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ABSTRACT
In this paper we consider general multivector elements of Clifford algebras Cl(3, 0),
Cl(1, 2) and Cl(0, 3), and look for possibilities to factorize multivectors into products
of blades, idempotents and exponentials, where the exponents are frequently blades
of grades zero (scalar) to n (pseudoscalar).
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1. Introduction

The important role of the polar representation of complex numbers and quaternions
is widely known. Here1 we endeavor to extend this approach to higher dimensional
associative Clifford geometric algebras, which play important roles in geometry, physics
and computer science [1,2,10,16,24,28]. Exponentials of hyper complex elements and
blades also appear as kernels in complex, quaternionic and Clifford Fourier and wavelet
transforms [17]. Important related questions are the computation of logarithms of
multivectors [4], square roots [4,13,15,18,25], inverses [19], transformation rotors [23],
and polar decompositions [27], etc. Concrete applications may therefore be to forward
and reverse kinematic motions of robot arms, where such factorizations could be useful,
or in drone controls.2 In earlier work the question of factorization into exponential
factors, blades and idempotents for Clifford algebras Cl(p, q), n = p + q = 1, 2 [22]
has been studied. This motivates us to progress by extending [22] to the case n = 3.
But since the case Cl(2, 1) is of particular complexity, we will treat it by itself in a
subsequent paper.

Because subalgebras isomorphic to the algebra of hyperbolic numbers appear fre-
quently, we include the description of hyperbolic planes of [22] again. Furthermore,
the subalgebra structure, in particular that of even subalgebras, is seen to play an
essential role, therefore we also study the even subalgebra of Cl(1, 2) (and similarly
of Cl(2, 1)), both isomorphic to Cl(2, 0), split-quaternions or coquaternions. As far as
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possible we aim at explicit, step by step verifiable proofs. The arrangement of the sec-
tions by the Clifford algebra studied is by increasing complexity, which mainly stems
from the increasing number of idempotents in the respective algebra. An introduction
to Clifford geometric algebras is contained in [14], a concise mathematical definition
in [6], and a comprehensive study relevant for mathematics and physics in [10].

A prime example of the type of factorization that we envision can be seen in (4.34),
which has four exponential factors with a scalar, vector, bivector and a trivector in
the respective exponent. But because all algebras under consideration are not division
algebras, we necessarily have non-invertible multivectors and their factorizations are
found to include non-invertible idempotents as factors (e.g. in (4.11)) or even their
linear combinations (e.g. in (5.19)). Note that we also include the representation (2.11)
for elements of a hyperbolic plane in our wider notion of exponential factors.

The paper is structured as follows. Section 2 reviews [22] hyperbolic numbers and
their factorization in terms of exponentials and idempotents, and invertibility. Section
3 studies the important even subalgebras of Cl(1, 2) (and Cl(2, 1)), providing essen-
tial results for the full blown study of Cl(1, 2) following later. Section 4 studies the
factorization of multivectors in Clifford algebras Cl(3, 0) and Cl(0, 3), which can be
meaningfully grouped together, because their even subalgebras Cl2(3, 0) and Cl2(0, 3)
are both isomorphic to quaternions.

In order to achieve a factorization of multivectors in Cl(1, 2) in terms of exponential
factors with blades as exponentials and idempotents (for non invertible multivectors),
we take a direct approach in Section 5, making use of the study of the even subalgebra
in Section 3. An alternative factorization in Cl(1, 2), based on the isomorphism to
Cl(3, 0) appears in Appendix B. The paper concludes with Section 6, followed by
acknowledgments and references.

2. Hyperbolic planes

Since subalgebras isomorphic to the algebra of a hyperbolic plane3 will occur repeat-
edly in our analysis, and to establish notation for later use in this paper, we reproduce
this short study of hyperbolic planes from [22]. An element u 6= 1 that squares to
u2 = +1 generates a hyperbolic plane {b + au}, a, b ∈ R with basis {1, u}. A relevant
alternative basis {id−, id+} is given by two not invertible idempotents

id+ =
1 + u

2
, id− =

1− u
2

, id+ + id− = 1, id+ − id− = u,

id2
+ = id+, id2

− = id−, id+id− = id−id+ = 0. (2.1)

Adopting the definitions

x0 = 1, 0! = 1, ex =

∞∑
k=0

xk

k!
, (2.2)

3The Clifford algebra Cl(1, 0) and the even subalgebra Cl2(1, 1) of the two-dimensional space-time algebra are
both isomorphic to the hyperbolic plane. Invertible elements of Cl2(1, 1) represent boosts (changes of velocity),

of elementary importance in special relativity.
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for powers of a general element x and its exponential4, we obtain for a ∈ R

ea id± = 1 + (ea − 1)id±, eau = cosh a+ u sinh a. (2.3)

General nonzero elements m = b + au of the hyperbolic plane can be classified by
whether |a| = |b| (m is not invertible), or |a| 6= |b| (m is invertible). For |a| = |b| we
have the four subcases

b = a > 0, m = 2b id+,
b = a < 0, m = 2b id+ = −2|b| id+,
b = −a > 0, m = 2b id−,
b = −a < 0, m = 2b id− = −2|b| id−.

(2.4)

Examples are for each line of (2.4): 1+u = 2(1+u)/2 = 2id+,−2−2u = −4(1+u)/2 =
4(−id+), 3−3u = 6(1−u)/2 = 6id−,−4+4u = −8(1−u)/2 = 8(−id−). Thus according
to (2.4) for |a| = |b| 6= 0 we can always represent m as5

m = 2|b|hid(u), with hid(u) ∈ {±id+,±id−}, (2.5)

and therefore as

m = eα0hid(u), α0 = ln(2|b|). (2.6)

Note that hid(u)2 = id±. Geometrically, the four values of hid(u) specify four bisector
directions, one in each quadrant of the hyperbolic plane. Because idempotents id± are
not invertible, all hyperbolic numbers with |a| = |b| cannot be inverted.

For general (evidently nonzero) elements m = b+au with |a| 6= |b| we can distinguish
four subcases

b > |a| ≥ 0, m = b+ au,
a > |b| ≥ 0, m = (a+ bu)u,
b < −|a| ≤ 0, m = −(−b− au),
a < −|b| ≤ 0, m = −(−a− bu)u.

(2.7)

Examples for (2.7) are line by line: 4±u,±1+4u = (4±u)u,−4∓u = −(4±u),∓1−4u =
−(4± u)u. Thus according to (2.7) for |a| 6= |b| we can always represent any m as

m = (β + αu)h(u), with h(u) ∈ {±1,±u}, (2.8)

such that β > |α| ≥ 0, and therefore m can be factored as

m = eα0m′ = eα0eαuuh(u), α0 = 1
2 ln(β2 − α2), αu = atanh(α/β). (2.9)

In the examples for (2.7) we have α = ±1, β = 4, α0 ≈ 1.35, αu ≈ ±0.255. Note that
h(u)2 = 1 and therefore h(u)−1 = h(u). Geometrically, the four possible values of h(u)

4In this paper we do not make further use of ea id± . But we note that even though id± is not invertible,
ea id± has inverse e−a id± , similar to null-vectors not being invertible, but their exponential functions have a

multiplicative inverse.
5Note that (2.5) together with (2.4) provides a unique specification for the assignment of hid(u) from the

set {±id+,±id−}, thus effectively defining the four-valued function hid(u). Similarly (2.8) together with (2.7)

effectively defines h(u) uniquely.
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Table 1. Multiplication table of Cl2(2, 1).

1 e12 e23 e31
1 1 e12 e23 e31
e12 e12 −1 −e31 e23
e23 e23 e31 +1 e12
e31 e31 −e23 −e12 +1

Table 2. Multiplication table of Cl2(1, 2).

1 e12 e23 e31
1 1 e12 e23 e31
e12 e12 +1 e31 e23
e23 e23 −e31 −1 e12
e31 e31 −e23 −e12 +1

uniquely specify the four quadrants in the hyperbolic plane, delimited by two straight
lines (bisectors) with directions id±. The inverse of hyperbolic numbers with |a| 6= |b|
can always be easily computed as

m−1 = e−α0e−αuuh(u). (2.10)

In summary, any m = b+ au 6= 0 in the hyperbolic plane can be factorized as

m = E(m) = E(a, b, u) = eα0

{
hid(u) for |a| = |b|,
eαuuh(u) for |a| 6= |b|. (2.11)

Equation (2.11) provides a first example of what we mean by exponential factoriza-
tion. Note that we introduce the new notation E(m) = E(a, b, u) to indicate the
factorization (2.11) in terms of one or two exponential functions and eight possible
values. The computation of the factorization (2.11) is based on (2.4) to (2.6) for the
first four cases involving idempotents, i.e. hid(u) ∈ {+id+,−id+,+id−,−idi}, and on
(2.7) to (2.9) for the remaining four cases involving the hyperbolic exponential factor
and h(u) ∈ {+1,−1,+u,−u}. The hyperbolic number m is invertible if and only if
|a| 6= |b|.

3. Even subalgebra of Cl(1, 2)

3.1. Isomorphisms of even subalgebras of Cl(1, 2) (and Cl(2, 1))

As we will soon see in Section 4, quaternions isomorphic to the even subalgebras of
Cl(3, 0) and Cl(0, 3) play a pivotal role in the factorization of these algebras. Sim-
ilarly we can expect that the even subalgebra Cl2(1, 2) (and Cl(2, 1)) with basis
{1, e12, e23, e31} of Cl(1, 2) (and Cl(2, 1)) might be of high relevance. They have the
following multiplication tables: Table 1 and Table 2. These two tables are obviously iso-
morphic, if we identify e23 = e′12, e31 = e′31, e12 = e′23, where {e12, e23, e31} ⊂ Cl2(2, 1)
and {e′12, e

′
23, e

′
31} ⊂ Cl2(1, 2). This isomorphism is the reason, why we include the

even subalgebra Cl2(2, 1), without extra effort.
Furthermore, the two tables are isomorphic to Cl(2, 0) by identifying e1 = e′23,

e2 = e′31, e12 = e′12, where {e1, e2, e12} ⊂ Cl(2, 0) and {e′12, e
′
23, e

′
31} ⊂ Cl2(2, 1).

Alternatively, we can identify e1 = e′12, e2 = e′31, e12 = e′23, where {e1, e2, e12} ⊂
Cl(2, 0) and {e′12, e

′
23, e

′
31} ⊂ Cl2(1, 2).
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The isomorphism with Cl(2, 0) does allow to utilize the factorization of Cl(2, 0)
derived in Section 5 of [22]. We recapitulate the result here6

m = m1e1 +m2e2 +m0 +m12e12

=


eα0eα2e12 , α0 = ln(b), α2 = atan2(m12,m0) for m1 = m2 = 0,
eα
′
0u′, α′0 = ln(a), for m0 = m12 = 0,

(b+ au) eα2e12 = E(a, b, u) eα2e12 , otherwise,
(3.1)

where

a =
√

(m1e1 +m2e2)2 =
√
m2

1 +m2
2, b =

√
m2

0 +m2
12,

u′ = (m1e1 +m2e2)/a, u = eα2e12 u′, (3.2)

and E(a, b, u) has been defined in (2.11). Because a and b are positive, the eight
possible values of E(a, b, u) reduce to only three, i.e. only the first line of (2.4) and the
first two lines of (2.7) are relevant. We further observe about (3.1) that the third line
subsumes the first for a = 0, and the third line subsumes the second for b = α2 = 0.
This means that m ∈ Cl(2, 0), can always be factored in the form

m = (b+ au)eα2e12 , (3.3)

with a ≥ 0 and b ≥ 0. And m is always invertible, except when a = b. In (3.3) u is
a vector with positive unit square and e12 is a bivector with negative unit square. In
Appendix A we discuss an interesting alternative factorization which aims at a single
exponential factor with bivector exponent, and explain why we still prefer (3.3) in the
rest of this paper.

4. Factorization in Cl(3, 0) and Cl(0, 3)

For the case of Cl(3, 0), isomorphic to complexified quaternions (biquaternions) we
refer to earlier work in [27]. In order to reveal the analogies and differences between
Cl(3, 0) and Cl(0, 3), we treat both algebras with the same level of detail.

4.1. Computation and factorization of mm

Following the approach in [4] and [27] we first compute the central multivector mm,
which we will use in the following Section 4.2 to turn m (invertible, i.e. free of idempo-
tent factors) into a unit norm multivecor M , MM = 1. As for notation, independent
of the choice of vector space basis, unit vectors u, unit bivectors i2, and the central
unit pseudoscalar7 i = e123 in Cl(3, 0) square to

u2 = +1, i22 = −1, i2 = −1. (4.1)

6Note that the meaning of atan2(y, x) is the mathematically positive angle of the vector xe1 + ye2 with the

x-axis in the Euclidean plane, if the vector is attached to the origin.
7With an orthonormal basis of R3 the expression i = e123 is valid. In a general basis we have I = e1 ∧ e2 ∧ e3,
|I| =

√
|I2|, i = I/|I|. Similarly for R0,3.
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While in Cl(0, 3) they square to

u2 = −1, i22 = −1, i2 = +1. (4.2)

The even subalgebras of both Cl(3, 0) and Cl(0, 3) are isomorphic to quaternions
H: Cl2(3, 0) ∼= Cl2(0, 3) ∼= H. That means general multivectors m in Cl(3, 0) and
Cl(0, 3) can always be represented as complex (i2 = −1) or hyperbolic (i2 = +1)
(bi)quaternions8:

m = p+ iq, (4.3)

where in both cases p and q are (isomorphic to) quaternions

p = ape
αpip , q = aqe

αqiq , ap, aq ∈ R+
0 , i2p = i2q = −1, (4.4)

with bivectors ip, iq ∈ Cl2(3, 0) or ∈ Cl2(0, 3).

Remark 4.1. Note that for aq = 0 or ap = 0 the factorization is already achieved9 in
the form of

m = ape
αpip = eα0eαpip , α0 = ln ap,

or m = iaqe
αqiq = ieα

′
0eαqiq , α′0 = ln aq. (4.5)

This also means, that for aq = 0 or ap = 0, the multivector m can always be inverted
as

m−1 = e−α0e−αpip or m−1 = i−1e−α
′
0e−αqiq , (4.6)

respectively.
In the rest of this section, we therefore assume that both ap 6= 0 and aq 6= 0.

Clifford conjugation [10,14,24] maps

ip → −ip, iq → −iq, i→ i. (4.7)

Clifford conjugation applied to (4.4) is equivalent to quaternion conjugation. Therefore
we obtain the central multivector

mm = (p+ iq)(p+ iq) = pp+ i2qq + i21
2(pq + qp)

= a2
p + i2a2

q + i2apaq cos(p, q) = r0 + ir3 ∈ R + iR, (4.8)

and cos(p, q) being the cosine of the four-dimensional (4D) angle between quaternions
p, q, because 1

2r3 = 1
2(pq+qp) expresses the inner (or scalar) product in four dimensions

for quaternions. In Cl(0, 3) the scalar part r0 = a2
p + i2a2

q = a2
p + a2

q will only be zero

8Even though we introduce the notation p and q for the two even grade components of the Clifford algebra
over a three-dimensional vector space, confusion with the signature variables in Cl(p, q) should be negligible,

because for each section we will specify the Clifford algebra under consideration with its explicit signature
values, e.g. Cl(3, 0), Cl(0, 3), etc.
9The factor i ∈ Cl(3, 0) can be expressed as e

π
2
i and i ∈ Cl(3, 0) formally as h(1, 0, i) to represent iaqeαqiq

as pure exponential factorization.
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if both ap and aq are zero, that is if m itself is zero, but then the factorization result
0 would be trivial, and it would be contrary to our assumption for both ap 6= 0 and
aq 6= 0.

Considering Cl(0, 3), we thus have | cos(p, q)| ≤ 1, which means

r0 = a2
p + a2

q ≥ |2apaq| ≥ |r3| = 2|apaq cos(p, q)|. (4.9)

For equality in (4.9) we would need |2apaq| = 2|apaq cos(p, q)|, that is cos(p, q) = ±1,
and we would further need a2

p + a2
q = |2apaq|, i.e. ap = aq. Together this would mean

that for equality in (4.9)

p = ±q, m = p(1± i) = 2p
1± i

2
, (4.10)

where 1±i
2 is an idempotent in the hyperbolic case (i.e. in Cl(0, 3) where i2 = +1).

This means, that in Cl(0, 3) when equality in (4.9) holds, the not invertible multi-
vector m can be finally represented as

m = 2p id± = 2ape
αpipid± = eα0eαpipid± = eα0id±e

αpip ,

α0 = ln(2ap). (4.11)

We have introduced the idempotent notation of (2.1), by setting there u = i, we note
that with i being central, id± are also central, and we further note that due to the
presence of the idempotent factor m cannot be inverted in this case.

For the rest of this section, we therefore assume the case of true inequality r0 >
|r3| in (4.9) in the algebra Cl(0, 3), which means that r0 + ir3 can then always be
represented as exponential r0 + ir3 = e2α0e2α3i. This assumption on r0, r3 for (4.9) is
not needed in the case of Cl(3, 0).

In Cl(3, 0) with r0 = a2
p + i2a2

q = a2
p − a2

q and r3 = 2apaq cos(p, q) it is possible
that mm is zero without m being zero, that is for ap = aq and cos(p, q) = 0, that
is the angle ∠(p, q) = π/2, i.e. when q = pf , with any pure quaternion f . Then the
factorization of m can easily be given as:

m = p(1 + if) = 2p
1 + if

2
= eα0eα2i2 1 + if

2
,

α0 = ln(2ap), α2 = αp, i2 = ip, f = p−1q, (4.12)

with idempotent 1+if
2 , where (if)2 = if if = i2f2 = (−1)2 = +1. In this case m has no

inverse because of the idempotent factor. In the rest of this section, we assume that
mm will be different from zero.

We can now always factorize mm and furthermore compute its square root as

mm = e2α0e2α3i,
√
mm = eα0eα3i, (4.13)

with

eα0 = (r2
0 − i2r2

3)
1

4 , α0 = 1
4 ln(r2

0 − i2r2
3), (4.14)
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and

α3 =
1

2

{
atan2(r3, r0) for m ∈ Cl(3, 0)
atanh(r3/r0) for m ∈ Cl(0, 3)

. (4.15)

4.2. Factorization of normed multivector M with MM = 1

Next, we divide m by the central square root
√
mm and obtain the normed multivector

M =
m√
mm

= me−α0e−α3i, (4.16)

with unit norm

MM = 1. (4.17)

Factorization of M multiplied by
√
mm of (4.13) will then give the final factorization

result for invertible m. The resulting form of M will therefore be (similar to (4.3) and
(4.4))

M = P +Qi = aP e
αP iP + iaQe

αQiQ = eαP iP (aP + iaQe
−αP iP eαQiQ), (4.18)

with

MM = 1 = a2
P + i2a2

Q. (4.19)

The two quaternions P and Q can always be computed explicitly as

P = 〈M〉even, Q = 〈M〉odd i
−1, (4.20)

with amplitudes

aP =
√
PP , aQ =

√
QQ, (4.21)

unit bivectors

iP =
〈P 〉2
|〈P 〉2|

with |〈P 〉2| =
√
−〈P 〉22, (4.22)

iQ =
〈Q〉2
|〈Q〉2|

with |〈Q〉2| =
√
−〈Q〉22, (4.23)

and phase angles

αP = atan2(〈P 〉2i−1
P , 〈P 〉0), αQ = atan2(〈Q〉2i−1

Q , 〈Q〉0), (4.24)
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Computation of MM yields

MM = eαP iP (aP + iaQe
−αP iP eαQiQ)(aP + iaQe

−αQiQeαP iP )e−αP iP

= eαP iP
(
a2
P + i2a2

Q + iaPaQ(e−αP iP eαQiQ + e−αQiQ)eαP iP
)
e−αP iP

= a2
P + i2a2

Q + iaPaQe
αP iP

(
e−αP iP eαQiQ + e−αQiQeαP iP

)
e−αP iP . (4.25)

Because by construction MM = a2
P + i2a2

Q = 1 we must have the second term in

round brackets of line three of (4.25) to be zero

e−αP iP eαQiQ + e−αQiQeαP iP = e−αP iP eαQiQ + (e−αP iP eαQiQ)∼ = 0. (4.26)

Note that the tilde notation (. . .)∼ for the Clifford algebra reverse [10,14,24] could in
this case (when only the even subalgebras are concerned) be replaced by the Clifford
conjugation, hence (. . .)∼ is also equivalent to the application of quaternion conjuga-
tion.

We now analyze M further

M = aP e
αP iP + iaQe

αQiQ = eαP iP (aP + aQi(e
−αP iP eαQiQ − 0))

(4.26)
= eαP iP

(
aP + aQi(e

−αP iP eαQiQ − 1
2e
−αP iP eαQiQ − 1

2(e−αP iP eαQiQ)∼)
)

= eαP iP
(
aP + aQi

1
2(e−αP iP eαQiQ − (e−αP iP eαQiQ)∼)

)
, (4.27)

where the term

1
2(e−αP iP eαQiQ − (e−αP iP eαQiQ)∼) = 〈e−αP iP eαQiQ〉2 (4.28)

is a pure bivector. Multiplied with trivector i we get a vector with length ω and unit
direction u, u2 = 1 = −i2 for Cl(3, 0), and u2 = −1 = −i2 for Cl(0, 3),

ωu = i〈e−αP iP eαQiQ〉2 = i

〈( P
aP

)−1 Q

aQ

〉
2

= i
aP
aQ

〈
P−1Q

〉
2
. (4.29)

Thus in full generality, the normed invertible multivector M can be represented by

M = eαP iP (aP + aQ ωu) = (aP + aQ ωu
′)eαP iP , u′ = eαP iPue−αP iP . (4.30)

Note that unit vector u′, is simply a rotated version of u. Computing

MM = eαP iP (aP + aQωu)(aP − aQωu)e−αP iP

= . . . = a2
P − u2a2

Qω
2 = a2

P + i2a2
Qω

2, (4.31)

shows by comparison with (4.19), that ω2 = 1, i.e. ω = 1. Without restriction of
generality, we can therefore express

M = eαP iP (aP + aQu) = (aP + aQu
′)eαP iP ,

M M = a2
P − u2a2

Q = a2
P − u′2a2

Q = 1, (4.32)
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We thus end up with

M = eα2i2eα1u = eα1u′eα2i2 ,

α1 =

{
atanh(aQ/aP ) for Cl(3, 0)
atan2(aQ, aP ) for Cl(0, 3)

}
, α2 = αP , i2 = iP . (4.33)

We note that in Cl(3, 0) due to MM = a2
P − u2a2

Q = a2
P − a2

Q = 1, which should

be compared with cosh(α1) − sinh(α1) = 1, the hyperbolic plane case distinctions in
(2.11) are not needed here.

And we finally have under the above assumptions (invertibility of m) the exponential
factorization

m = M
√
mm = eα2i2eα1ueα0eα3i

= eα0eα2i2eα1ueα3i = eα0eα1u′eα2i2eα3i. (4.34)

4.3. Factorization result for Cl(3, 0) and Cl(0, 3) and inverse

Summarizing all cases we end up with

m = p+ iq =


eα0eα2i2 for q = 0,
i−1eα0eα2i2 for p = 0,
eα0eα2i2id± for q = ±p in Cl(0, 3),

eα0eα2i2 1+if
2 for q = pf in Cl(3, 0),

eα0eα1u′eα2i2eα3i otherwise.

(4.35)

where we have set in line three: α2 = αp, i2 = ip, and idempotents id± = (1 ± i)/2,
and in line four we refer to (4.12) for the unit bivector f . The value of i2 = ip in lines
one, and three to five, while in line two we have i2 = iQ. We note that line one is a
special case of line five for α1 = α3 = 0. For Cl(3, 0) line two is a special case of line
five for α1 = 0 and α3 = −π/2. We may also interpret in Cl(0, 3) line two is a special
case of line five for α1 = 0 and by replacing eα3i → h(1, 0, i) = i = i−1. So essentially
only lines three to five of (4.35) matter, and in both Cl(3, 0) and Cl(0, 3) we have
one special case with idempotent factor (central in Cl(3, 0)) and one general case (line
five) with full exponential factorization.

Except for q = ±p in Cl(0, 3) and for ap = aq, cos(p, q) = 0 in Cl(3, 0) (equiv-
alent to q = pf , f a pure quaternion, respectively via isomorphism in Cl(3, 0) a unit
bivector), we can always invert m and obtain

m−1 =


e−α0e−α2i2 for q = 0,
ie−α0e−α2i2 for p = 0,
none for q = ±p in Cl(0, 3),
none for q = pf in Cl(3, 0),
e−α0e−α1ue−α2i2e−α3i otherwise.

(4.36)

where we have used in line five that according to (4.30) and (4.33)

u′ = eαP iPue−αP iP = eα2i2ue−α2i2 . (4.37)
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5. Direct Factorization of Cl(1, 2)

In Appendix B we discuss factorization of Cl(1, 2) using an isomorphism to Cl(3, 0),
but because in the resulting exponential factorization the exponentials are not pure
blades10, we aim here for a direct factorization with pure blade exponentials, even
though at first sight this appears more laborious. The procedure we use is similar
to Section 4, but as may be expected there is a more delicate idempotent structure,
which leads to more intricate results. To keep the computations elementary, we again
work with an explicit orthonormal basis. This does not exclude the possibility to lift
computations and results to an invariant basis independent level after gaining deeper
algebraic understanding in the future, for which the present explicit results may then
still serve as a kind of reference case. Furthermore, many Clifford multivector computer
algebra systems begin with the definition of an orthonormal vector space basis.

5.1. Computation and factorization of mm

With the intent to normalize m we first compute mm. In Cl(1, 2) the central unit
pseudoscalar squares to i2 = −1 and

e2
1 = −e2

2 = −e2
3 = e2

12 = e2
31 = −e2

23 = 1,

e1 = −ie23, e2 = ie31, e3 = ie12. (5.1)

It allows us to rewrite a general multivector as

m = m0 +m1e1 +m2e2 +m3e3 +m12e12 +m31e31 +m23e23 +m123i

= m0 +m23e23 +m12e12 +m31e31 + i(m123 −m1e23 +m2e31 +m3e12)

= p0 + p23e23 + p12e12 + p31e31 + i(q0 + q23e23 + q12e12 + q31e31)

= p+ iq (5.2)

with suitable identifications of the eight coefficients of m with four coefficients of p
and four coefficients of q, where both p, q ∈ Cl2(1, 2) ∼= Cl(2, 0). We can therefore
represent both p and q as

p = (bp + apup)e
α2pe23 , bp =

√
p2

0 + p2
23, ap =

√
p2

12 + p2
31, u2

p = 1,

q = (bq + aquq)e
α2qe23 , bq =

√
q2

0 + q2
23, aq =

√
q2

12 + q2
31, u2

q = 1, (5.3)

following (3.1). The unit bivectors up, uq with positive square are linear combinations
of e12 and e31.

If ap = bp = 0 or aq = bq = 0, then the final factorization11 is given by

m = iq = i(bq + aquq)e
α2qe23 (5.4)

10With pure blade we mean a simple blade that can be factored as an outer product of vectors.
11We clearly can still replace i(bq+aquq) by h(aq , bq , uq)e

π
2
i, and bp+apup by h(ap, bp, up) for full exponential

factorization.
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or by

m = p = (bp + apup)e
α2pe23 , (5.5)

respectively. In the rest of this section we can therefore assume that both p and q are
nonzero.

Note that p is not invertible iff ap = bp, and likewise q is not invertible iff aq = bq.
For later use we compute

pp = b2p − a2
p, qq = b2q − a2

q ,

1

2
(qp+ pq) = p0q0 + p23q23 − (p12q12 + p31q31). (5.6)

Let us also compute

mm = (p+ iq)(p+ iq) = pp+ i2qq + i(qp+ pq) = pp− qq + i(qp+ pq). (5.7)

mm is zero if (1) both hyperbolic type norms pp and qq agree

pp− qq = b2p − a2
p − (b2q − a2

q) = b2p − b2q − (a2
p − a2

q) = 0, (5.8)

and (2) a sort of four-dimensional hyperbolic orthogonality condition is met

1

2
(qp+ pq) = p0q0 + p23q23 − (p12q12 + p31q31) = 0. (5.9)

If p is not invertible it can be written as

p = 2ap
1 + up

2
eα2pe23 , (5.10)

where 1+up
2 is an idempotent. Similarly, if q is not invertible it can be written as

q = 2aq
1 + uq

2
eα2qe23 , (5.11)

where 1+uq
2 is an idempotent. Before we compute the normed M in Section 5.2, we

discuss the cases of non-invertible even subalgebra components p, q, and of invertible
ones, respectively.

5.1.1. Noninvertible even subalgebra components

If both p and q are not invertible, then m takes by (5.10) and (5.11) the form

m = 2ap
1 + up

2
eα2pe23 + i2aq

1 + uq
2

eα2qe23 . (5.12)
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Now we want to find out under these assumptions for p and q, when mm is invertible
and when not. In this case we can compute

mm = 0 + i20 + i(qp+ pq)

= iapaq[(1 + up)e
α2pe23e−α2qe23(1− uq)

+ (1 + uq)e
α2qe23e−α2pe23(1− up)], (5.13)

with ∆ = α2p − α2q and e±∆e23 = cos ∆± e23 sin ∆, this becomes

mm = iapaq{(1 + up) cos ∆(1− uq) + (1 + uq) cos ∆(1− up)
+ sin ∆[(1 + up)e23(1− uq)− (1 + uq)e23(1− up)]}

= iapaq{cos ∆[(1 + up)(1− uq) + (1 + uq)(1− up)]
+ sin ∆e23[(1− up)(1− uq)− (1− uq)(1− up)]}

= iapaq{cos ∆[2− upuq − uqup] + sin ∆e23[upuq − uqup]}. (5.14)

Now the product of the unit bivectors is minus the product of two negative definite
vectors ~up, ~uq in the e23-plane with mutual angle ϑ

upuq = e1~upe1~uq = −~up~uq. (5.15)

Therefore12

upuq + uqup = −2~up · ~uq = 2 cosϑ,

upuq − uqup = −2~up ∧ ~uq = −2e23 sinϑ. (5.16)

Hence

mm = iapaq{cos ∆[2− 2 cosϑ] + 2 sin ∆ sinϑ(−e2
23)}

= 2iapaq{cos ∆− cos ∆ cosϑ+ sin ∆ sinϑ}
= 2iapaq{cos ∆− cos(∆ + ϑ)} (5.17)

So the product mm = 0 for the following combinations of ∆ and ϑ

ϑ = 0, any 0 ≤ ∆ < 2π,
ϑ = π, ∆ = π

2 ,
3π
2 ,

0 ≤ ϑ < 2π, ∆ = π − ϑ
2 .

(5.18)

Note that the second line is a special case of the third line for ϑ = ±π. In all other
cases mm 6= 0 and m will be invertible, even under the assumption that p and q are
not invertible. This means that for mm = 0 the non-invertible multivector m will take
one of these three forms

m =


(1 + up)[ape

∆e23 + iaq][
ap(1 + up)(±e23) + iaq(1− up)

][
ap(1 + up)e

(π−ϑ/2)e23 + iaq(1 + uq)
]
 eα2qe23 . (5.19)

12The equations (5.16) for sine and cosine of ϑ can also simply be interpreted as defining ϑ.
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Note that in the third line the angle ϑ is the angle between up and uq, as determined
above by (5.16). The three cases in (5.19) have on the right side idempotents (or linear
combinations of idempotents) as factors, followed by the common bivector exponen-
tial eα2qe23 . This seems to be the closest we currently can get to a full exponential
factorization in this case.

The factorization of an invertible m with non-zero mm as in (5.17) when both p
and q are not invertible, is discussed at the end of this section.

5.1.2. Invertible even subalgebra component

We first assume that p is invertible, i.e. ap 6= bp, without assuming q to be invertible.
After discussing this case, we will discuss the analogous case for which q is assumed
to be invertible, but not p. We can therefore compute the left quotient

s = p−1q = (bs + asus)e
α2se23 , (5.20)

which must also be an element of the subalgebra Cl2(1, 2) and can therefore be repre-
sented in this form, where as, bs are real non-negative numbers, bivector us has square
u2
s = +1, and 0 ≤ α2s < 2π. This allows us to rewrite m as

m = p(1 + ip−1q) = p(1 + is). (5.21)

For this form of m we compute

mm = p(1 + is)(1− is)p = p[1 + i2ss+ i(s+ s)]p

= p[1 + i2(b2s − a2
s) + i(2bs cosα2s + as sinα2suse23 + as sinα2se23us)]p

= pp[1 + i2(b2s − a2
s) + i2bs cosα2s]

= (b2p − a2
p)[1− (b2s − a2

s) + i2bs cosα2s], (5.22)

where we have used for the fourth equality that use23 = −e23us. By assumption the
factor (b2p − a2

p) 6= 0, so for mm to be zero we must have

b2s − a2
s = 1, (5.23)

which implies that bs > 0, and we must have

cosα2s = 0 ⇔ α2s =
π

2
,
3π

2
⇔ eα2se23 = ±e23. (5.24)

The relationship b2s − a2
s = 1 is that of hyperbolic cosine and sine for some angle ϕs.

We conclude that mm will be zero for this form of quotient s

s = (bs + asus)e
α2se23 = (coshϕs + us sinhϕs)± e23 = ±eϕsuse23, (5.25)

and therefore

q = ps = ±p eϕsuse23, (5.26)
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and

m = p+ iq = 2p
1 + is

2
. (5.27)

Furthermore, we compute the square of s as

s2 = (±eϕsuse23)2 = eϕsuse23e
ϕsuse23 = eϕsuse−ϕsuse2

23 = e2
23 = −1, (5.28)

where we used in the third equality that e23us = −e23us. This means that

(is)2 = i2s2 = (−1)2 = +1, (5.29)

and therefore 1+is
2 is an idempotent. So assuming that p is invertible and m is not

invertible we obtain the factorization of m as

m = 2p
1 + is

2
= 2(bp + apup)e

α2pe23 1 + is

2
, (5.30)

where the factor 2(bp + apup) can further be put into exponential form using
E(2ap, 2bp, up) in (2.11). The idempotent factor 1+is

2 means that m is manifestly (ob-
viously) not invertible.

Now let us instead assume, that q is invertible. We can multiply m with i−1

m′ = i−1m = i−1p+ i−1iq = q + i−1p = p′ + iq′,

p′ = q, q′ = i−2p = i2p, (5.31)

where for Cl(1, 2) we will have i−2 = i2 = −1, for Cl(2, 1) we would have i−2 = i2 =
−1. We can now apply the above analysis of m with p invertible to m′ with p′ invertible,
and in the end multiply the result with i to get the expression for m = im′ = ii−1m.
We also notice that

m′m′ = i−2mm = ±mm, (5.32)

which means that m′m′ = 0, iff mm = 0, and if we factorize m′m′ 6= 0 and compute

its square root
√
m′m′, then

√
mm = i

√
m′m′, which means to add to

√
m′m′ a phase

factor ei
π

2 in the case of i2 = −1.
Doing this we get that

s′ = p′−1q′ = q−1(i2p) = i2q−1p. (5.33)

Following the analogous steps above we obtain, if we assume that p′ is invertible and
m′ (and therefore m) is not invertible, then the factorization of m′ (and m) will be

m′ = 2p′
1 + is′

2
= 2(bp′ + ap′up′)e

α2p′e23
1 + is′

2
(p′=q)

= 2q
1 + is′

2
= 2(bq + aquq)e

α2qe23 1 + is′

2

m = im′ = i2(bq + aquq)e
α2qe23 1 + is′

2
, (5.34)
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where the factor 2(bq + aquq) can further be put into exponential form using

E(2aq, 2bq, uq) in (2.11). The idempotent factor 1+is′

2 means that m′ (and therefore
m) is again manifestly not invertible.

If the central value mm 6= 0, then m is invertible as

m−1 =
m

mm
. (5.35)

Because mm is then given as a non-zero sum of scalar and trivector, and i2 = −1, we
can always represent it as

mm = e2α0e2α3i, (5.36)

and its square root as

√
mm = eα0eα3i, (5.37)

and we can divide m by this square root to get a new normed multivector

M =
m√
mm

= me−α0e−α3i, MM = 1. (5.38)

5.2. Factorization of normed multivector M , MM = 1

We represent M again as a sum of two elements from the even subalgebra Cl2(1, 2)

M = P + iQ, P = 〈M〉even = (bP + aP )eα2P e23 ,

Q = 〈M〉oddi−1 = (bQ + aQ)eα2Qe23 . (5.39)

and compute

MM = (P + iQ)(P + iQ) = PP + i2QQ+ i(QP + PQ) = 1, (5.40)

and therefore we must have

QP + PQ = 0⇔ QP = −PQ, MM = PP + i2QQ = 1. (5.41)

We now ask what happens when P or Q or both are not invertible. If P is not invertible,
then we have bP = aP , and if Q is not invertible we have bQ = aQ. If we assume both
P and Q not invertible then we have PP = QQ = 0 and consequently

MM = PP + i2QQ = 0− i20 = 0 6= 1, (5.42)

which is a contradiction. Therefore either P or Q or both must be invertible, which
we assume in the next subsection.
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5.2.1. One even subalgebra component of M being invertible

We first assume P to be invertible, which allows us to compute

QP + PQ = 0⇔ P (P−1Q+QP
−1

)P = 0⇔ P−1Q+QP
−1

= 0. (5.43)

Then M can be rewritten as

M = P + iQ = P (1 + iP−1Q) = P (1 + i(P−1Q− 0))

= P (1 + i(P−1Q− 1

2
P−1Q− 1

2
QP

−1
)

= P (1 + i
1

2
(P−1Q−QP−1

)), (5.44)

where we observe that

1

2
(P−1Q−QP−1

) = 〈P−1Q〉2 (5.45)

is a pure bivector and therefore

i〈P−1Q〉2 = ~ω (5.46)

a vector. Therefore

M = P (1 + ~ω),

MM = P (1 + ~ω)(1− ~ω)P = P (1− ~ω2)P = PP − PP~ω2

(5.41)
= PP + i2QQ. (5.47)

From the last equality of (5.47) we conclude

−PP~ω2 = +i2QQ, (5.48)

that is

~ω2 =
−i2QQ
PP

i2=−1
=

QQ

PP


> 0 for QQ

PP
> 0,

= 0 for QQ = 0,

< 0 for QQ

PP
< 0.

(5.49)

This leads to the following factorization of M

M = P (1 + ~ω) = (bP + aPuP )eα2P e23


E(ω, 1, ~ωω ), ω =

√
~ω2,

1 + ~ω = e~ω, ~ω2 = 0,

eα
′
0eα1

~ω

ω , ω =
√
−~ω2,

(5.50)

with

α1 = atan2(ω, 1), α′0 = ln(
√

1 + ω2). (5.51)
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Now let us instead assume that Q is invertible (and therefore Q as well), without
specifying the invertibility of P .

QP + PQ = 0⇔ Q(P Q
−1

+Q−1P )Q⇔ P Q
−1

+Q−1P = 0. (5.52)

We can therefore express

M = P + iQ = (P Q
−1

+ i)Q = (P Q
−1 − 0 + i)Q

= (P Q
−1 − 1

2P Q
−1 − 1

2Q
−1P + i)Q

= (1
2P Q

−1 − 1
2Q
−1P + i)Q (5.53)

with pure bivector

B = 1
2P Q

−1 − 1
2Q
−1P = −1

2〈Q
−1P 〉2 = 1

2〈P Q
−1〉2 = 1

2〈Q−1P 〉2. (5.54)

So we get

M = (i+B)Q, (5.55)

and hence

M = Q(i+B) = iQ(1 + i−1B) = iQ(1 + ~µ), ~µ = i−1B. (5.56)

We further compute

MM = iQ(1 + ~µ)i(1− ~µ)Q = i2Q(1− ~µ2)Q = i2QQ− i2~µ2QQ

(5.41)
= PP + i2QQ (5.57)

which implies that for i2 = −1

PP = −i2~µ2QQ⇔ ~µ2 = −i2PP
QQ

=
PP

QQ


> 0 for PP

QQ
> 0,

= 0 for PP = 0,

< 0 for PP
QQ

< 0.

(5.58)

This leads to the following factorization of M

M = iQ(1 + ~µ) = i(bQ + aQuQ)eα2Qe23


E(µ, 1, ~µµ), µ =

√
~µ2,

1 + ~µ = e~µ, ~µ2 = 0,

eα
′′
0 eα1

~µ

µ , µ =
√
−~µ2,

(5.59)

with

α1 = atan2(µ, 1), α′′0 = ln(
√

1 + µ2). (5.60)

We note that the two factorizations (5.50) or (5.59) have a nearly identical form. We
obtain (5.59) by exchanging P and Q in (5.50) and by multiplying with i, which can
formally be replaced by i = e

π

2
i.
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5.3. Result of factorization in Cl(1, 2)

For better overview, we summarize the results of Section 5. If only one of the two
subalgebra components p, q of m = p+ iq is non-zero, then the final factorizations are
directly given by the factorization of iq in (5.4) or p in (5.5).

Factorizations of non-invertible m ∈ Cl(1, 2) were stated in (5.19) for non-invertible
p and q, in (5.30) for invertible p and in (5.34) for invertible q.

Finally for either P invertible or Q invertible we obtain

m =
√
mmM = eα0eα3iM (5.61)

assuming the factorized forms (5.50) or (5.59) for M .
If both p and q are not invertible, then mm will have the form (5.17) of i times a

real scalar S. If this real scalar is not zero, then mm can be factorized as

mm = e2α0(±i) = e2α0e2(±π
4

)i, α0 = 1
2 ln(|S|),

√
mm = eα0e(±π

4
)i, (5.62)

the sign will be identical with that of S. We can again divide by
√
mm with the result

M = me−α0e(∓π
4

)i, MM = 1. (5.63)

The very same analysis applied in (5.39) to (5.61) with the factorized forms (5.50) (for
P invertible) or (5.59) (for Q invertible) can then be applied again. In (5.61) we will
have α0 = 1

2 ln(|S|) and α3 = ±π
4 .

6. Conclusion

In this paper we have considered general elements of the three Clifford algebras
Cl(3, 0), Cl(1, 2) and Cl(0, 3), and studied multivector factorization into products
of exponentials, idempotents and blades, where the exponents are frequently blades of
grades zero (scalar) to n (pseudoscalar). Depending on the algebra, we used methods
of direct computation or applied several isomorphisms, to simplify the computation
at hand or make use of known results in isomorphic representations. Furthermore, all
results of this work could be implemented in Clifford algebra software like [26].

It may be possible in the future to extend this approach to even higher dimensional
Clifford algebras, but simple products of exponentials and idempotents may, due to
the dimensionality of the k-vector spaces, have to include multiple non-commuting
exponential factors with k-vectors of the same grade in the exponents. Of particular
interest would be to apply our methods to conformal geometric algebra Cl(4, 1) widely
used in computer graphics and robotics [5,16]. Furthermore a complete factorization
study of Cl(1, 3) and Cl(3, 1) that are both of great importance in special relativity and
relativistic physics [3,10,11,20] may be of considerable interest. The present work can
e.g. be applied in the study of Lipschitz versors, see e.g. E.4.2 in [28], pinor and spinor
groups, and in the development of Clifford Fourier and wavelet transformations [17,20],
compare also the third paragraph on motivation for this research in the introduction
Section 1.

It might also be of interest to represent Clifford algebras Cl(3, 0), Cl(1, 2) and
Cl(0, 3), in terms of tensor products of quaternions and their subalgebras, and re-
express the results we have obtained above, or even further develop them, compare
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Appendix A. Alternative factorization of Cl2(1, 2)

An alternative factorization of Cl2(1, 2) (or Cl2(2, 1)) can be obtained in the following
way. In the following we focus only on Cl2(2, 1), but the case for Cl2(1, 2), due to its
isomorphic structure, works analogous.

m = m0 +m23e23 +m31e31 +m12e12. (A1)

We distinguish five cases. First m0 6= 0, 〈m〉2 = m23e23 +m31e31 +m12e12 = 0 :

m = m0 =
m0

|m0|
eα0 = ± eα0 , α0 = ln(|m0|). (A2)

Second, 〈m〉22 < 0 :

m = m0 + |〈m〉2|
〈m〉2
|〈m〉2|

= ame
α2i2 = eα0eα2i2 , |〈m〉2| =

√
−〈m〉22,

i2 =
〈m〉2
|〈m〉2|

, i22 = −1, α2 = atan2(|〈m〉2|,m0),

am =
√
m2

0 + |〈m〉2|2 =
√
m2

0 − 〈m〉22, α0 = ln(am). (A3)
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We observe that the second case subsumes the first case for α2 ∈ {0, π}. Third, m0 = 0,
m = 〈m〉2 6= 0, m2 = 〈m〉22 = 0 :

m = 〈m〉2 = eα0i2, α0 = ln(
√

2|m12|), i2 =
〈m〉2√
2|m12|

, m2 = i22 = 0. (A4)

We observe that in the third case m is a not invertible null-bivector. As an example13

for the third case we consider the following example.

Example A.1.

m = 〈m〉2 = 3e12 + 3e23 ≈ e1.45 e12 + e23√
2

, m12 = |m12| = m23 = 3,

α0 = ln(
√

2 3) ≈ 1.45, i2 =
e12 + e23√

2
. (A5)

Fourth, m0 6= 0, 〈m〉2 6= 0, 〈m〉22 = 0 :

m = m0 + 〈m〉2 = m0(1 +
1

m0
〈m〉2) =

m0

|m0|
eα0(1 + α2i2) = ±eα0eα2i2 ,

α0 = ln(|m0|), i2 =
〈m〉2√
2|m12|

, α2 =

√
2|m12|
m0

, (A6)

where the sign factor is determined by m0

|m0| = ±1. Fifth, 〈m〉22 > 0 :

m = m0 + 〈m〉2 = m0 + |〈m〉2|i2 = E(|〈m〉2|,m0, i2),

|〈m〉2| =
√
〈m〉22, i2 =

〈m〉2
|〈m〉2|

, i22 = +1, (A7)

where E(|〈m〉2|,m0, i2) is determined by (2.11), with a = |〈m〉2|, b = m0, u = i2.
In the fifth case m is not invertible for |m0| = |〈m〉2|. We finally summarize all five
cases14

m =


±eα0 for 〈m〉2 = 0,
eα0eα2i2 for 〈m〉22 < 0,
eα0i2 for m0 = 0, 〈m〉2 6= 0, 〈m〉22 = 0,
±eα0eα2i2 for m0 6= 0, 〈m〉2 6= 0, 〈m〉22 = 0,
E(|〈m〉2|,m0, i2) for 〈m〉22 > 0.

(A8)

Let us compare the factorizations (3.3) and (A8): (A8) always has only one bivector
exponential (except for the third line eα0i2), but it is more complicated (more case
distinctions) than (3.3). Because following (3.3) all cases can be accommodated in the
single expression m = (b+ au)eα2e12 , with a ≥ 0 and b ≥ 0, which is always invertible

13In conformal geometric algebra Cl(4, 1) two null-vectors are defined for the origin and for infinity. Conven-

tionally they are e0 = (e5 − e4)/2, e∞ = e5 + e4, such that e0 · e∞ = −1. In certain contexts it has proven to
be of advantage to instead choose a symmetric definition e0 = (e5 − e4)/

√
2, e∞ = (e5 + e4)/

√
2, see e.g. [21].

By analogy, this motivates our introduction of
√

2 in the denominator of the null bivector i2 above.
14Note that in lines two to five of (A8) the bivectors i2 are specific to each line, as defined in (A3), (A4), (A6),

and (A7), respectively.
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Table B1. Multiplication table of Cl(3, 0).

1 e1 e2 e3 e12 e23 e31 e123
1 1 e1 e2 e3 e12 e23 e31 e123
e1 e1 1 e12 −e31 e2 e123 −e3 e23
e2 e2 −e12 1 e23 −e1 e3 e123 e31
e3 e3 e31 −e23 1 e123 −e2 e1 e12
e12 e12 −e2 e1 e123 −1 −e31 e23 −e3
e23 e23 e123 −e3 e2 e31 −1 −e12 −e1
e31 e31 e3 e123 −e1 −e23 e12 −1 −e2
e123 e123 e23 e31 e12 −e3 −e1 −e2 −1

Table B2. Multiplication table of Cl(1, 2) ∼= Cl(3, 0).

1 E1 E12 E31 E2 E23 E3 E123

1 1 E1 E12 E31 E2 E23 E3 E123

E1 E1 1 E2 −E3 e2 E123 −E31 E23

E12 E12 −E2 1 E23 −E1 E31 E123 E3

E31 E31 E3 −E23 1 E123 −E12 E1 E2

E2 E2 −E12 E1 E123 −1 −E3 E23 −E31

E23 E23 E123 −E31 E12 E3 −1 −E2 −E1

E3 E3 E31 E123 −E1 −E23 E2 −1 −E12

E123 E123 E23 E3 E2 −E31 −E1 −E12 −1

except when a = b (presence of an idempotent factor for a = b 6= 0). The inverse is
given by

m−1 = e−α2e12(b+ au)−1 = e−α2e12 b− au
b2 − a2

, (A9)

whenever a 6= b, compare (3.2). By these reasons, we prefer to generally use (3.3) in
this paper.

Appendix B. Factorization of Cl(1, 2) ∼= Cl(3, 0)

The results of the Section 4 lend themselves to factorize multivectors in Cl(1, 2) ∼=
Cl(3, 0), based on the isomorphism Cl(1, 2) ∼= Cl(3, 0). We list the multiplication
tables, Table B1 for Cl(3, 0) and Table B2 for Cl(1, 2). Cl(1, 2) ∼= Cl(3, 0) can be
verified from Tables B1 and B2, which can be brought into agreement by identifying

1 = 1, E1 = e1, E2 = e12, E3 = e31,

E12 = e2, E23 = e23, E31 = e3, E123 = e123, (B1)

where {E1, E2, E3} is the orthonormal vector basis of R1,2 generating Cl(1, 2), and
{e1, e2, e3} is the orthonormal vector basis of R3 generating Cl(3, 0).

Factorization of multivectors m ∈ Cl(1, 2) can be achieved by mapping m via the
isomorphism (B1) to its isomorphic counterpart m′ ∈ Cl(3, 0), then factorize m′ in
Cl(3, 0), and finally map the factorized form back with applying (B1) again in reverse.
In particular the unit vector u ∈ Cl(3, 0) and the unit bivector i2 in (4.34) become

u = u1e1 + u2e2 + u3e3 = u1E1 + u2E12 + u3E31, (B2)

i2 = b12e12 + b23e23 + b31e31 = b12E2 + b23E23 + b31E3, (B3)
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with u2
1 + u2

2 + u2
3 = 1, and b212 + b223 + b231 = 1.

Viewed strictly in Cl(1, 2), the exponentials corresponding to eα1u and eα2i2 will
therefore no longer have a single grade one vector or a single grade two bivector as
respective arguments, but in both cases a sum of vector plus bivector will appear as
arguments.
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