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Abstract
To this day, the prevailing view is that in set theory, the selection of things
based  on  their  properties  leads  to  contradictions.  If  the  formation  and
existence of sets is based on consistent compliance with the requirements that
exist when using the all-quanor, no contradictions can be identified. Consistent
compliance with these requirements is ensured in this thesis with the help of a
system  of  axioms.  As  a  result,  we  have  a  basis  for  set  theory  and  the
recognition of ideas inherent in so-called "naive set theory".

Introduction
In this treatise a set theory is developed that allows the existence of natural
numbers to be proven and their properties to be deduced. We call this set theory
and the sets derived from it "Natural sets".
The theory is based on a system of axioms.The system always allows the attempt
to form a supposed set, but provides a criterion for each of these attempts, on
the basis of which it can be clearly decided whether the set exists or does not
exist.  This decision criterion for the existence of a set is based on the
consistent  compliance with  the  requirements that  exist when  using the all-
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quantifier ∀. A collection of things can only contain all things that belong to
the collection and not the collection itself. This is a basic requirement that
the all-quantifier brings with it. Sets are formulated with the help of the all-
quantifier. The term {x|P(x)} means nothing else than to consider the set of all
things with the property P.  This  means  for  the  expression   {x|P(x)}   that
{x|P(x)} ∉ {x|P(x)} holds and therefore ¬P({x|P(x)}) is always true. This is the
decision criterion for the existence of a set. If we use square brackets to
represent the attempt to form a set and curly brackets to indicate the existence
of a set, the existence criterion for a set is as follows:
(  ¬P([x|P(x)])  :≡  ([x|P(x)]  ∉  [x|P(x)])  )  ⇔  ∃{x|P(x)}.  It is  an  indispensable
requirement if you want to use the all- quantifier  in the formation of sets. ∀ Russell's antimony
x∉x is therefore a property inherent in all sets. If we call this  property
RP :≡ x∉x and try to build a set with it, then we get the expression [x|RP(x)].
If this is a set, then ¬RP([x|RP(x)]) :≡ [x|RP(x)] ∉ [x|RP(x)] should hold. But
this is not the case, the exact opposite is the case, namely 
¬RP([x|RP(x)]) ≡ [x|RP(x)] ∈ [x|RP(x)]. The formation of a set with the help of
the property RP :≡ x∉x fails because of the decision criterion for the existence
of a set. If one wants to build sets with the property x∉x, then one has to do
with an always true property. It applies to all sets and cannot form a set
itself, since the requirements of the all-quantifier ∀ are violated in such an
attempt.
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All attempts to form a set that does not meet the requirements of the all-
quantifier ∀ inevitably do not lead to sets.

All attempts to form a set that meet the requirements of the all-quantifier ∀
necessarily lead to sets.

The natural numbers are derived from the natural sets. Apart from the induction
axiom, the properties of the natural numbers formulated in the Peano axioms (src
6.1) can be derived from the properties of the natural sets. With the natural
sets the things of our perception are arranged in summaries according to their
appearance characteristics. We also call these appearance features properties.
They are used to select or identify things. This refers to things of any kind.
We use the character P to represent these properties.
We call the bearers of such properties mathematical objects, or simply objects.
Everything that has a property is automatically seen as a mathematical object.
The terms “property” and “object” defined in this way can be used to formulate
statements  such  as  “The  object  x has  the  property  P.”.  We  express  such  a
statement with a functional truth relation and say: P(x) is true if the object x
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has the property P, otherwise false. The summaries mentioned at the beginning
can also be presented using the same functional truth relationship.
A preliminary stage of these summaries is the object-selection [x|P(x)]. This
preliminary stage only says that P(x) is true if x is contained in the object-
selection [x|P(x)]. This “to be included” is expressed as usual with the symbol
∈. So  x∈[x|P(x)] only holds if  P(x) is true. The axiom of object-selection
guarantees the existence of the associated object-selection for each property P.
It does not guarantee the existence of objects in the object-selection.
The set axiom defines when an object-selection can also be a set. This is the
case if  x≠[x|P(x)] follows from  x∈[x|P(x)]. The object-selection [x|P(x)], a
summary of objects with the property  P, then contains all objects with the
property  P. We also refer to the objects in a summary as elements of that
summary.
The possibility of forming such summaries, also called „sets“, is a natural and
also an ancient concern. It goes back to Georg Cantor (src  5.1), who can be
considered the author of set theory. With its definition (src 6.2):
„Unter  einer  ‚Menge‘  verstehen  wir  jede  Zusammenfassung  M  von  bestimmten
wohlunterschiedenen Objekten in unserer Anschauung oder unseres Denkens (welche
die ‚Elemente‘ von M genannt werden) zu einem Ganzen.“
he has determined what is to be understood by sets from his point of view. From
this the so-called “naive set theory” developed, which came to an abrupt end
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after the publication of Russell's (src  5.2) antinomy  x∉x (src  6.3). In this
document, Georg Cantor's textual definition of what sets are (src 6.2) is taken
up, expanded and presented in a formal axiomatic form.

As with Georg Cantor, it is not assumed that everything around us is a set and
that we only have to deal with the handling of such sets and their behavior. The
existence of so-called primordial elements, i.e. objects that are not sets, is
demanded in an axiom. The focus is on the definition of what sets are and the
construction  of  sets  from  things  of  all  kinds.  Only  then  will  further
investigations into the behavior of sets be continued. An essential aspect in
the formation of sets is that the set formed cannot itself have the set-forming
characteristics of its elements. The two axioms described above, the object-
selection axiom and the set axiom, are responsible for this. Another essential
aspect  is  the  identification  of  things  based  on  their  object-specific
properties. This is a property or characteristic that exists for every thing and
makes every thing unique. There are no two things with the same object-specific
property and there is also such an object-specific property for every thing.
This is another axiom in the underlying axiom system.

One arrives at a division of all things into so-called primordial elements on
the one hand, and summaries of things on the other. As a result, one can deduce
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that the set of all primordial elements exists, that the set of all summaries,
or the set of all sets, cannot exist. In the axiom of expansion it is demanded
that there is at least a subset of the primordial set that can be expanded with
primordial elements as often as desired. This then leads to the development of
the term “set-size”, with the help of which the Peano axioms (src 6.1) can be
derived.
When  looking  at  the  term  “property”  one  arrives  at  a  breakdown  of  the
properties.  With  one  it  is  possible  to  create  sets,  with  the  other  it  is
fundamentally not possible. This also includes those properties that brought
down the so-called “naive set theory”. In the present paper the same basic idea
is pursued as in the so-called “naive set theory”, but it is clearly peeled out
what sets are and what cannot be sets. The natural numbers are derived with the
help of the term “set-size”. The terms “finite set” and “infinite set” are
defined. The treatise ends by showing that the natural numbers are an infinite
set. 
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 1 Table of special characters and symbols.

Character Meaning Example

Proposition Formulation of supposed facts. The correctness 
of the facts described must be proven. This is 
always done immediately afterwards.

2.1

Definition Explanation what something is or how something 
is used.

2.1

⇒ Implication.
If we infer from a statement A to a statement
B, then we use the symbol ⇒ to represent this
conclusion and write A⇒B, and by this we mean:
If A holds, then B must also hold.

2.2

P Property.
Properties  are  characteristic  features  or
behavior for the selection or identification of

2.3.1
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Character Meaning Example

things. This refers to things of any kind. We
use the symbol P to represent these properties.

Object Everything  that  has  a  property  according  to
2.3.1 is a mathematical object. 

2.3.2

t, w, X, y, z Identifier for mathematical objects. 2.3.2

¬ Negation. 2.3.3

P(x) If an object x has the property P, then we say
P(x) is true and ¬P(x) is false. In relation to
an  object  x, every  property  P generates the
statement P(x) or ¬P(x).

2.3.3

⇔ Equivalence. If A and B are statements and if 
both A⇒B and B⇒A hold, then we write A⇔B for 
this. We say A and B are equivalent statements,
and we also say A⇔B is an equivalence.

2.4.1

 = Equal. 2.4.1

 RP Root property. 2.4.2
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Character Meaning Example

Variant Variant of a root property. 2.4.2

∀ For all. 2.4.3
UP Universal property. 2.4.3

:≡ Synonymous by definition. 2.4.4.1
OP Universal  object  property.  OP(x)  applies  to

every  object  x.  This  statement  cannot  be
negated,    ¬OP(x) is always false.

2.4.4.1

IP The quality inherent in all things,  P :≡ “is
identical  with  itself”,  is  a  universal
property.  For  every  object  x, IP(x)  applies.
This statement cannot be negated either, ¬IP(x)
is always false. 

2.4.4.2

xP The object-specific property xP exists for each
object  x. The existence  of this property  is
axiomatically demanded in Section  2.6.1. This
property  is  also  a  universal  property.  The

2.4.4.3
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Character Meaning Example

statement ¬xP(x) is always false.

∧ Logical AND. 2.5.1

∨ Logical OR. 2.5.1

≡ Identical to. 2.5.1

∃ It exists. 2.6.1

≠ Not equal to. 2.6.1

C Represents all types of an object-selection. 2.6.2

Object-selection Term for C. 2.6.2
CP The property of being a selection of objects.

CP :≡ “Is an object-selection”.  
2.6.2

[x|P(x)] The object-selection belonging to property P. 2.6.3

{x|P(x)} The set belonging to property P. 2.6.3

S The symbol for a set. 2.6.3

∈ To be contained in an object-selection [x|P(x)] 2.6.3
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Character Meaning Example

or in a set {x|P(x)}. 
PCP The  defining  property  of  an  object-selection

[x|P(x)].
PCP :≡ (x ∈ [x|P(x)]  ⇒ P(x)).
This definition also defines the meaning and
use of the symbol ∈.

2.6.3

Element   To be contained in an object-selection [x|P(x)]
or in a set {x|P(x)}. 

2.6.3

set-forming We are talking about set-forming properties. 2.6.3.2
SP The property of being a set,without referring 

to a specific object-selection.
SP :≡ “is a set”. 

2.6.4.3

PSP The property of an object-selection to be a 
set.
PSP :≡ “[x|P(x)] is a set”.

2.6.4.3

∉ Not contained in an object-selection [x|P(x)] 
or in a set {x|P(x)}. 

2.6.4.6
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Character Meaning Example

Proof ⇒: If A⇔B is an equivalence, then A⇒B is proved. 2.6.4.7

Proof ⇐: If A⇔B is an equivalence, then A⇐B is proved. 2.6.4.7

∪ Union of two object-selections. 2.6.5.1

∩ Intersection of two object-selections. 2.6.5.2

⊆ Subset, superset. 2.6.8.1

⊂ Proper subset, proper superset. 2.6.8.2

Primordial eement. Mathematical object that is neither an object-
selection nor a set.

2.6.9

PS Primordial set. 2.6.10

{y} A set that contains only the element y. 2.6.11

 ⇄ The expression A ⇄ B is called an iterative 
process. In A there is a condition. The process
step formulated in B can and will only be 
carried out if the condition formulated in A is
met. At the end of the process step, it is 

3.2.6

                                                                                                                                            13    



Character Meaning Example

checked again whether the necessary condition 
formulated in A still applies. If so, the 
process step formulated in B is carried out 
again. This sequence is repeated as long as the
condition formulated in A allows the process 
step in B to be carried out.

➙ Transfer, replace. The expression A➙B transfers
all properties of object A to object B. All 
properties that object B had before A➙B was 
executed are lost. The name "B" remains.

3.2.6

SEP The property of a set to be expandable with
primordial elements any number of times.

3.2.6

∅ Empty set ∅. 3.3.2

\ Difference between two sets. 3.5.4

:= Equal by definition. 3.5.6

POW(S) Power set of the set S. 3.9
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Character Meaning Example

Assignment A triple consisting of an image set, a 
definition set and an assignment rule.

3.10.1

f,g Assignment rule. 3.10.2

Injective,
bijective,
subjective

Types of assignment. 3.10.2

SIZ(S) Size of the set S. 3.12

:<    Smaller by definition.          3.12.2

ℕC Representative distribution set for ℕ. 4.3

ℕ Set of natural numbers.     4.3

⊇ Superset or equal. 4.4.5

L Line of natural numbers. 4.6

∃! There is exactly one ...       4.6

n,b,e Natural numbers. 4.6
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 2 Objects and their properties.

 2.1 Proposition.
Definition: Formulation of supposed facts. The correctness of the facts 
described must be proven. This is always done immediately afterwards.

 2.2 Implication.
Definition: If we infer from a statement A to a statement B, then we use
the symbol ⇒ to represent this conclusion and write A⇒B, and by this we
mean: If A holds, then B must also hold.

 2.3 The term „Property“ in connection with objects.

 2.3.1 Properties.
Definition: Properties are characteristic features or behavior for the
selection or identification of things. This refers to things of any
kind. We use the symbol P to represent these properties.
 2.3.2 Objects
Definition: Everything that has a property according to  2.3.1 is a
mathematical object. We use the letters  t,w,x,y and  z to represent
objects.
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 2.3.3 Properties and objects generate statements.
Definition: If an object x has the property P, then we say P(x) is true
and ¬P(x) is false. In relation to an object  x, every property  P
generates the statement P(x) or ¬P(x).

 2.4 Definitions and axioms of properties.

 2.4.1 Equality of properties.
Definition: (P1 ⇔ P2) ⇔ (P1 = P2).  
In words:  Two properties are the same if and only if one follows from
the other.

 2.4.2 Hierarchy of properties.
Let P1 and P2 be properties and P1 ⇒ P2 .
Definition:  P2 is one of possibly several existing root properties of
P1. If ¬(P2 ⇒ P1) also applies, then P1 is called a variant of P2. For
the property of being a root property, we reserve the symbol RP.
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 2.4.3 Universal properties.
Definition: A property P is called a universal property if all objects
have  this  property.  Then  ∀x P(x)  holds.  The  statement  ¬P(x)  is
therefore always false for such properties. We reserve the sign UP for
this category of properties.

 2.4.4 Examples of universal properties.

 2.4.4.1 The quality of being an object.
The property of being an object, ie P :≡ “is an object”, adheres to
all objects and is therefore a universal property. We call them OP
or   universal object property.  OP(x) applies to every object  x.
This statement cannot be negated, ¬OP(x) is always false.

 2.4.4.2 The quality of being identical to oneself.
The quality inherent in all things, P :≡ “is identical with itself”,
is a universal property. We call it IP . For every object  x, IP(x)
applies. This statement cannot be negated either, ¬IP(x) is always
false.
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 2.4.4.3 Owning an object-specific property.
Because of the axiom in 2.6.1 , every object x has the object-specific property xP. We
therefore have ∀x xP(x). The statement ¬xP(x) is always false.

 2.5 Linking of property variants.

 2.5.1 The OR link.
Proposition: If P1 and P2 are variants of the root property P, then 
(P1 ∨ P2) is also a variant of the root property P. 
Proof: It applies  ¬(P ⇒ P1) ∧ ¬(P ⇒ P2) .
It follows  ¬( (P ⇒ P1) ∨ (P ⇒ P2) )  ≡  ¬( P ⇒ (P1 ∨ P2) ).

 2.5.2 The AND link.
Proposition: If P1 and P2 are variants of the root property P, then 
(P1 ∧ P2) is also a variant of the root property P.
Proof: It applies  ¬(P ⇒ P1) ∧ ¬(P ⇒ P2). If P ⇒ (P1 ∧ P2), then P ⇒ P1 also
holds, contrary to the assumption. So ¬(P ⇒ (P1 ∧ P2)) must hold. 
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 2.6 Definitions and axioms about objects.
Let x, y be objects and P be a property.

 2.6.1 Object-specific property.
Axiom: ∀x ∃P ∀y≠x P(x) ∧ ¬P(y).
In  a  nutshell:  Every  object  has  at  least  one  object-specific  property  that
distinguishes it from all other objects. Each object is therefore unique. We reserve the
character xP for the object-specific property of an object x.

 2.6.2 Selection of objects.
Objects can be selected in different ways. The selection could have
been made by chance, for example. However, it could also have been
carried out according to a predefined algorithm. It could have been
made according to the characteristics of the objects, etc. For all
these types of object selection, we introduce the symbol C and use the
term  object-selection  for  this. The  property  of  all  these  object-
selections represented by  C, namely being a selection of objects, is
called CP. We can also formally describe this property by saying CP :≡
“Is an object-selection”. 
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 2.6.3 The object-selection.
Definition: For a property  P the object [x|P(x)] should only contain
objects x for which, according to 2.3.3, P(x) applies. If the object
[x|P(x)] contains all objects x for which P(x) holds, then we say that
P is a property that forms a set and the object [x|P(x)] is a set. In
order to identify the set character of the object-selection [x|P(x)],
we  replace  the  square  brackets  in  the  object-selection  with  curly
brackets. The expression {x|P(x)} clarifies the fact that the object-
selection [x|P(x)] contains all objects  x for which  P(x) holds. For
sets we introduce the symbol S. 
 
Definition: The  fact  that  an  object  x is  contained  in  an  object-
selection [x|P(x)] or in a set {x|P(x)} is represented, as usual, with
the  character  ∈.  The  meaning  of  the  symbol  ∈  is  defined  in  this
document as follows: ( x ∈ [x|P(x)]  ∨  x ∈ {x|P(x)} )  ⇒  P(x). At the
same time, this includes the defining property of an object-selection
[x|P(x)]. We call it PCP. So PCP :≡ (x ∈ [x|P(x)] ⇒ P(x)).
In Words: Object-selections or sets formed with the property P can only
contain objects x for which P(x) applies. For such x we say that x is
an element of the object-selection [x|P(x)] or an element of the set
{x|P(x)}.
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 2.6.3.1 The existence of an object-selection.
Axiom:  ∀P ∃[x|P(x)] PCP :≡ ((x ∈ [x|P(x)] ∨ x ∈ {x|P(x)}) ⇒ P(x)).
In a nutshell:  For each property P there is an object [x|P(x)] with
the property PCP, which means that [x|P(x)] can only contain objects
with the property P. 

 2.6.3.2 Condition for the existence of a set.
Definition:   ∀P ¬P([x|P(x)])  P(x) ⇒ x ∈ [x|P(x)].
In  a  nutshell:  If  the  object-selection  [x|P(x)]  belonging  to  a
property  P does not have the property  P, i.e. ¬P([x|P(x)]), then
this object-selection contains all objects  x with the property by
definition P.  We then speak of a set-forming property and put the
object selection in curly brackets, i.e. write {x|P(x)} to make it
recognizable as a set. By definition, this set still has all the
properties of the object-selection. In particular, 
¬P({x|P(x)}) and P(x) ⇒ x∈{x|P(x)} also applies. The definition can
then be presented in the following, somewhat more concise form:
¬P([x|P(x)]) ⇒ ∃ {x|P(x)}.
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 2.6.4 The properties of an object-selection.

 2.6.4.1 The object property.
Proposition:  Each object-selection is an object with the property
demanded  in  Axiom  2.6.3.1,  and  thus  a  special  variant  of  the
universal property OP according to  2.4.2 and 2.4.4.1. 
Proof: The object property follows from 2.3.2 and CP ⇒ OP applies.
Since the property  OP, which is valid for all objects, cannot be
used to infer the special property demandid in Axiom 2.6.3.1, 
¬(OP ⇒  CP) applies. Therefore, because of  2.4.2, the property of
every object-selection is a variant of the universal property OP.

 2.6.4.2 The selection property.
This property is given by the axiom in Section  2.6.3.1. It is object-specific, since
there  is  exactly  one  object  selection  [x|P(x)]  for  each  property  P and  different
properties,  at  least  formally,  also  generate  different  object-selections.  As  already
defined in Section 2.6.3.1, we use the symbol PCP to represent the selection property.
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 2.6.4.3 The property of being a set. 
Because of the definition in Section  2.6.3.2, an object-selection
can also be a set, namely if ¬P([x|P(x)]) holds. If this is the
case, then we use the symbol PSP to represent this property. If we
speak of the property of being a set in general, i.e. not referring
to  a  specific  object-selection,  then  we  use  the  symbol  SP to
represent this property. The following applies:  SP :≡ “is a set”,
PSP :≡ “[x|P(x)] is a set”. 

 2.6.4.4 The universal properties.
Like every object, every object-selection [x|P(x)] has the universal
properties OP, IP and xP mentioned in Section 2.4.4.

 2.6.4.5 Axiom to the property of sets.
Axiom :  ∀P ¬P([x|P(x)]) ⇔ ( ∃{x|P(x)} ¬P({x|P(x)}) )
In a nutshell:  A property  P is set-forming if and only if the
object-selection belonging to P does not have the property P.
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 2.6.4.6 A set does not contain itself.  
Proposition: Let S be a set and P its set-forming property, 
i.e. S = {x|P(x)}, then S∉S always holds.
Proof: Because of  2.6.4.5 we have ¬P({x|P(x)}) ≡ ¬P(S). If  S∈S,
contrary  to  the  second  definition  in  Section  2.6.3,  P(S)  would
follow. For every set S we have therfore S∉S.

 2.6.4.7 The meaning of the symbol ∈ in relation to sets.
Proposition:   Let S be a set and P its set-forming property,
i.e. S = {x|P(x)}, then P(x) ⇔ x∈{x|P(x)} holds.
Proof ⇒: Because of 2.6.4.5 we have
¬P([x|P(x)]) ⇔ ( ∃{x|P(x)} ¬P({x|P(x)}) ). Because of the definition
in Section 2.6.3.2, P(x) ⇒ x ∈ {x|P(x)} applies.
Proof ⇐: Because of the second definition in Section 2.6.3 we have 
(x ∈ [x|P(x)] ∨ x ∈ {x|P(x)}) ⇒ P(x).
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 2.6.5 Compound properties in an object-selection.

 2.6.5.1 Union of object-selections.
Definition:  Let P :≡ (P1∨P2) be a composite property, then we define
[x|P(x)] :≡ [x|(P1∨P2)(x)] :≡ [x|P1(x)∨P2(x)] :≡ [x|(P1(x)]∨[x|P2(x)].
The expressions listed stand equally for the union of the two object
selections   [x|P1(x)] and [x|P2(x)].
For this union we also write [x|P1(x)] ∪ [x|P2(x)].

 2.6.5.2 Intersection of object-selections.
Definition: Let P :≡ (P1∧P2) be a composite property, then we define
[x|P(x)]  :≡  [x|(P1∧P2)(x)]  :≡  [x|(P1(x)∧P2(x)].  The  expressions
listed  stand  equally  for  the  intersection  of  the  two  object-
selections  [x|P1(x)] and [x|P2(x)]. 
For this intersection we also write [x|P1(x)] ∩ [x|P2(x)].
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 2.6.6 Object-specifically oriented property of a set. 

Proposition:  ∃{x|P(x)} ⇔ ( ∀y∈[x|P(x)] ¬yP([x|P(x)]) ).
In  a nutshell:  If  P is a set-forming property, that is, if {x|P(x)}
exists, then ¬yP([x|P(x)]) holds for the object-specific property yP of
each element y from the object-selection belonging to P. Conversely, if
¬yP([x|P(x)]) also applies to the object-specific property  yP of each
element y from the object-selection [x|P(x)] belonging to P, then P is
a set-forming property, it exists thus the set {x|P(x)}. 

Proof ⇒:  Since {x|P(x)} exists,  we have [x|P(x)]∉[x|P(x)] because of
2.6.4.6, that means ∀y∈[x|P(x)] ⇒  y≠[x|P(x)]. Because of the object-
specific property yP, we have ∀y∈[x|P(x)] ¬yP([x|P(x)]). 

Proof ⇐: By assumption we have  ∀y∈[x|P(x)] ¬yP([x|P(x)]). Because of
the object-specific property yP,  y∈[x|P(x)] ⇒ y≠[x|P(x)] applies. This
is equivalent to [x|P(x)]∉[x|P(x)]. Hence ¬P([x|P(x)]) applies   and by
2.6.4.5 the set {x|P(x)}  exists.

 2.6.7 The set of a set.
Proposition: Let S be a set, then the set {S} exists.
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Proof: S is  a  mathematical  object  and,  because  of  2.6.1,  has  the
object-specific property  SP. The object-selection [x|SP(x)] therefore
contains exactly one element, namely the  set S.  The  object-selection
[x|SP(x)]  and  the  set  S are  different  mathematical  objects.  We
therefore have  SP(S) and ¬SP([x|SP(x)]). Because of  2.6.4.5 there is
therefore the set {x|SP(x)} :≡ {S}.

 2.6.8 Parts of a set.
 2.6.8.1 Subsets and supersets. 
Axiom:  Let  [x|P1(x)]  be  an  object-selection  with  its  selecting
property P1. Let {x|P2(x)} be a set with its set-forming property P2.
If P1 ⇒ P2 then [x|P1(x)] is also a set, so there is {x|P1(x)}.
{x|P1(x)} is called a subset of {x|P2(x)} and {x|P2(x)} is called a
superset of {x|P1(x)}. This relationship is noted  in  the  form
{x|P1(x)} ⊆ {x|P2(x)}.
Annotation: Because {x|P1(x)} and {x|P2(x)} are sets  it follows,
because of section  2.6.4.5,   x∈{x|P1(x)}  from  the  terrn  P1

and x∈{x|P2(x)} from the term P2. So we have the equivalence
( x∈{x|P1(x)} ⇒ x∈{x|P2(x) ) ⇔ ( {x|P1(x)} ⊆ {x|P2(x)} ).
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 2.6.8.2 Proper subsets and proper supersets. 
Definition:  Let  {x|P1(x)} be a subset of {x|P2(x)}. If ¬(P2 ⇒ P1)
then {x|P1(x)} is called a proper subset of {x|P2(x)} and {x|P2(x)}
is called a proper superset of {x|P1(x)}. This relationship is noted
in  the  form  {x|P1(x)} ⊂ {x|P2(x)}.

 2.6.8.3 Equivalent representation of subsets.
Proposition:  If S1 and S2 are sets, then (S1∪S2 = S2) ⇔ S1⊆S2 holds.
Proof ⇒: Because of  S1∪S2 = S2 we have  x∈S1 ⇒  x∈S2. S1 therefore
fulfills the condition required in Section 2.6.8.1 to be a subset of
S2. S1⊆S2 therefore applies.
Proof ⇐: If  S1⊆S2,  then  x∈S1 ⇒  x∈S2 also  applies  because  of  Section  2.6.8.1.
Therefore, S1∪S2 = S2 must apply.

 2.6.9 Primordial elements.
Definition: We  call  objects  x with  the  property  (∀P  x≠[y|P(y)])
primordial elements.
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 2.6.10 There is a primordial set.
Proposition:  The object-selection [x|∀P x≠[y|P(y)]]  is a set.
Proof:  The property of the object-selection  [x|∀P  x≠[y|P(y)]] which forms the
selection is not to be an object-selection. According to the definition in Section 2.6.3.2,
the object-selection  [x|∀P x≠[y|P(y)]]  is a set if it is an object-selection. Since this is
the case, we are dealing here with the set of all primordial elements. We call this set
primordial set and reserve the symbol PS for it.

 2.6.11 There are sets with only one element.
Definition: We represent sets also by listing all of their elements. We
separate the elements from one another with commas and put the entire
list in curly brackets. The list must contain all the elements in the
set. As an example, the expression {x,  y,  z} represents a set that
contains the elements x and y and z. Other objects are not included in
the set.
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Proposition: Let y be a primordial element, then the set {y} exists.
Proof: Because of 2.6.1 there is at least one object-specific property yP of y, so that the
object-selection [x|yP(x)] contains exactly one element, namely the object y. Since y is
a primordial element, y≠[x|yP(x)] applies because of 2.6.9. The object-selection 
[x|yP(x)] and the object  y are  therefore different  mathematical  objects.  It  therefore
applies, also because of 2.6.1 ¬yP([x|yP(x)]). Because of 2.6.4.5, the object-selection
[x|yP(x)] is an existing set. Since it can only contain the object y, it is identical to the
set {y}.

 2.6.12 Union with elements from the primordial set. 
Proposition: ∀S⊂PS y∈PS ⇒ ∃ S∪{y}.
In a nutshell:  Every subset of PS can be combined with elements from PS to form a
set.
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Proof: Every set S and therefore every subset of PS is based on a set-
forming property  P, so that  S={x|P(x)} applies. Because of Section
2.6.11, the single-element set {y} exists for y∈PS and, since yP only
applies   object-specifically   to  the  object  y,  both  ¬yP({y})  and
¬yP({x|P(x)}). Since S={x|P(x)} is a set, ¬P({x|P(x)}) holds. Since by
assumption  S⊂PS,  S  only  contains  primordial  elements. Hence, 
{y}∉{x|P(x)} :≡ ¬P({y}) applies. In summary, therefore, 
(¬P({x|P(x)})  ∧ ¬yP({x|P(x)}))  ≡ ¬(P∨yP)({x|P(x)})  applies as well as
(¬P({y}) ∧ ¬yP({y})) ≡ ¬(P∨yP)({y}). From this it follows 
¬(P∨yP)({x|P(x)})  ∧  ¬(P∨yP)({y})  ≡ ¬(P∨yP)({x|P(x)}∨{y}). Because of
Section 2.6.11, we have {y}={x|yP(x)}, so we can write 
¬(P∨yP)({x|P(x)}∨{y})≡¬(P∨yP)({x|P(x)}∨{x|yP(x)})≡¬(P∨yP)({x|(P∨yP)(x)}).
According to Section  2.6.4.5, this is exactly the condition for the
existence of our set S∪{y}.
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 3 Sets.

 3.1 Specifications for the introduction of the sets.
Sets are about objects and their properties. The terms object, object-
selection and property are described in sections 2.3, 2.4, 2.5 and 2.6.
The definitions and statements stored there are used here. The axioms
listed there essentially form the axiom system for the justification of
sets. 

 3.2 Axiom system for the justification of sets.
Let P be a property, S a set and x, y objects, then the following axioms hold:

 3.2.1 Object-specific property.
Axiom: ∀x ∃P ∀y≠x P(x) ∧ ¬P(y).
In a nutshell: Every object has at least one object-specific property
that distinguishes it from all other objects. Each object is therefore
unique. We reserve the character xP for the object-specific property of
an object x.
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 3.2.2 The object-selection.
Axiom:  ∀P ∃[x|P(x)] PCP :≡ (x ∈ [x|P(x)]  ⇒ P(x)).
In a nutshell:  For each property P there is an object [x|P(x)] with
the property  PCP, which means that [x|P(x)] can only contain objects
with the property P.  

 3.2.3 Sets.
Axiom:  
¬P([x|P(x)]) :≡ [x|P(x)] ∉ [x|P(x)] ⇔ 
( ∃{x|P(x)} ¬P({x|P(x)}) P(x)⇒(x∈{x|P(x)} ∧ x∈[x|P(x)]) ).
In a nutshell: A property P is a set-building property if and only if
the object-selection belonging to P does not have the property P.

 3.2.4 Subsets.
Axiom:  Let S be a set with its set-forming property P, 
i.e.  S={x|P(x)}, and let  C be an object-selection with the property
(x∈C ⇒ x∈S), then C is also a set . Such sets C are called subsets of S
and we write C⊆S for this.  
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 3.2.5 Primordial elements. 
Axiom: ∃x ∀P x≠[y|P(y)].
In a nutshell:  There  is  at  least  one  object that is not an
object-selection.

 3.2.6 Expansion of sets.
Axiom: ∃S⊂PS. The iterative process ∃x∈PS x∉S ⇄ S∪{x} ➙S  never ends.
In a nutshell: There is a proper subset of the primordial set, which can be expanded
as often as desired with one element from the primordial set.
Annotation:  The axiom assumes that the so-called subsets of a set are actually sets.
This is ensured by the preceding axiom in Section 3.2.4.
The axiom presupposes the existence of the primordial set. The existence of this set is a
direct consequence of the preceding set axiom in Section 3.2.3. The proof of this can be
found in Section 2.6.10.
The  axiom assumes  the  existence  of  sets  with  only  one  element.  The  proof  of  the
existence of such sets is given in Section 2.6.11.
The axiom assumes the existence of the set S∪{x} for every subset S of
PS if x∈PS. The proof of the existence of this set is given in Section
2.6.12.
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Definition: We express the property of a set to be expandable with
primordial elements any number of times with the symbol SEP.

 3.2.7 Comparison of sets. 
Axiom: ∀S1,S2 (x∈S1 ⇔  x∈S2) ⇔ (S1=S2).
In a nutshell:  Sets are equal if and only if they contain the same
elements.

 3.3 Basic statements about the object properties.
In an object-selection [x|P(x)], exactly one of the following statements
is true for the selecting property P.
● All objects have the selecting property P.
● There is no object with the selecting property P.
● Only some objects have the selecting property P.
The following consequences result for the formation of sets:

 3.3.1 If all objects have the selecting property P.
The following statement applies here:  ∀x P(x). Therefore,  P(C) holds
for  the  object-selection  C=[x|P(x)] and,  because  of  the  axiom  in
Section  3.2.3,  P does not form a set. A set of this kind therefore
doesn't exist. As we shall see later, the Antinomy  x∉x published by
Bertrand Russell also belongs to this category of properties. 

   36                                                                                                                                                         



 3.3.2 If there is no object with the selecting property P.
The following statement applies here: ∀x ¬P(x). Therefore, ¬P(C) holds
for the object-selection C=[x|P(x)] and because of the axiom in Section
3.2.3, P is a set-forming property. Such sets therefore exist. However,
since  there  cannot  be  any  objects  with  the  property  P,  all  these
properties lead to the empty set ∅.

 3.3.3 If only some objects have the selecting property P.
The following applies here: ∃x≠y P(x) ¬P(y). Here, for object-selection
C=[x|P(x)],  it  must  be  demonstrated  that  ¬P(C) applies.  If  this
succeeds, then, because of the axiom in Section  3.2.3,  P is a set-
forming property and the set belonging to the object-selection exists.

 3.4 First conclusions from the axiom system.
The axiom in Section 3.2.3 provides a division of the object properties
into  two  categories.  One  of  these  categories  includes  all  object
properties that can form a set, the other includes all object properties
that cannot form a set. The separation of these two categories from one
another is unmistakable. It can be derived for each property from the
associated object-selection. Every property that is also a property of its
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associated object-selection cannot form a set because of the axiom in
Section 3.2.3. Every other property, i.e. one that is not a property of
its associated object-selection, necessarily forms a set because of the
axiom in Section 3.2.3.

 3.4.1 There is an empty set.
Proof: The  object-selection  [x|P(x)]  with the selecting property 
P :≡ x≠x does not contain any elements, since there are no objects with
such a property. However,  ¬P([x|P(x)])  ≡ ([x|P(x)]=[x|P(x)]) applies.
This is a true statement. By 3.2.3 we therefore have, ∃{x|P(x)}, that
is, we are dealing with an existing set. It is called "Empty Set" and
is represented by the character ∅.

 3.4.2 Not set-forming root properties of a selection property. 
There are, in the sense of Section  3.2.2, many selection properties  PCP. For there, an
object with the property PCP  is demanded for each property P. Because this object also
has the property OP, namely to be an object, and can also have the property SP, namely to
be a set, the following statements apply:
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 3.4.2.1 The set of all object-selections does not exist.
Proof:  The  object-selection  of  all  object-selections  [x|CP(x)]
would  have  to  be  formed.  Since  this  is  an  object-
selection,  CP([x|CP(x))  applies. Because  of  the  axiom  in  Section
3.2.3 it follows that this is not a set.

 3.4.2.2 The set of all objects does not exist.
Proof:  The object-selection of all objects [x|OP(x)] would have to
be formed. Since this is an object, OP([x|OP(x)) applies. Because of
the axiom in Section 3.2.3 it follows that this is not a set.

 3.4.2.3 The set of all sets does not exist.
Proof:  The object-selection of all sets [x|SP(x)] would have to be
formed.  If  this  were  a  set,  then  SP([x|SP(x)])  would  hold,  in
contradiction to the axiom in Section 3.2.3.
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 3.4.3 All properties that are always true are not set-forming.

 3.4.3.1 The identity cannot form a set. 
Proof:  The object-selection of all identities [x|IP(x)] would have
to be formed. For this object-selection, however, the identity would
also apply, i.e.  IP([x|IP(x)]). The object selection can therefore
not be a set because of the axiom in Section 3.2.3.

 3.4.3.2 The antinomy published by Russell cannot form a set.
Proof:  The antinomy published by Bertrand Russell reads P :≡ x∉x.
If  one  forms  the  object-selection  [x|P(x)]  and  demands  the  set
property for this object-selection, then it follows, because of the
axiom in Section 3.2.3, ¬({x|P(x)}∉{x|P(x)}). This is equivalent to
the statement {x|P(x)}∈{x|P(x)}. That is because of 2.6.4.6 a false
statement. A set belonging to the antinomy published by Bertrand
Russell therefore does not exist.

   40                                                                                                                                                         



Annotation: After formulating Russell's antinomy  x∉x,  x∉x ⇒ x∈x
and  x∈x ⇒  x∉x   were inferred, which is formally correct, and
thereupon the entire so-called “naive set theory” was discarded. In
doing so, it was neglected to examine whether the object-selection
[x|x∉x] can be a set at all. An object-selection [x|P(x)] is defined
in such a way that it should contain all objects x for which P(x) is
true. Therefore ¬P([x|P(x)]) must be true. As a result, as shown in
2.6.4.6, a set can never contain itself. If one wants to build sets
with the property  x∉x, then one has to do with an always true
property. It applies to all sets and therefore cannot form a set
because of the axiom in 3.2.3.

 3.4.4 All properties that are always false are set-forming.
Proof: For this type of property  ∀x ¬P(x) applies. It is therefore
valid for the object-selection [x|P(x)] belonging to such a property,
also  ¬P([x|P(x)]). Because of the axiom in Section  3.2.3, such sets
exist. However, since there can be no objects with the property stored
in P, all these properties lead to the empty set ∅.
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 3.5 Manipulation of sets. 
Sets can be manipulated, for example by adding or removing elements. The
operations that are commonly used for manipulating sets are shown below,
and it is examined which conditions must apply so that the structures
newly created by the manipulation are again existing sets.

 3.5.1 Extension with an object-specific property. 
Definition:  Let  S={x|P(x)} be a set with its set-forming property  P.
Let y be an object and let y∉S. By the set {x|(P∨yP)(x)} we understand
the extension of the set S with the object y or the addition of the
object y to the set S.
Proposition: Let S={x|P(x)} be a set with its set-forming property P,
then the set  {x|(P∨yP)(x)} exists if and only if  y≠[x|(P∨yP)(x)] and
[x|(P∨yP)(x)]∉S. Therefore we have the equivalence
y≠[x|(P∨yP)(x)] ∧ [x|(P∨yP)(x)]∉S ⇔ ∃{x|(P∨yP)(x)}. 

Proof ⇒: From y≠[x|(P∨yP)(x)] follows ¬yP([x|(P∨yP)(x)]) because of the
object-specific property yP. From [x|(P∨yP)(x)]∉S follows 
¬P([x|(P∨yP)(x)]).  All  in  all,  ¬(P∨yP)([x|(P∨yP)(x)]).  According  to
Section 3.2.3, this is the criterion for the existence of the set 
{x|(P∨yP)(x)}
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Proof ⇐: Section 3.2.3 implies  ¬(P∨yP)({x|(P∨yP)(x)}) from ∃{x|(P∨yP)(x)}. We
have ¬P([x|(P∨yP)(x)]) and ¬yP([x|(P∨yP)(x)]). From ¬P([x|(P∨yP)(x)]) follows
[x|(P∨yP)(x)]∉S. From ¬yP([x|(P∨yP)(x)]), because of the object-specific property
yP , it follows that  y≠[x|(P∨yP)(x)].

 3.5.2 Union of sets.
The definition below is based on the definition for  object- selections  in  Section 2.6.5.1.
Definition:  The union S1 S∪ 2 of two sets   S1={x|P1(x)} and  S2={x|P2(x)}, with
their set-forming properties P1 and P2, is understood to be the object-selection 
[x|x∈S1 ∨  x∈S2] :≡ [x|P1(x) ∨  P2(x)] :≡ [x|(P1∨P2)(x)].

 3.5.2.1 The union of two sets is a set.

Proposition:  Let S1 and S2 be sets with their set-forming properties
P1 and P2, i.e. S1={x|P1(x)} and S2={x|P2(x)}, then the union S1 S∪ 2 is
a set.
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Proof: Since  S1={x|P1(x)} is a set, this set contains all objects
for which P1(x)  is  true.  This  means  that  the  object-selection
[x|(P1∨P2)(x)] must also contain all objects for which P1(x) is true.
So we have ¬P1([x|(P1∨P2)(x)]).  The analogous  consideration  can
be   made   for S2={x|P2(x)}. It also holds that ¬P2([x|(P1∨P2)(x)]).
So overall it applies 
¬P1([x|(P1∨P2)(x)])  ∧ ¬P2([x|(P1∨P2)(x)])  ≡ ¬(P1∨P2)([x|(P1∨P2)(x)]).
According to Section 3.2.3, this is the condition for the existence
of the set {x|(P1∨P2)(x)} :≡  S1 S∪ 2.

 3.5.2.2 Typical property of elements of a union.
Proposition:  Let S1 and S2 be sets with their set-forming properties
P1 and P2, i.e. S1={x|P1(x)} and S2={x|P2(x)}, then the union S1 S∪ 2 is
a set if and only if ∀x∈S1 x≠[x|(P1∨P2)(x)] and ∀x∈S2 x≠[x|(P1∨P2)(x)]
hold. So the equivalence applies: 
( (x∈S1 ∨  x∈S2) ⇒ x≠[x|(P1∨P2)(x)] ) ⇔ ∃{x|(P1∨P2)(x)} :≡  ∃S1 S∪ 2.
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Proof ⇒: Because of section 2.6.4.6, from x∈S1 follows x≠S1 and from
x∈S2 follows x≠S2.    So   if    x∈S1 ∨  x∈S2    it follows x≠S1 ∧
x≠S2. Therefor we have ( x∈S1 ∨  x∈S2 ) ⇒ x≠(S1 ∨ S2). Because of the
definition  of  the  term  „Ubion“  in  section  2.6.5.1  we  have 
(S1 ∨ S2) :≡ [x|(P1∨P2)(x)]. Tue to the object-specific Property xP we
have ∀x∈(S1 ∨ S2)  ¬xP([x|(P1∨P2)(x)]).  Because  of  section  2.6.6 
∃{x|(P1∨P2)(x)} :≡  ∃S1 S∪ 2.

Proof ⇐:  Because of 3.2.3 we have 
∃{x|(P1∨P2)(x)} ⇒ ¬(P1∨P2)([x|(P1∨P2)(x)]). This is equivalent to 
∀x∈[x|(P1∨P2)(x)]  x≠[x|(P1∨P2)(x)]. 
Hence (x∈S1 ∨ x∈S2) ⇒ x≠[x|(P1∨P2)(x)].

 3.5.3 Intersection of two sets.
The definition below is based on the definition for  object- selections  in  Section 2.6.5.2.
Definition:  The intersection S1∩S2 of two sets   S1={x|P1(x)} and  S2={x|P2(x)},
with their set-forming properties P1 and P2, is understood to be the object-selection 
[x|x∈S1 ∧  x∈S2] :≡ [x|P1(x) ∧  P2(x)] :≡ [x|(P1∧P2)(x)].

Proposition:  Let S1 and S2 be sets with their set-forming properties P1

and P2, i.e. S1={x|P1(x)} and S2={x|P2(x)}, then the intersection S1∩S2 is
a set.
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Proof: We have x∈(S1∩S2) ⇒ x∈S1 ∧ x∈S2. That is, according to 2.6.8.1,
the  intersection  is  a  subset  of  both  S1 and  S2 and  therefore  an
existing set because of 3.2.4. 

 3.5.4 Difference between two sets.
Definition:  The difference between two sets S1 and S2 is understood to
mean the object-selection S1\S2 :≡ [x|x∈S1 ∧ ¬(x∈S2)].
Proposition: If  S1 and  S2 are sets, then the difference  S1\S2 is an
existing set.
Proof: We have x∈(S1\S2) ⇒ x∈S1. That is, the difference is a subset of
S1 according to 2.6.8.1 and therefore an existing set because of 3.2.4.

 3.5.5 Set extension with primordial elements.
Proposition:  If S={x|P(x)} is a set with its set-forming property P
and if  S does not contain all primordial elements, so if  S∩PS ⊂  PS
holds, then S can be extended with a primordial element. 
Proof: Since S does not contain all primordial elements, there exists a
primordial  element  y such  that  y∉S und  y∈PS.  For  this  primordial
element  y there exists because of Section  2.6.11 the one-element set
{y} ≡ {x|yP(x)}. The sets S and {y} can  be  united  to  form  the  set
{x|(P∨yP)(x)} according to Section 3.5.2.1. 
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 3.5.6 Union with primordial  elements  that can be carried out as
often as desired.

Proposition: Let x be an primordial element, then the set S1 := {x} can
be united with elements from the primordial set any number of times.
The iterative process ∃x∈PS x∉S1  ⇌ S1∪{x} ➙ S1 never ends.
Proof:  The axiom in Section 3.2.6 guarantees the existence of a set
S⊂PS such that the iterative process ∃y∈PS y∉S ⇌ S∪{y} ➙ S never ends.
If our object x is not contained in the set S, we can use this x to
carry out the first process step in the iterative process ∃y∈PS y∉S ⇌
S∪{y} ➙ S. From then on we can assume that x∈S holds and the iterative
process ∃y∈PS y∉S ⇌ S∪{y} ➙ S never ends. We now have S1⊆S and y∉S ⇒
y∉S1. If a process step can be carried out in the iterative process
∃y∈PS y∉S ⇌ S∪{y} ➙ S, then a process step can also be carried out in
the iterative process  ∃x∈PS x∉S1 ⇌ S1∪{x}  ➙ S1 if we use the same
element in both processes when executing the process steps. Since the
first process never ends, the second process ∃x∈PS x∉S1  ⇌ S1∪{x} ➙ S1

can never end either. The set S1 := {x} can therefore, in the same way
as the set S from the axiom in Section 3.2.6, be united with elements
from the primordial set as often as desired.  
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 3.6 Construction of sets.

 3.6.1 Construction using object-specific properties.
Proposition:  Let  y and  z be  objects  with  their  object-specific
properties yP and zP, and let both y and z not be equal to the extended
object-selection  [x|(yP∨zP)(x)],  then  the  set  S  :=  {x|(yP∨zP)(x)}
exists .
Proof:   ¬(yP∨zP)(S) ≡ (¬yP(S) ∧ ¬zP(S)). Since S, y, z are different
objects  and  both  yP and  zP are  object-specific  properties  of  the
objects  y and  z, both ¬yP(S) and ¬zP(S) apply because of  3.2.1. The
left side of the equality of meaning mentioned at the beginning of the
proof  is  therefore  a  true  statement.  Because  of  3.2.3 there  is
therefore the set S := {x|(yP∨zP)(x)}.

 3.6.2 Construction of one-element sets.
The axiom in section 3.2.5, together with the axiom in section 3.2.6,
guarantees  the  existence  of  an  inexhaustible  number  of  primordial
elements. For each of these primordial elements, we can construct the
corresponding one-element set because of Section 2.6.11.
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 3.6.3 Construction by nesting.
A set S can be nested arbitrarily because of 2.6.7. This creates sets
as indicated below:
S     {S}      {{S}}      . . . . . .

 3.6.4 Construction by union of sets.
As shown in 3.5.2, two sets can always be united to a set.

 3.6.5 Construction  through  continued  extension  with  primordial
elements. 

Proposition: Let S be  a set  and  x  a  primordial  element  and  let 
S∩PS = ∅ or  S∩PS = {x} hold, then  S can be extended with primordial
elements any number of times.
Proof: In Section 3.5.6 we saw that single-element sets can be extended
with primordial elements as often as desired. In Section 3.5.5 we saw
that sets can always be extended by a primordial element if they do not
already contain all primordial elements. Both together guarantee that S
can be extended with primordial elements any number of times.
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 3.6.6 Construction by pairing sets.
Proposition:  If S1 and S2 are sets, then [x | x = S1 ∨ x = S2] is also a set.
Proof:  The sets  S1 and  S2, like all objects, have object-specific
properties. We will call them s1P and S2P. We can then form the object-
selection [x|(S1P∨S2P)(x)] ≡ [x|x=S1 ∨ x=S2] and see, because of Section
3.6.1, that the set {x|(S1P∨S2P)(x)} exists.

Annotation: This statement can be used to construct nested sets in the
manner indicated below. So let  S be a set, then we could create any
number of the following sets:
{S}   {{S} S}   {{{S} S } S }    . . . . . . . . .

 3.7 Properties of the Empty Set.
As shown in Section  3.4.1, the empty set exists. It has the following
properties.

 3.7.1 The empty set is a subset of any set.
Proof: Let S be a set. Since the empty set cannot contain any elements,
the following applies: ∅∪S = {x|x∈S ∨ x∈∅} = {x|x∈S} = S. Because of
Section 2.6.8.3, ∅⊆S therefore applies.
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 3.7.2 There is only one empty set.
Proof: Let  S1 and S2 be empty sets and let S1 ≠  S2, then by 3.2.7 ∃x
((x∈S1 ∧ x∉S2) ∨ (x∈S2 ∧ x∉S1)), so that at least one of the two sets S1

and S2 is not  empty.

 3.8 Variants of set-forming root properties are set-forming.
Proposition:  Let P1 and P2 be properties and let P1⇒P2 apply. Let P2 be a
set-forming property, i.e. if the set  S2 = {x|P2(x)} exists, then  P1 is
also a set-forming property, that is, the set S1 = {x|P1(x)} exists and S1

is a subset of S2.
Proof: Since  P1⇒P2 we have ∀x ∈ [x|P1(x)] ⇒  x ∈ {x|P2(x)}. The object-
selection  [x|P1(x)]  is  therefore,  because  of  Section  2.6.8.1,  a  set,
namely a subset of S2 = {x|P2(x)}.

 3.9 Power sets.
Let S be a set, then we use the notation POW(S) ≡ [x|x⊆S].

Proposition: Let S be a set with its set-forming property P, 
i.e. S={x|P(x)}, then the power set {x|x⊆S} exists.
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Proof:   Assuming the power set does not exist, then [x|x⊆S]⊆S must hold.
That would mean that all elements of the object-selection [x|x⊆S] are both
elements  of  S and  subsets  of  s. However,  this  is  not  possible  if  S
contains a primordial element. A primordial element is by definition not a
subset. In this case we have ¬([x|x⊆S]⊆S) and the power set {x|x⊆S} exists
because of  3.2.3. If  S does not contain a primordial element, then by
3.5.5 we can expand S with a primordial element y to S∪{y} := S1. Now the
power set of S1 exists and Pow(S) ⊂ Pow(S1) applies, so that Pow(S) also
exists for this case because of 3.2.4.

 3.10 Assignment of math objects
This section defines the already known concept of assignment in order to 
subsequently be able to access the definitions laid down.

 3.10.1 Assignments.
Mathematical objects can be assigned to one another. An assignment is
made when the following specifications have been made:

 3.10.1.1 Image set.
A set is defined that contains all objects to which something is
assigned. This set is called the image set.
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 3.10.1.2 Definition set.
A set is defined that contains all objects and only objects that are
to be assigned. This set is called the definition set.

 3.10.1.3 Assignment rule.
A rule is defined which assigns each object from the definition set
to exactly one object in the image set. This rule is called the
assignment rule.

 3.10.2 Types of assignment.
According to 3.10.1, let S1 be the definition set, S2 be the image set
and f the assignment rule of an assignment (src 5.1).

 3.10.2.1 Injective.
An assignment is called injective if the following applies:
∀x,y∈S1 f(x)=f(y) ⇒ x=y

 3.10.2.2 Surjective.
An assignment is called surjective if:
∀x∈S2 ∃y∈S1 f(y)=x
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 3.10.2.3 Bijective.
An  assignment  is  called  bijective  if  it  is  both  injective  and
surjective.

 3.11 Injective and non-surjective assignments.
Proposition: Let  S1 be the definition set, (see  3.10.1.2), and  S2 the
image set, (see 3.10.1.1), of an injective and non-surjective assignment
using the assignment rule f, (see 3.10.1.3), then there are none for the
named sets bijective assignment rule g.

Proof:  Let  g be bijective. Let  x1∈S1 and let  f(x1) =  y. Since  g is
surjective, x2 exists in S1 and g(x2) = y. Let x1 ≠ x2, i.e. g(x1) ≠ y, say g(x1) = y1,
then we change the assignment rule g such that: g(x1) = y and g(x2) = y1. Here, g remains
bijective as before. We carry out this change in the assignment rule g for
all x∈S1, for which f(x)≠g(x). Then: ∀x∈S1 f(x)=g(x) applies.
Since  f is not surjective, we have ∃y∈S2 ∀x∈S1 f(x) ≠  y. From this it
follows: ∀x∈S1 f(x) = g(x) ≠ y in contradiction to the bijectivity of g.
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 3.12 The size of a set.
We define the term “size of a set” with the help of the primordial set PS.
We assign exactly one “size” to each element from the power set of PS. We
demand that the "size" can be manipulated without restriction by adding or
removing elements, if it is not the empty set. For the empty set we only
allow one manipulation by adding. Since we only refer to the power set of
PS, or to elements of PS, such an unrestricted manipulation is possible.
This means that we no longer need to worry about the existence of the sets
that we generate through the manipulation. The manipulation is always
possible, and the structures resulting from the manipulation are always
sets. See the statements in Sections 3.5 and 3.6.
 
Definition:  We use the notation SIZ(S) for the size of a set S. The empty
set does not contain any elements. We assign size 0 to it. We also say
SIZ(∅) := 0. Because of  2.6.11 there are sets that contain exactly one
element. We assign size 1 to each of these sets. So let x be an arbitrary
object, then we also say SIZ({x}) := 1. For the size we further agree:
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 3.12.1 Each object changes the size in the same way.
Definition:
(x∉S ∧ y∉S) ⇒ SIZ(S∪{x}) := SIZ(S∪{y}).
(x∈S ∧ y∈S) ⇒ SIZ(S\{x}) := SIZ(S\{y}).
Based on this definition, there are different sets with the same size,
which is also true because of Section  3.12. All single-element sets
have the size 1.

Proposition: Let S be a set, let x∈S ∧ y∉S, then 
SIZ(S) = SIZ(S\{x} ∪ {y}).
Proof:  Because of 3.12.1, SIZ(S\{x}∪{y}) = SIZ(S\{x}∪{x}) = SIZ(S).

 3.12.2 The order of size.
If a set does not contain all primordial elements, then we can always
add an element to it because of Section 3.5.5. Because the elements of
a  set  can  be  distinguished  on  the  basis  of  their  object-specific
properties, we can always take an element from every non-empty set
because of Section 3.5.4. We say the set size gets smaller if we take
an element out of the set, it gets bigger if we add one to it, and it
stays the same if we do nothing of the kind. To express this we write:
(x∈S ∧ y∉S) ⇒ SIZ(S\{x}) :< SIZ(S) :< SIZ(S∪{y}).
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 3.12.3 The smallest possible change in size.
Section  3.12.2 requires at least one element to be added or removed
from a set in order to change its size. We express this fact with the
terms "successor" and "predecessor" and say, if (x∈S ∧ y∉S):
SIZ(S\{x})  is  the  predecessor  of  SIZ(S),  and  SIZ(S∪{y})  is  the
successor to  SIZ(S). Since we agreed in Section  3.12.1 that it is
irrelevant for changing the size which element is taken from or added
to the underlying set, we also write SIZ(S∪{y}):= SIZ(S‘) and 
SIZ(S\{x}):=  SIZ(‘S). Based on the order of size agreed in Section
3.12.2, the following applies: SIZ(‘S) < SIZ(S) < SIZ(S‘).

 3.12.4 Iterative exchange process when comparing the size of two
sets.

Let S1 and S2 be sets. The iterative process 
(∃x x∈S1∧x∉S2) ∧ (∃y y∈S2∧y∉S1) ⇌  S1 :=  S1\{x}∪{y} provides the same
size  for  S1 for  each  process  step  due  to  3.12.1.  Because  of  the
manipulation of the set  S1 on the right-hand side of the iteration
equation and the use of the manipulated set S1 on the left-hand side of
the  iteration  equation,  the  conditions  for  the  iteration  may  be
violated. The process then ends and one of the following situations
occurs:
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 3.12.4.1 Condition for "smaller".
¬(∃x x∈S1 ∧ x∉S2) ∧ (∃y y∈S2 ∧ y∉S1).
For this we say: SIZ(S1) < SIZ(S2).
Because of Section 2.6.8.2, S2 is a superset of S1.

 3.12.4.2 Condition for "greater".
(∃x x∈S1 ∧ x∉S2) ∧ ¬(∃y y∈S2 ∧ y∉S1).
For this we say: SIZ(S1) > SIZ(S2).
Because of Section 2.6.8.2, S1 is a superset of S2.

 3.12.4.3 Condition for "equal".
¬(∃x x∈S1 ∧ x∉S2) ∧ ¬(∃y y∈S2 ∧ y∉S1).
For this we say: SIZ(S1) = SIZ(S2).

It is conceivable that despite the manipulation of the set S1 on the
right-hand side of the iteration equation, the conditions for the
iteration on the left-hand side of the equation are never violated.
The iteration process then never ends, and we cannot make a decision
on the size ratio of the two sets. But we also say for this case
that the size of the sets S1 and S2 should be equal. 
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 3.12.5 Preservation of the size ratio of two sets.

 3.12.5.1 When expanding.
Proposition: Let S1 and S2 be sets and x∉S1,S2, then:
SIZ(S1) ≠ SIZ(S2)  ⇔  SIZ(S1∪{x}) ≠ SIZ(S2∪{x})
SIZ(S1) = SIZ(S2)  ⇔  SIZ(S1∪{x}) = SIZ(S2∪{x})

Proof: Because  x∉S1 ∧  x∉S2,  x has no influence on the iteration
condition in 3.12.4. The iteration process is therefore independent
of x and the following applies:
SIZ(S1) < SIZ(S2)  ⇔  SIZ(S1∪{x}) < SIZ(S2∪{x})
SIZ(S1) > SIZ(S2)  ⇔  SIZ(S1∪{x}) > SIZ(S2∪{x})
SIZ(S1) = SIZ(S2)  ⇔  SIZ(S1∪{x}) = SIZ(S2∪{x})

 3.12.5.2 With reduction.
Proposition: Let S1 and S2 be sets and x∈S1,S2, then:
SIZ(S1) ≠ SIZ(S2)  ⇔  SIZ(S1\{x}) ≠ SIZ(S2\{x})
SIZ(S1) = SIZ(S2)  ⇔  SIZ(S1\{x}) = SIZ(S2\{x})
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Proof: Because  x∈S1 ∧  x∈S2,  x has no influence on the iteration
condition in 3.12.4. The iteration process is therefore independent
of x and the following applies:
SIZ(S1) < SIZ(S2)  ⇔  SIZ(S1\{x}) < SIZ(S2\{x})
SIZ(S1) > SIZ(S2)  ⇔  SIZ(S1\{x}) > SIZ(S2\{x})
SIZ(S1) = SIZ(S2)  ⇔  SIZ(S1\{x}) = SIZ(S2\{x})

 3.12.6 Size ratios for subsets.
Proposition: Proper  Subsets are always smaller than their associated
proper supersets.
Proof: Let  S2={x|P2(x)} be  a proper  superset  of  S1={x|P1(x)},  i.e.
because of Section 2.6.8.2 ¬(P2 ⇒ P1), then ∃y P2(y) ∧ ¬P1(y). Because S1

and S2 are sets it folloes that y∈P2 ∧ y∉P1. For the same reason it
follows  ∀x∈S1  x∈S2.  So the  case  3.12.4.1 is  present  and  therefore
SIZ(S1) < SIZ(S2) applies.
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 4 Numbers.
 4.1 The concept of number.
Because of Section 3.12.1 there are different sets with the same size. We
say  sets  of  the  same  size  represent  the  same  number.  Different  size
represent  different  numbers.  Each  set  represents  exactly  one  number
according to its size.

 4.2 The power set of the primordial set, divided into sets of equal
size.

In the object-selection 
ℕC=[x|x⊆POW(PS) ∀t∈x SEP(t)  ∀y,z∈x SIZ(y)=SIZ(z) ∀w∈POW(PS) ∧ SIZ(w)=SIZ(y)
w∈x]
each x represents all available subsets of PS, which match in size and are
expandable with primordial elements any number of times. Each x of this
object-selection ℕC and also each subset y∈x thus represents exactly one
and the same size.

Proposition:  The object-selection 
ℕC=[x|x⊆POW(PS) ∀t∈x SEP(t)  ∀y,z∈x SIZ(y)=SIZ(z) ∀w∈POW(PS) ∧ SIZ(w)=SIZ(y)
w∈x] is a set.
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Proof: If  ℕC were not a set, then, because of Section  3.2.3, the same
criteria would have to apply to  ℕC that lead to the selection of the
elements of  ℕC. So  ℕC⊆POW(PS) should apply. That would mean  x∈ℕC ⇒  x⊆PS,
contrary to the definition of ℕC. The object-selection ℕC must therefore
be a set.

 4.3 The natural numbers. 
We equate the set of natural numbers with the partition set from Section
4.2. Each x of this object-selection
ℕC=[x|x⊆POW(PS) ∀t∈x SEP(t)  ∀y,z∈x SIZ(y)=SIZ(z) ∀w∈POW(PS) ∧ SIZ(w)=SIZ(y)
w∈x]
and also every subset  y∈x, thus represents exactly one size as well as
exactly  one  natural  number.  That  this  representative  distribution  set
exists has also already been shown in Section 4.2. We call it the set of
natural numbers and represent it with the symbol ℕ.

 4.4 Properties of the natural numbers.
Because  of  Section  4.3,  the  properties  of  the  natural  numbers  are
identical to the properties of the set-size. These properties can be read
from the behavior of the subsets of PS  when we manipulate these subsets.
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Since the distribution set from Section  4.2 also contains the single-
element subsets of pS, and because of Section 3.5.6 these can be expanded
with primordial elements as often as desired, the natural numbers can also
be "expanded" as often as desired, starting from a given number. So let S
be a subset of PS contained in the partition set from Section 4.2 as an
element  of  one  of  its  partition  members  and  let  x,  y be  primordial
elements, then the following statements hold:

 4.4.1 The zero is included. 
If we use the iterative exchange procedure in Section 3.12.4 to compare
the size of the empty set ∅ with the size of an arbitrary set not equal
to ∅, then we see that the exchange process does not start and that
case  3.12.4.1 occurs immediately. The empty set ∅ is therefore the
smallest of all sets. We therefore define:
SIZ(∅) := 0 ∈ ℕ.

 4.4.2 Every natural number has a successor.
Proposition: SIZ(S) ∈ ℕ ⇒ ∃x∈PS SIZ(S∪{x}) := SIZ(S‘) ∈ ℕ.
Proof: If SIZ(S) ∈ ℕ, then S can be expanded with primordial elements
any number of times because of Section 4.2. So there must be an x such
that x∈PS and x∉S. Hence SIZ(S ∪ {x}):= SIZ(S‘) ∈ ℕ.
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 4.4.3 The natural numbers have a beginning.
Proposition:  SIZ(S) ∈ ℕ ⇒ SIZ(S‘) ≠ 0.
Proof:  Let x∉S then SIZ(S‘) = SIZ(S∪{x}) ≠ SIZ(∅):=0.

 4.4.4 The same successors have the same predecessor.
Proposition:  SIZ(S1‘) = SIZ(S2‘) ⇒ SIZ(S1) = SIZ(S2).
Proof:  Let x∈S1.
Because of 3.12.3, x∈S2‘ ∧ SIZ(S1‘)=SIZ(S2‘) ⇒ SIZ(S1∪{x})=SIZ(S2∪{x}).
Because of 3.12.5.1, SIZ(S1) = SIZ(S2) then applies.
x∉S2‘ ∧ SIZ(S1‘) = SIZ(S2‘) ⇒ ∃y∈S2‘ ∧ y≠x
In this case, because of 3.12.1 SIZ(S2‘)=SIZ(S2‘\{y}∪{x})=SIZ(S2∪{x}).
From this it follows because of 3.12.3 SIZ(S1∪{x} = SIZ(S2∪{x}) and 
then because of 3.12.5.1 SIZ(S1) = SIZ(S2).

 4.4.5 Induction axiom.
( 0∈C ∧ (SIZ(S)∈C ⇒ SIZ(S‘)∈C) ) ⇒ C⊇ℕ 

 4.5 Note on the properties of natural numbers.
The properties shown in 4.4 correspond to the Peano axioms and, apart from
the induction axiom, are a direct consequence of the set-size developed in
Section 3.12.
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 4.6 Line of natural numbers.
Definition: Let L be a subset of ℕ and let ∃! b∈L ∀n∈L n‘≠b ∃! e∈L e‘∉L,
then we call  L a line or an excerpt from  ℕ. We call the element  b the
beginning of the line, the element  e we call the end of the line and
express this with the notation Lb,e.

 4.7 Statements about the line of natural numbers.

 4.7.1 Relationships at the end of a line.
Proposition:  Let Lb,e be a line from ℕ, then (e‘)‘ ∉ Lb,e.
Proof: By 4.4.2 e‘ and (e‘)‘ are natural numbers. Since e‘∉Lb,e because
of  4.6, if (e‘)‘ ∈  Lb,e, besides  b also (e‘)‘ would be an element
without a predecessor in Lb,e, which contradicts the definition of Lb,e.

 4.7.2 Extension of a line.
Proposition: Let Lb,e be a line from ℕ, then Lb,e ∪ {e‘} := (Lb,e)‘ :=
Lb,e‘ is also a line from ℕ and Lb,e ⊂ Lb,e‘.
Proof: First of all, e' exists because of 4.6 and 4.4.2.
( e‘∉Lb,e ∧ (Lb,e‘ := Lb,e ∪ {e‘}) ) ⇒ Lb,e ⊂ Lb,e‘.
Since according to Section 4.7.1 (e‘)‘ ∉ Lb,e and e' is the successor
of e,  e' is the only element in Lb,e‘ without a successor.
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 4.7.3 Equality of lines.
Definition: Two lines Lb1,e1 and Lb2,e2 are equal if b1 = b2 and e1 = e2.

 4.8 Finite and infinite sets.

 4.8.1 Finite sets.
Definition: A set is called finite if there is a line from ℕ such that
the set can be assigned to this line bijectively.

 4.8.2 Infinite sets.
Definition: A set is called infinite if there is no line from ℕ such
that the set can be assigned to this line bijectively.

 4.8.3 The set of natural numbers ℕ is infinite.
Proof: If ℕ were finite, then according to 4.8.1 there would be a line
Lb,e of natural numbers and an assignment rule  f, which bijectively
assigns  Lb,e to  the  natural  numbers  ℕ.  Let  g be  the  identical
assignment, then ∀x∈Lb,e g(x)=x. This assignment is injective. By 4.7.2
we can extend Lb,e to Lb,e‘ and we have e‘∉Lb,e ∧ e‘∈ℕ. Since g is the

   66                                                                                                                                                         



identical assignment, the following applies: ∀x∈Lb,e ⇒ g(x)≠e‘. Thus g
is injective and not surjective and because of 3.11 there is basically
no bijective assignment between  Lb,e and  ℕ. Hence, by  4.8.2,  ℕ is an
infinite set.

                                                                                                                                            67    



 5 Persons with assigned document content.

 5.1 Georg Cantor
Born on March 3rd, 1845, died on January 6th, 1918
German mathematician.

 5.2 Bertrand Russell
Born on May 18th, 1872, died on February 2nd, 1970.
British philosopher, mathematician, logician and writer.

 5.3 Giuseppe Peano
Born August 27, 1858, died April 20, 1932.
Italian mathematician.

   68                                                                                                                                                         



 6 References.

 6.1 Peano‘s Axioms.

Weisstein, Eric W. "Peano's Axioms." 

From MathWorld--A Wolfram Web Resource.

https://mathworld.wolfram.com/PeanosAxioms.html    

Quoted on 9/30/2021.

 

 6.2 Cantor's definition of sets.

Georg Cantor. „Beiträge zur Begründung der transfiniten Mengenlehre.“

Mathematische Annalen, Band 46 Seite 481.

h  t  tps://gdz.sub.uni-goettingen.de/id/PPN235181  t  684_0046  

Quoted on 10/5/2021.

                                                                                                                                            69    

https://mathworld.wolfram.com/about/author.html
https://gdz.sub.uni-goettingen.de/id/PPN235181684_0046
https://gdz.sub.uni-goettingen.de/id/PPN235181684_0046
https://gdz.sub.uni-goettingen.de/id/PPN235181684_0046
https://gdz.sub.uni-goettingen.de/id/PPN235181684_0046
https://gdz.sub.uni-goettingen.de/id/PPN235181684_0046
https://mathworld.wolfram.com/PeanosAxioms.html
https://mathworld.wolfram.com/


 6.3 Russel‘s Antinomy.

Weisstein, Eric W. "Russell's Antinomy." 

From MathWorld--A Wolfram Web Resource. 

https://mathworld.wolfram.com/RussellsAntinomy.html 

Quoted on 10/5/2021.

   70                                                                                                                                                         

https://mathworld.wolfram.com/RussellsAntinomy.html
https://mathworld.wolfram.com/
https://mathworld.wolfram.com/about/author.html


 7 List of contents.

Section Title Page

1 Table of special characters and symbols. 8
2 Objects and their properties. 16
2.1 Proposition. 16
2.2 Implication. 16
2.3 The term „Property“ in connection with objects. 16
2.3.1 Properties. 16
2.3.2 Objects 16
2.3.3 Properties and objects generate statements. 17
2.4 Definitions and axioms of properties. 17
2.4.1 Equality of properties. 17
2.4.2 Hierarchy of properties. 17
2.4.3 Universal properties. 18
2.4.4 Examples of universal properties. 18
2.4.4.1 The quality of being an object. 18
2.4.4.2 The quality of being identical to oneself. 18
2.4.4.3 Owning an object-specific property. 19
2.5 Linking of property variants. 19

                                                                                                                                            71    



Section Title Page

2.5.1 The OR link. 19
2.5.2 The AND link. 19
2.6 Definitions and axioms about objects. 20
2.6.1 Object-specific property. 20
2.6.2 Selection of objects. 20
2.6.3 The object-selection. 21
2.6.3.1 The existence of an object-selection. 22
2.6.3.2 Condition for the existence of a set. 22
2.6.4 The properties of an object-selection. 23
2.6.4.1 The object property. 23
2.6.4.2 The selection property. 23
2.6.4.3 The property of being a set. 24
2.6.4.4 The universal properties. 24
2.6.4.5 Axiom to the property of sets. 24
2.6.4.6 A set does not contain itself.  25
2.6.4.7 The meaning of the symbol ∈ in relation to sets. 25
2.6.5 Compound properties in an object-selection. 26
2.6.5.1 Union of object-selections. 26
2.6.5.2 Intersection of object-selections. 26

   72                                                                                                                                                         



Section Title Page

2.6.6 Object-specifically oriented property of a set. 27
2.6.7 The set of a set. 27
2.6.8 Parts of a set. 28
2.6.8.1 Subsets and supersets. 28
2.6.8.2 Proper subsets and proper supersets. 29
2.6.8.3 Equivalent representation of subsets. 29
2.6.9 Primordial elements. 29
2.6.10 There is a primordial set. 30
2.6.11 There are sets with only one element. 30
2.6.12 Union with elements from the primordial set. 31
3 Sets. 33
3.1 Specifications for the introduction of the sets. 33
3.2 Axiom system for the justification of sets. 33
3.2.1 Object-specific property. 33
3.2.2 The object-selection. 34
3.2.3 Sets. 34
3.2.4 Subsets. 34
3.2.5 Primordial elements. 35
3.2.6 Expansion of sets. 35

                                                                                                                                            73    



Section Title Page

3.2.7 Comparison of sets. 36
3.3 Basic statements about the object properties. 36
3.3.1 If all objects have the selecting property P. 36
3.3.2 If there is no object with the selecting property P. 37
3.3.3 If only some objects have the selecting property P. 37
3.4 First conclusions from the axiom system. 37
3.4.1 There is an empty set. 38
3.4.2 Not  set-forming  root  properties  of  a  selection

property. 
38

3.4.2.1 The set of all object-selections does not exist. 39
3.4.2.2 The set of all objects does not exist. 39
3.4.2.3 The set of all sets does not exist. 39
3.4.3 All  properties  that  are  always  true  are  not  set-

forming.
40

3.4.3.1 The identity cannot form a set. 40
3.4.3.2 The antinomy published by Russell cannot form a set. 40
3.4.4 All properties that are always false are set-forming. 41
3.5 Manipulation of sets. 42
3.5.1 Extension with an object-specific property. 42

   74                                                                                                                                                         



Section Title Page

3.5.2 Union of sets. 43
3.5.2.1 The union of two sets is a set. 43
3.5.2.2 Typical property of elements of a union. 44
3.5.3 Intersection of two sets. 45
3.5.4 Difference between two sets. 46
3.5.5 Set extension with primordial elements. 46
3.5.6 Union with primordial elements that can be carried out

as often as desired.
47

3.6 Construction of sets. 48
3.6.1 Construction using object-specific properties. 48
3.6.2 Construction of one-element sets. 48
3.6.3 Construction by nesting. 49
3.6.4 Construction by union of sets. 49
3.6.5 Construction  through  continued  extension  with

primordial elements. 
49

3.6.6 Construction by pairing sets. 50
3.7 Properties of the Empty Set. 50
3.7.1 The empty set is a subset of any set. 50
3.7.2 There is only one empty set. 51

                                                                                                                                            75    



Section Title Page

3.8 Variants  of  set-forming  root  properties  are  set-
forming.

51

3.9 Power sets. 51
3.10 Assignment of math objects 52
3.10.1 Assignments. 52
3.10.1.1 Image set. 52
3.10.1.2 Definition set. 53
3.10.1.3 Assignment rule. 53
3.10.2 Types of assignment. 53
3.10.2.1 Injective. 53
3.10.2.2 Surjective. 53
3.10.2.3 Bijective. 54
3.11 Injective and non-surjective assignments. 54
3.12 The size of a set. 55
3.12.1 Each object changes the size in the same way. 56
3.12.2 The order of size. 56
3.12.3 The smallest possible change in size. 57
3.12.4 Iterative exchange process when comparing the size of

two sets.
57

   76                                                                                                                                                         



Section Title Page

3.12.4.1 Condition for "smaller". 58
3.12.4.2 Condition for "greater". 58
3.12.4.3 Condition for "equal". 58
3.12.5 Preservation of the size ratio of two sets. 59
3.12.5.1 When expanding. 59
3.12.5.2 With reduction. 59
3.12.6 Size ratios for subsets. 60
4 Numbers. 61
4.1 The concept of number. 61
4.2 The power set of the primordial set, divided into sets

of equal size.
61

4.3 The natural numbers. 62
4.4 Properties of the natural numbers. 62
4.4.1 The zero is included. 63
4.4.2 Every natural number has a successor. 63
4.4.3 The natural numbers have a beginning. 64
4.4.4 The same successors have the same predecessor. 64
4.4.5 Induction axiom. 64
4.5 Note on the properties of natural numbers. 64

                                                                                                                                            77    



Section Title Page

4.6 Line of natural numbers. 65
4.7 Statements about the line of natural numbers. 65
4.7.1 Relationships at the end of a line. 65
4.7.2 Extension of a line. 65
4.7.3 Equality of lines. 66
4.8 Finite and infinite sets. 66
4.8.1 Finite sets. 66
4.8.2 Infinite sets. 66
4.8.3 The set of natural numbers ℕ is infinite. 66
5 Persons with assigned document content. 68
5.1 Georg Cantor 68
5.2 Bertrand Russell 68
5.3 Giuseppe Peano 68
6 References. 69
6.1 Peano‘s Axioms. 69
6.2 Cantor's definition of sets. 69
6.3 Russel‘s Antinomy. 70

   78                                                                                                                                                         


