} e_{23}}, & b_{q}=\sqrt{p_{12}^{2}+p_{31}^{2}}, \quad u_{p}^{2}=1  \tag{5.3}\\
q+q_{23}^{2}
\end{array}, \quad a_{q}=\sqrt{q_{12}^{2}+q_{31}^{2}}, \quad u_{q}^{2}=1, ~ l
$$

following (3.1). The unit bivectors $u_{p}, u_{q}$ with positive square are linear combinations of $e_{12}$ and $e_{31}$.

If $a_{p}=b_{p}=0$ or $a_{q}=b_{q}=0$, then the final factorization ${ }^{11}$ is given by

$$
\begin{equation*}
m=i q=i\left(b_{q}+a_{q} u_{q}\right) e^{\alpha_{2 q} e_{23}} \tag{5.4}
\end{equation*}
$$

[^5]or by
\[

$$
\begin{equation*}
m=p=\left(b_{p}+a_{p} u_{p}\right) e^{\alpha_{2 p} e_{23}}, \tag{5.5}
\end{equation*}
$$

\]

respectively. In the rest of this section we can therefore assume that both $p$ and $q$ are nonzero.

Note that $p$ is not invertible iff $a_{p}=b_{p}$, and likewise $q$ is not invertible iff $a_{q}=b_{q}$. For later use we compute

$$
\begin{align*}
p \bar{p} & =b_{p}^{2}-a_{p}^{2}, \quad q \bar{q}=b_{q}^{2}-a_{q}^{2} \\
\frac{1}{2}(q \bar{p}+p \bar{q}) & =p_{0} q_{0}+p_{23} q_{23}-\left(p_{12} q_{12}+p_{31} q_{31}\right) \tag{5.6}
\end{align*}
$$

Let us also compute

$$
\begin{equation*}
m \bar{m}=(p+i q)(\bar{p}+i \bar{q})=p \bar{p}+i^{2} q \bar{q}+i(q \bar{p}+p \bar{q})=p \bar{p}-q \bar{q}+i(q \bar{p}+p \bar{q}) \tag{5.7}
\end{equation*}
$$

$m \bar{m}$ is zero if (1) both hyperbolic type norms $p \bar{p}$ and $q \bar{q}$ agree

$$
\begin{equation*}
p \bar{p}-q \bar{q}=b_{p}^{2}-a_{p}^{2}-\left(b_{q}^{2}-a_{q}^{2}\right)=b_{p}^{2}-b_{q}^{2}-\left(a_{p}^{2}-a_{q}^{2}\right)=0 \tag{5.8}
\end{equation*}
$$

and (2) a sort of four-dimensional hyperbolic orthogonality condition is met

$$
\begin{equation*}
\frac{1}{2}(q \bar{p}+p \bar{q})=p_{0} q_{0}+p_{23} q_{23}-\left(p_{12} q_{12}+p_{31} q_{31}\right)=0 \tag{5.9}
\end{equation*}
$$

If $p$ is not invertible it can be written as

$$
\begin{equation*}
p=2 a_{p} \frac{1+u_{p}}{2} e^{\alpha_{2 p} e_{23}} \tag{5.10}
\end{equation*}
$$

where $\frac{1+u_{p}}{2}$ is an idempotent. Similarly, if $q$ is not invertible it can be written as

$$
\begin{equation*}
q=2 a_{q} \frac{1+u_{q}}{2} e^{\alpha_{2 q} e_{23}} \tag{5.11}
\end{equation*}
$$

where $\frac{1+u_{q}}{2}$ is an idempotent. Before we compute the normed $M$ in Section 5.2 , we discuss the cases of non-invertible even subalgebra components $p, q$, and of invertible ones, respectively.

### 5.1.1. Noninvertible even subalgebra components

If both $p$ and $q$ are not invertible, then $m$ takes by (5.10) and (5.11) the form

$$
\begin{equation*}
m=2 a_{p} \frac{1+u_{p}}{2} e^{\alpha_{2 p} e_{23}}+i 2 a_{q} \frac{1+u_{q}}{2} e^{\alpha_{2 q} e_{23}} \tag{5.12}
\end{equation*}
$$

Now we want to find out under these assumptions for $p$ and $q$, when $m \bar{m}$ is invertible and when not. In this case we can compute

$$
\begin{align*}
m \bar{m}= & 0+i^{2} 0+i(q \bar{p}+p \bar{q}) \\
= & i a_{p} a_{q}\left[\left(1+u_{p}\right) e^{\alpha_{2 p} e_{23}} e^{-\alpha_{2 q} e_{23}}\left(1-u_{q}\right)\right. \\
& \left.\quad+\left(1+u_{q}\right) e^{\alpha_{2 q} e_{23}} e^{-\alpha_{2 p} e_{23}}\left(1-u_{p}\right)\right] \tag{5.13}
\end{align*}
$$

with $\Delta=\alpha_{2 p}-\alpha_{2 q}$ and $e^{ \pm \Delta e_{23}}=\cos \Delta \pm e_{23} \sin \Delta$, this becomes

$$
\begin{gather*}
m \bar{m}=i a_{p} a_{q}\left\{\left(1+u_{p}\right) \cos \Delta\left(1-u_{q}\right)+\left(1+u_{q}\right) \cos \Delta\left(1-u_{p}\right)\right. \\
\left.\quad+\sin \Delta\left[\left(1+u_{p}\right) e_{23}\left(1-u_{q}\right)-\left(1+u_{q}\right) e_{23}\left(1-u_{p}\right)\right]\right\} \\
=i a_{p} a_{q}\left\{\cos \Delta\left[\left(1+u_{p}\right)\left(1-u_{q}\right)+\left(1+u_{q}\right)\left(1-u_{p}\right)\right]\right. \\
\left.\quad+\sin \Delta e_{23}\left[\left(1-u_{p}\right)\left(1-u_{q}\right)-\left(1-u_{q}\right)\left(1-u_{p}\right)\right]\right\} \\
=i a_{p} a_{q}\left\{\cos \Delta\left[2-u_{p} u_{q}-u_{q} u_{p}\right]+\sin \Delta e_{23}\left[u_{p} u_{q}-u_{q} u_{p}\right]\right\} \tag{5.14}
\end{gather*}
$$

Now the product of the unit bivectors is minus the product of two negative definite vectors $\vec{u}_{p}, \vec{u}_{q}$ in the $e_{23}$-plane with mutual angle $\vartheta$

$$
\begin{equation*}
u_{p} u_{q}=e_{1} \vec{u}_{p} e_{1} \vec{u}_{q}=-\vec{u}_{p} \vec{u}_{q} \tag{5.15}
\end{equation*}
$$

Therefore ${ }^{12}$

$$
\begin{align*}
& u_{p} u_{q}+u_{q} u_{p}=-2 \vec{u}_{p} \cdot \vec{u}_{q}=2 \cos \vartheta \\
& u_{p} u_{q}-u_{q} u_{p}=-2 \vec{u}_{p} \wedge \vec{u}_{q}=-2 e_{23} \sin \vartheta \tag{5.16}
\end{align*}
$$

Hence

$$
\begin{align*}
m \bar{m} & =i a_{p} a_{q}\left\{\cos \Delta[2-2 \cos \vartheta]+2 \sin \Delta \sin \vartheta\left(-e_{23}^{2}\right)\right\} \\
& =2 i a_{p} a_{q}\{\cos \Delta-\cos \Delta \cos \vartheta+\sin \Delta \sin \vartheta\} \\
& =2 i a_{p} a_{q}\{\cos \Delta-\cos (\Delta+\vartheta)\} \tag{5.17}
\end{align*}
$$

So the product $m \bar{m}=0$ for the following combinations of $\Delta$ and $\vartheta$

$$
\begin{array}{ll}
\vartheta=0, & \text { any } 0 \leq \Delta<2 \pi \\
\vartheta=\pi, & \Delta=\frac{\pi}{2}, \frac{3 \pi}{2}  \tag{5.18}\\
0 \leq \vartheta<2 \pi, & \Delta=\pi-\frac{\vartheta}{2}
\end{array}
$$

Note that the second line is a special case of the third line for $\vartheta= \pm \pi$. In all other cases $m \bar{m} \neq 0$ and $m$ will be invertible, even under the assumption that $p$ and $q$ are not invertible. This means that for $m \bar{m}=0$ the non-invertible multivector $m$ will take one of these three forms

$$
m=\left\{\begin{array}{l}
\left(1+u_{p}\right)\left[a_{p} e^{\Delta e_{23}}+i a_{q}\right]  \tag{5.19}\\
{\left[a_{p}\left(1+u_{p}\right)\left( \pm e_{23}\right)+i a_{q}\left(1-u_{p}\right)\right]} \\
{\left[a_{p}\left(1+u_{p}\right) e^{(\pi-\vartheta / 2) e_{23}}+i a_{q}\left(1+u_{q}\right)\right]}
\end{array}\right\} e^{\alpha_{2 q} e_{23}}
$$

[^6]Note that in the third line the angle $\vartheta$ is the angle between $u_{p}$ and $u_{q}$, as determined above by (5.16). The three cases in (5.19) have on the right side idempotents (or linear combinations of idempotents) as factors, followed by the common bivector exponential $e^{\alpha_{2 q} e_{23}}$. This seems to be the closest we currently can get to a full exponential factorization in this case.

The factorization of an invertible $m$ with non-zero $m \bar{m}$ as in (5.17) when both $p$ and $q$ are not invertible, is discussed at the end of this section.

### 5.1.2. Invertible even subalgebra component

We first assume that $p$ is invertible, i.e. $a_{p} \neq b_{p}$, without assuming $q$ to be invertible. After discussing this case, we will discuss the analogous case for which $q$ is assumed to be invertible, but not $p$. We can therefore compute the left quotient

$$
\begin{equation*}
s=p^{-1} q=\left(b_{s}+a_{s} u_{s}\right) e^{\alpha_{2} e_{23}}, \tag{5.20}
\end{equation*}
$$

which must also be an element of the subalgebra $C l_{2}(1,2)$ and can therefore be represented in this form, where $a_{s}, b_{s}$ are real non-negative numbers, bivector $u_{s}$ has square $u_{s}^{2}=+1$, and $0 \leq \alpha_{2 s}<2 \pi$. This allows us to rewrite $m$ as

$$
\begin{equation*}
m=p\left(1+i p^{-1} q\right)=p(1+i s) . \tag{5.21}
\end{equation*}
$$

For this form of $m$ we compute

$$
\begin{align*}
m \bar{m} & =p(1+i s)(1-i \bar{s}) \bar{p}=p\left[1+i^{2} s \bar{s}+i(s+\bar{s})\right] \bar{p} \\
& =p\left[1+i^{2}\left(b_{s}^{2}-a_{s}^{2}\right)+i\left(2 b_{s} \cos \alpha_{2 s}+a_{s} \sin \alpha_{2 s} u_{s} e_{23}+a_{s} \sin \alpha_{2 s} e_{23} u_{s}\right)\right] \bar{p} \\
& =p \bar{p}\left[1+i^{2}\left(b_{s}^{2}-a_{s}^{2}\right)+i 2 b_{s} \cos \alpha_{2 s}\right] \\
& =\left(b_{p}^{2}-a_{p}^{2}\right)\left[1-\left(b_{s}^{2}-a_{s}^{2}\right)+i 2 b_{s} \cos \alpha_{2 s}\right], \tag{5.22}
\end{align*}
$$

where we have used for the fourth equality that $u_{s} e_{23}=-e_{23} u_{s}$. By assumption the factor $\left(b_{p}^{2}-a_{p}^{2}\right) \neq 0$, so for $m \bar{m}$ to be zero we must have

$$
\begin{equation*}
b_{s}^{2}-a_{s}^{2}=1, \tag{5.23}
\end{equation*}
$$

which implies that $b_{s}>0$, and we must have

$$
\begin{equation*}
\cos \alpha_{2 s}=0 \quad \Leftrightarrow \quad \alpha_{2 s}=\frac{\pi}{2}, \frac{3 \pi}{2} \quad \Leftrightarrow \quad e^{\alpha_{2 s} e_{23}}= \pm e_{23} . \tag{5.24}
\end{equation*}
$$

The relationship $b_{s}^{2}-a_{s}^{2}=1$ is that of hyperbolic cosine and sine for some angle $\varphi_{s}$. We conclude that $m \bar{m}$ will be zero for this form of quotient $s$

$$
\begin{equation*}
s=\left(b_{s}+a_{s} u_{s}\right) e^{\alpha_{2 s} e_{23}}=\left(\cosh \varphi_{s}+u_{s} \sinh \varphi_{s}\right) \pm e_{23}= \pm e^{\varphi_{s} u_{s}} e_{23} \tag{5.25}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
q=p s= \pm p e^{\varphi_{s} u_{s}} e_{23}, \tag{5.26}
\end{equation*}
$$

and

$$
\begin{equation*}
m=p+i q=2 p \frac{1+i s}{2} \tag{5.27}
\end{equation*}
$$

Furthermore, we compute the square of $s$ as

$$
\begin{equation*}
s^{2}=\left( \pm e^{\varphi_{s} u_{s}} e_{23}\right)^{2}=e^{\varphi_{s} u_{s}} e_{23} e^{\varphi_{s} u_{s}} e_{23}=e^{\varphi_{s} u_{s}} e^{-\varphi_{s} u_{s}} e_{23}^{2}=e_{23}^{2}=-1 \tag{5.28}
\end{equation*}
$$

where we used in the third equality that $e_{23} u_{s}=-e_{23} u_{s}$. This means that

$$
\begin{equation*}
(i s)^{2}=i^{2} s^{2}=(-1)^{2}=+1 \tag{5.29}
\end{equation*}
$$

and therefore $\frac{1+i s}{2}$ is an idempotent. So assuming that $p$ is invertible and $m$ is not invertible we obtain the factorization of $m$ as

$$
\begin{equation*}
m=2 p \frac{1+i s}{2}=2\left(b_{p}+a_{p} u_{p}\right) e^{\alpha_{2 p} e_{23}} \frac{1+i s}{2} \tag{5.30}
\end{equation*}
$$

where the factor $2\left(b_{p}+a_{p} u_{p}\right)$ can further be put into exponential form using $E\left(2 a_{p}, 2 b_{p}, u_{p}\right)$ in (2.11). The idempotent factor $\frac{1+i s}{2}$ means that $m$ is manifestly (obviously) not invertible.

Now let us instead assume, that $q$ is invertible. We can multiply $m$ with $i^{-1}$

$$
\begin{align*}
m^{\prime} & =i^{-1} m=i^{-1} p+i^{-1} i q=q+i^{-1} p=p^{\prime}+i q^{\prime} \\
p^{\prime} & =q, \quad q^{\prime}=i^{-2} p=i^{2} p, \tag{5.31}
\end{align*}
$$

where for $C l(1,2)$ we will have $i^{-2}=i^{2}=-1$, for $C l(2,1)$ we would have $i^{-2}=i^{2}=$ -1 . We can now apply the above analysis of $m$ with $p$ invertible to $m^{\prime}$ with $p^{\prime}$ invertible, and in the end multiply the result with $i$ to get the expression for $m=i m^{\prime}=i i^{-1} m$. We also notice that

$$
\begin{equation*}
m^{\prime} \overline{m^{\prime}}=i^{-2} m \bar{m}= \pm m \bar{m} \tag{5.32}
\end{equation*}
$$

which means that $m^{\prime} \overline{m^{\prime}}=0$, iff $m \bar{m}=0$, and if we factorize $m^{\prime} \overline{m^{\prime}} \neq 0$ and compute its square root $\sqrt{m^{\prime} \overline{m^{\prime}}}$, then $\sqrt{m \bar{m}}=i \sqrt{m^{\prime} m^{\prime}}$, which means to add to $\sqrt{m^{\prime} \overline{m^{\prime}}}$ a phase factor $e^{i \frac{\pi}{2}}$ in the case of $i^{2}=-1$.

Doing this we get that

$$
\begin{equation*}
s^{\prime}=p^{\prime-1} q^{\prime}=q^{-1}\left(i^{2} p\right)=i^{2} q^{-1} p \tag{5.33}
\end{equation*}
$$

Following the analogous steps above we obtain, if we assume that $p^{\prime}$ is invertible and $m^{\prime}$ (and therefore $m$ ) is not invertible, then the factorization of $m^{\prime}$ (and $m$ ) will be

$$
\begin{align*}
& m^{\prime}=2 p^{\prime} \frac{1+i s^{\prime}}{2}=2\left(b_{p^{\prime}}+a_{p^{\prime}} u_{p^{\prime}}\right) e^{\alpha_{2 p^{\prime}} e_{23}} \frac{1+i s^{\prime}}{2} \\
& \quad\left(p^{\prime}=q\right) \\
& ={ }^{\prime} 2 q \frac{1+i s^{\prime}}{2}=2\left(b_{q}+a_{q} u_{q}\right) e^{\alpha_{2 q} e_{23}} \frac{1+i s^{\prime}}{2}  \tag{5.34}\\
& m=i m^{\prime}=i 2\left(b_{q}+a_{q} u_{q}\right) e^{\alpha_{2 q} e_{23}} \frac{1+i s^{\prime}}{2}
\end{align*}
$$

where the factor $2\left(b_{q}+a_{q} u_{q}\right)$ can further be put into exponential form using $E\left(2 a_{q}, 2 b_{q}, u_{q}\right)$ in (2.11). The idempotent factor $\frac{1+i s^{\prime}}{2}$ means that $m^{\prime}$ (and therefore $m$ ) is again manifestly not invertible.

If the central value $m \bar{m} \neq 0$, then $m$ is invertible as

$$
\begin{equation*}
m^{-1}=\frac{\bar{m}}{m \bar{m}} \tag{5.35}
\end{equation*}
$$

Because $m \bar{m}$ is then given as a non-zero sum of scalar and trivector, and $i^{2}=-1$, we can always represent it as

$$
\begin{equation*}
m \bar{m}=e^{2 \alpha_{0}} e^{2 \alpha_{3} i} \tag{5.36}
\end{equation*}
$$

and its square root as

$$
\begin{equation*}
\sqrt{m \bar{m}}=e^{\alpha_{0}} e^{\alpha_{3} i} \tag{5.37}
\end{equation*}
$$

and we can divide $m$ by this square root to get a new normed multivector

$$
\begin{equation*}
M=\frac{m}{\sqrt{m \bar{m}}}=m e^{-\alpha_{0}} e^{-\alpha_{3} i}, \quad M \bar{M}=1 \tag{5.38}
\end{equation*}
$$

### 5.2. Factorization of normed multivector $M, M \bar{M}=1$

We represent $M$ again as a sum of two elements from the even subalgebra $C l_{2}(1,2)$

$$
\begin{align*}
M & =P+i Q, \quad P=\langle M\rangle_{\text {even }}=\left(b_{P}+a_{P}\right) e^{\alpha_{2 P} e_{23}} \\
Q & =\langle M\rangle_{\text {odd }} i^{-1}=\left(b_{Q}+a_{Q}\right) e^{\alpha_{2 Q} e_{23}} \tag{5.39}
\end{align*}
$$

and compute

$$
\begin{equation*}
M \bar{M}=(P+i Q)(\bar{P}+i \bar{Q})=P \bar{P}+i^{2} Q \bar{Q}+i(Q \bar{P}+P \bar{Q})=1 \tag{5.40}
\end{equation*}
$$

and therefore we must have

$$
\begin{equation*}
Q \bar{P}+P \bar{Q}=0 \Leftrightarrow Q \bar{P}=-P \bar{Q}, \quad M \bar{M}=P \bar{P}+i^{2} Q \bar{Q}=1 \tag{5.41}
\end{equation*}
$$

We now ask what happens when $P$ or $Q$ or both are not invertible. If $P$ is not invertible, then we have $b_{P}=a_{P}$, and if $Q$ is not invertible we have $b_{Q}=a_{Q}$. If we assume both $P$ and $Q$ not invertible then we have $P \bar{P}=Q \bar{Q}=0$ and consequently

$$
\begin{equation*}
M \bar{M}=P \bar{P}+i^{2} Q \bar{Q}=0-i^{2} 0=0 \neq 1 \tag{5.42}
\end{equation*}
$$

which is a contradiction. Therefore either $P$ or $Q$ or both must be invertible, which we assume in the next subsection.

### 5.2.1. One even subalgebra component of $M$ being invertible

We first assume $P$ to be invertible, which allows us to compute

$$
\begin{equation*}
Q \bar{P}+P \bar{Q}=0 \Leftrightarrow P\left(P^{-1} Q+\bar{Q} \bar{P}^{-1}\right) \bar{P}=0 \Leftrightarrow P^{-1} Q+\bar{Q} \bar{P}^{-1}=0 \tag{5.43}
\end{equation*}
$$

Then $M$ can be rewritten as

$$
\begin{align*}
M & =P+i Q=P\left(1+i P^{-1} Q\right)=P\left(1+i\left(P^{-1} Q-0\right)\right) \\
& =P\left(1+i\left(P^{-1} Q-\frac{1}{2} P^{-1} Q-\frac{1}{2} \bar{Q} \bar{P}^{-1}\right)\right. \\
& =P\left(1+i \frac{1}{2}\left(P^{-1} Q-\bar{Q} \bar{P}^{-1}\right)\right) \tag{5.44}
\end{align*}
$$

where we observe that

$$
\begin{equation*}
\frac{1}{2}\left(P^{-1} Q-\bar{Q} \bar{P}^{-1}\right)=\left\langle P^{-1} Q\right\rangle_{2} \tag{5.45}
\end{equation*}
$$

is a pure bivector and therefore

$$
\begin{equation*}
i\left\langle P^{-1} Q\right\rangle_{2}=\vec{\omega} \tag{5.46}
\end{equation*}
$$

a vector. Therefore

$$
\begin{align*}
M & =P(1+\vec{\omega}) \\
M \bar{M} & =P(1+\vec{\omega})(1-\vec{\omega}) \bar{P}=P\left(1-\vec{\omega}^{2}\right) \bar{P}=P \bar{P}-P \bar{P} \vec{\omega}^{2} \\
& \stackrel{(5.41)}{=} P \bar{P}+i^{2} Q \bar{Q} . \tag{5.47}
\end{align*}
$$

From the last equality of (5.47) we conclude

$$
\begin{equation*}
-P \bar{P} \vec{\omega}^{2}=+i^{2} Q \bar{Q} \tag{5.48}
\end{equation*}
$$

that is

$$
\vec{\omega}^{2}=\frac{-i^{2} Q \bar{Q}}{P \bar{P}} \stackrel{i^{2}=-1}{=} \frac{Q \bar{Q}}{P \bar{P}} \begin{cases}>0 & \text { for } \frac{Q \bar{Q}}{P \bar{P}}>0,  \tag{5.49}\\ =0 & \text { for } Q, \\ <0 & \text { for } \frac{Q \bar{Q}}{P \bar{P}}<0,\end{cases}
$$

This leads to the following factorization of $M$

$$
M=P(1+\vec{\omega})=\left(b_{P}+a_{P} u_{P}\right) e^{\alpha_{2 P} e_{23}} \begin{cases}E\left(\omega, 1, \frac{\vec{\omega}}{\omega}\right), & \omega=\sqrt{\vec{\omega}^{2}}  \tag{5.50}\\ 1+\vec{\omega}=e^{\vec{\omega}}, & \vec{\omega}^{2}=0 \\ e^{\alpha_{0}^{\prime}} e^{\alpha_{1} \frac{\vec{\omega}}{\omega}}, & \omega=\sqrt{-\vec{\omega}^{2}}\end{cases}
$$

with

$$
\begin{equation*}
\alpha_{1}=\operatorname{atan} 2(\omega, 1), \quad \alpha_{0}^{\prime}=\ln \left(\sqrt{1+\omega^{2}}\right) \tag{5.51}
\end{equation*}
$$

Now let us instead assume that $Q$ is invertible (and therefore $\bar{Q}$ as well), without specifying the invertibility of $P$.

$$
\begin{equation*}
Q \bar{P}+P \bar{Q}=0 \Leftrightarrow Q\left(\bar{P} \bar{Q}^{-1}+Q^{-1} P\right) \bar{Q} \Leftrightarrow \bar{P} \bar{Q}^{-1}+Q^{-1} P=0 \tag{5.52}
\end{equation*}
$$

We can therefore express

$$
\begin{align*}
\bar{M} & =\bar{P}+i \bar{Q}=\left(\bar{P} \bar{Q}^{-1}+i\right) \bar{Q}=\left(\bar{P} \bar{Q}^{-1}-0+i\right) \bar{Q} \\
& =\left(\bar{P} \bar{Q}^{-1}-\frac{1}{2} \bar{P} \bar{Q}^{-1}-\frac{1}{2} Q^{-1} P+i\right) \bar{Q} \\
& =\left(\frac{1}{2} \bar{P} \bar{Q}^{-1}-\frac{1}{2} Q^{-1} P+i\right) \bar{Q} \tag{5.53}
\end{align*}
$$

with pure bivector

$$
\begin{equation*}
\bar{B}=\frac{1}{2} \bar{P} \bar{Q}^{-1}-\frac{1}{2} Q^{-1} P=-\frac{1}{2}\left\langle Q^{-1} P\right\rangle_{2}=\frac{1}{2}\left\langle\bar{P} \bar{Q}^{-1}\right\rangle_{2}=\frac{1}{2}\left\langle\overline{Q^{-1} P}\right\rangle_{2} \tag{5.54}
\end{equation*}
$$

So we get

$$
\begin{equation*}
\bar{M}=(i+\bar{B}) \bar{Q} \tag{5.55}
\end{equation*}
$$

and hence

$$
\begin{equation*}
M=Q(i+B)=i Q\left(1+i^{-1} B\right)=i Q(1+\vec{\mu}), \quad \vec{\mu}=i^{-1} B \tag{5.56}
\end{equation*}
$$

We further compute

$$
\begin{align*}
M \bar{M} & =i Q(1+\vec{\mu}) i(1-\vec{\mu}) \bar{Q}=i^{2} Q\left(1-\vec{\mu}^{2}\right) \bar{Q}=i^{2} Q \bar{Q}-i^{2} \vec{\mu}^{2} Q \bar{Q} \\
& \stackrel{(5.41)}{=} P \bar{P}+i^{2} Q \bar{Q} \tag{5.57}
\end{align*}
$$

which implies that for $i^{2}=-1$

$$
P \bar{P}=-i^{2} \vec{\mu}^{2} Q \bar{Q} \Leftrightarrow \vec{\mu}^{2}=-i^{2} \frac{P \bar{P}}{Q \bar{Q}}=\frac{P \bar{P}}{Q \bar{Q}} \begin{cases}>0 & \text { for } \frac{P \bar{P}}{Q \bar{Q}}>0  \tag{5.58}\\ =0 & \text { for } P \bar{P}=0 \\ <0 & \text { for } \frac{P \bar{P}}{Q \bar{Q}}<0\end{cases}
$$

This leads to the following factorization of $M$

$$
M=i Q(1+\vec{\mu})=i\left(b_{Q}+a_{Q} u_{Q}\right) e^{\alpha_{2 Q} e_{23}} \begin{cases}E\left(\mu, 1, \frac{\vec{\mu}}{\mu}\right), & \mu=\sqrt{\vec{\mu}^{2}}  \tag{5.59}\\ 1+\vec{\mu}=e^{\vec{\mu}}, & \vec{\mu}^{2}=0 \\ e^{\alpha_{0}^{\prime \prime}} e^{\alpha_{1} \frac{\vec{\mu}}{\mu}}, & \mu=\sqrt{-\vec{\mu}^{2}}\end{cases}
$$

with

$$
\begin{equation*}
\alpha_{1}=\operatorname{atan} 2(\mu, 1), \quad \alpha_{0}^{\prime \prime}=\ln \left(\sqrt{1+\mu^{2}}\right) \tag{5.60}
\end{equation*}
$$

We note that the two factorizations $(5.50)$ or (5.59) have a nearly identical form. We obtain (5.59) by exchanging $P$ and $Q$ in (5.50) and by multiplying with $i$, which can formally be replaced by $i=e^{\frac{\pi}{2} i}$.

### 5.3. Result of factorization in $\operatorname{Cl}(1,2)$

For better overview, we summarize the results of Section 5. If only one of the two subalgebra components $p, q$ of $m=p+i q$ is non-zero, then the final factorizations are directly given by the factorization of $i q$ in (5.4) or $p$ in (5.5).

Factorizations of non-invertible $m \in C l(1,2)$ were stated in (5.19) for non-invertible $p$ and $q$, in (5.30) for invertible $p$ and in (5.34) for invertible $q$.

Finally for either $P$ invertible or $Q$ invertible we obtain

$$
\begin{equation*}
m=\sqrt{m \bar{m}} M=e^{\alpha_{0}} e^{\alpha_{3} i} M \tag{5.61}
\end{equation*}
$$

assuming the factorized forms (5.50) or (5.59) for $M$.
If both $p$ and $q$ are not invertible, then $m \bar{m}$ will have the form (5.17) of $i$ times a real scalar $S$. If this real scalar is not zero, then $m \bar{m}$ can be factorized as

$$
\begin{equation*}
m \bar{m}=e^{2 \alpha_{0}}( \pm i)=e^{2 \alpha_{0}} e^{2\left( \pm \frac{\pi}{4}\right) i}, \quad \alpha_{0}=\frac{1}{2} \ln (|S|), \quad \sqrt{m \bar{m}}=e^{\alpha_{0}} e^{\left( \pm \frac{\pi}{4}\right) i}, \tag{5.62}
\end{equation*}
$$

the sign will be identical with that of $S$. We can again divide by $\sqrt{m \bar{m}}$ with the result

$$
\begin{equation*}
M=m e^{-\alpha_{0}} e^{\left(\mp \frac{\pi}{4}\right) i}, \quad M \bar{M}=1 \tag{5.63}
\end{equation*}
$$

The very same analysis applied in (5.39) to (5.61) with the factorized forms (5.50) (for $P$ invertible) or (5.59) (for $Q$ invertible) can then be applied again. In (5.61) we will have $\alpha_{0}=\frac{1}{2} \ln (|S|)$ and $\alpha_{3}= \pm \frac{\pi}{4}$.

## 6. Conclusion

In this paper we have considered general elements of the three Clifford algebras $C l(3,0), C l(1,2)$ and $C l(0,3)$, and studied multivector factorization into products of exponentials, idempotents and blades, where the exponents are frequently blades of grades zero (scalar) to $n$ (pseudoscalar). Depending on the algebra, we used methods of direct computation or applied several isomorphisms, to simplify the computation at hand or make use of known results in isomorphic representations. Furthermore, all results of this work could be implemented in Clifford algebra software like [26].

It may be possible in the future to extend this approach to even higher dimensional Clifford algebras, but simple products of exponentials and idempotents may, due to the dimensionality of the $k$-vector spaces, have to include multiple non-commuting exponential factors with $k$-vectors of the same grade in the exponents. Of particular interest would be to apply our methods to conformal geometric algebra $C l(4,1)$ widely used in computer graphics and robotics $[5,16]$. Furthermore a complete factorization study of $C l(1,3)$ and $C l(3,1)$ that are both of great importance in special relativity and relativistic physics $[3,10,11,20]$ may be of considerable interest. The present work can e.g. be applied in the study of Lipschitz versors, see e.g. E.4.2 in [28], pinor and spinor groups, and in the development of Clifford Fourier and wavelet transformations [17,20], compare also the third paragraph on motivation for this research in the introduction Section 1.

It might also be of interest to represent Clifford algebras $C l(3,0), C l(1,2)$ and $C l(0,3)$, in terms of tensor products of quaternions and their subalgebras, and reexpress the results we have obtained above, or even further develop them, compare

## Acknowledgement

EH wishes to thank God: In the beginning God created the heavens and the earth [7]. Again, I am deeply indebted to my colleague S.J. Sangwine from the University of Essex in Colchester, UK. The topic of this work as well has grown out of our close collaboration. EH further wishes to thank J. Salchner (Gschnitz, Austria) and Airborne Hydromapping GmbH (Innsbruck, Austria) for hosting him while writing this paper, as well as his physics colleagues at ICU (Tokyo, Japan) for the possibility of the current sabbatical.

## References

[1] Buchholz S, Tachibana K, Hitzer E. Optimal Learning Rates for Clifford Neurons. In: de Sá JM, Alexandre LA, Duch W, Mandic D., editors. Artificial Neural Networks - ICANN 2007. Lecture Notes in Computer Science, Berlin, Heidelberg:Springer; 2007;4668:864873.
[2] Buchholz S, Hitzer E, Tachibana K. Coordinate independent update formulas for versor Clifford neurons. Proc. Joint 4th Int. Conf. on Soft Comp. and Intel. Sys. and 9th Int. Symp. on Adv. Intel. Sys., 17-21 Sep. 2008, Nagoya, Japan, 2008;814-819.
[3] Doran C, Lasenby A. Geometric Algebra for Physicists. Cambridge (UK): Cambridge University Press; 2007.
[4] Dorst L, Valkenburg R. Square Root and Logarithm of Rotors in 3D Conformal Geometric Algebra Using Polar Decomposition. in Dorst L, Lasenby J, editors. Guide to Geometric Algebra in Practice. London:Springer; 2011;81-104.
[5] Dorst L, Lasenby J, editors. Guide to Geometric Algebra in Practice. London:Springer: 2011.
[6] Falcao MI, Malonek HR. Generalized Exponentials through Appell sets in $\mathbb{R}^{n+1}$ and Bessel functions. AIP Conference Proceedings, 2007;936:738-741.
[7] Genesis chapter 1 verse 1, in The Holy Bible, English Standard Version, Wheaton, Illinois:Crossway Bibles, Good News Publishers; 2001.
[8] Girard PR, et al. Hyperquaternions: An Efficient Mathematical Formalism for Geometry. in Nielsen F, Barbaresco F, editors. Geometric Science of Information 2019, LNCS. 2019;11712:116-125.
[9] Girard PR, et al. Hyperquaternions: A New Tool for Physics. Adv. Appl. Clifford Algebras. 2018;28(68):1-14
[10] Hestenes D, Sobczyk G. Clifford Algebra to Geometric Calculus: A Unified Language for Mathematics and Physics. Heidelberg:Springer; 1984.
[11] Hestenes D. Space-Time Algebra. Basel:Birkhäuser; 2015.
[12] Hitzer E. Creative Peace License. http://gaupdate.wordpress.com/2011/12/14/ the-creative-peace-license-14-dec-2011/
[13] Hitzer E, Abłamowicz R. Geometric Roots of -1 in Clifford Algebras $C l(p, q)$ with $p+q \leq$ 4. Adv. Appl. Clifford Algebras. 2011;21(1):121-144.
[14] Hitzer E. Introduction to Clifford's Geometric Algebra, Journal of the Society of Instrument and Control Engineers. 2012 Apr.;51(4):338-350
[15] Hitzer E, Helmstetter J, Abłamowicz R. Maple worksheets created with CLIFFORD for a verification of results in [18]. http://math.tntech.edu/rafal/publications.html (C)2012).
[16] Hitzer E, Nitta T, Kuroe Y. Applications of Clifford's Geometric Algebra. Adv. Appl. Clifford Algebras. 2013 Mar.;23:377-404.
[17] Hitzer E, Sangwine SJ, editors. Quaternion and Clifford Fourier transforms and wavelets. Trends in Mathematics, Basel:Birkhäuser 2013;27.
[18] Hitzer E, Helmstetter J, Abłamowicz R. Square Roots of -1 in Real Clifford Algebras. in: Hitzer E, Sangwine SJ, editors. Quaternion and Clifford Fourier transforms and wavelets. Trends in Mathematics, Basel:Birkhäuser 2013;27:123-153
[19] Hitzer E, Sangwine SJ. Multivector and multivector matrix inverses in real Clifford algebras. Appl. Math. and Comp. 2017 Oct.;311(C):375-389.
[20] Hitzer E. Special relativistic Fourier transformation and convolutions. Math. Meth. Appl. Sci. 2019 Mar.;42(7):2244-2255.
[21] Hitzer E, Sangwine SJ. Foundations of Conic Conformal Geometric Algebra and Compact Versors for Rotation, Translation and Scaling. Adv. Appl. Clifford Algebras. 2019;29(96):1-16.
[22] Hitzer E. Exponential Factorization of Multivectors in $C l(p, q), p+q<3$. Math. Meth. Appl. Sci. 2020 Jul.;1-15. DOI: https://doi.org/10.1002/mma. 6629.
[23] Lasenby J, Hadfield H, Lasenby A. Calculating the Rotor Between Conformal Objects. Adv. Appl. Clifford Algebras. 2019;29(102):1-9.
[24] Lounesto P. Clifford Algebras and Spinors. Cambridge (UK):Cambridge University Press; 2001.
[25] Sangwine SJ. Biquaternion (Complexified Quaternion) Roots of -1. Adv. Appl. Clifford Algebras. 2006;16(1):63-68.
[26] Sangwine SJ, Hitzer E. Clifford Multivector Toolbox (for MATLAB), 2015-2021, Software library available at: http://clifford-multivector-toolbox.sourceforge.net/
[27] Sangwine SJ, Hitzer E. Polar decomposition of complexified quaternions and octonions. Adv. Appl. Clifford Algebras. 2020;30(23):1-12.
[28] Xambó-Descamps S. Real Spinorial Groups - A Short Mathematical Introduction. SBMAC SpringerBriefs in Mathematics. Cham: Springer Nature Switzerland AG; 2018.

## Appendix A. Alternative factorization of $C l_{2}(1,2)$

An alternative factorization of $C l_{2}(1,2)$ (or $\left.C l_{2}(2,1)\right)$ can be obtained in the following way. In the following we focus only on $C l_{2}(2,1)$, but the case for $C l_{2}(1,2)$, due to its isomorphic structure, works analogous.

$$
\begin{equation*}
m=m_{0}+m_{23} e_{23}+m_{31} e_{31}+m_{12} e_{12} \tag{A1}
\end{equation*}
$$

We distinguish five cases. First $m_{0} \neq 0,\langle m\rangle_{2}=m_{23} e_{23}+m_{31} e_{31}+m_{12} e_{12}=0$ :

$$
\begin{equation*}
m=m_{0}=\frac{m_{0}}{\left|m_{0}\right|} e^{\alpha_{0}}= \pm e^{\alpha_{0}}, \quad \alpha_{0}=\ln \left(\left|m_{0}\right|\right) \tag{A2}
\end{equation*}
$$

Second, $\langle m\rangle_{2}^{2}<0$ :

$$
\begin{align*}
m & =m_{0}+\left|\langle m\rangle_{2}\right| \frac{\langle m\rangle_{2}}{\left|\langle m\rangle_{2}\right|}=a_{m} e^{\alpha_{2} i_{2}}=e^{\alpha_{0}} e^{\alpha_{2} i_{2}}, \quad\left|\langle m\rangle_{2}\right|=\sqrt{-\langle m\rangle_{2}^{2}} \\
i_{2} & =\frac{\langle m\rangle_{2}}{\left|\langle m\rangle_{2}\right|}, \quad i_{2}^{2}=-1, \quad \alpha_{2}=\operatorname{atan} 2\left(\left|\langle m\rangle_{2}\right|, m_{0}\right) \\
a_{m} & =\sqrt{m_{0}^{2}+\left|\langle m\rangle_{2}\right|^{2}}=\sqrt{m_{0}^{2}-\langle m\rangle_{2}^{2}}, \quad \alpha_{0}=\ln \left(a_{m}\right) \tag{A3}
\end{align*}
$$

We observe that the second case subsumes the first case for $\alpha_{2} \in\{0, \pi\}$. Third, $m_{0}=0$, $m=\langle m\rangle_{2} \neq 0, m^{2}=\langle m\rangle_{2}^{2}=0$ :

$$
\begin{equation*}
m=\langle m\rangle_{2}=e^{\alpha_{0}} i_{2}, \quad \alpha_{0}=\ln \left(\sqrt{2}\left|m_{12}\right|\right), \quad i_{2}=\frac{\langle m\rangle_{2}}{\sqrt{2}\left|m_{12}\right|}, \quad m^{2}=i_{2}^{2}=0 \tag{A4}
\end{equation*}
$$

We observe that in the third case $m$ is a not invertible null-bivector. As an example ${ }^{13}$ for the third case we consider the following example.

## Example A.1.

$$
\begin{align*}
& m=\langle m\rangle_{2}=3 e_{12}+3 e_{23} \approx e^{1.45} \frac{e_{12}+e_{23}}{\sqrt{2}}, \quad m_{12}=\left|m_{12}\right|=m_{23}=3 \\
& \alpha_{0}=\ln (\sqrt{2} 3) \approx 1.45, \quad i_{2}=\frac{e_{12}+e_{23}}{\sqrt{2}} \tag{A5}
\end{align*}
$$

Fourth, $m_{0} \neq 0,\langle m\rangle_{2} \neq 0,\langle m\rangle_{2}^{2}=0$ :

$$
\begin{align*}
m & =m_{0}+\langle m\rangle_{2}=m_{0}\left(1+\frac{1}{m_{0}}\langle m\rangle_{2}\right)=\frac{m_{0}}{\left|m_{0}\right|} e^{\alpha_{0}}\left(1+\alpha_{2} i_{2}\right)= \pm e^{\alpha_{0}} e^{\alpha_{2} i_{2}} \\
\alpha_{0} & =\ln \left(\left|m_{0}\right|\right), \quad i_{2}=\frac{\langle m\rangle_{2}}{\sqrt{2}\left|m_{12}\right|}, \quad \alpha_{2}=\frac{\sqrt{2}\left|m_{12}\right|}{m_{0}} \tag{A6}
\end{align*}
$$

where the sign factor is determined by $\frac{m_{0}}{\left|m_{0}\right|}= \pm 1$. Fifth, $\langle m\rangle_{2}^{2}>0$ :

$$
\begin{align*}
m & =m_{0}+\langle m\rangle_{2}=m_{0}+\left|\langle m\rangle_{2}\right| i_{2}=E\left(\left|\langle m\rangle_{2}\right|, m_{0}, i_{2}\right), \\
\left|\langle m\rangle_{2}\right| & =\sqrt{\langle m\rangle_{2}^{2}}, \quad i_{2}=\frac{\langle m\rangle_{2}}{\left|\langle m\rangle_{2}\right|}, \quad i_{2}^{2}=+1, \tag{A7}
\end{align*}
$$

where $E\left(\left|\langle m\rangle_{2}\right|, m_{0}, i_{2}\right)$ is determined by (2.11), with $a=\left|\langle m\rangle_{2}\right|, b=m_{0}, u=i_{2}$. In the fifth case $m$ is not invertible for $\left|m_{0}\right|=\left|\langle m\rangle_{2}\right|$. We finally summarize all five cases ${ }^{14}$

$$
m=\left\{\begin{array}{lll} 
\pm e^{\alpha_{0}} & \text { for } & \langle m\rangle_{2}=0,  \tag{A8}\\
e^{\alpha_{0}} e^{\alpha_{2} i_{2}} & \text { for } & \langle m\rangle_{2}^{2}<0, \\
e^{\alpha_{0}} i_{2} & \text { for } & m_{0}=0, \quad\langle m\rangle_{2} \neq 0, \quad\langle m\rangle_{2}^{2}=0 \\
\pm e^{\alpha_{0}} e^{\alpha_{2} i_{2}} & \text { for } \quad m_{0} \neq 0, \quad\langle m\rangle_{2} \neq 0, \quad\langle m\rangle_{2}^{2}=0 \\
E\left(\left|\langle m\rangle_{2}\right|, m_{0}, i_{2}\right) & \text { for } & \langle m\rangle_{2}^{2}>0
\end{array}\right.
$$

Let us compare the factorizations (3.3) and (A8): (A8) always has only one bivector exponential (except for the third line $e^{\alpha_{0}} i_{2}$ ), but it is more complicated (more case distinctions) than (3.3). Because following (3.3) all cases can be accommodated in the single expression $m=(b+a u) e^{\alpha_{2} e_{12}}$, with $a \geq 0$ and $b \geq 0$, which is always invertible

[^7]Table B1. Multiplication table of $C l(3,0)$.

|  | 1 | $e_{1}$ | $e_{2}$ | $e_{3}$ | $e_{12}$ | $e_{23}$ | $e_{31}$ | $e_{123}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | $e_{1}$ | $e_{2}$ | $e_{3}$ | $e_{12}$ | $e_{23}$ | $e_{31}$ | $e_{123}$ |
| $e_{1}$ | $e_{1}$ | 1 | $e_{12}$ | $-e_{31}$ | $e_{2}$ | $e_{123}$ | $-e_{3}$ | $e_{23}$ |
| $e_{2}$ | $e_{2}$ | $-e_{12}$ | 1 | $e_{23}$ | $-e_{1}$ | $e_{3}$ | $e_{123}$ | $e_{31}$ |
| $e_{3}$ | $e_{3}$ | $e_{31}$ | $-e_{23}$ | 1 | $e_{123}$ | $-e_{2}$ | $e_{1}$ | $e_{12}$ |
| $e_{12}$ | $e_{12}$ | $-e_{2}$ | $e_{1}$ | $e_{123}$ | -1 | $-e_{31}$ | $e_{23}$ | $-e_{3}$ |
| $e_{23}$ | $e_{23}$ | $e_{123}$ | $-e_{3}$ | $e_{2}$ | $e_{31}$ | -1 | $-e_{12}$ | $-e_{1}$ |
| $e_{31}$ | $e_{31}$ | $e_{3}$ | $e_{123}$ | $-e_{1}$ | $-e_{23}$ | $e_{12}$ | -1 | $-e_{2}$ |
| $e_{123}$ | $e_{123}$ | $e_{23}$ | $e_{31}$ | $e_{12}$ | $-e_{3}$ | $-e_{1}$ | $-e_{2}$ | -1 |

Table B2. Multiplication table of $C l(1,2) \cong C l(3,0)$.

|  | 1 | $E_{1}$ | $E_{12}$ | $E_{31}$ | $E_{2}$ | $E_{23}$ | $E_{3}$ | $E_{123}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | $E_{1}$ | $E_{12}$ | $E_{31}$ | $E_{2}$ | $E_{23}$ | $E_{3}$ | $E_{123}$ |
| $E_{1}$ | $E_{1}$ | 1 | $E_{2}$ | $-E_{3}$ | $e_{2}$ | $E_{123}$ | $-E_{31}$ | $E_{23}$ |
| $E_{12}$ | $E_{12}$ | $-E_{2}$ | 1 | $E_{23}$ | $-E_{1}$ | $E_{31}$ | $E_{123}$ | $E_{3}$ |
| $E_{31}$ | $E_{31}$ | $E_{3}$ | $-E_{23}$ | 1 | $E_{123}$ | $-E_{12}$ | $E_{1}$ | $E_{2}$ |
| $E_{2}$ | $E_{2}$ | $-E_{12}$ | $E_{1}$ | $E_{123}$ | -1 | $-E_{3}$ | $E_{23}$ | $-E_{31}$ |
| $E_{23}$ | $E_{23}$ | $E_{123}$ | $-E_{31}$ | $E_{12}$ | $E_{3}$ | -1 | $-E_{2}$ | $-E_{1}$ |
| $E_{3}$ | $E_{3}$ | $E_{31}$ | $E_{123}$ | $-E_{1}$ | $-E_{23}$ | $E_{2}$ | -1 | $-E_{12}$ |
| $E_{123}$ | $E_{123}$ | $E_{23}$ | $E_{3}$ | $E_{2}$ | $-E_{31}$ | $-E_{1}$ | $-E_{12}$ | -1 |

except when $a=b$ (presence of an idempotent factor for $a=b \neq 0$ ). The inverse is given by

$$
\begin{equation*}
m^{-1}=e^{-\alpha_{2} e_{12}}(b+a u)^{-1}=e^{-\alpha_{2} e_{12}} \frac{b-a u}{b^{2}-a^{2}} \tag{A9}
\end{equation*}
$$

whenever $a \neq b$, compare (3.2). By these reasons, we prefer to generally use (3.3) in this paper.

## Appendix B. Factorization of $C l(1,2) \cong C l(3,0)$

The results of the Section 4 lend themselves to factorize multivectors in $C l(1,2) \cong$ $C l(3,0)$, based on the isomorphism $C l(1,2) \cong C l(3,0)$. We list the multiplication tables, Table B1 for $C l(3,0)$ and Table B2 for $C l(1,2) . C l(1,2) \cong C l(3,0)$ can be verified from Tables B1 and B2, which can be brought into agreement by identifying

$$
\begin{align*}
1 & =1, E_{1}=e_{1}, E_{2}=e_{12}, E_{3}=e_{31} \\
E_{12} & =e_{2}, E_{23}=e_{23}, E_{31}=e_{3}, E_{123}=e_{123} \tag{B1}
\end{align*}
$$

where $\left\{E_{1}, E_{2}, E_{3}\right\}$ is the orthonormal vector basis of $\mathbb{R}^{1,2}$ generating $C l(1,2)$, and $\left\{e_{1}, e_{2}, e_{3}\right\}$ is the orthonormal vector basis of $\mathbb{R}^{3}$ generating $C l(3,0)$.

Factorization of multivectors $m \in C l(1,2)$ can be achieved by mapping $m$ via the isomorphism (B1) to its isomorphic counterpart $m^{\prime} \in C l(3,0)$, then factorize $m^{\prime}$ in $C l(3,0)$, and finally map the factorized form back with applying (B1) again in reverse. In particular the unit vector $u \in C l(3,0)$ and the unit bivector $i_{2}$ in (4.34) become

$$
\begin{align*}
u & =u_{1} e_{1}+u_{2} e_{2}+u_{3} e_{3}=u_{1} E_{1}+u_{2} E_{12}+u_{3} E_{31}  \tag{B2}\\
i_{2} & =b_{12} e_{12}+b_{23} e_{23}+b_{31} e_{31}=b_{12} E_{2}+b_{23} E_{23}+b_{31} E_{3} \tag{B3}
\end{align*}
$$

with $u_{1}^{2}+u_{2}^{2}+u_{3}^{2}=1$, and $b_{12}^{2}+b_{23}^{2}+b_{31}^{2}=1$.
Viewed strictly in $C l(1,2)$, the exponentials corresponding to $e^{\alpha_{1} u}$ and $e^{\alpha_{2} i_{2}}$ will therefore no longer have a single grade one vector or a single grade two bivector as respective arguments, but in both cases a sum of vector plus bivector will appear as arguments.
E. Hitzer, On Factorization of Multivectors in $\mathrm{Cl}(3,0), \mathrm{Cl}(1,2)$ and $\mathrm{Cl}(0,3)$, by Exponentials and Idempotents, accepted by Complex Variables and Elliptic Equations, 25 pages, Oct. 2021, DOI: https://doi.org/10.1080/17476933.2021.2001462


[^0]:    CONTACT E. Hitzer. Email: hitzer@icu.ac.jp
    ${ }^{1}$ The use of this paper is subject to the Creative Peace License [12]. We dedicate this paper to the truth (Jesus: I am the way and the truth and the life. No one comes to the Father except through me, see John 14:6, NIV). Soli Deo Gloria.
    ${ }^{2}$ Private communcation with R. Abłamowicz.

[^1]:    ${ }^{3}$ The Clifford algebra $C l(1,0)$ and the even subalgebra $C l_{2}(1,1)$ of the two-dimensional space-time algebra are both isomorphic to the hyperbolic plane. Invertible elements of $C l_{2}(1,1)$ represent boosts (changes of velocity), of elementary importance in special relativity

[^2]:    ${ }^{4}$ In this paper we do not make further use of $e^{a i d_{ \pm}}$. But we note that even though $i d_{ \pm}$is not invertible, $e^{a i d_{ \pm}}$has inverse $e^{-a i d_{ \pm}}$, similar to null-vectors not being invertible, but their exponential functions have a multiplicative inverse.
    ${ }^{5}$ Note that (2.5) together with (2.4) provides a unique specification for the assignment of $h^{i d}(u)$ from the set $\left\{ \pm i d_{+}, \pm i d_{-}\right\}$, thus effectively defining the four-valued function $h^{i d}(u)$. Similarly (2.8) together with (2.7) effectively defines $h(u)$ uniquely.

[^3]:    ${ }^{6}$ Note that the meaning of $\operatorname{atan} 2(y, x)$ is the mathematically positive angle of the vector $x e_{1}+y e_{2}$ with the $x$-axis in the Euclidean plane, if the vector is attached to the origin.
    ${ }^{7}$ With an orthonormal basis of $\mathbb{R}^{3}$ the expression $i=e_{123}$ is valid. In a general basis we have $I=e_{1} \wedge e_{2} \wedge e_{3}$, $|I|=\sqrt{\left|I^{2}\right|}, i=I /|I|$. Similarly for $\mathbb{R}^{0,3}$.

[^4]:    ${ }^{8}$ Even though we introduce the notation $p$ and $q$ for the two even grade components of the Clifford algebra over a three-dimensional vector space, confusion with the signature variables in $C l(p, q)$ should be negligible, because for each section we will specify the Clifford algebra under consideration with its explicit signature values, e.g. $C l(3,0), C l(0,3)$, etc.
    ${ }^{9}$ The factor $i \in C l(3,0)$ can be expressed as $e^{\frac{\pi}{2} i}$ and $i \in C l(3,0)$ formally as $h(1,0, i)$ to represent $i a_{q} e^{\alpha_{q} i_{q}}$ as pure exponential factorization.

[^5]:    ${ }^{10}$ With pure blade we mean a simple blade that can be factored as an outer product of vectors.
    ${ }^{11}$ We clearly can still replace $i\left(b_{q}+a_{q} u_{q}\right)$ by $h\left(a_{q}, b_{q}, u_{q}\right) e^{\frac{\pi}{2} i}$, and $b_{p}+a_{p} u_{p}$ by $h\left(a_{p}, b_{p}, u_{p}\right)$ for full exponential factorization.

[^6]:    ${ }^{12}$ The equations (5.16) for sine and cosine of $\vartheta$ can also simply be interpreted as defining $\vartheta$.

[^7]:    ${ }^{13}$ In conformal geometric algebra $C l(4,1)$ two null-vectors are defined for the origin and for infinity. Conventionally they are $e_{0}=\left(e_{5}-e_{4}\right) / 2, e_{\infty}=e_{5}+e_{4}$, such that $e_{0} \cdot e_{\infty}=-1$. In certain contexts it has proven to be of advantage to instead choose a symmetric definition $e_{0}=\left(e_{5}-e_{4}\right) / \sqrt{2}, e_{\infty}=\left(e_{5}+e_{4}\right) / \sqrt{2}$, see e.g. [21]. By analogy, this motivates our introduction of $\sqrt{2}$ in the denominator of the null bivector $i_{2}$ above.
    ${ }^{14}$ Note that in lines two to five of (A8) the bivectors $i_{2}$ are specific to each line, as defined in (A3), (A4), (A6), and (A7), respectively.

