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Abstract

Recent analysis has uncovered a broad swath of rarely considered real numbers
called real numbers in the neighborhood of infinity. Here, we extend the catalog of
the rudimentary analytical properties of all real numbers by defining a set of fractional
distance functions on the real number line and studying their behavior. The main
results are (1) to prove with modest axioms that some real numbers are greater than
any natural number, (2) to develop a technique for taking a limit at infinity via the
ordinary Cauchy definition reliant on the classical epsilon-delta formalism, and (3)
to demonstrate an infinite number of non-trivial zeros of the Riemann zeta function
in the neighborhood of infinity. We define numbers in the neighborhood of infinity
with a Cartesian product of Cauchy equivalence classes of rationals. We axiomatize
the arithmetic of such numbers, prove the operations are well-defined, and then make
comparisons to the similar axioms of a complete ordered field. After developing the
many underlying foundations, we present a basis for a topology.
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§1 Introduction

The original Euclidean definition of a real number [1] has given way over
time to newer constructive definitions such as the Cauchy equivalence class
suggested by Cantor [2], the Dedekind cut [3], and also axiomatic definitions,
the most popular of which are the axioms of a complete ordered field based
in Hilbert’s axioms of geometry [4]. The main purpose of the present analysis
is to compare and contrast geometric and algebraic constructions of the real
numbers, and then to give a hybrid, constructive-axiomatic definition which
increases the mutual complements among the two notions of geometry and
algebra.

The Euclid definition of R has its foundation in physical measurement.
Throughout most of the history of mathematics, it was sufficient to give the
Euclidean geometric conception of numbers as cuts in an infinite line, or “mag-
nitudes” as Euclid is usually translated [1]. In modernity, the preoccupation
of mathematics with algebra more so than quantity has stimulated the de-
velopment of alternatives which are said to be “more rigorous” than Euclid.
The main development of the present fractional distance analysis will be to
present an alternative set of algebraic constructions and axioms which more
thoroughly preserve the geometric notion that a number is a cut in an infinite
line. We will show that Cantor’s definition of R as the set of all Cauchy equiv-
alence classes of rationals leaves something to be desired with respect to the
underlying conception of R as an open-ended, infinite line (−∞,∞). Namely,
the equivalence class construction of R, which is based on an assumed set of
rational numbers Q, precludes the existence of a neighborhood of infinity dis-
tinct from any neighborhood of the origin (outlined below), as does the similar
Dedekind cut.

For a finite interval x′ ∈ [0, π
2
), we may use x = tan(x′) to construct the in-

terval x ∈ [0,∞) wherein everything is usually considered to be a real number.
We will develop the notion of fractional distance to prove that if there exists a
number at the Euclidean midpoint x′ = π

4
of [0, π

2
), then the bijectivity of the

tangent function f(x) = tan(x) on [0, π
2
) should require a real number at the

Euclidean midpoint of [0,∞). A proof (Theorem 3.2.2) that there must exist
such a number is the linchpin of everything in this analysis. Indeed, since Eu-
ler himself used this number [5–7], calling it i

2
in his own work, the fractional

distance approach to R presented here should be considered a return to the
old rather than a proposition for something new . Such a number as i

2
will be said to be a number in the neighborhood of infinity because it will have
non-zero “fractional distance” with respect to infinity. In that regard, we will
say that every number having zero fractional distance with respect to infinity
is a number in the neighborhood of the origin. We will show that the existence
of the neighborhood of infinity is required to preserve Euclid’s conception of a
number as a cut in an infinite line. We will argue that any construction which
preserves the concept of real numbers as cuts in an infinite line is necessarily
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better than one which overwrites that concept.
Treatment of the neighborhood of infinity as a distinct numerical mode with

separate behavior from the neighborhood of the origin is the direct motivator
for everything new reported here. We will posit one very modest change to
Cantor’s Cauchy equivalence class construction such that it will more fully
preserve the favorable notion that R = (−∞,∞). This notion is equivalent to
granting that R has the usual topology. The modified equivalence class con-
struction will give formal constructions for real numbers in the neighborhood
of infinity rather than preclude their existence. With our new constructions
and axioms given, we will present an analysis of R yielding unexpected prop-
erties which are non-trivial and exciting, and then we will give the formal
topology.

In earlier work [8,9], we have demonstrated the existence of real numbers in
the neighborhood of infinity, and we will do so again for the present analysis.
Exceeding the previous work, here we will construct such numbers more or
less directly from Q. Then we will axiomatize the arithmetic of such numbers
and study the consequences which follow.

The structure is as follows.

� Section Two: We give a simple Euclidean definition for real numbers.
These geometric considerations set the stage for the algebraic considera-
tions which follow.

� Section Three: We define and analyze a set of functions called fractional
distance functions. These functions constitute the kernel of the analytical
direction of the present work.

� Section Four: We give the properties of real numbers in the neighborhood
of infinity. The formal algebraic construction of such numbers by
Cauchy sequences is given therein.

� Section Five: We axiomatize a set of arithmetic operations for R and make
a comparison with the similar field axioms. We find they are mostly the
same but slightly different.

� Section Six: We prove some results with the present arithmetic axioms.
Interestingly, we develop a technique by which it is possible to take a limit
at infinity with the ordinary Cauchy prescription for limits: something
that has been considered heretofore impossible.

� Section Seven: This section is dedicated most specifically to the topolog-
ical and generally set theoretical properties of the real number line. The
main thrust is to define a Cantor-like set on R and then to examine its
consequences for the least upper bound property of connected sets.

� Section Eight: We apply the notions and consequences of fractional dis-
tance to the Riemann hypothesis. We show that the Riemann ζ function
does have non-trivial zeros off the critical line.

2
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§2 Mathematical Preliminary

§2.1 Real Numbers

In this section, the reader is invited to recall the distinction between the real
numbers R and the real ordered number field R = {R,+,×,≤}: real numbers
exist independently of their operations. Here, we define real numbers as cuts
in the real number line pending a more formal, complementary definition by
Cauchy sequences in Section 4, and by Dedekind cuts in Section 7. By defining
a line, giving it a label “real,” defining cuts in a line, and then defining real
numbers as cuts in the real number line, we make a rigorous definition of
real numbers sufficient for applications at any level of rigor. Specifically, the
definition given in this section underpins the Cauchy and Dedekind definitions
given later.

Generally, the definition of real numbers given in the present section is
equivalent to the Euclidean magnitude defined in Euclid’s Elements. Fitz-
patrick, the translator of Euclid’s original Greek in Reference [1], points out
that Euclid’s analysis was deliberately restricted to that which may be mea-
sured with a physical compass and straight edge: what are called the con-
structible numbers. Euclid surely was well aware, however, that the real num-
ber line is of immeasurable, non-constructible length, and that non-construct-
ible numbers exist. The main motivator for the new formalism presented here
is that we would like to consider both measurable and immeasurable magni-
tudes, or constructible and non-constructible numbers, exceeding those which
can be defined in the canonical Cauchy and Dedekind approaches [2, 3].

Definition 2.1.1 A line is a 1D Hausdorff space parameterizable by the iden-
tity map on an unbounded scalar. The interval representation of a line is
(−∞,∞). In other words, the connected interval (−∞,∞) is an infinite line.

Definition 2.1.2 A number line is a line equipped with a chart x and the
Euclidean metric

d(x, y) =
∣∣y − x∣∣ .

Definition 2.1.3 The real number line is a number line given the label “real.”

Definition 2.1.4 If x is a cut in a line, then

(−∞,∞) = (−∞, x] ∪ (x,∞) .

Definition 2.1.5 A real number x ∈ R is a cut in the real number line.

Axiom 2.1.6 Real numbers are such that

∀x, y ∈ R s.t. x ̸= y ∃n ∈ N s.t.
∣∣y − x∣∣ > 1

n
.

3
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Neither infinitesimals nor numbers having infinitesimal parts are real numbers.

Axiom 2.1.7 Real numbers are represented in algebraic interval notation as

R = (−∞,∞) .

In other words, x ∈ R if x is both less than infinity and greater than minus
infinity. The connectedness of R is explicit in the interval notation.

Remark 2.1.8 In Section 4.2, we will supplement Axiom 2.1.7 by giving a
definition in terms of Cauchy equivalence classes. Axiom 2.1.7 is often con-
sidered as lacking sufficient rigor, but the Cauchy definition will remedy any
so-called insufficiencies of the broad generality of Axiom 2.1.7.

Definition 2.1.9 R0 is a subset of all real numbers

R0 =
{
x ∈ R

∣∣ (∃n ∈ N)[−n < x < n]
}

.

Here, we define R0 as the set of all x ∈ R such that there exists an n ∈ N
allowing us to write −n < x < n. We call this the set of real numbers less
than some natural number (where absolute value is implied.) These numbers
are said to lie within the neighborhood of the origin.

Definition 2.1.10 R∞ is a subset of all real numbers with the property

R∞ = R \R0 .

§2.2 Affinely Extended Real Numbers

To prove in Section 3.2 that R∞ is not the empty set, namely that there are
real numbers larger than every natural number, we will make reference to “line
segments” beyond the simpler construction called “a line.” Most generally, a
line with two different endpoints A and B is a called a line segment AB. We
will use notation such that AB ≡ [a, b] where [a, b] is an interval of numbers.
Nowhere will we require that the endpoints must be real numbers so the in-
terval [a, b] = [−∞,∞] will conform to the definition of a line segment. The
real line R together with two endpoints {±∞} is called the affinely extended
real number line R = [−∞,∞]. The present section lays the foundation for an
analysis of general line segments in Section 2.3 by first giving some properties
of R.

Definition 2.2.1 For x ∈ R and n ∈ N, we have the properties

lim
x→0±

1

x
= diverges , and lim

n→∞

n∑
k=1

k = diverges .
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Definition 2.2.2 Define two affinely extended real numbers ±∞ such that
for x ∈ R and n, k ∈ N, we have the properties

lim
x→0±

1

x
= ±∞ , and lim

n→∞

n∑
k=1

k =∞ .

The limit as x approaches zero shall be referred to as “the limit definition of
infinity.” We avoid the appearance of self-reference noting that n→∞ means
“as n increases without bound.”

Axiom 2.2.3 The infinite element ∞ is such that

∞−∞ = undefined , and
∞
∞

= undefined .

Definition 2.2.4 The set of all affinely extended real numbers is

R = R ∪ {±∞} .

This set is defined in interval notation as

R = [−∞,∞] .

Remark 2.2.5 If xn > 0 with {xn} being a monotonic sequence, the ∞ sym-
bol is such that if xn ∈ R, and if

lim
n→∞

xn = diverges ,

then for the same xn ∈ R we have

lim
n→∞

xn =∞ .

Definition 2.2.6 An affinely extended real number x ∈ R is ±∞, or it is a
cut in the affinely extended real number line:

[−∞,∞] = [−∞, x] ∪ (x,∞] .

Theorem 2.2.7 If x ∈ R and x ̸= ±∞, then x ∈ R.

Proof. Proof follows from Definition 2.2.4. l

§2.3 Line Segments

In this section, we review what is commonly understood regarding Euclidean
line segments [1]. We begin to develop the relationship between points in
a line segment and cuts in a line. During the analyses which follow in the

5
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remainder of this work, we will closely examine the differences between cuts
and points as a proxy for the fundamental relationship between algebra and
geometry. Section 3.3 is dedicated specifically to these distinctions though
they are treated throughout this text. The general principle of the distinction
between cuts and points is the following. If x is a cut in a line, then

(−∞,∞) = (−∞, x] ∪ (x,∞) .

If x is a point in a line, then we have a tentative, preliminary understanding
that

(−∞,∞) = (−∞, x) ∪ {x} ∪ (x,∞) .

Definition 2.3.1 A line segment AB is a line together with two different
endpoints A ̸= B.

Definition 2.3.2 AB is a real line segment if and only if the endpoints A and
B bound some subset of the real line R = (−∞,∞).

Definition 2.3.3 Much of the analysis presented here will depend on rela-
tionships between geometric and algebraic expressions. The ≡ symbol will be
used to denote symbolic equality between geometric and algebraic expressions.

Axiom 2.3.4 A real line segment AB is represented in interval notation as
AB ≡ [a, b] where a and b are any two affinely extended real numbers a, b ∈ R
such that a < b.

Definition 2.3.5 The Euclidean notation AB is called the geometric repre-
sentation of a line segment. The interval notation [a, b] is called the algebraic
representation of a line segment.

Definition 2.3.6 The formal meaning of the relation AB ≡ [a, b] is that a is
the least number in the algebraic representation of A, b is the greatest number
in the algebraic representation of B, and that every other number x in the
algebraic representation of any point in AB has the property a < x < b.

Axiom 2.3.7 If AB and AC are two colinear line segments such that A is
not between B and C, then

AB = AC ⇐⇒ B = C .

Axiom 2.3.8 Two line segments AB and CD are equal, meaning AB = CD,
if and only if

AB

CD
=
CD

AB
= 1 .

6
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Definition 2.3.9 AB is a special label given to the unique real line segment
AB ≡ [0,∞]. We have

AB = AB ⇐⇒ AB ≡ [0,∞] .

Definition 2.3.10 X is an interior point of AB if and only if

X ̸= A , X ̸= B , and X ∈ AB .

Axiom 2.3.11 If X is an interior point of AB, then

AB = AX +XB .

Axiom 2.3.12 Every geometric point X along a real line segment AB has
one and only one algebraic interval representation X . If X is the algebraic
representation of X, then X ≡X and X is a unique subset of [a, b] ≡ AB.

Remark 2.3.13 Axioms 2.3.4 and 2.3.12 establish that line segments and
points in line segments have algebraic representations

AB ≡ [a, b] , and AB ∋ X ≡X ⊂ [a, b] .

It will be a main result of the fractional distance analysis to show that the
infinite length of a line segment such as AB ≡ [0,∞] will allow us to put more
than one number into the algebraic representation X of a geometric point X.
If a line segment has finite length L ∈ R0, we will show that there is at most
one real number in the algebraic representation of one of its interior points.
However, this constraint will vanish in certain cases of len(AB).

Definition 2.3.14 The algebraic representation X of a geometric point X
lying along a real line segment AB is

X = [x1, x2] , where x1, x2 ∈ R .

The special (intuitive) case of x1 = x2 = x gives

X = [x, x] = {x} = x .

Here, we have expressed X with included endpoints x1 and x2. Most generally,
however, an algebraic representation of a geometric point is a single number,
or it is some interval of numbers, i.e.: all variations of (x1, x2), (x1, x2], and
[x1, x2) are allowable algebraic representations of X. We do not require that
x1 ̸= x2 in all cases.

Remark 2.3.15 A point in a line segment has a representation as a set of
numbers, possibly only one number, and it remains to identify the exact re-
lationship between numbers (cuts) and geometric points. The key feature of

7
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Definition 2.3.14 is that it allows, provisionally, a many-to-one relationship
between cuts in lines (algebraic) and points in line segments (geometric). In
Section 3.3, we will strictly prove that which has been suggested: the algebraic
representation of X ∈ AB is only constrained to be a unique real number for
certain cases of AB with finite length.

Definition 2.3.16 If X ≡ X = [x1, x2] with x1 ̸= x2, and if x ∈ [x1, x2],
then x is said to be a possible algebraic representation of X. If x1 = x2 = x,
then x is said to be the algebraic representation of X. If x is the algebraic
representation of X, then x ≡ X. If x is a possible representation of X, then
x ∈ X, i.e.: if x is a possible algebraic representation of X, then

x ∈X = [x1, x2] ≡ X .

This statement may be abbreviated as x ∈ X while x ≡ X specifies the case
of x1 = x2.

Definition 2.3.17 A point C is called a midpoint of a line segment AB if and
only if

AC

AB
=
CB

AB
=

1

2
.

Alternatively, C is a midpoint of AB if and only if

AC = CB , and AC + CB = AB .

Definition 2.3.18 Hilbert’s discarded axiom [4] states the following: any four
points {A,B,C,D} of a line can always be labeled so that B shall lie between
A and C and also between A and D, and, furthermore, that C shall lie between
A and D and also between B and D.

Remark 2.3.19 Hilbert’s discarded axiom is discarded not because it wrong,
but rather because it is implicit in Hilbert’s other axioms [4]. It is discarded
by redundancy rather than invalidity.

Theorem 2.3.20 All line segments have at least one midpoint.

Proof. Let there be a line segment AB and two circles of equal radii centered
on the points A and B. Let the radii be less than AB but great enough
such that the circles intersect at exactly two points S and T . The geometric
configuration shown in Figure 1 is guaranteed to exist by Hilbert’s discarded
axiom pertaining to {A,X1, X2, B}. By construction, it follows that

AS = AT = BS = BT .

8
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Figure 1: This figure proves that every line segment AB has one and only one midpoint.

Let the line segment ST intersect AB at C. By the Pythagorean theorem, C
is a midpoint of AB because

AC2 + CS2 = AS2 , and BC2 + CS2 = BS2 ,

together yield
AC = BC .

C separates AB into two line segments so

AC + CB = AB .

These two conditions, AC = BC and AC + CB = AB, jointly conform to
Definition 2.3.17, so C is a midpoint of an arbitrary line segment AB. l

Example 2.3.21 Theorem 2.3.20 regards an arbitrary line segment AB. The-
refore, the theorem holds in the case of an arbitrary line segment AB. One
might be afflicted, however, with the assumption that it is not possible to
define two such intersecting circles centered on the endpoints of an arbitrary
line segment such as AB ≡ [0,∞]. To demonstrate how the arbitrary case of
any line segment AB covers the specific case of AB, suppose AB ≡ [0, π

2
], and

let x′ ∈ X be a number in the algebraic representation of X ∈ AB. We say
that [0, π

2
] is the algebraic representation of AB charted in x′. Let x be such

that
x = tan(x′) ,

so that x and x′ are two charts related by a conformal transformation. Using

tan(0) = 0 , and tan

(
π

2

)
=∞ ,

where the latter follows from Definition 2.2.2, it follows that [0,∞] is the
algebraic representation of AB charted in x. Therefore, AB = AB with
respect to the x chart.

9
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Hilbert’s discarded axiom guarantees the existence of two points X1 ∈ AB
and X2 ∈ AB with algebraic representations X ′

1 and X ′
2 such that, for exam-

ple,

x′1 =
π

6
∈X ′

1 , and x′2 =
π

3
∈X ′

2 .

If the radius of the circle centered on A is AX2 and the radius of the circle
centered on B is BX1, then it is guaranteed that these circles will intersect
at two points S and T , as in Figure 1. Since AB = AB in the x chart, it
is required that X1 ∈ AB and X2 ∈ AB. Therefore, circles centered on the
endpoints of AB with radii AX2 and BX1 will intersect at exactly two points.
The chart on the line segment cannot affect the line segment’s
basic geometric properties! It is unquestionable that the points X1 and
X2 exist and are well-defined in the x′ chart, and it is not possible to disrupt
the geometric configuration by introducing a second chart onto AB. A chart
can no more disrupt the geometric configuration than erasing an island from
a map might make the physical island disappear from the sea. X1 and X2 do
not cease to exist simply because we define a conformal chart x = tan(x′). If
they ceased to exist, then that would violate Hilbert’s discarded axiom. This
example demonstrates that Theorem 2.3.20 is valid even for the specific case
of the infinite line segment AB = AB.

Theorem 2.3.22 All line segments have one and only one midpoint.

Proof. For proof by contradiction, suppose C andD are two different midpoints
of a line segment AB. C and D are midpoints of AB so we may derive from
Definition 2.3.17

AC = CB =
AB

2
, and AD = DB =

AB

2
.

It follows that AC = AD. By Axiom 2.3.7, therefore, C = D and we invoke a
contradiction having assumed that C and D are different. l

§3 Fractional Distance

§3.1 Fractional Distance Functions

If there are two circles with equal radii whose centers are separated by an infi-
nite distance, then what numerical radii less than infinity will allow the circles
to intersect at exactly two points? To answer this question, we will introduce
fractional distance functions. We will use these functions to demonstrate the
existence of real numbers in the neighborhood of infinity.

Definition 3.1.1 For any point X on a real line segment AB, the geometric
fractional distance function DAB is a continuous bijective map

DAB(AX) : AB → [0, 1] ,
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which takes AX ⊆ AB and returns real numbers. This function returns AX
as a fraction of AB. Emphasizing the geometric construction, the geometric
fractional distance function DAB is defined as

DAB(AX) =


1 for X = B

AX

AB
for X ̸= A, X ̸= B .

0 for X = A

The quotient of two real line segments is defined as a real number.

Remark 3.1.2 The domain of DAB(AX) is defined as subsets of real line
segments. This allows AX = AA which would be excluded from a domain of
real line segments because AA does not have two different endpoints.

Theorem 3.1.3 For any point X ∈ AB, the bijective geometric fractional
distance function DAB(AX) : AB → R has range R = [0, 1].

Proof. Assume DAB(AX) < 0. Then one of the lengths in the fraction must be
negative and we invoke a contradiction with the length of a line segment defined
as a positive number (Definition 2.1.2). If DAB(AX) > 1, then AX > AB, and
we invoke a contradiction by the implication AX ⊈ AB. We have excluded
from R all numbers less than zero and greater than one. Since DAB(AX) is
a continuous function taking the values zero and one at the endpoints of its
domain, the intermediate value theorem requires that the range of DAB(AX) :
AB → R is R = [0, 1]. l

Corollary 3.1.4 All line segments have at least one midpoint.

Proof. (Reproof of Theorem 2.3.20.) DAB(AX) is a continuous function on the
domain AB taking finite values zero and one at the endpoints of its domain.
By the intermediate value theorem, there exists a point C in the domain AB
for which DAB(AC) = 0.5. By Definition 2.3.17, C is a midpoint of AB. l

Theorem 3.1.5 Every midpoint of a line segment AB is an interior point of
AB.

Proof. If X ∈ AB is not an interior point of AB, then X = A or X = B. In
each case respectively, the geometric fractional distance function returns

DAB(AA) = 0 , or DAB(AB) = 1 .

A point C is a midpoint of AB if and only if

DAB(AC) = 0.5 .
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No midpoint can be an endpoint. l

Remark 3.1.6 Given the geometric fractional distance function, it is not clear
how to compute DAB(AX) when X is an arbitrary interior point. By Defini-
tion 3.1.1, we know that the fraction AX

AB
is a real number but we have not

yet developed any tools for finding the numerical value. The quotient nota-
tion required for computing fractional distance calls for an algebraic notion of
distance.

Definition 3.1.7 D†
AB is the algebraic fractional distance function. It is an

algebraic expression which totally replicates the behavior of the geometric
fractional distance function DAB on an arbitrary line segment AB ≡ [a, b], and
it has the added property that its numerical output is easily simplified. The
algebraic fractional distance function D†

AB is constrained to be such that

D†
AB(AX) = DAB(AX) .

for every point X ∈ AB.

Remark 3.1.8 In Definitions 3.1.9 and 3.1.11, we will define two kinds of
algebraic fractional distance functions (FDFs). The purpose in defining two
kinds of FDFs will be so that we may compare their properties, and then choose
the one that exactly replicates the behavior of the geometric FDF DAB.

Definition 3.1.9 The algebraic FDF of the first kind

D′
AB(AX) : AB → [0, 1] ,

is a map on subsets of real line segments

D′
AB(AX) =


1 for X = B

∥AX∥
∥AB∥

for X ̸= A, X ̸= B ,

0 for X = A

where
∥AX∥
∥AB∥

=
len[a, x]

len[a, b]
,

and [a, x] and [a, b] are the line segments AX and AB expressed in interval
notation.

Definition 3.1.10 The norm ∥AX∥ = len[a, x] which appears in D′
AB(AX) is

defined so that
D′
AB(AX) = DAB(AX) .
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Specifically, the length function is defined as the Euclidean distance between
the endpoints of the algebraic representation. Per Definition 2.1.2, we have

len[a, b] = d(a, b) =
∣∣b− a∣∣ .

Definition 3.1.11 The algebraic fractional distance function of the second
kind

D′′
AB(AX) : [a, b]→ [0, 1] ,

is a map on intervals of the form

D′′
AB(AX) =


1 for X = B

len[a, x]

len[a, b]
for X ̸= A, X ̸= B .

0 for X = A

Remark 3.1.12 Take note of the main difference between the two algebraic
FDFs. The first kind has a geometric domain

D′
AB(AX) : AB → R ,

but the second kind has an algebraic domain

D′′
AB(AX) : [a, b]→ R .

As a matter of consistency of notation, we have written D′′
AB(AX) even when

the notation D′′
AB([a, x]) might better illustrate that the domain of D′′

AB is
intervals rather than line segments. The reader is so advised.

Axiom 3.1.13 The ordering of R is such that for any x, y ∈ R, if

x ∈ [x1, x2] = X ≡ X , and y ∈ [y1, y2] = Y ≡ Y ,

then
DAB(AX) > DAB(AY ) =⇒ x > y .

Theorem 3.1.14 The geometric fractional distance function DAB is injective
(one-to-one) on all real line segments.

Proof. By Definition 3.1.1, the geometric FDF is

DAB(AX) =


1 for X = B

AX

AB
for X ̸= A, X ̸= B .

0 for X = A
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For proof by contradiction, assume DAB is not always injective. Then there
exists some X1 ̸= X2 such that

AX1

AB
=
AX2

AB
.

The range of DAB is [0, 1], and it is known that all such 0 ≤ x ≤ 1 have an
additive inverse element. This allows us to write

0 =
AX2

AB
− AX1

AB
=
AX2 − AX1

AB
⇐⇒ AX2 = AX1 .

Axiom 2.3.7 gives AX = AY if and only if X = Y , so the implication X1 = X2

contradicts the assumed conditionX1 ̸= X2. The geometric fractional distance
function DAB(AX) is injective on all real line segments. l

Remark 3.1.15 In Theorem 3.1.14, we have not considered specifically the
case in which AB is a line segment of infinite length. There are many numbers
x1 and x2 such that zero being equal to their difference divided by infinity does
not imply that x1 = x2, e.g.:

0 =
5− 3

∞
⇍⇒ 5 = 3 . (3.1)

However, DAB(AX) does not have numbers in its domain. The fraction in
Equation (3.1) can never appear when computing AX

AB
because DAB(AX) takes

line segments or simply the point A (written as AA in abused line segment
notation.)

To be clear, simplifying the expression DAB(AX) in the general case re-
quires some supplemental constraint like AB = cAX for some scalar c. In the
Euclidean program, constraints in this form might pertain to ratios of marks
on a measuring stick. With a such a constraint in place, either algebraic or
geometric, and by way of Axiom 2.3.8, we may evaluate the quotient as

AX

AB
=
cAB

AB
= c .

Without such auxiliary constraints, we have no general method for the evalu-
ation of the quotient. Theorem 3.1.14 holds, however, because numbers such
as the ∞ in the denominator of Equation (3.1) will be used only to compute

D†
AB(AX) when we introduce the norm ∥AX∥. The main feature distinguish-

ing the algebraic FDF D†
AB from the geometric FDF DAB is that the former

allows us to compute the quotient in the general case with no requisite auxil-
iary constraints. Therefore, we might write D†

AB(AX;x) to show that is is a

function of AX and a chart x on AB, or D†
AB([a, x];x) as mentioned earlier.

However, we will not write that explicitly. In the absence of words to the
contrary, and if AB is a real line segment, then it should be assumed that the
chart is the standard Euclidean coordinate.
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Theorem 3.1.16 The geometric fractional distance function DAB is surjective
(onto) on all real line segments.

Proof. Given the range R = [0, 1] proven in Theorem 3.1.3, proof follows from
the notion of geometric fractional distance. l

Remark 3.1.17 Now that we have shown a few of the elementary properties
of the geometric FDF, we will continue to do so and also examine the similar
behaviors of the algebraic FDFs of the first and second kinds.

Conjecture 3.1.18 The algebraic fractional distance function of the first kind
D′
AB is injective (one-to-one) on all real line segments. (This is proven in

Theorem 6.1.4.)

Theorem 3.1.19 The algebraic fractional distance function of the second kind
D′′
AB is not injective (one-to-one) on all real line segments.

Proof. Recall that Definition 3.1.11 gives D′′
AB : [a, b]→ [0, 1] as

D′′
AB(AX) =


1 for X = B

len[a, x]

len[a, b]
for X ̸= A, X ̸= B .

0 for X = A

Injectivity requires that

D′′
AB(AX) = D′′

AB(AY ) ⇐⇒ [a, x] = [a, y] ⇐⇒ x = y .

Let n,m ∈ N be such that n ̸= m and also such that n ∈ N ≡ N and
m ∈M ≡M . We have

D′′
AB(AN) =

len[0, n]

len[0,∞]
= 0 , and D′′

AB(AM) =
len[0,m]

len[0,∞]
= 0 .

Therefore, the algebraic FDF of the second kind is not injective on all real line
segments because

D′′
AB(AN) = D′′

AB(AM) ⇍⇒ n = m . l

Remark 3.1.20 At this point, we can rule out D′′
AB as the definition of D†

AB

because the geometric FDF DAB which constrains D†
AB is one-to-one. If DAB

is one-to-one on all real line segments, then so is D†
AB.

Carefully note that the domain of the algebraic FDF of the first kind is line
segments rather than algebraic intervals. We have

D′
AB(AX) : AB → [0, 1] , and D′′

AB(AX) : [a, b]→ [0, 1] .
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Taking for granted that we will prove the injectivity of D′
AB in Theorem 6.1.4,

this distinction of domain—AB versus [a, b]—will prohibit the breakdown in
the one-to-one property when a point X ∈ AB can have many different num-
bers in its algebraic representation. An assumption that the domain of the
algebraic FDF is an algebraic interval [a, b] is likely a root cause of much
pathology in modern analysis .

Theorem 3.1.21 The geometric fractional distance function DAB is continu-
ous everywhere on the domain AB.

Proof. To prove that DAB is continuous on AB ≡ [0,∞], it will suffice to show
that DAB is continuous at the endpoints and an interior point.

• (Interior point) A function f(x) is continuous at an interior point x0 of its
domain [a, b] if and only if

lim
x→x0

f(x) = f(x0) .

In terms of the geometric FDF, the statement that DAB is continuous at an
interior point X0 ∈ AB becomes

lim
X→X0

DAB(AX) = DAB(AX0) .

Obviously, DAB satisfies the definition of continuity on the interior of AB.

• (Endpoint A) A function f(x) is continuous at the endpoint a of its domain
[a, b] if and only if

lim
x→a+

f(x) = f(a) .

We conform to this definition of continuity with

lim
X→A+

DAB(AX) = lim
X→A+

AX

AB
=
AA

AB
= DAB(AA) .

• (Endpoint B) A function f(x) is continuous at the endpoint b of its domain
[a, b] if and only if

lim
x→b−

f(x) = f(b) .

We conform to this definition with

lim
X→B−

DAB(AX) = lim
X→B−

AX

AB
=

AB

AB
= DAB(AB) .

The geometric FDF is continuous everywhere on its domain. l

Theorem 3.1.22 The algebraic fractional distance function of the first kind
D′
AB is not continuous everywhere on the domain AB.
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Proof. A function f(x) with domain x ∈ [a, b] is continuous at b if

lim
x→b−

f(x) = f(b) ,

In terms of D′
AB, the statement that D′

AB is continuous at B becomes

lim
X→B

D′
AB(AX) = D′

AB(AB) = 1 .

Evaluation yields

lim
X→B

D′
AB(AX) = lim

x→∞

len[0, x]

len[0,∞]
= lim

x→∞
x
1

∞
= lim

x→∞
0 ̸= 1 = D′

AB(AB) .

The algebraic FDF of the first kind is not continuous everywhere on all real
line segments. l

Remark 3.1.23 In Theorem 3.1.22, we have shown that the limit approaches
zero rather than the unit value required for D†

AB(AB) to agree with DAB(AB).
However, we may also write this limit as

lim
x→∞

1

∞
x = lim

x→∞
y→∞

x

y
= lim

y→∞
∞1

y
=
∞
∞

= undefined .

Perhaps, then, it would be better to write simply

lim
x→∞

x

∞
=
∞
∞

= undefined ̸= 1 .

In any case, we have shown that an elementary evaluation does not produce
the correct limit at infinity. Therefore, we should also examine the Cauchy
definition of the limit relying on the ε–δ formalism.

Theorem 3.1.24 The algebraic fractional distance function of the first kind
D′
AB does not converge to a Cauchy limit at infinity.

Proof. According to the Cauchy definition of the limit of f : D → R at infinity,
we say that

lim
x→∞

f(x) = l ,

if and only if
∀ε > 0 ∃δ > 0 s.t. ∀x ∈ D ,

we have
0 <

∣∣x−∞∣∣ < δ =⇒
∣∣f(x)− l∣∣ < ε .

Since ε and δ are implicitly real-valued, there is no δ > ∞. Thus, D′
AB(AX)

fails the Cauchy criterion for convergence to a limit at infinity. l
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Remark 3.1.25 In general, the above Cauchy definition of a limit fails for any
limit at infinity because there is never a δ greater than infinity. Usually, this
issue is worked around with the metric space definition of a limit at infinity,
but it is a main result of this analysis that we will develop a technique
for taking a limit at infinity with the normal Cauchy prescription. This result
appears in Section 6.1.

Remark 3.1.26 The algebraic FDF D†
AB exists by definition. It is a function

which has every behavior of the geometric FDF DAB and also adds the ability
to compute numerical ratios between the lengths of any two real line segments.
Numbers being generally within the domain of algebra, the geometric FDF
returns a fraction that we have no general way to simplify. Since it is hard
to conceive of an irreducible analytical form for the algebraic FDF other than
D′
AB and D′′

AB, it is somewhat paradoxical that neither of them replicate the

global behavior of the algebraic FDF D†
AB. However, after developing some

more material, we will show in Section 6.1 that D†
AB is D′

AB after all. We will
prevent an unwarranted assumption about infinity from sneakily propagating
into the present analysis. Then we will fix the discontinuity of D′

AB which we
have demonstrated in Theorems 3.1.22 and 3.1.24.

Theorem 3.1.27 If x is a real number in the algebraic representations of both
X ∈ AB and Y ∈ AB, then X = Y .

Proof. If X ̸= Y , then

D†
AB(AX) ̸= D†

AB(AY ) .

If x ∈ X and x ∈ Y , then it is possible to make cuts at X and Y such that

D†
AB(AX) =

len[a, x]

len[a, b]
= D†

AB(AY ) .

This contradiction requires X = Y . l

§3.2 Comparison of Real and Natural Numbers

The main result of this section is to prove via analysis of FDFs that there exist
real numbers greater than any natural number. Consequently, R∞ = R \ R0

cannot be the empty set.

Definition 3.2.1 Every interval has a number at its center. The number at
the center of an interval [a, b] is defined as the average of a and b if an average
can be computed. Likewise, the number in the center is the unique number c
such that

[a, b] = [a, c] ∪ (c, b] , and len[a, c] = len[c, b] .
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Theorem 3.2.2 There exists a unique real number halfway between zero and
infinity.

Proof. By Theorem 2.3.22 and Definition 2.3.17, there exists one midpoint C
of every line segment AB such that

DAB(AC) = 0.5 .

Recalling that we have defined DAB(AX) = D†
AB(AX) for all X ∈ AB, and

recalling that AB ≡ [0,∞], it follows that

D†
AB(AC) = 0.5 .

Using C ≡ C = [c1, c2], Axiom 2.3.11 and Definition 2.3.14 require

AB = AC + CB ⇐⇒ [0,∞] = [0, c1) ∪ C ∪ (c2,∞] .

It follows that
C ⊂ R .

Every possible number that can be in the algebraic representation of the point
C is a real number. If c1 = c2 = c, then c ∈ R is the unique real number
halfway between zero and infinity. If c1 ̸= c2, then, by Definition 3.2.1, the
number at the center of [c1, c2] is the unique real number halfway between zero
and infinity. l

Remark 3.2.3 How can D†
AB(AC) = 0.5 when Definition 3.1.9 gives

D′
AB(AC) =

len[0, c]

∞
?

The prevailing assumption about infinity is

x ∈ R ⇐⇒ x

∞
= 0 . (3.2)

If Equation (3.2) is true, then either (i) there exists a line segment without a
midpoint, or (ii) the geometric and algebraic fractional distance functions do
not agree for every X in an arbitrary AB.

Every line segment does have a midpoint (Theorem 2.3.22), and our frac-
tional distance functions are defined to always agree (Definition 3.1.7). There-
fore, Equation (3.2), which is a statement dependent on the assumed properties
of∞, must be reformulated. In Section 4.1, we will define notation for subsets
of R consisting of all numbers having fractional distance X with respect to
AB meaning that x

∞ = X . The sets will be labeled RX
ℵ most generally with

0 < X < 1, but it will follow that R0
ℵ is the set of all real numbers having

zero fractional distance with respect to AB. We know that R0 ⊂ R0
ℵ, but it

shall remain to be determined whether or not there are real numbers greater
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than any natural number, yet still having zero fractional distance with respect
to AB. In Section 7.4, we will closely examine whether or not such numbers
ought to exist.

While we will postpone the definition of RX
ℵ to Section 4.1, and while the

formal construction of RX
ℵ by equivalence classes of Cauchy sequences will not

appear until Section 4.2, here we will go ahead and answer the question, “How
can D†

AB(AC) = 0.5 when Definition 3.1.9 gives

D′
AB(AC) =

len[0, c]

∞
?”

The answer is that Equation (3.2) must be reformulated as

x ∈ R0
ℵ ⇐⇒ x

∞
= 0 ,

if we are to avoid harsh contradictions in the definitions of our FDFs. Regard-
ing Theorem 3.2.2 and the present question which follows, the real numbers
in the algebraic representation of the geometric midpoint of AB shall be

x ∈ R0.5
ℵ ⇐⇒ x

∞
= 0.5 .

In addition to motivating the soon-to-be-defined RX
ℵ notation, the present

remark illustrates the reasoning behind allowing geometric points to be rep-
resented as entire intervals X ≡ X . The reason is that many real numbers
divided by infinity give zero but only the geometric left endpoint of AB will
have vanishing fractional distance. For instance, if x ∈ R0.5

ℵ and n is a natural
number having zero fractional magnitude with respect to infinity, then

x+ n

∞
=

x

∞
+

n

∞
= 0.5 + 0 .

Obviously, x ∈ R0.5
ℵ is not a unique number though the midpoint C is a unique

point.

Definition 3.2.4 If RX
ℵ is the set of all numbers whose fractional distance

with respect to AB is X , and if 0 < X < 1, then ℵX is the number in the
center of the interval.

Remark 3.2.5 The reader is invited to recall that Euler often employed the
letter i to refer to an infinitely large integer. Euler made use of the number
i
2
for proofs in his most seminal works [5–7]. Therefore, we introduce nothing

new with the ℵX notation because i
2
∼ ℵ0.5.

Main Theorem 3.2.6 Some elements of R are greater than every element of
N.
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Proof. Let AB have a midpoint C so that DAB(AC) = 0.5. Then every real
number c ∈ [c1, c2] ≡ C is greater than any n ∈ N because n

∞ = 0 implies
n ∈ A ≡ A through the definition DAB(AA) = 0. DAB is one-to-one, so by
Axiom 3.1.13 giving for x ∈ X and y ∈ Y

DAB(AX) > DAB(AY ) =⇒ x > y ,

we find that every c ∈ C ⊂ R is greater than every n ∈ N. Generally, every
x ∈ RX

ℵ is greater than any natural number whenever X > 0. l

Corollary 3.2.7 R∞ = R \ R0 is not the empty set.

Proof. Definition 2.1.9 defines R0 as the subset of R whose elements are less
than some element of N. We have proven in Main Theorem 3.2.6 that some
elements of R are not in R0. It follows that R∞ ̸= ∅. l

§3.3 Comparison of Cuts in Lines and Points in Line Segments

In this section, we will make clarifications regarding the cases in which an
interior point of a line segment can or cannot be uniquely identified with
a single real number. Namely, we distinguish cases in which X ≡ x and
X ≡X = [x1, x2] with x1 ̸= x2.

Theorem 3.3.1 If AB is a real line segment of finite length L ∈ R0, then
every point X ∈ AB has a unique algebraic representation as one and only
one real number.

Proof. Let a, b ∈ R0 and AB ≡ [a, b]. The algebraic FDF D†
AB is defined to

behave exactly as the geometric FDF DAB, so, therefore, D†
AB must be one-to-

one (injective). By Definition 2.3.14, every point in a real line segment has an
algebraic representation

X ≡X = [x1, x2] .

Therefore, the present theorem will be proven if we show that x1 = x2 for all
X ∈ AB with L ∈ R0. To initiate proof by contradiction, assume x1, x2 ∈ R0

and x1 ̸= x2. (The validity of this condition follows from L ∈ R0.) Then

min[D†
AB(AX)] =

len[a, x1]

len[a, b]
=
x1 − a
b− a

,

and

max[D†
AB(AX)] =

len[a, x2]

len[a, b]
=
x2 − a
b− a

.

The one-to-one property of D†
AB requires that

x1 − a
b− a

=
x2 − a
b− a

⇐⇒ x1 = x2 .

This contradicts the assumption x1 ̸= x2. The theorem is proven. l
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Theorem 3.3.2 If AB is a real line segment of infinite length L = ∞, then
no point X ∈ AB has a unique algebraic representation as one and only one
real number.

Proof. By Definition 2.3.14, every point in a line segment has an algebraic
representation

X ≡X = [x1, x2] .

It follows that

min[D†
AB(AX)] =

len[0, x1]

len[0,∞]
=
x1
∞

,

Now suppose that x0 ∈ R+
0 where the superscript “+” indicates the positive-

definite subset. Further suppose z = x1 + x0 so that z > x1. Then

len[0, z]

len[0,∞]
=

z

∞
=
x1 + x0
∞

=
x1
∞

= min[D†
AB(AX)] .

Invoking the single-valuedness of bijective functions, we find that

min[D†
AB(AX)] = max[D†

AB(AX)] =
x2
∞

=⇒ x1 < z ≤ x2 .

Therefore x1 ̸= x2 and the theorem is proven. l

Example 3.3.3 This example illustrates some of the underlying machinations
associated with the many-to-one relationship between numbers and points in
an infinitely long line segment. If we separate an endpoint from a closed
algebraic interval, we may write

[a, b] = {a} ∪ (a, b] .

To separate an endpoint from a line segment we write

AB = A+ AB .

If A has an algebraic representation A such that len(A ) > 0, then the only
way that we can leave the length of AB unchanged after removing A is for
AB to have infinite length. Given len(A ) > 0, observe that

∥AB∥ − len(A ) = ∥AB∥ ⇐⇒ ∥AB∥ =∞ .

Remark 3.3.4 Theorems 3.3.1 and 3.3.2 do not cover all cases of len(AB) =
L. For instance, four coarse bins of L are

� L ∈ R0

� L ∈ R0
ℵ \ R0 (L larger than any n ∈ N yet not so large that L

∞ > 0.)

� L ∈ R∞ \R0
ℵ (which is also written L ∈ {RX

ℵ } ∪R1
ℵ when {RX

ℵ } is the set
of all RX

ℵ such that 0 < X < 1, as in Section 4.1)
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� L =∞ .

We have not considered the two intermediate cases of finite L, the lesser of
which is finite L ∈ R0

ℵ \ R0. Since we have not introduced any numbers
with which to describe this case, and since we will not decide R0

ℵ \ R0 = ∅
until Section 7.4, we cannot at this time prove the result regarding the multi-
valuedness of points in line segments having L ∈ R0

ℵ \ R0. The limit of the
third case as L ∈ {RX

0 } ∪ R1
0 is proven to be many-to-one in Theorem 6.2.1.

§4 The Neighborhood of Infinity

§4.1 Intermediate Neighborhoods of Infinity

In this section, we will develop notation useful for describing real numbers
whose fractional magnitude with respect to infinity is greater than zero.

Definition 4.1.1 The number ℵX is defined to have the property

ℵX
∞

= X .

Equivalently, if ℵX ∈X ≡ X ∈ AB, then

DAB(AX) = X .

Remark 4.1.2 We have shown in Theorem 3.3.2 that there are many real
numbers in the algebraic representation of X ∈ AB. When X is not an
endpoint of AB, ℵX can be thought of the as the number in the center of the
interval (x1, x2) = X ≡ X. Definition 3.2.1 defines the number in the center
of X as the average of x1 and x2 if the average is computable, but, as yet, we
have no way to determine the numbers that bound the algebraic representation
of X. This also makes it impossible to compute the length function. However,
we will determine and analyze the bounds of the algebraic representation of
X ∈ AB in Section 7.5. For the special cases of ℵ0 and ℵ1, we should not
think of them as being in the centers of the intervals A ≡ A and B ≡ B.
Instead, ℵ0 is the least number in A ≡ A ∈ AB and ℵ1 is the greatest number
in B ≡ B ∈ AB.

Definition 4.1.3 For 0 < X < 1, RX
ℵ is a subset of positive real numbers R+

such that
RX

ℵ =
{
ℵX + b

∣∣ |b| ∈ A ∈ AB, DAB(AA) = 0
}
.

The set RX
ℵ is called the whole neighborhood of ℵX . The set {RX

ℵ } of all
RX

ℵ , meaning the union of RX
ℵ for every 0 < X < 1, is called the set of

all intermediate whole neighborhoods of R. We will also call RX
ℵ the whole

neighborhood of numbers that are 100×X% of the way down the real number
line. (These conventions ignore the negative branch of R.)
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Definition 4.1.4 It will also be useful to define a set RX
0 ⊆ RX

ℵ such that
0 < X < 1, and

RX
0 =

{
ℵX + b

∣∣ b ∈ R0

}
.

The set RX
0 is called the natural neighborhood of ℵX because we have con-

strained b to be less than some n ∈ N. {RX
0 } is the union of RX

0 for every
0 < X < 1.

Definition 4.1.5 Every number of the form x = ℵX + b has a big part ℵX
and a little part b. It is understood that b < ℵX for any X > 0. We define
notations

Big(ℵX + b) = ℵX , and Lit(ℵX + b) = b .

Remark 4.1.6 We have omitted from Definitions 4.1.3 and 4.1.4 the cases of
X = 0 and X = 1, though they do follow more or less directly. The main issue
is that we must restrict the sign of b to keep the elements of the set within the
totally real interval [0,∞) ⊂ R. For X = 0, the little part b is non-negative
and for X = 1 it is negative-definite.

The difference between the natural neighborhoods RX
0 and the whole neigh-

borhoods RX
ℵ is that b is not restricted to R0 in the latter. In Definition 4.1.4,

we did not give the condition on b in terms of the absolute value, as in Defini-
tion 4.1.3, because R0 contains negative numbers while b ∈ A ∈ AB ≡ [0,∞]
is strictly non-negative. The main purpose in defining distinct sets {RX

0 } and
{RX

ℵ } is this: we know that there exist numbers larger than any b ∈ R0 (Main
Theorem 3.2.6), but we do not know if all such numbers have greater than zero
fractional magnitude with respect to AB. We will revisit this issue in Section
7.4. In the meantime, we will be careful to treat RX

0 and RX
ℵ as distinct sets

which may or may not be equal.

Definition 4.1.7 The whole neighborhood of the origin is

R0
ℵ =

{
x
∣∣ x ∈ A ≡ A ∈ AB

}
,

and the natural neighborhood of the origin is

R0
0 =

{
x
∣∣ x ∈ R0, x ≥ 0

}
,

Remark 4.1.8 Note that R0 ⊈ R0
0 ⊆ R0

ℵ because R0 contains positive and
negative numbers, as per Definition 2.1.9.

Definition 4.1.9 A real number x is said to be in the neighborhood of the
origin if and only if

x ∈ X , and DAB(AX) = 0 .
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All such numbers are said to be x ∈ R0
ℵ. Every real number not in the

neighborhood of the origin is said to in the neighborhood of infinity. A positive
real number x is said to be in the neighborhood of infinity if and only if

x ∈ X , and DAB(AX) ̸= 0 .

Remark 4.1.10 Definition 2.1.10 states that R∞ = R \ R0. Therefore, if
R0

ℵ\R0
0 ̸= ∅, meaning that there do exist real numbers greater than any natural

number yet not great enough to have non-zero fractional distance with respect
to AB, then the set R∞ will contain numbers in the neighborhood of the origin
and numbers in the neighborhood of infinity. To avoid ambiguity, we will not
use the symbol R∞. Instead, we will mostly use the detailed RX

ℵ and RX
0 set

enumeration given in the present section. With this scheme of distinct whole
and natural neighborhoods, we have left room judiciously for numbers in the
neighborhood of the origin that are still larger than any natural number. In
other work [8, 9], we have used the semantic convention that every number in
the neighborhood of the origin is less than some natural number. That meant
R0 was the set of all real numbers in the neighborhood of the origin. The
present convention, however, is better suited to the fuller analysis presently
given. The reader should carefully note that the present neighborhood of the
origin R0

ℵ includes all numbers which have zero fractional distance along the
real number line, even if some of those numbers are larger than any n ∈ N.

Definition 4.1.11 The δ-neighborhood of a number x ∈ R is an interval
(x−δ, x+δ) or some closed or half-open permutation thereof. While there is no
inherent constraint on the magnitude of δ, here we will take “δ-neighborhood”
to imply δ ∈ R0. We will use the convention that the Ball function defines an
open δ-neighborhood as

Ball(x, δ) = (x− δ, x+ δ) .

Definition 4.1.12 The δ-neighborhood of an interior point X ∈ AB is a line
segment Y Z where∣∣DAB(AX)−DAB(AY )

∣∣ = ∣∣DAB(AX)−DAB(AZ)
∣∣ = δ .

Remark 4.1.13 Without regard to the δ-neighborhood of any point or num-
ber, we have defined neighborhoods of fractional distance with the geometric
FDF, as in Definition 4.1.9. If DAB(AX) = 0, then the numbers in the al-
gebraic representation of X are said to be in the neighborhood of the origin.
They are said to be in the neighborhood of infinity otherwise. Neither of these
neighborhoods, neither that of the origin nor that of infinity, are defined for-
mally as δ-neighborhoods though such a definition may be inferred. In advance
of the following definition for RX

ℵ (Definition 4.1.14), recall that Definition 3.2.4
gave ℵX as the number in the center of the interval RX

ℵ = (a, b).
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Definition 4.1.14 An alternative definition for RX
ℵ valid in the neighborhood

of infinity, specifically for 0 < X < 1, is

RX
ℵ =

{
ℵX ± b

∣∣ b ∈ R0
ℵ
}
.

This definition is totally equivalent to Definition 4.1.3.

§4.2 Equivalence Classes for Intermediate Natural Neighborhoods
of Infinity

Euclid’s definition of R is inherently a geometric one based on the measurement
of quantity. The purpose of Cantor’s definition by Cauchy equivalence classes
[2,10–12] is to give an algebraic definition based on rationals. In this section, we
will append the algebraic Cauchy definition to the Euclidean definition given
in Section 2.1. This totally algebraic hybrid construction will not unduly
exclude the neighborhood of infinity from R. We have shown that if every
number in the interval (−∞,∞) is to be a real number, then there must
exist numbers such as ℵ0.5 which are greater than any natural number. In
its ordinary incarnation, however, the Cauchy definition of R contradicts the
axiom that R = (−∞,∞) because it precludes the existence of numbers larger
than any natural number. In this section, therefore, we will modify the Cauchy
definition so that it will support the underlying geometric construction and
facilitate the algebraic construction of numbers in the neighborhood of infinity.
We will only construct the natural neighborhoods here because the equality
or inequality of RX

0 and RX
ℵ is not treated until Section 7.4.

Definition 4.2.1 The rational numbers Q are an Archimedean number field
satisfying all of the well-known field axioms given in Section 5.4.

Definition 4.2.2 A sequence {xn} is a Cauchy sequence if and only if

∀δ ∈ Q ∃m,n,N ∈ N s.t. m,n > N =⇒
∣∣xn − xm∣∣ < δ .

Definition 4.2.3 We say a relation is an equivalence relation if and only if
(i) S is a set, (ii) every x ∈ S is related to x, meaning the relation is reflexive,
(iii) for every x, y ∈ S, the relation of x to y implies the relation of y to x,
meaning the relation is symmetric, and (iv) for every x, y, z ∈ S, the relation
of x to y and the relation of y to z together imply the relation of x to z,
meaning the relation is transitive. The equivalence class of x ∈ S, namely the
set of all objects which are related to x by an equivalence relation, is denoted
[x]. At times we will write [x] = [{xn}] or [x] = [(xn)] to emphasize that the
equivalence relation is among Cauchy sequences where {xn} and (xn) have the
same meaning.

Definition 4.2.4 CQ is the set of all Cauchy sequences of rational numbers.
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Remark 4.2.5 Usually the Cauchy construction of R is formulated as, “Every
x ∈ R is some Cauchy equivalence class [x] ⊂ CQ,” but here we will take a
slightly different approach.

Axiom 4.2.6 Every x ∈ R may be constructed algebraically as (i) the value
of a function f([X ], [b]) where [X ], [b] ∈ CQ, or (ii) a partition of that function’s
range.

Axiom 4.2.7 Every x ∈ R0 ⊂ R is a Cauchy equivalence class of rationals
x = [x] ⊂ CQ and also a Dedekind partition of Q in canonical form x = (L,R).
(Dedekind cuts are defined in Section 7.5.)

Remark 4.2.8 Axiom 4.2.7 grants that the reals are constructed by Cauchy
equivalence classes or Dedekind partitions (cuts) in the most canonical sense if
one takes the complementary axiom that every real number is less
than some natural number . We do not take that axiom, so we specify
x ∈ R0 as the object of relevance.

Remark 4.2.9 Cantor’s Cauchy construction of R, like the Dedekind con-
struction, is said to be “rigorous” because it begins with the rationals Q.
However, before one may assume the existence of Q, one must define zero be-
cause 0 ∈ Q but 0 ̸∈ N. Therefore, to be rigorous, one simply may not assume
Q as a consequence of N. To introduce zero, we will introduce a line segment
AB and define zero as the least number in the algebraic representation of
the geometric point A. It is true that this present approach can be criticized
as being “not rigorous” because we have assumed AB in the same way that
others assumed Q, but the present construction is “more rigorous” because it
bumps that which is assumed down to a more primitive level, i.e.: Euclid’s
principles of geometry [1]. Once Q is anchored to A, we may use CQ to in-
fer the existence of AB from the limit definition of infinity (Definition 2.2.2).
With 0 as the least number in the interval [0,ℵ1], the identity 0 = ℵ0 follows
from the symmetry of AB under permutations of the labels of its endpoints:
AB ≡ [ℵ0,ℵ1]. No small part is required to describe the greatest number in
the algebraic representation of B ∈ AB, so no small part can be required for
the least number in the algebraic representation of A ∈ AB.

Definition 4.2.10 The symbol 0̂ is an instance of the number zero with the
instruction not to do any of zero’s absorptive operations. The absorptive
operations of zero are

0 + x = x , and 0 · x = 0 .

Expressions containing 0̂ are not to be simplified by either of these operations.
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Axiom 4.2.11 For every Cauchy sequence {xn} in the equivalence class [x] ⊂
CQ, there exists another Cauchy sequence {0̂ + xn} = {xn}. This is to say{

xn
}
∈ [x] ⇐⇒

{
0̂ + xn

}
∈ [x] ,

or that, equivalently, there exists an additive identity element for every x ∈ Q.

Example 4.2.12 With Axiom 4.2.11, we have associated every element of CQ
with the endpoint A of the real line segment AB. This is done because every
x ∈ Q has zero fractional magnitude with respect to infinity. Thus, we may
mingle the geometric and algebraic notations to write{

xn
}
=
{
0̂ + xn

}
≡
{
A+ xn

}
∈ [A+ x] .

By extending the line segment in consideration from AB ≡ [0,∞] to ZB ≡
[−∞,∞], the number zero is now in the center of A which is an interior point of
ZB. Therefore, we may give an algebraic construction by Cauchy equivalence
classes for all

RX
0 =

{
ℵX + b

∣∣ b ∈ R0

}
,

by changing the interior point attached to the sequences in the equivalence
classes. For any interior point X ∈ AB, there is an equivalence class [X + x]
such that

DAB(AX) = X , [x] = b ∈ R0 =⇒ [X + x] ≡ [ℵ[X ] + x] = ℵX + b .

In this notation, the comma is a logical “and” (∧), so the implication follows if
both conditions on the left are true. Note well, the number X indicating that
ℵX has 100×X% fractional distance with respect toAB is an equivalence class
X = [X ] ⊂ CQ with no requisite geometric part because 0 < X < 1 implies
X ∈ R0. Note that the symmetry of ZB about the number at the center of the
algebraic representation of its midpoint gives a further requirement for 0 = ℵ0.

Definition 4.2.13 In the following definitions, the sign of x is restricted ap-
propriately for the neighborhood of the origin and the maximal neighborhood
of infinity. CAB

Q is the sum of CQ with the set of all X ∈ AB. Specifically,

CAB
Q =

{
X
}
+ CQ =

{
X + [b]

∣∣ X ∈ AB, [b] ⊂ CQ
}
.

Since it is considered desirable to give a totally algebraic construction, we may
give an equivalent definition as the range of a function f([X ], [x]) = ℵ[X ] + [x]
where [X ], [x] ∈ CQ:

CAB
Q =

{
ℵ[X ] + [x]

∣∣ [X ], [x] ⊂ CQ, 0 ≤ [X ] ≤ 1
}
.

In this second convention, x ≥ 0 if X = 0, and x < 0 if X = 1. This is required
for the elements of CAB

Q to be in [0,∞).
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Definition 4.2.14 Every ℵX ∈ RX
ℵ ⊂ R is a Cauchy equivalence class ℵX =

[ℵX ] = ℵ[X ] ⊂ CAB
Q , where ℵX ∈ R implies 0 ≤ X < 1 so that X = [X ] ⊂ CQ.

Remark 4.2.15 The X + [b] notation in Definition 4.2.13 is not inherently
well-defined because the summed quantities usually appear on opposite sides
of the ≡ relation. Thus, the equality of the hybrid definition for CAB

Q and its
algebraic definition must be formalized.

Definition 4.2.16 The sum of a geometric point with an element of CQ shall
be defined as the sum of two equivalence classes. The equivalence class of an
interior geometric point X ∈ AB is the equivalence class of the number in
the center of its algebraic representation X ≡ X. For an interior point or an
endpoint, we have

DAB(AX) = X =⇒ [X] ≡ [ℵX ] = ℵ[X ] = ℵX .

According to the usual algebra of equivalence classes, we have

[X] + [b] = [X + b] .

Axiom 4.2.17 Every x ∈ {RX
0 } is a Cauchy equivalence class x = ℵ[X ]+[b] =

[x] ⊂ CAB
Q . Big(x) is defined by [X ] ∈ CQ, and Lit(x) is defined by [b] ∈ CQ.

As in Definition 4.1.5, x is defined as the sum of its big and little parts.
In other words, without inventing the object CAB

Q , we have the equivalent

condition that every x ∈ {RX
0 } is an ordered pair of Cauchy equivalence classes

of rationals
x =

(
[X ], [b]

)
∈ CQ × CQ ,

where CQ × CQ is the Cartesian product. In this case, we take(
[X ], [b]

)
= ℵX + b .

Every element of CAB
Q has a representation as an ordered pair (X , b).

Remark 4.2.18 Axiom 4.2.17 is totally compliant with the requirement of
Axiom 4.2.6 that all real numbers can be constructed as the values of a function
or partitions of the function’s range. Any partition of the range is equally a
partition of the ordered pairs in the Cartesian product (Section 7.5).

Example 4.2.19 This example gives a Cauchy equivalence class definition of
ℵX , as in Definition 4.2.14. Suppose 0 ≤ x ≤ 1 and that

x = [x] =
[{
xn
}]

=
[{
x1, x2, x3, . . .

}]
.

It follows that

ℵx = ℵ[x] = [ℵx] =
[{
ℵnx
}]

=
[
ℵ{xn}

]
=
[{
ℵx1 ,ℵx2 ,ℵx3 , . . .

}]
,
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where we have moved the iterator n into the superscript position at one of the
intermediate steps.

Theorem 4.2.20 If X and Y are two interior points of AB, then two Cauchy
equivalence classes [X + x] and [Y + y] are equivalent if and only if X = Y
and x = y.

Proof. By Definition 4.2.16, we have [X+x], [Y + y] ⊂ CAB
Q . Definition 4.2.13

states that every element of CAB
Q can be expressed with a function of two

elements of CQ
f :
(
[X ], [b]

)
→ ℵ[X ] + [b] .

By the definition of the equivalence class, every element of CQ is such that

[x] = [y] ⇐⇒ x = y ,

so the same must be true for the ordered pairs:(
[X ], [x]

)
=
(
[Y ], [y]

)
⇐⇒

(
ℵX , x

)
=
(
ℵY , y

)
.

The equivalence class of X is uniquely determined by the equivalence class
of ℵX , so it follows that X = Y if and only if [X] = [Y ]. The theorem is
proven. l

§4.3 The Maximal Neighborhood of Infinity

The main purpose of this section is to treat the properties of real numbers
x ∈ RX

ℵ for the special case of X = 1. Again, the reader must note that for-
mally R1

ℵ ̸⊂ {RX
ℵ } due to the restriction 0 < X < 1 given by Definition 4.1.3.

Whenever RX
0 or RX

ℵ is taken to mean X = 0 or X = 1, referring the neigh-
borhood of the origin and the maximal neighborhood of infinity respectively,
we will always make an explicit statement indicating 0 ≤ X ≤ 1.

Definition 4.3.1 The whole maximal neighborhood of infinity is

R1
ℵ =

{
ℵ1 − b

∣∣ b ∈ R0
ℵ
}
.

Remark 4.3.2 We have defined ℵ1 as the greatest number in the algebraic
representation B of B ∈ AB ≡ [0,∞]. Therefore, ℵ1 is an infinite element
not in the real numbers. As the arithmetic of ∞ is usually defined, if we set
ℵ1 = ∞, then it would follow that ∞ − b = ∞ and R1

ℵ ∩ R = ∅. This is
not the desired behavior, so we will make special notation custom tailored to
deliver what is desired.

Definition 4.3.3 ∞ is called geometric infinity or simply infinity.

Definition 4.3.4 ∞̂ is called algebraic infinity. It shall be called infinity hat
as well.
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Definition 4.3.5 Additive absorption is a property of ∞ such that all x ∈ R
are additive identities of ∞. The additive absorptive property is

∞± x =∞ .

Multiplicative absorption is a property of ±∞ such that all non-zero x ∈ R
are multiplicative identities of ±∞. The multiplicative absorptive property is

∞ · x =

{
∞ for x > 0

−∞ for x < 0 .

Remark 4.3.6 Note that infinity and zero are both multiplicative absorbers,
while zero’s additive absorptive property is such that zero gets absorbed. In-
deed, the contradiction inherent to mutual multiplicative absorption may be
identified as a reason contributing to the canonical non-definition of the 0 ·∞
operation.

Definition 4.3.7 The symbol ∞̂ refers to an infinite element

±
∣∣∞̂∣∣ = lim

x→0±

1

x
, and

∣∣∞̂∣∣ = lim
n→∞

n∑
k=1

k ,

together with an instruction not to perform the additive or multiplicative
operations usually imbued to infinite elements.

Remark 4.3.8 What we have done in Definition 4.3.7 is exactly what we
have done with 0̂ in Definition 4.2.10. In the case of 0̂, it was not in any way
strange to entertain the notion that one might simply choose not to do the
absorptive operations of zero, and neither should the present convention for
∞̂ be considered in any way strange or ill-defined. In Section 4.4, we will
construct an infinite element—what might be called an instance of infinity—
stripped of its absorptive operations by considering the invariance ofAB under
the permutations of the labels of its endpoints. As between Sections 4.1 and
4.2, we will define some objects in the present section to facilitate a formal
construction in Section 4.4.

Theorem 4.3.9 The two open intervals (−∞,∞) and (−∞̂, ∞̂) are identi-
cally equal. In other words, the real number line may be expressed identically
as R = (−∞̂, ∞̂) or R = (−∞,∞).

Proof. For a, b ∈ R+, it may be taken for granted that

(−a, b) = (−|a|, |b|) .

It follows, therefore, that this is true for a, b ∈ R+
. Then, per Definition 4.3.7,

±
∣∣∞̂∣∣ = ±∞ =⇒ R = (−∞̂, ∞̂) . l
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Example 4.3.10 This example demonstrates the arithmetic constraints that
would have to be placed on the limit definition of infinity if it was said to define
∞̂ rather than |∞̂|, as in Definition 4.3.7. This example also demonstrates the
general motivation for such notation by demonstrating the large burden that
would imposed if the absolute value bars were absent in Definition 4.3.7. In
its limit incarnation, the additive absorptive property of ∞ is demonstrated
as

a+∞ = a+ lim
x→0

1

x
= lim

x→0

ax+ 1

x
= diverges =∞ .

Therefore, if the limit were said to define ∞̂, then the hat’s arithmetic con-
straint “don’t simplify this expression by absorption” would mean to keep a
out of the limited expression. Similarly, multiplicative absorption is demon-
strated as

a · ∞ = a · lim
x→0

1

x
= lim

x→0

a

x
= diverges =∞ .

In either absorptive case, the limit expression diverges in R and no contradic-
tion is obtained by keeping a out of the expression to avoid it being “absorbed.”

The utility in adding the hat to infinity is that it supports the notion that a
number lying x units of Euclidean distance away from the least number 0 = ℵ0
in the algebraic representation of A ∈ AB should, under permutation of the
labels of the endpoints of AB, be mapped to another number x′ lying x units
of distance away from the greatest number ℵ1 in the algebraic representation
of B ∈ AB. By suppressing the additive absorption, we let x′ = ℵ1 − x =
∞̂ − x ̸=∞. Per Definition 4.3.1, this number is x′ ∈ R1

ℵ. By suppressing the
multiplicative absorption of ∞̂, we introduce notation by which it is possible
to complement Definition 4.1.1 with the statement

ℵX
∞

= X ⇐⇒ ℵX = X · ∞̂ .

In the former part this treatise, we have demonstrated a requirement for num-
bers such as x′ and ℵX , and ∞̂ is a notation for an infinite element tailored to
the requirement. Indeed, where algebra is called the study of mathemat-
ical symbols and the rules for manipulating them , algebraic infinity
∞̂ is a perfectly ordinary algebraic object and well-defined.

Definition 4.3.11 For any X ,Y ∈ R, the symbol ℵX has the properties

ℵX = X · ∞̂ , and ℵX · ℵY = ℵ(XℵY ) = ℵℵ(XY)
.

Definition 4.3.12 In terms of ∞̂, the whole maximal neighborhood of infinity
is defined as

R1
ℵ =

{
∞̂ − b

∣∣ b ∈ R0
ℵ, b ̸= 0

}
.

Definition 4.3.13 The maximal natural neighborhood of infinity is defined
as

R1
0 =

{
∞̂ − b

∣∣ b ∈ R+
0

}
.
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§4.4 Equivalence Classes for the Maximal Natural Neighborhood
of Infinity

We could easily construct R1
0 following the prescription in Section 4.2. There,

we introduced zero as the least number in the algebraic representation of A ∈
AB ≡ [0,∞], and then we made the extension to an arbitrary interior point
by considering A as the midpoint of ZB ≡ [−∞,∞]. However, we could
have left A as an endpoint and then extended the construction to the other
endpoint B to define the maximal neighborhood of infinity via a symmetry
argument. For breadth, here we will use a similar symmetry argument to
take a slightly different approach to the Cauchy construction of the maximal
neighborhood infinity. The material in the present section will constitute an
independent motivation for the intermediate neighborhoods, separate from the
main fractional distance approach. We will generate a non-absorbing infinite
element ∞̂, and then we will define the ℵX as its fractional parts.

In Section 4.2, we defined a real number as an ordered pair of Cauchy
equivalence classes of rationals: one for the big part and one for the small
part. This approach required that we assume the ℵ notation before we can
define an equivalence class [ℵX ] = ℵ[X ] = ℵX . We were very well motivated
to assume numbers in this form, particularly by Main Theorem 3.2.6 proving
that some real numbers are larger than any real number, and by Theorem
3.2.2 proving that there exists at least one real number having 50% fractional
magnitude with respect to AB. However, it remains that ℵX is inherently
foreign to what is called real analysis. Therefore, in the present section, we
will give an alternative construction for R1

0 based on the geometric invariance
of line segments under the permutations of the labels of their endpoints. The
numbers in the maximal neighborhood of infinity are defined according to ∞:
a number not at all foreign to real analysis. Then, with |∞̂| = ∞ defined
as in the previous section, and with a formal construction given here for the
maximal neighborhood of infinity, we will use ∞̂ as an independent constructor
for ℵX and the intermediate neighborhoods.

Axiom 4.4.1 A Euclidean line segment AB [1] is invariant under permuta-
tions of the labels of its endpoints, e.g.: AB = BA.

Definition 4.4.2 Define a geometric permutation operator P̂ such that

P̂ (AB) = BA .

Remark 4.4.3 In this section, we will construct R1
0 from the operation of

P̂ on Cauchy equivalence classes of rational numbers, e.g.: P̂ ([x]). To do

so, we must develop the induced operation of P̂ on the algebraic interval
representation [a, b] ≡ AB. (It is a pleasant coincidence that the equivalence
class bracket notation is exactly consistent with the abused notion of a closed
one-point interval [x, x] = [x].) As in Section 4.2, our departure from the usual
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Cauchy construction of R begins with an acknowledgment that 0 ∈ Q does not
follow from N. Again, we introduce zero as the least number in the algebraic
representation of A ∈ AB, and then we infer the existence of AB from the
limit definition of infinity. Next, we assume zero is an additive identity element
of every n ∈ N to obtain

m

n
∈ Q =⇒ m

n
=

0 +m

n
=

0

n
+
m

n
= 0 +

m

n
.

Finally, we will put the hat on 0̂ to remind us not to simplify the expression.
The elements of CQ now have an explicit interpretation as Euclidean mag-
nitudes measured relative to the origin of R. Specifically, m

n
is an abstract

element of Q, but 0̂+ m
n
is the rational length of a real line segment whose left

endpoint has zero as the least number in its algebraic representation. Though
this may be inferred directly, it follows from Definition 4.2.16 giving [A] = [ℵ0]
and the symmetry requirement for ℵ0 = 0.

Definition 4.4.4 The Euclidean chart x on AB is such that min(x ∈ A) = 0
and max(x ∈ B) = ℵ1 regardless of the permutation of the labels of the
endpoints. In other words, the ordering of real numbers is such that numbers
nearer to B are always greater than those nearer to A.

Definition 4.4.5 Define an operator P̂0([x]; 0̂) which formalizes the notion

of P̂ ([x]). Per Definition 4.4.2, the domain of P̂ is not CQ, so we introduce

a special algebraic permutation operator P̂0([x]; 0̂) dual to P̂ which formally
operates on equivalence classes. The definition is

P̂0 : 0̂ + CQ → ∞̂− CQ ,

where

0̂+CQ =
{
0̂+[x]

∣∣ [x] ⊂ CQ
}
, and ∞̂−CQ =

{
∞̂− [x]

∣∣ [x] ⊂ CQ
}
.

Example 4.4.6 This example demonstrates the working of P̂ and P̂0 to give
a formal construction of R1

0 by Cauchy sequences of rational numbers. Suppose
b ∈ R0 is a well-defined equivalence class of rationals lying within the algebraic
representation A of A ∈ AB. Now operate on AB with P̂ so that

P̂ (AB) = BA .

The permutation of the labels of the endpoints has not changed the geometric
position of b along the line segment. Definition 4.4.4 requires that the orien-
tation of the Euclidean coordinate along the line segment has been reversed,
so, therefore, we no longer have the property b = [x] ⊂ CQ for the following
reason. Every rational number is less than some natural number and all such
numbers have zero fractional distance with respect to AB. Before operating
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with P̂ , b was in the algebraic representation of the point A, but, by operat-
ing with the geometric permutation operator P̂ , b becomes a number in the
algebraic representation of B. The FDFs are defined such that

DAB(AB) = D†
AB(AB) = 1 ,

so now b must have unit fractional magnitude with respect to AB. Every
[x] ⊂ CQ has zero fractional magnitude, so, if [b] ̸⊂ CQ, what number has b
become? That number is given by

P̂0(0̂, [b]) = ∞̂ − [b] .

Under permutation of the labels of the endpoints of a line segment, a num-
ber having Euclidean distance [b] ⊂ CQ from one endpoint becomes another
number having the same distance relative to the other endpoint.

Remark 4.4.7 We take it for granted that if there exists a real number x
separated by distance L from the least number in the algebraic representation
of the endpoint A of an arbitrary real line segment AB ≡ [a, b]—with x inte-
rior in the sense that x ∈ (a, b)—then it is guaranteed by the geometric mirror
symmetry of all line segments that there must exist another real number sepa-
rated from the endpoint B by the same distance L. If we bestowed ∞̂ with the
property of additive absorption, then there would be no such number because
0̂ + x→ x, but ∞̂− x→ ∞̂. Similarly, if there exists a real number lying one
third of the way from A to B, then there must exist another real number lying
one third of the way from B to A. This follows from the cut-in-a-line definition
of R given by Definition 2.1.5. For the case of AB, it will be impossible to
express these third fraction numbers if ∞̂ has the property of multiplicative
absorption. Since the third numbers must exist, ℵX does exist. Therefore, the
existence of an instance of infinity devoid of any absorptive properties is abso-
lutely granted and required if the mirror symmetry of a geometric line segment
is to be preserved in its interpretation as an algebraic interval of numbers.

Our thesis is that we should preserve the underlying geometric construction
of R without invoking a contradictory algebraic construction. Under this the-
sis, ∞̂ is forced into existence. Often times, the position is taken that infinity
is absolutely absorptive due to the limit definition of infinity and the attendant
absorptive properties of limits (Example 4.3.10). As an indirect consequence
of such reasoning, the mirror symmetry of line segments must be rejected in
the algebraic realm of mathematics. But why should it be preferred that the
algebraic construction overrides the geometric construction? Is it not equally
valid to override the algebraic construction with the geometric one? Consid-
ering the history of mathematics, it is, in the opinion of this writer, far more
appropriate to preserve the geometric construction at all costs. It is very easy
to do so when the symbol ∞̂ is given by the limit definition of infinity as

lim
x→0±

1

x
= ±

∣∣∞̂∣∣ ,
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without ∞̂ itself being interchangeably equal with the limit expression. Fur-
thermore, this scheme is such that the algebraic and geometric concepts
are complementary without requiring that one override the other.

In Definition 4.2.17, we gave the definition of x ∈ {RX
0 } in terms of ordered

pairs of elements of CQ. The purpose of the present alternative treatment for
the maximal neighborhood R1

0 is not to replace that definition but to comple-
ment it with a different equivalence class construction for the maximal neigh-
borhood: one from which the constructions of the intermediate neighborhoods
may be extracted. In this present section, we have used the permutation oper-
ator P̂ which is quite similar to the implicit translation operator by which we
were able to attach elements of CQ to different interior points of AB in Section
4.2. The main utility in developing the idea of a number in the neighborhood
of infinity as the operation of P̂0 on an equivalence class of rationals is that
it independently generates the requirement for an infinite element lacking the
usual absorptive properties of infinity. With ∞̂ granted, it gives a separate
means by which we may construct the x ∈ {RX

0 } without invoking the di-
rect ordered pair definition: the ℵX in such numbers are the fractions of the
non-absorbing infinite element ∞̂.

Axiom 4.4.8 Every x ∈ R1
0 is defined as the output of P̂0 operating on an ele-

ment of CQ. This is the Cauchy equivalence class construction of real numbers
in the maximal natural neighborhood of infinity.

Remark 4.4.9 If we wish to construct AB ≡ [0, ∞̂] from AB ≡ [0, π
2
], as we

constructed AB ≡ [0,∞] in Example 2.3.21, then we need to make rigorous
the relationship between [0,∞] and [0, ∞̂]. This was accomplished in Theorem
4.3.9 proving that (−∞,∞) = (−∞̂, ∞̂). The absolute value, or the magni-
tude, of ∞̂ is the same as that of ∞, so the algebraic intervals [x,∞] and
[x, ∞̂] must be the same. Though we cannot directly construct [0, ∞̂] from
[0, π

2
], we may indirectly construct it by using the limit definition of infinity

(Definition 2.2.2) to write

lim
θ→π

2
−
tan(θ) = lim

θ→π
2
−

sin(θ)

cos(θ)
= lim

x→0
y→1

y

x
=
∣∣∞̂∣∣ .

Now we may infer the existence of conformal AB ≡ [0, ∞̂] from the assumed
interval [0, π

2
] as a corollary of Theorem 4.3.9.

Example 4.4.10 In this example, we complement the separate definitions for
∞ and ∞̂ heretofore given. We will show, for example, how they might be
more fully conceptually distinguished as two mutually distinct kinds of infi-
nite elements with markedly different qualia beyond their separate technical
definitions. We will offer these qualia as an example only; we will not alter
the technical definitions with the supplemental considerations proposed here.
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To that end, it is sometimes claimed, without proof, that one cannot include
endpoints at the ends of R = (−∞,∞) because the notion of an endpoint
contradicts the notion of the infinite geometric extent of a line extending in-
finitely far in both directions. Infinite geometric extent is the main principle
that we will look at in this example.

Suppose geometric infinity∞ is a number which cannot be written as the in-
cluded or unincluded endpoint of an interval without contradicting the notion
of the infinite geometric extent of a number line. An unincluded endpoint may
always be included via compactification, contrary to the claim cited above, so
we might distinguish geometric infinity from algebraic by letting the former
be non-compactifiable. Consider Definition 2.1.2 which defines a number line
as a 1D metric space in the Euclidean metric

d(x, y) =
∣∣y − x∣∣ .

If we included geometric infinity as an endpoint, then we could invoke the
invariance of line segments under permutations of the labels their endpoints
to demonstrate a contradiction. Given

(x, y) = (x0, y0) , and (P̂0(x0), P̂0(y0)) = (∞− x0,∞− y0) ,

not only do the points lose their unique identity when attached to B instead
of A, but if we put (P̂0(x0), P̂0(y0)) into the Euclidean metric, then we get

d(P̂0(x0), P̂0(y0)) =
∣∣∞− y0 − (∞− x0)∣∣ = ∣∣∞−∞∣∣ = undefined .

Clearly, this does not gel well with our intention to define a number line as
a line equipped with a metric. The line is supposed to have some metrical
distance between any two numbers, but, now, under the permutation of the
labels A and B, we find two numbers that don’t even have vanishing distance
between them. The distance has become undefined, though this does not follow
from the invariance of Euclidean line segments under such permutations.

Algebraic infinity is a number which avoids all of the problems here listed.
Under permutation, we have

(x, y) = (x0, y0) , and (P̂0(x0), P̂0(y0)) = (∞̂ − x0, ∞̂ − y0) .

Jumping ahead to the arithmetic of such numbers axiomatized in Section 5.2,
we find exactly what is expected:

d(P̂0(x0), P̂0(y0)) =
∣∣∞̂ − y0 − (∞̂ − x0)∣∣ = ∣∣x0 − y0∣∣ = d(x0, y0) ,

The only issue which remains is to revisit is the construction for AB ≡ [0,∞]
that we have given by a conformal chart x = tan(x′) on the line segment
AB ≡ [0, π

2
] whose endpoints unquestioningly exist in any frame of standard

analysis. For this, we might propose a semantic convention to distinguish the
geometric infinite element ∞ from the algebraic one ∞̂. Let algebraic infinity
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be such that it can be embedded in a larger space, but let geometric infinity
be such that it is totally maximal and cannot be embedded in something
larger than itself. For example, the interval [0, π

2
] ⊂ [−π, π] is such that

the conformal chart which sends π
2
to an infinite element implicitly places

that element within the parent interval [−π, π]. The convention proposed here
would require that the infinite element to which π

2
is conformally mapped must

be algebraic infinity ∞̂. If we take the convention that geometric infinity∞ is
always totally geometrically maximal, then that would forbid its existence on
the interior of the interval [−π, π] which contains points to the right of π

2
. In a

formal adoption of the distinctions made here, one would examine the merits
of a supplemental transfinite ordering relation ∞̂ <∞.

Remark 4.4.11 Definition 4.3.7 gives∣∣∞̂∣∣ =∞ = lim
x→0

1

x
≠⇒ ∞̂ = lim

x→0

1

x
.

Due to the transitivity of the equivalence relation, we must be careful about
whether ℵ1 is equal to geometric infinity or algebraic. If we take the convention
that geometric infinity∞ is imbued with the notion of infinite geometric extent
such that an infinite line cannot have an endpoint there, as in Example 4.4.10,
then we should not let ℵ1 be defined by ∞ when it is said to be the greatest
number in the algebraic representation of the endpoint B ∈ AB. Due to
the possibility of constructing AB from any other line segment by one chart
transformation or another, AB ought to be taken as [0, ∞̂] = [0,ℵ1] in the
absence of explicit words to the contrary.

Definition 4.4.12 The symbol ℵ1 is an alternative notation for algebraic in-
finity. We have

ℵ1 = ∞̂ , and ℵ1 ̸=∞ .

Theorem 4.4.13 The whole maximal neighborhood of infinity R1
ℵ is a subset

of the real numbers.

Proof. Taking for granted that x ∈ R1
ℵ does not have any infinitesimal part,

which is obvious, it suffices to show the compliance with Definition 2.1.5: a
real number x ∈ R is a cut in the real number line. Compliance follows directly
from Definition 4.3.12 giving

R1
ℵ =

{
∞̂ − b

∣∣ b ∈ R0
ℵ, b ̸= 0

}
,

because we clearly have

(−∞,∞) = (−∞, ∞̂ − b] ∪ (∞̂ − b,∞) .

Even though we do not yet have an equivalence class construction for b ∈
R0

ℵ \ R0, it is obvious that ∞̂ − b is a cut in the real number line because
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b, whatever its algebraic construction, is such that it is positive and has zero
fractional magnitude with respect to AB. (The intuitive ordering assumed in
this theorem is formalized in Axiom 5.2.18.) l

Corollary 4.4.14 All numbers x ∈ {RX
ℵ } are real numbers.

Proof. The ordering of R given by Axiom 3.1.13 is such that 0 < X < 1
guarantees

(0,∞) = (0,ℵX ± b] ∪ (ℵX ± b,∞) .

Definition 2.1.5 is satisfied trivially. The theorem is proven. l

Remark 4.4.15 As a final aside in this section, note the curious condition un-
der which algebraic infinity ℵ1 has its foundation in the geometric properties
of a line segment, while geometric infinity ∞ has its foundation in the limit
of an algebraic expression. The reciprocity among these two constructions
of an infinite element might indicate some deeply fundamental issues extend-
ing beyond the semantic convention of our having chosen to call one infinite
element geometric and the other algebraic. We will not proceed along that
analytical direction, but the reciprocity of the cross-sampling of the concepts
is interesting and tantalizing.

§5 Arithmetic

§5.1 Operations for Infinite Elements

Here we give arithmetic operations for ∞, ∞̂ ̸∈ R to support the axioms for
real numbers x ∈ R with non-zero big parts to appear in Section 5.2.

Remark 5.1.1 All of the contradictions which forbid additive and multiplica-
tive inverses for ∞ stem from its limit definition. Should we bestow, then,
these inverses on ∞̂ = ℵ1? To the extent that the notion of fractional distance
requires that 100% − 100% = 0% and 100%/100% = 1, the answer is yes.
We should not expect any contradictions related to inverses for ∞̂ because
∞̂ ≠ ∞. The limit definition is out of scope. Similarly, all of the contradic-
tions which disallow a definition for the operation 0 ·∞ are rooted in the limit
definition of infinity, but 0·∞̂ = ℵ0 = 0 follows as a special case of ℵX = X ·∞̂.

Axiom 5.1.2 ℵ1 is such that

ℵ1 − ℵ1 = 0 , and
ℵ1
ℵ1

= 1 .

Axiom 5.1.3 The operations for ∞ ≠ ℵ1 with b ∈ R+
0 are

∞± b =∞
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∞±
(
− b
)
=∞

−
(
±∞

)
= ∓∞

∞ · b =∞
∞
b

=∞

b

∞
= 0 .

The addition and multiplication operations are commutative here.

Axiom 5.1.4 We give the following supplemental operations for zero and ∞:

∞+ 0 = 0 +∞ =∞
∞ · 0 = 0 · ∞ = undefined

∞
0

= undefined

0

∞
= 0 .

Axiom 5.1.5 The operations for ∞̂ = ℵ1 with b ∈ R+
0 are

∞̂ ± b = ±b+ ∞̂
∞̂ ±

(
− b
)
= ∞̂ ∓ b

−
(
± ∞̂

)
= ∓∞̂

∞̂ · b = b · ∞̂ = ℵb
∞̂
b

= ℵ(b−1)

b

∞̂
= 0 .

Axiom 5.1.6 We give the following supplemental axioms for zero and ∞̂:

∞̂+ 0 = 0 + ∞̂ = ∞̂
∞̂ · 0 = 0 · ∞̂ = 0

0

∞̂
= 0

∞̂
0

= undefined .

Remark 5.1.7 The most important facet of Axiom 5.1.6 is the 0·∞̂ operation
contrary to the undefined 0 · ∞ operation (Axiom 5.1.4). This is required to
preserve the notion of fractional distance: zero times 100% is 0%. To facilitate
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this definition, it will be required that we define division as a separate operation
distinct from multiplication by an inverse. This will be one of the major
distinctions of the axioms in Section 5.2 from the well-known field axioms. We
demonstrate the principle in Example 5.1.8.

Example 5.1.8 This example gives a common argument in favor of the non-
definition of a product between an infinite element and zero. Then we will show
how the contradiction is avoided if we do not grant an assumed associativity
among multiplication and division. The 0 · ∞̂ = 0 operation given by Axiom
5.1.6 requires that we avoid such contradictions.

Suppose c ∈ R0
ℵ so that

c

∞̂
= 0 .

Now suppose 0 · ∞̂ is a defined operation so that

z = 0 · ∞̂ .

Substitute c
∞̂ = 0 and use the ∞̂

∞̂ = 1 property of Axiom 5.1.2 to obtain by
association of multiplication and division the expression

z = 0 · ∞̂ =
c

∞̂
· ∞̂ = c · ∞̂

∞̂
= c .

This shows that 0 · ∞̂ is not a well-defined operation because z = c is not a
unique output. When we define division as a third operation beyond multipli-
cation and addition, however, we should not assume associativity among the
distinct divisive and multiplicative operations, and neither will we axiomatize
it in Section 5.2. Without assumed associativity among the terms, we cannot
show that z fails to be a well-defined output of the product 0 ·∞̂. In that case,
we will assume there is no problem with the definition 0 · ∞̂ = 0.

Axiom 5.1.9 For any non-negative x ∈ R, we have

x∞̂ =


∞ for x > 1

1 for x = 1

0 for 0 ≤ x < 1 .

The product of an infinite number of finite numbers greater than one is abso-
lutely absorptive.

Remark 5.1.10 By choosing the x∞̂ = ∞ convention in Axiom 5.1.9 rather
than the alternative x∞̂ = ∞̂, we sidestep the notion that two different num-
bers x and y raised to the same power might both land precisely at ℵ1. For
x ̸= y, we would not expect, in general, that xℵ1 = yℵ1 = ℵ1 = ∞̂. In the
remainder of this section, we will motivate the x∞̂ =∞ operation.
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Theorem 5.1.11 For k ̸= 1, we have ∞̂k ̸= ∞̂.

Proof. To prove this theorem, it will suffice to prove that

∞̂2 = ∞̂ · ∞̂ = ℵ1 · ℵ1 ̸= ℵ1 .

Definition 4.3.11 requires that for any x ∈ R, the symbol ℵx is such that

ℵX = X · ∞̂ , and ℵX · ℵY = ℵ(XℵY ) = ℵℵ(XY)
.

Choose x = ℵX such that 0 ≤ X < 1. Then

X · ∞̂2 = X · ∞̂ · ∞̂ = ℵX · ∞̂ = ℵℵX .

If ∞̂2 = ∞̂, however, then we could write

X · ∞̂2 = X · ∞̂ = ℵX .

Since ℵX ∈ R, it cannot be equal to the number ℵℵX ̸∈ R which has much
greater than unit fractional distance with respect to infinity. This proves the
theorem. l

Theorem 5.1.12 The operation x∞̂ = ∞̂ is not well-defined.

Proof. Assume 0 < X < 1 and consider two expressions

xℵX+b = xℵXxb =
(
xX
)̂∞
xb = ∞̂xb ,

and

xℵX+b = xℵXxb =
(
x∞̂
)X
xb = ∞̂Xxb .

By Theorem 5.1.11, we have xb ∞̂ ≠ xb ∞̂X when 0 < X < 1. This proves the
theorem. l

Remark 5.1.13 Note that the contradiction derived in Theorem 5.1.12 is
avoided in the convention of Axiom 5.1.9:

xℵX+b =
(
xX
)̂∞
xb =∞xb =∞ , and xℵX+b =

(
x∞̂
)X
xb =∞Xxb =∞ .

Here, we have relied on the usual understanding that the multiplicative ab-
sorptive property of ∞ is such all powers of ∞ are identically equal to ∞.
This exceeds the definition of absorption given in Definition 4.3.5 such that∞
absorbs x ∈ R, but it is standard to set all powers of ∞ equal to ∞.
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§5.2 Arithmetic Axioms for Real Numbers in Natural
Neighborhoods

When one defines R such that the set R = {R,+,×,≤} conforms the field ax-
ioms (Section 5.4), it is a natural progression to prove that Cauchy equivalence
classes satisfy those axioms. We do not presently presume that R is such that
R obeys the field axioms, so we will not make any such proofs. Instead, we
will list the axiomatized arithmetic operations obeyed by real numbers whose
little parts are less than some natural number. For disambiguation with the
well-known “field axioms,” the axioms given in this section are called “the
arithmetic axioms.” In Section 5.3, we will make proofs of certain operations
given in the arithmetic axioms, and we will give examples. In Section 5.5,
we will define the operations in terms of the numbers’ underlying equivalence
classes. All of the axioms given here pertain only to the natural neighbor-
hoods RX

0 . When we give the treatment leading to RX
ℵ \RX

0 = ∅ (conjectured
in Section 7.4), these axioms will be fairly comprehensive. However, when we
impose connectedness on R in Section 7.5, we will find that these axioms are
not totally comprehensive.

The equivalence class constructions given in Section 4 were only for nat-
ural neighborhoods, and here we will follow with the axiomatized arithmetic
for the elements of those neighborhoods. Almost everything about the field
axioms shall be preserved in the natural neighborhoods. The major excep-
tion is that we will not enforce the global closure of R under its operations.
Among the other departures from the field axioms will be the identification
of division as an operation separate from its usual definition in
terms of multiplication by an inverse . Closure is nice for group theoret-
ical applications, but it is not needed for most applications in arithmetic. For
example, the set of integers {3, 4, 5} is not closed under integer addition, and
yet it remains a perfectly sound algebraic structure with which one may do
summation mathematics in the usual way. If one were to claim, “Non-closure
doesn’t break arithmetic because {3, 4, 5;+} is a subset of {R; +}, which is an
algebraic group as defined by the field axioms,” then we could make an easy
rebuttal by defining a set T ⊃ R as

T =
{
x
∣∣ − ℵ∞ < x < ℵ∞

}
.

Then the present convention for non-closed {R; +} defined with the Euclidean
magnitude and supplemental arithmetic axioms is such that {R; +} is a subset
of the closed additive group of 1D transfinitely continued real numbers {T; +}.

Axiom 5.2.1 All R0 numbers obey the well-known axioms of a complete or-
dered field: Axioms 5.4.3, 5.4.5, and 5.4.8.

Remark 5.2.2 To make a distinction between the intermediate neighbor-
hoods of infinity and the maximal neighborhood, in this section we will use the
symbol ∞̂ rather than the symbol ℵ1 associated with {RX

ℵ } as ℵX . However,

43



Fractional Distance: The Topology of the Real Number Line

the reader should note that the arithmetic of the maximal neighborhood fol-
lows from the arithmetic of the intermediate neighborhoods as a special case
of ℵX with X = 1.

Axiom 5.2.3 Addition is commutative and associative. There exists an ad-
ditive identity element 0 and an additive inverse x−1 for every x ∈ R. The
operations for + are given as follows when a, b, x, y ∈ R0 and 0 < min(X ,Y) ≤
max(X ,Y) < 1.

+ 0 y ∈ R0

(
ℵY + a

)
∈ RX

0

(
∞̂ − |a|

)
∈ R1

0 ∪ ∞̂

0 0 y ℵY + a ∞̂ − |a|

x x x+ y ℵY +
(
a+ x

)
∞̂ −

(
|a| − x

)
(
ℵX + b

)
ℵX + b ℵX +

(
b+ y

)
ℵ(X+Y) +

(
b+ a

)
ℵ(X+1) +

(
b− |a|

)
(
∞̂ − |b|

)
∞̂ − |b| ∞̂ −

(
|b| − y

)
ℵ(1+Y) −

(
|b| − a

)
ℵ2 −

(
|b|+ |a|

)

Remark 5.2.4 The most important property given by Axiom 5.2.3 is

ℵX + ℵY = ℵ(X+Y) .

This equality follows from the geometric notion of addition. If, for instance, ℵX
is a number with 10% fractional distance along AB and ℵY is a number with
20% fractional distance, then it follows that their sum is a number with 30%
fractional distance along AB. Axiom 5.2.3 makes clear that R does not satisfy
the usual understanding that the reals are closed under their operations. Any
number ℵX + b with X > 1 is not a real number, e.g.: the sum of two positive
numbers with 99% fractional magnitude is not a real number. No x with big
part ℵ1.98 can be x ∈ R.

Theorem 5.2.5 All real numbers x ∈ {RX
0 } have an additive inverse.

Proof. The number x−1 is the additive inverse of x if and only if

x+ x−1 = x−1 + x = 0 .

The statement of the theorem requires that (i) x = ℵX + b, (ii) 0 < X < 1,
and (iii) b ∈ R0. Assume that x−1 has the form ℵ(X−1) + b−1. The definition
of the additive inverse requires

1 =
(
ℵX + b

)
+
(
ℵ(X−1) + b−1

)
= ℵ(X+X−1) + (b+ b−1) .
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Equating the big and little parts of this expression, we obtain two requirements

ℵ(X+X−1) = ℵ0 ⇐⇒ X + X−1 = 0 ⇐⇒ X−1 = −X ,

and
b+ b−1 = 0 ⇐⇒ b−1 = −b .

For every [X ], [b] ⊂ CQ, there exists a [−X ], [−b] ⊂ CQ, so, therefore, every
x ∈ {RX

0 } has an additive inverse. l

Axiom 5.2.6 Multiplication is commutative and associative, and it is dis-
tributive over addition. Among R0 numbers, it is associative with division
(which shall not be defined as multiplication by an inverse), but multipli-
cation is not associative with division in general . There exists a
multiplicative identity 1 ̸= 0 for every x ∈ R. There exists a multiplicative
inverse for every x ∈ R0, but there does not exist a multiplicative in-
verse for all real numbers. The operations for {·} = {×} are given as
follows when a, b ∈ R0, x, y ∈ R+

0 , and 0 < min(X ,Y) ≤ max(X ,Y) < 1.

× 0 ∓1 y ∈ R+
0

(
ℵY + a

)
∈ RX

0

(
∞̂ − |a|

)
∈R1

0 ∪ ∞̂

0 0 0 0 0 0

±1 0 −1 ±y ℵ(±Y) ± a ±∞̂ ∓ |a|

x 0 ∓x xy ℵ(xY) + ax ℵx − |a|x(
ℵX + b

)
0 ℵ(∓X ) ∓ b ℵ(Xy) + by ℵ(ℵXY+aX+bY) + ba ℵ(ℵX−|a|X+b) − b|a|(

∞̂ − |b|
)

0 ∓∞̂ ± |b| ℵy − |b|y ℵ(ℵY+a−|b|Y) − |b|a ℵ(∞̂−|a|−|b|) + |ba|

Remark 5.2.7 The most important property given in Axiom 5.2.6 is

±ℵX = ℵ(±X ) .

This operation follows from

ℵX = X · ∞̂ =⇒ ±ℵX = ±
(
X · ∞̂

)
=
(
±X

)
· ∞̂ = ℵ(±X ) .

This shows that multiplication is axiomatically associative.

Theorem 5.2.8 Real numbers in the intermediate natural neighborhoods of
infinity x ∈ {RX

0 } do not have a multiplicative inverse.

Proof. A number x−1 is the multiplicative inverse of x ∈ R if and only if

x · x−1 = x−1 · x = 1 .

45



Fractional Distance: The Topology of the Real Number Line

The statement of the theorem requires that (i) x = ℵX + b, (ii) 0 < X < 1,
and (iii) b ∈ R0. Axiom 5.2.6 grants that multiplication is distributive over
addition, so the definition of the multiplicative inverse requires(

ℵX + b
)
x−1 = ℵ(Xx−1) + bx−1 = 1 .

Equating the big and little parts of this expression, we obtain two requirements

ℵ(Xx−1) = ℵ0 ⇐⇒ Xx−1 = 0 ⇐⇒ x−1 = 0 ,

and

bx−1 = 1 ⇐⇒ x−1 =
1

b
.

This contradicts the requirement b ∈ R0, so, therefore, x ∈ {RX
0 } does not

have a multiplicative inverse. l

Remark 5.2.9 Certain of the products in Axiom 5.2.6 rely on Axiom 5.2.3.
For instance, the value in the lower right corner of the multiplication table is
computed as (

∞̂ − |b|
)(
∞̂ − |a|

)
= ∞̂ · ∞̂ − |b|∞̂ − |a|∞̂+ |ba|
= ℵ1 · ℵ1 − |a|ℵ1 − |b|ℵ1 + |ba|
= ℵ(ℵ1) − ℵ|a| − ℵ|b| + |ba|
= ℵ(ℵ1) −

(
ℵ|a| + ℵ|b|

)
+ |ba|

= ℵ∞̂ + ℵ(−|a|−|b|) + |ba|
= ℵ(∞̂−|a|−|b|) + |ba| .

Furthermore, it follows from Axioms 5.2.3 and 5.2.6 that(
∞̂ − b

)
−
(
∞̂ − a

)
= a− b .

This difference is the primary operation behind the original ideation for a non-
absorptive infinite element. If a and b are two numbers at distances a and b
respectively from the endpoint 0 of the interval [0,∞], then their difference
a − b must be equal (up to a sign) to the difference of two numbers lying at
distances a and b from the endpoint ∞ of the same interval.

Example 5.2.10 The purpose of this example is to demonstrate that even
while numbers greater than ∞̂ do not exist in real analysis, expressions im-
plying the existence of such are numbers are generally not considered contra-
dictory. Consider the quadratic equation

ax2 + bx+ c = 0 , where x =
−b±

√
b2 − 4ac

2a
.

For every case in which 4ac > b2, the number x does not exist in real analysis,
and yet it is never claimed that the quadratic formula is contradictory. Instead,
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we claim that there must exist an imaginary number i ̸∈ R with the property
i =

√
−1. Therefore, the principle of fractional distance should support a

conclusion that there exist transfinite numbers x ̸∈ R with the property x > ∞̂.
We have seen the existence of such numbers implied previously when ex-

amining algebraic infinity as the endpoint of a line segment embedded in a
line extending infinitely far in both directions. If we use x = tan(x′) to define
AB ≡ [0, ∞̂] on AB ≡ [0, π

2
], and if a number is a cut in a line as per Defini-

tion 2.1.5, then there should exist non-real transfinite numbers which are cuts
in an infinite line to the right of x = ∞̂ in the algebraic representation of the
point B.

Remark 5.2.11 When the field axioms give the arithmetic operations of R,
the difference operations follow from the sum operations as the addition of
a product with −1. The ÷ operations usually follow from the × operations
as multiplication by an inverse. Presently, we may define the difference op-
erations accordingly, but we may not do so for the quotient operations. As
demonstrated in Example 5.1.8, the preservation of the respective geometric
notions of the algebraic operations requires that {+,×,÷} is a set of three dis-
tinct arithmetic operations among which there is not universal associativity.
Obviously, this is a major distinction of the present axioms from the field ax-
ioms. However, Axiom 5.2.1 grants that all x ∈ R0 obey the usual field axioms,
so there is an implicit axiom regarding a limited associativity of {×,÷} in the
neighborhood of the origin. We will make the explicit with Axiom 5.2.12.

Axiom 5.2.12 Division and multiplication are mutually associative for any
x ∈ R0. That is, all factors which are elements of R0 may be moved into or
out of quotients and products in the usual way, even if those quotients and
products contain x ̸∈ R0.

Axiom 5.2.13 The operations for ÷ are given as follows when a, b ∈ R0 and
0 < min(X ,Y) ≤ max(X ,Y) < 1. There exists a divisive identity 1 ̸= 0 for
every x ∈ R. It is the same as the multiplicative identity. There exists at least
one divisive inverse for every non-zero x ∈ R. In this table, the row value is
the numerator and the column value is the denominator.

÷ 0 y ∈ R0

(
ℵY + a

)
∈ RX

0

(
∞̂ − |a|

)
∈ R1

0 ∪ ∞̂

0 nan 0 0 0

x nan x
y 0 0(

ℵX + b
)

nan ℵ(Xy−1) +
b
y

X
Y X(

∞̂ − |b|
)

nan ℵ(y−1) − |b|
y

1
Y 1
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Example 5.2.14 This example demonstrates that the quotient operations
given by Axiom 5.2.13 are well-defined. (This is proven rigorously in Main
Theorem 5.5.12.) An operation is well-defined if it generates a unique out-
put. It is obvious in Axiom 5.2.13 that each operation has one and only one
output, but it is foreign to the usual understanding of the arithmetic of real
numbers that the operands giving the unique resultants are not themselves
unique. Consider

ℵX + b

ℵY + a
=
X
Y

.

If multiplication was associative with division, and vice versa, then we could
multiply both sides by ℵY + a to obtain a contradiction in the form

ℵX + b

ℵY + a
·
(
ℵY + a

)
=
X
Y
·
(
ℵY + a

)
ℵX + b · ℵY + a

ℵY + a
= ℵ( Y

X X) +
X
Y
a

ℵX + b = ℵX +
Xa
Y

.

This is false whenever b ̸= Xa
Y , but it is not possible to show this contradiction

without assuming associativity among {×,÷}.

Example 5.2.15 This example demonstrates another immediate contradic-
tion should we assume associativity among multiplication and division. Axiom
5.2.13 gives

ℵY
ℵX

=
Y
X

, and
1

ℵX
= 0 .

If we bestow the associativity, then

ℵY
ℵX

= ℵY ·
1

ℵX
= ℵY · 0 = 0 ̸= Y

X
.

Definition 5.2.16 A divisive identity is a number e satisfying x÷e = x. The
divisive identity element of R is 1 ∈ R0.

Theorem 5.2.17 All real numbers x ∈ {RX
0 } have a non-unique divisive in-

verse.

Proof. If x−1 is the divisive inverse of x, then x÷ x−1 = 1. By Axiom 5.2.13,
any two x ∈ {RX

0 } having equal big parts are mutual divisive inverses. l

Axiom 5.2.18 The ordering of R is given as follows when a, b, c, d, x, y ∈ R0

and 0 < min(X ,Y) ≤ max(X ,Y) < 1. For the table, it is granted that

a > b , c > d > 0 , x > y , and X > Y .

48



Jonathan W. Tooker

This table is such that the row identity is on the left of the given relation and
the column identity is on the right.

≤ y ∈ R0

(
ℵY + b

)
∈ RY

0

(
ℵX + b

)
∈ RX

0

(
∞̂ − |d|

)
∈ R1

0 ∞̂

x > < < < <(
ℵX + a

)
> > > < <(

∞̂ − |c|
)

> > > < <

§5.3 Limit Considerations Regarding the Arithmetic Axioms

We have not directly defined infinity hat with the limit definition of infinity.
Instead, we have defined ∞̂ to have the same absolute value as ∞. They are
both the unincluded endpoint of the interval [0, I) where I ̸∈ R is such that
I = sup(R). Although we began fractional distance analysis with the notion of
AB ≡ [0,∞] and then proved [0,∞) = [0, ∞̂) (Theorem 4.3.9), the proposed
introduction of an auxiliary convention (Example 4.4.10) relating geometric
infinity ∞ to infinite geometric extent rather than the divergence of a limit in
R would allow us to say, informally, and as a matter tangential, hypothetical
ideation only, that [0, ∞̂) ̸= [0,∞) and [0, ∞̂] ̸= [0,∞]. In the convention
of Example 4.4.10, ∞ as an endpoint, either included or unincluded, will
contradict the notion of infinite geometric extent. In general, we have only
introduced this convention as a thinking device, and there is no reason to
directly forbid the usual extended real interval R = [−∞,∞]. Rather, we
have only shown that it is better to write R = [−∞̂, ∞̂] because it doesn’t
suggest the non-existence of the neighborhood of infinity. An interval is a set
of numbers equipped with an order relation but not necessarily any operations,
and infinity only differs from infinity hat in its operations, so the two intervals
[0,∞] and [0, ∞̂] must be the same in the present conventions. Although we
have not defined ∞̂ directly with the limit definition of ∞ (Definition 2.2.2),
having instead deduced its existence independently from (i) the bijectivity of
the tangent function on an appropriate neighborhood of the origin and (ii) the
geometric invariance of line segments under permutations of the labels of their
endpoints, it remains that the magnitude of ∞̂ is given by the limit definition:
|∞̂| = ∞. Since the identity of real numbers is identically their magnitude,
and since it is only two alternative sets of arithmetic axioms which separate∞
and ∞̂, in this section we will study the compliance of the arithmetic axioms
with the limit definition of infinity.

Example 5.3.1 Although the limit definition of ∞ is said to be its identical
definition (Definition 2.2.2), we cannot always substitute the limit definition of
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infinity to directly compute all expressions involving geometric infinity. Con-
sider the use of the limit definition to write

∞−∞ =

(
lim
x→0

1

x

)
−
(
lim
y→0

1

y

)
= lim

x→0
y→0

y − x
xy

.

Generally, this limit does not exist because, for example, we obtain different
results on the lines y = x and y = 2x. Presently, however, there is only one
possible line: the real number line. Along the line x = y, we find

∞−∞ =

(
lim
x→0

1

x

)
−
(
lim
x→0

1

x

)
= lim

x→0

(
1

x
− 1

x

)
= lim

x→0
0 = 0 .

This contradicts Axiom 2.2.3 which gives

∞−∞ = undefined .

To the contrary, if we examine ∞̂ − ∞̂ under the ansatz that this expression
may be computed with the limit definition along the line x = y, then we find

∞̂ − ∞̂ =

(
lim
x→0

1

x

)
−
(
lim
x→0

1

x

)
= lim

x→0

(
1

x
− 1

x

)
= lim

x→0
0 = 0 .

This is exactly what is given in Axiom 5.1.2, so the ansatz is borne out. At
least sometimes, we can use the limit definition of infinity to compute ∞̂’s
operations.

Remark 5.3.2 Example 5.3.1 has demonstrated that although ∞ is directly
defined with the limit definition of infinity, we cannot always use that definition
to simplify ∞’s expressions. Although limx→0

1
x
− limy→0

1
y
does not exist in

the general case, we exclude x ̸= y because for any y = f(x) we have

x→ ℵ1 =⇒ y → f(ℵ1) ,

and we want x, y ∈ R. When x = y, the limit definition does not agree with
the axiomatized operation∞−∞. Still, other identities for∞ such as Axiom
5.1.3 giving b

∞ = 0 for b ∈ R0 do follow directly from the limit definition of
geometric infinity. We have for b ∈ R0

b

∞
=

b

lim
x→0

1
x

= lim
x→0

b
1
x

= lim
x→0

xb = 0 .

In the present section, as in Example 4.3.10, we will take the hat on ∞̂ as
a constraint on the freedom of algebraic manipulations involving the limit
expression. Particularly, the non-absorptivity of ∞̂ allows us to combine limit
expressions but forbids us moving any scalars into the limit expressions. The
main purpose of Section 5.3 is to demonstrate cases of the validity of the
ansatz that sometimes we can correctly compute expressions involving ∞̂ by
making the direct substitution with the limit definition. Distinctions between
the cases in which we can and cannot may be analytically significant.
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Theorem 5.3.3 The property of Axioms 5.2.3 and 5.2.6 giving for a, b ∈ R+
0(

∞̂ − b
)
−
(
∞̂ − a

)
= a− b ,

follows from the limit definition of infinity.

Proof. Proof follows from direct substitution of the limit definition of infinity
(Definition 2.2.2). We have(

∞̂ − b
)
−
(
∞̂ − a

)
=

[(
lim
x→0

1

x

)
− b
]
−
[(

lim
x→0

1

x

)
− a
]

= lim
x→0

(
1

x
− b− 1

x
+ a

)
= lim

x→0

(
− b+ a

)
= a− b . l

Theorem 5.3.4 The property of Axioms 5.2.3 and 5.2.6 giving for a, b ∈ R0

and 0 < min(X ,Y) ≤ max(X ,Y) < 1(
ℵX + b

)
−
(
ℵY + a

)
= ℵ(X−Y) − a+ b ,

follows from the limit definition of infinity.

Proof. Proof follows from direct substitution of the limit definition of infinity
(Definition 2.2.2). We have(

ℵX + b
)
−
(
ℵY + a

)
=
(
X ∞̂+ b

)
−
(
Y ∞̂+ a

)
=

[
X
(
lim
x→0

1

x

)
+ b

]
−
[
Y
(
lim
x→0

1

x

)
+ a

]
=
(
X − Y

)(
lim
x→0

1

x

)
− a+ b

=
(
X − Y

)
∞̂ − a+ b

= ℵ(X−Y) − a+ b . l

Remark 5.3.5 Theorem 5.3.4 requires clarification because we might have
written (

ℵX + b
)
−
(
ℵY + a

)
=
(
X ∞̂+ b

)
−
(
Y ∞̂+ a

)
=

[(
lim
x→0

X
x

)
+ b

]
−
[(

lim
x→0

Y
x

)
+ a

]
=

(
lim
x→0

X − Y
x

)
− a+ b
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= ∞̂ − a+ b .

Since ∞̂ = ℵ1, this would necessarily entail a contradiction because the con-
dition 0 < min(X ,Y) ≤ max(X ,Y) ≤ 1 forbids X − Y = 1. In the above
algebraic manipulation, we have given at the second step

ℵX = X ∞̂ = lim
x→0

X
x

.

This contradicts Definition 4.3.7 requiring that ∞̂ does not have absorptive
properties. Such a property is explicitly bestowed to the limit definition of
infinity when we move the scalar X into the limit expression. Therefore, it is
implicit in the axioms that scalar multipliers of ∞̂ must not be transferred by
multiplicative association into the limit expression when substituting the limit
definition of algebraic infinity ∞̂. In practice, this has little to no relevance
because arithmetic follows from the arithmetic axioms rather than the limit
definition of infinity. The purpose of the present section, rather, is to show
that at least many of the axioms may be derived from the limit definition, and
that the present axiomatic framework is very strong because many of
its axioms are directly provable when we assume the usual associativities, com-
mutativities, and distributivities constrained by the rules of non-absorptivity.

Theorem 5.3.6 The property of Axioms 5.2.3 and 5.2.6 giving for a, b ∈ R+
0

and 0 < min(X ,Y) ≤ max(X ,Y) ≤ 1(
ℵX + b

)
· a = ℵ(Xa) + ba ,

follows from the limit definition of infinity.

Proof. Proof follows from direct substitution of the limit definition of infinity.
We have (

ℵX + b
)
· a =

(
X ∞̂+ b

)
· a

=

[
X
(
lim
x→0

1

x

)
+ b

]
· a

= Xa
(
lim
x→0

1

x

)
+ ba

= Xa∞̂+ ba

= ℵ(Xa) + ba . l

Theorem 5.3.7 The property of Axiom 5.2.6 (reliant on Axiom 5.2.3) giving
for a, b ∈ R0 and 0 < min(X ,Y) ≤ max(X ,Y) < 1(

ℵX + b
)
·
(
ℵY + a

)
= ℵ(ℵ(XY)+aX+bY) + ba ,

follows from the limit definition of infinity.
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Proof. Proof of the present theorem follows from direct substitution of the
limit definition of infinity. We have(
ℵX + b

)(
ℵY + a

)
=
(
X ∞̂+ b

)(
Y ∞̂+ a

)
=

[
X
(
lim
x→0

1

x

)
+ b

] [
Y
(
lim
x→0

1

x

)
+ a

]
= XY

(
lim
x→0

1

x

)2

+ aX
(
lim
x→0

1

x

)
+ bY

(
lim
x→0

1

x

)
+ ba .

If we wrote here

∞̂ · ∞̂ =

(
lim
x→0

1

x

)2

= lim
x→0

1

x2
= ∞̂ ,

then that would not exactly violate Definition 4.3.7 because it shows infinity
absorbing itself while Definition 4.3.5 gives the multiplicative absorptive prop-
erty in terms of a composition between ∞̂ and x ∈ R. However, moving the
exponent into the limit violates Definition 4.3.11 requiring that

∞̂ · ∞̂ = ∞̂ · ℵ1 = ℵ∞̂ ̸= ℵ1 = ∞̂ .

Therefore, we finish the proof as(
ℵX + b

)(
ℵY + a

)
= XY

(
lim
x→0

1

x

)
ℵ1 + aℵX + bℵY + ba

= ℵ(
XY
(

lim
x→0

1
x

)) + ℵaX + ℵbY + ba

= ℵ(XY·∞̂) + ℵ(aX+bY) + ba

= ℵ(ℵ(XY)+aX+bY) + ba . l

Theorem 5.3.8 The property of Axiom 5.2.13 giving for a, b ∈ R0 and 0 <
min(X ,Y) ≤ max(X ,Y) < 1

ℵX + b

∞̂
= X ,

follows from the limit definition of infinity.

Proof. We will use the property that X ∈ R0 to allow us move it out of the
quotient, as per Axiom 5.2.12. We have

ℵX + b

∞̂
=
X
(
lim
x→0

1
x

)
lim
x→0

1
x

+
b

lim
x→0

1
x

= X
lim
x→0

1
x

lim
x→0

1
x

+ lim
x→0

xb = X lim
x→0

1 = X . l
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Remark 5.3.9 The property of Axiom 5.2.13 giving for a, b ∈ R0 and 0 <
min(X ,Y) ≤ max(X ,Y) < 1

a

ℵX + b
= 0 ,

does not follow from the limit definition of infinity. If we wrote

a

ℵX + b
=

a

X
(
lim
x→0

1
x

)
+ b

=
a

X
· 1(

lim
x→0

1
x

)
+ b

X

,

then we would have no way to evaluate the quotient without bringing the de-
nominator’s b

X term into the limit expression. If we did, then the expected zero
output would follow directly, but moving that term into the limit expression
is not allowed because doing so would give ∞̂ an additive absorptive property.

Theorem 5.3.10 The quotient of any R0 number divided by any number with
a non-vanishing big part is identically zero.

Proof. Suppose x, b ∈ R+
0 and 0 < X < 1, and that

x

ℵX + b
= z .

Axiom 5.2.12 allows us to take x ∈ R0 out of the quotient, so we may write

1

ℵX + b
=
z

x
.

The quotient is only well-defined for z = 0. l

Theorem 5.3.11 Quotients of the form RX
0 ÷ RY

0 are always equal to X
Y .

Proof. By Theorem 5.3.10, we have

ℵX + b

ℵY + a
=
ℵX
ℵY + a

+
b

ℵY + a
=
ℵX
ℵY + a

.

If a = 0, then

ℵX
ℵY

=

∣∣ℵX ∣∣∣∣ℵY∣∣ =
X lim

x→0

1
x

Y lim
x→0

1
x

=
X
Y
·
lim
x→0

1
x

lim
x→0

1
x

=
X
Y
· lim
x→0

1 =
X
Y

.

To prove the present theorem in the general case of a, we will demonstrate a
contradiction. Suppose c ̸= X

Y , and that

ℵX
ℵY + a

= c .
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Further suppose that X < Y so that we may assume 0 < c < 1. Then c has a
multiplicative inverse and

ℵX
ℵ(cY) + ca

= 1 .

Then

lim
a→0

ℵX
ℵ(cY) + ca

=
ℵX
ℵ(cY)

=
X
cY

= 1 ⇐⇒ c =
X
Y

.

It follows that the small part of the denominator does not contribute to the
quotient. The case of X > Y follows from the case of a = 0. The theorem is
proven. l

Example 5.3.12 This example demonstrates the associativity of multiplica-
tion and division for R0 numbers such as c. Consider the expression

c · ℵX + b

ℵY + a
= c · X

Y
=
cX
Y

.

If we move c into the quotient and perform the multiplication before the divi-
sion, then

c · ℵX + b

ℵY + a
=
c ·
(
ℵX + b

)
ℵY + a

=
ℵ(cX ) + cb

ℵY + a
=
cX
Y

,

demonstrates that the operation remains well-defined with the special associa-
tive operations for R0.

Example 5.3.13 This example treats the negative exponent inverse notation.
We have

x

ℵX + b
= 0 ≠⇒ ℵX + b

x
=

1

0
.

The usual “invert and multiply” rule for dividing by fractions relies on an
assumed associativity between multiplication and division, so it cannot be
used in certain cases of numbers with non-vanishing big parts. We have

ℵX + b

x
= ℵ(X

x )
+
b

x
, and

(
x

ℵX + b

)−1

=
1(
x

ℵX + b

) = undefined .

§5.4 Field Axioms

In earlier work on the neighborhood of infinity [8], we studied exclusively the

maximal neighborhood of infinity using the symbol R̂ to refer to what we
have labeled R1

0 in the present conventions. To build numbers of the form

x = ∞̂ − b in the set R̂ ∼ R1
0, it was only required to suppress the additive

absorption of ∞̂. The remaining multiplicative absorption resulted in certain
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(undesirable?) mathematical artifacts which are presently eliminated by the
total suppression of all absorptive properties for ∞̂. In this section, we will list
those artifacts which are cured in the present conventions, and then we will
examine that which remains yet still disagrees with the field axioms. After we
have reviewed the issues that were cleared up, we will give a common statement
of the field axioms together with the ordering and completeness axioms, and
then we will make comparisons to the given arithmetic axioms.

Remark 5.4.1 If ∞̂ retains multiplicative absorption as in previous work [8],
then for n, b ∈ N we have

n
(
∞̂ − b

)
≤
(
∞̂ − b

)
.

This ordering relation is not supported by the geometric notion of multiplica-
tion. The product of any positive number x multiplied by a natural number
n should be greater than or equal to x. The intuitive geometric arrangement
of this operation is preserved when ∞̂ has neither additive nor multiplicative
absorption. Another cured artifact is observed in the sums of numbers in the
maximal neighborhood of infinity. Even without multiplicative absorption, the
geometric notion of the difference is preserved with(

∞̂ − b
)
−
(
∞̂ − a

)
= a− b ,

but the notion of the sum is not. With multiplicative absorption in place,
adding two R1

0 numbers yields(
∞̂ − b

)
+
(
∞̂ − a

)
= 2∞̂ −

(
b+ a

)
= ∞̂ −

(
b+ a

)
. (5.1)

The geometric notion of addition would require that the sum of two numbers
just less than infinity would not be another number just less than infinity. This
issue is cured in the present convention with the implicit transfinite ordering
ℵ0.9 + ℵ0.9 = ℵ1.8 ≫ ℵ1.

The most undesirable artifact (most significant problem?)with allowing ∞̂
to retain multiplicative absorption was the loss of additive associativity. Sub-
tracting (∞̂ − c) from both sides of Equation (5.1) yields[(

∞̂ − b
)
+
(
∞̂ − a

)]
−
(
∞̂ − c

)
=
[
∞̂ −

(
b+ a

)]
−
(
∞̂ − c

)
.

Assuming the associative property of addition, we may arrange the LHS brack-
ets to write(

∞̂ − b
)
+
[(
∞̂ − a

)
−
(
∞̂ − c

)]
=
[
∞̂ −

(
b+ a

)]
−
(
∞̂ − c

)
∞̂+

[
c−

(
b+ a

)]
= c−

(
b+ a

)
.

Subtracting the R0 part from both sides yields the plain contradiction ∞̂ = 0.
This was avoided, originally, by revoking additive associativity in Reference
[8]. In the present conventions, we avoid this result by taking multiplicative
absorption away from infinity hat.
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While it is permissible, in principle, to have notions of addition and multi-
plication which are not inherently geometric, it is highly undesirable for basic
arithmetic if addition is not associative. Indeed, it is tantamount to arbitrary
to say, “∞̂ has one kind of absorption but not the other,” so the present con-
vention is better because it gives operations which are inherently geometric,
and wherein addition has the highly desirable associative property.

Definition 5.4.2 A field is a set S together with the addition and multiplica-
tion operators which satisfies the addition and multiplication axioms for fields:
Axioms 5.4.3 and 5.4.5.

Axiom 5.4.3 The addition axioms for fields are

� (A1) S is closed under addition: If x, y ∈ S, then x+ y ∈ S.

� (A2) Addition is commutative: If x, y ∈ S, then x+ y = y + x.

� (A3) Addition is associative: If x, y, z ∈ S, then (x+ y)+ z = x+(y+ z).

� (A4) There exists an additive identity element 0 in S: If x ∈ S, then
x+ 0 = x.

� (A5) Every x ∈ S has an additive inverse: If x ∈ S, then there exists
−x ∈ S such that x+ (−x) = 0.

Remark 5.4.4 The arithmetic axioms do not exhibit (A1), but they do ex-
hibit (A2)-(A5).

Axiom 5.4.5 The multiplication axioms for fields are

� (M1) S is closed under multiplication: If x, y ∈ S, then x · y ∈ S.

� (M2) Multiplication is commutative: If x, y ∈ S, then x · y = y · x.

� (M3) Multiplication is associative: If x, y, z ∈ S, then (x ·y) ·z = x ·(y ·z).

� (M4) There exists a multiplicative identity element 1 ̸= 0 in S: If x ∈ S,
then x · 1 = x.

� (M5) If x ∈ S and x ̸= 0, then x has a multiplicative inverse: If x ∈ S,
then there exists x−1 ∈ S such that x · x−1 = 1.

Remark 5.4.6 The arithmetic axioms preserve (M2)-(M4), but both of (M1)
and (M5) are lost. The loss of (M5) was proven in Theorem 5.2.8.

Definition 5.4.7 An ordered field is a field F together with a relation <
which satisfies the field ordering axioms: Axiom 5.4.8.
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Axiom 5.4.8 The field ordering axioms are

� (O1) Elements of F have trichotomy: If x, y ∈ F , then one and only one
of the following is true: (i) x < y, (ii) x = y, or (iii) x > y.

� (O2) The < relation is transitive: If x, y, z ∈ F , then x < y and y < z
together imply x < z.

� (O3) If x, y, z ∈ F , then x < y implies x+ z < y + z.

� (O4) If x, y, z ∈ F , and if z > 0, then x < y implies x · z < y · z.

It is understood that x < y means y > x.

§5.5 Compliance of Cauchy Equivalence Classes with the
Arithmetic Axioms

In this section, we give the usual definitions for arithmetic operations on
Cauchy equivalence classes. We clarify the meanings for the extended case
of [x] → [X + x] = [ℵX + x] (Definition 4.2.13), and then we prove in a few
cases that the arithmetic axioms are satisfied by the extended Cauchy equiv-
alence classes [X + x] ⊂ CAB

Q \ CQ =⇒ [X + x] ̸∈ R0. The proofs in this
section mostly follow References [11,12].

Theorem 5.5.1 Every convergent rational sequence of terms an ∈ Q is a
Cauchy sequence.

Proof. Per Definition 4.2.2, a sequence {an} is a Cauchy sequence if and only
if

∀δ ∈ Q ∃m,n,N ∈ N s.t. m,n > N =⇒
∣∣an − am∣∣ < δ .

By the convergence of {an}, it is granted that there exists some l ∈ R such
that

lim
n→∞

an = l .

Convergence guarantees that

∃n,N ∈ N s.t. n > N =⇒
∣∣an − l∣∣ < δ

2
.

Then, whenever n,m > N , we have∣∣an − am∣∣ = ∣∣(an − l)− (am − l)∣∣ ≤ ∣∣an − l∣∣+ ∣∣am − l∣∣ < δ

2
+
δ

2
= δ .

Therefore, every convergent rational sequence {an} is a Cauchy sequence. l

Definition 5.5.2 If x, y ∈ R are such that there are two Cauchy equivalence
classes x = [(xn)] and y = [(yn)], then x+y = [(xn+yn)] and x ·y = [(xn ·yn)].
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Theorem 5.5.3 The additive operation for equivalence classes given by Defi-
nition 5.5.2 is well-defined.

Proof. Define four Cauchy equivalence classes [(an)], [(bn)], [(cn)], and [(dn)]
having the properties

[a] = [b] , and [c] = [d] ,

so that
lim
n→∞

(
an − bn

)
= 0 , and lim

n→∞

(
cn − dn

)
= 0 .

For addition to be proven well-defined, we need to prove that [(an + cn)] =
[(bn + dn)]. This requires

[(an + cn)]− [(bn + dn)] = 0 .

The difference being equal to zero means that for sufficiently large n, and for
any δ ∈ R, we must have

[(an + cn)]− [(bn + dn)] = [(an − bn)] + [(cn − dn)] < δ .

We will prove this by the method used in Theorem 5.5.1. The limits of an− bn
and cn − dn approaching zero tell us that

∃n,N ∈ N s.t. n > N =⇒
∣∣an − bn∣∣ < δ

2
,
∣∣cn − dn∣∣ < δ

2
.

Then, whenever n,m > N , we have∣∣(an − bn)+ (cm − dm)∣∣ ≤ ∣∣an − bn∣∣+ ∣∣cm − dm∣∣ < δ

2
+
δ

2
= δ .

This proves that [a+c] = [b+d], and that, therefore, addition is a well-defined
operation on Cauchy equivalence classes. l

Example 5.5.4 This example gives a specific case of Theorem 5.5.3 using
numbers in the neighborhood of infinity. Suppose there are four subsets of
CAB

Q with the properties

[ℵ[X1] + x1] = [ℵ[Y1] + y1] , and [ℵ[X2] + x2] = [ℵ[Y2] + y2] .

Since the big and little parts of equal numbers are equal, we have equality
among all the matched pairs of [x1], [x2], [y1], [y2], [X1], [X2], [Y1], [Y2] ⊂ CQ. If
addition is well-defined, then

[ℵ[X1] + x1] + [ℵ[X2] + x2] = [ℵ[Y1] + y1] + [ℵ[Y2] + y2] .

Evaluating the left and right sides independently yields

[ℵ[X1] + x1] + [ℵ[X2] + x2] = [ℵ[X1] + x1 + ℵ[X2] + x2] = [ℵ[X1+X2] + x1 + x2] ,
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and

[ℵ[Y1] + y1] + [ℵ[Y2] + y2] = [ℵ[Y1] + y1 + ℵ[Y2] + y2] = [ℵ[Y1+Y2] + y1 + y2] .

Considering first the small parts, Definition 5.5.2 gives [x+ y] = [x] + [y] so

[x1 + x2] = [y1 + y2] ⇐⇒ [x1] + [x2] = [y1] + [y2] .

This condition follows from Theorem 5.5.3. Considering the big parts yields

[ℵ[X1+X2]] = [ℵ[Y1+Y2]] ⇐⇒ [X1] + [X2] = [Y1] + [Y2] .

It follows as an obvious corollary of Theorem 5.5.3 that the additive operation
is well-defined for numbers in the neighborhood of infinity.

Remark 5.5.5 To prove that the multiplicative operation is well-defined, we
will rely on the boundedness of Cauchy sequences. First, we will give the proof
of boundedness.

Theorem 5.5.6 If {an} is a Cauchy sequence of rationals, then there exists
an M ∈ R such that |an| < M for all n ∈ N. In other words, every Cauchy
sequence of rationals is bounded.

Proof. Since {an} is Cauchy, we know there is some sufficiently large m,n ∈ N
such that ∣∣an − am∣∣ < 1 .

If follows for such n that∣∣aN+1 − an
∣∣ < 1 =⇒

(
aN+1 − 1

)
< an <

(
aN+1 + 1

)
.

Define M as the greatest element of a set with a natural number of elements

M = max
{
|a0|, |a1|, . . . , |aN |, |aN+1 − 1|, |aN+1 + 1|

}
.

Every an with n ≤ N is in the set, and every an with n > N is less than one
of the last two elements of the set. Therefore, there exists a bound M ∈ R for
every rational Cauchy sequence {an}. l

Theorem 5.5.7 The multiplicative operation for equivalence classes given by
Definition 5.5.2 is well-defined.

Proof. Define four Cauchy equivalence classes [(an)], [(bn)], [(cn)], and [(dn)]
having the properties

[a] = [b] , and [c] = [d] ,

so that
lim
n→∞

(
an − bn

)
= 0 , and lim

n→∞

(
cn − dn

)
= 0 .
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For multiplication to be proven well-defined, we need to prove that [(an ·cn)] =
[(bn · dn)], or, specifically, that for sufficiently large n

[(an · cn)]− [(bn · dn)] < δ .

To that end, insert the additive identity as a difference of cross terms so that

an · cn − bn · dn = an · cn − bn · dn +
(
cn · bn − cn · bn

)
=
(
an · cn − cn · bn

)
+
(
cn · bn − bn · dn

)
= cn ·

(
an − bn

)
+ bn ·

(
cn − dn

)
.

It follows that∣∣an · cn − bn · dn∣∣ ≤ (|cn| · |an − bn|+ |bn| · |cn − dn|) .

By Theorem 5.5.6, there exists bounds |bn| ≤ B0 and |cn| ≤ C0 for any n ∈ N.
Then let M0 = B0 + C0 so that∣∣an · cn − bn · dn∣∣ < M0

(
|an − bn|+ |cn − dn|

)
.

Since all four sequences are Cauchy, we have

∃n,N ∈ N s.t. n > N =⇒
∣∣an − bn∣∣ < δ

2M0

,
∣∣cn − dn∣∣ < δ

2M0

.

We prove the theorem by writing∣∣an · cn − bn · dn∣∣ < M0

(
δ

2M0

+
δ

2M0

)
= δ . l

Remark 5.5.8 Theorem 5.5.6 proves the boundedness of Cauchy sequences
of rationals in CQ but not the boundedness of all sequences in CAB

Q . Since
numbers with non-zero big parts are represented as ordered pairs of elements
of CQ, it is obvious that such numbers are bounded because each sequence
in the pair is bounded. As a consequence of Theorem 5.5.7, which regards
general Cauchy equivalence classes and does not restrict to the rationals, it
follows that multiplication is well-defined for numbers in the neighborhood
of infinity. However, one must carefully note that the boundedness of such
products will not always be such that the bound is in R. By the identity
ℵX · ℵY = ℵℵ(XY)

, it is never in R when X > 0 or Y > 0.

Remark 5.5.9 Assuming the field axioms, Definition 5.5.2 giving x · y =
[(xn · yn)] is good enough to allow us to prove the arithmetic operations are
well-defined. However, we have presently not defined division as multiplication
by an inverse, so we need to give a definition for the quotient of two Cauchy
equivalence classes.
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Definition 5.5.10 If x, y ∈ R are such that there are two Cauchy equivalence
classes x = [(xn)] and y = [(yn)], then x÷ y = [(xn ÷ yn)].

Theorem 5.5.11 The quotient operation for equivalence classes of rationals
given by Definition 5.5.10 is well-defined.

Proof. Define four Cauchy equivalence classes [(an)], [(bn)], [(cn)], and [(dn)]
having the properties

[a] = [b] , and [c] = [d] ,

so that
lim
n→∞

(
an − bn

)
= 0 , and lim

n→∞

(
cn − dn

)
= 0 .

For division to be proven well-defined, we need to prove that [(an ÷ cn)] =
[(bn ÷ dn)]. Specifically, for sufficiently large n, we must demonstrate

[(an ÷ cn)]− [(bn ÷ dn)] < δ .

To that end, insert the additive identity as a difference of the cross terms so
that

an
cn
− bn
dn

=
an
cn
− bn
dn

+

(
bn
cn
− bn
cn

)
=

(
an
cn
− bn
cn

)
+

(
bn
cn
− bn
dn

)
=
an − bn
cn

+
bn ·

(
dn − cn

)
cn · dn

.

It follows that ∣∣∣∣ancn − bn
dn

∣∣∣∣ ≤ ( |an − bn||cn|
+
|bn| · |cn − dn|
|cn| · |dn|

)
.

By Theorem 5.5.6, there exist bounds |bn| ≤ B0, |cn| ≤ C0 and |dn| ≤ D0 for
any n ∈ N. Since all four sequences are Cauchy, we have

∃n,N ∈ N s.t. n > N =⇒
∣∣an− bn∣∣ < C0δ

2
,
∣∣cn−dn∣∣ < C0D0δ

2B0

.

We prove the theorem by writing∣∣∣∣ancn − bn
dn

∣∣∣∣ <
(

C0δ
2

C0

+
B0

C0D0δ
2B0

C0D0

)
=
δ

2
+
δ

2
= δ .

Since we have assumed [a], [b], [c], [d] ⊂ CQ, we have proven the theorem with
Axiom 5.2.12 granting associativity among division and multiplication. l
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Main Theorem 5.5.12 The quotient operation given by Definition 5.5.10 is
well-defined for equivalence classes in CAB

Q \ CQ.

Proof. Suppose there are four subsets of CAB
Q with the properties

[ℵ[A] + a] = [ℵ[B] + b] , and [ℵ[C] + c] = [ℵ[D] + d] .

It follows from the equality of Cauchy sequences that

lim
n→∞

(
An − Bn

)
= 0

lim
n→∞

(
Cn −Dn

)
= 0

lim
n→∞

(
an − bn

)
= 0

lim
n→∞

(
cn − dn

)
= 0 .

For concision in notation, introduce the symbols

(An) = (ℵ[(An)] + an)

(Bn) = (ℵ[(Bn)] + bn)

(Cn) = (ℵ[(Cn)] + cn)

(Dn) = (ℵ[(Dn)] + dn) .

For division to be proven well-defined, we need to prove that [(An ÷ Cn)] =
[(Bn ÷Dn)]. Specifically, for sufficiently large n, we must demonstrate

[(An ÷ Cn)]− [(Bn ÷Dn)] < δ .

Following the form of Theorem 5.5.11, we may insert the identity to obtain
the inequality∣∣∣∣AnCn − Bn

Dn

∣∣∣∣ ≤ ( |An −Bn|
|Cn|

+
|Bn| · |Cn −Dn|
|Cn| · |Dn|

)
.

Here, we make the major distinction with Theorem 5.5.11: the bounds on
(An), (Bn), (Cn), (Dn) are not in R0, and we must be careful not to allow asso-
ciativity among multiplication and division when simplifying the expression.
Since each of (An), (Bn), (Cn), (Dn) are ordered pairs of Cauchy sequences of
rationals (Axiom 4.2.17), we know the pairs of sequences are bounded. Let
the bounds be defined by

[(An)] = ([A], [a]) ≤ (A0, a0)

[(Bn)] = ([B], [b]) ≤ (B0, b0)

[(Cn)] = ([C], [c]) ≤ (C0, c0)

[(Dn)] = ([D], [d]) ≤ (D0, d0) ,
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where the notation implies the ordering of each paired element respectively.
It follows that∣∣∣∣AnCn − Bn

Dn

∣∣∣∣ ≤
∣∣ℵA0 + a0 − ℵB0 − b0

∣∣∣∣ℵC0 + c0
∣∣ +

∣∣ℵB + b0
∣∣ · ∣∣ℵC0 + c0 − ℵD0 − d0

∣∣∣∣ℵC0 + c0
∣∣ · ∣∣ℵD0 + d0

∣∣
≤
∣∣ℵ(A0−B0) + a0 − b0

∣∣∣∣ℵC0 + c0
∣∣ +

∣∣ℵB + b0
∣∣ · ∣∣ℵ(C0−D0) + c0 − d0

∣∣∣∣ℵC0 + c0
∣∣ · ∣∣ℵD0 + d0

∣∣
≤
∣∣A0 −B0

∣∣∣∣C0

∣∣ +

∣∣ℵ(ℵ(B0C0−B0D0)
+B0c0−B0d0+b0C0−b0D0) + b0c0 − b0d0

∣∣∣∣ℵ(ℵ(C0D0)
+D0c0+d0C0) + d0c0)

∣∣
≤
∣∣A0 −B0

∣∣∣∣C0

∣∣ +

∣∣ℵ(B0C0−B0D0) +B0c0 −B0d0 + b0C0 − b0D0

∣∣∣∣ℵ(C0D0) +D0c0 + d0C0

∣∣
≤
∣∣A0 −B0

∣∣∣∣C0

∣∣ +

∣∣B0C0 −B0D0

∣∣∣∣C0D0

∣∣
≤
∣∣A0 −B0

∣∣∣∣C0

∣∣ +

∣∣B0

∣∣ · ∣∣C0 −D0

∣∣∣∣C0

∣∣ · ∣∣D0

∣∣ .

Since A0, B0, C0, D0 ∈ R0, this is the same form achieved in Theorem 5.5.11,
and we will conclude the proof in the same way. Use the Cauchy property of
the respective sequences to write

∃n,N ∈ N s.t. n > N =⇒
∣∣An−Bn

∣∣ < C0δ

2
,
∣∣Cn−Dn

∣∣ < C0D0δ

2B0

.

We prove the theorem writing∣∣∣∣AnCn − Bn

Dn

∣∣∣∣ < C0δ
2

C0

+
B0

C0D0δ
2B0

C0D0

=
δ

2
+
δ

2
= δ . l

§6 Arithmetic Applications

§6.1 Properties of the Algebraic Fractional Distance Function
Revisited

We have defined the algebraic FDF D†
AB to totally replicate the behavior of

the geometric FDF DAB with the added property that it should allow us to
compute numerical quotients of the form AX

AB
in the absence of a supplemental

constraint in the form AX = cAB, as might be obtained with a ruler. In
verbose notation, we have

DAB : AB→ [0, 1] , and D†
AB : {[0, ∞̂];x} → [0, 1] ,

so that the algebraic FDF provides more information by taking the line seg-
ment and the chart on the line segment whereas the geometric FDF doesn’t
know about the chart x.

64



Jonathan W. Tooker

In Section 3.1, we found that neither the algebraic FDF of the first kind
nor the second has the analytic form of D†

AB. The second kind was ruled out
by Theorem 3.1.19 when we showed that D′′

AB is not one-to-one. D′
AB was pro-

visionally eliminated based on an unallowable discontinuity at infinity. Since
DAB is continuous on its domain, D†

AB is too. In Theorem 3.1.24 specifically,
we showed that D′

AB cannot conform to the Cauchy criterion for continuity at
infinity because that criterion always fails at infinity. The nature of the failure
is the requirement ∣∣x−∞∣∣ < δ ⇐⇒ δ >∞ .

There is no such δ ∈ R. What is the source of this discrepancy? The source
is the additive absorptive property of infinity giving ∞ − x = ∞. By now,
however, we have shown that the absorptive properties of all infinite elements
are not supported by the invariance of line segments under permutations of
their endpoints, and we have otherwise given an artificial construction ∞̂ which
does not have the problematic properties. With infinity hat in mind, now we
will revisit the continuity and other properties of D′

AB. We will show that the
algebraic FDF of the first kind does satisfy the Cauchy criterion
for a limit at infinity , something which has been considered historically
impossible. In the present section, we will also prove Conjecture 3.1.18 wherein
it was postulated that D′

AB is injective. Having shown by the end of the present

section that there are no obvious discrepancies between D†
AB and D′

AB, we will

assume that the algebraic FDF of the first kind is identically D†
AB.

Main Theorem 6.1.1 The algebraic fractional distance function of the first
kind D′

AB(AX) converges to a limit l = 1 at B ∈ AB.

Proof. According to the Cauchy definition of the limit of f(x) as x approaches
∞̂, we say that

lim
x→∞̂

f(x) = l ,

if and only if
∀ε > 0 ∃δ > 0 s.t. ∀x ∈ D ,

we have
0 <

∣∣x− ∞̂∣∣ < δ =⇒
∣∣f(x)− l∣∣ < ε .

In Theorem 3.1.24, we attempted to show this limit in the approach to geomet-
ric infinity x → ∞. At that point, we had to stop because there is no δ ∈ R
such that ∞− x < δ. Now we may choose x ∈ R with the given arithmetic
axioms to obtain, for example,∣∣(∞̂ − b)− ∞̂∣∣ = b , or

∣∣ℵX − ∞̂∣∣ = ℵ(1−X ) .

Per the ordering axiom (Axiom 5.2.18), either of these can be less than some
δ ∈ R. This remedies the blockage encountered in Theorem 3.1.24 where we
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found that δ ∈ R implies∞−x ̸< δ. Now we may follow the usual prescription
for the Cauchy definition of a limit, even at infinity! To that end, let δ = ℵ( ε

2)
.

Then the Cauchy definition requires that

0 <
∣∣x− ∞̂∣∣ < ℵ( ε

2)
, and

∣∣D′
AB(AX)−D′

AB(AB)
∣∣ < ε .

First, we will evaluate δ expression on the left as

∞̂ − x < ℵ( ε2) ⇐⇒ x > ℵ(1− ε
2)

.

Definition 3.1.9 gives D′
AB as

D′
AB(AX) =


1 for X = B

∥AX∥
∥AB∥

for X ̸= A, X ̸= B ,

0 for X = A

where
∥AX∥
∥AB∥

=
len[a, x]

len[a, b]
.

Evaluation of the ε expression, therefore, yields∣∣∣∣ len[0, x]len[0, ∞̂]
− 1

∣∣∣∣ = ∣∣∣∣ x∞̂ − 1

∣∣∣∣ <
∣∣∣∣∣ℵ(1− ε

2)

∞̂
− 1

∣∣∣∣∣ =
∣∣∣∣(1− ε

2

)
− 1

∣∣∣∣ = ∣∣∣∣−ε2
∣∣∣∣ < ε .

Therefore,
lim
x→∞̂
D′
AB(AX) = 1 .

This limit demonstrates the continuity of D′
AB at infinity. l

Remark 6.1.2 When defining D′
AB and D′′

AB in Section 3.1, we were able to
show thatD′′

AB is not one-to-one, but we did not yet have the tools to prove that
D′
AB is one-to-one on all real line segments. We conjectured it with Conjecture

3.1.18, and now we will use Lemma 6.1.3 to prove it in Theorem 6.1.4.

Lemma 6.1.3 For any point X ≡ X = [x1, x2] in a real line segment AB,
we have x1 ∈ RX0

ℵ if and only if x2 ∈ RX0
ℵ .

Proof. For proof by contradiction, suppose x1 ∈ RX1
ℵ , x2 ∈ RX2

ℵ , and X1 ̸= X2.
By Definition 4.1.14, there exist b1, b2 ∈ R0

ℵ such that

x1 = ℵX1 + b1 , and x2 = ℵX2 + b2 .
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With the a ≤ b condition inherent to the [a, b] interval notation, the algebraic
FDF tells us that

min[D†
AB(AX)] =

len[0, x1]

len[0,∞]
=
x1

∞
= X1 ,

and

max[D†
AB(AX)] =

len[0, x2]

len[0,∞]
=
x2

∞
= X2 .

It follows from the identity D†
AB(AX) = DAB(AX) that

min[DAB(AX)] = X1 , and max[DAB(AX)] = X2 .

By Definition 3.1.1, DAB(AX) is one-to-one which requires

X1 = X2 .

This contradicts the assumed condition that X1 ̸= X2. l

Theorem 6.1.4 The algebraic fractional distance function of the first kind
D′
AB is injective (one-to-one) on all real line segments.

Proof. (Proof of Conjecture 3.1.18.) Recall that D′
AB : AB → [0, 1] is

D′
AB(AX) =


1 for X = B

∥AX∥
∥AB∥

=
len[a, x]

len[a, b]
for X ̸= A, X ̸= B .

0 for X = A

Injectivity requires that

D′
AB(AX1) = D′

AB(AX2) ⇐⇒ AX1 = AX2 ⇐⇒ X1 = X2 .

Even if there is an entire interval of numbers in the algebraic representations
of each of X1 and X2, we have by Lemma 6.1.3:

min[D′
AB(AXk)] = max[D′

AB(AXk)] = Xk .

This tells us that choosing any x ∈ X ≡ X will yield the same D′
AB(AX).

Therefore, the injectivity of D′
AB(AX) follows from the injectivity of DAB(AX)

through the constraint

D′
AB(AX) = DAB(AX) . l

Conjecture 6.1.5 The algebraic fractional distance function D†
AB is an alge-

braic fractional distance function of the first kind D′
AB.
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§6.2 Some Theorems for Real Numbers in the Neighborhood of
Infinity

In Section 3.3, we listed four coarse bins of length as distinct modes in which
a line segment might have a many-to-one or one-to-one relationship between
its points and the numbers in their algebraic representations. The bins were

� L ∈ R0

� L ∈ R0
ℵ \ R0

� L ∈ {RX
ℵ } ∪ R1

ℵ (Recall that 0 < X < 1 is implicit in the absence of
explicit statements to the contrary.)

� L = ∞̂
In Theorems 3.3.1 and 3.3.2, we were able to prove the cases L ∈ R0 and
L = ∞̂, but we did not yet have sufficient tools to easily demonstrate the
cases of L ∈ R0

ℵ \ R0 and L ∈ {RX
ℵ } ∪ R1

ℵ. We still have not decided whether
or not R0

ℵ \ R0 = ∅ but, by this point, we have developed the tools needed
to prove the many-to-one relationship between real numbers and points in a
line segment with L ∈ {RX

0 } ∪ R1
0. This is the third case above modified

with a restriction to the natural neighborhoods of ℵX rather than the whole
neighborhoods. This restriction guarantees Lit(L) ∈ R0. We will give this
result in the present section which also contains various and sundry theorems
and examples, the most exciting of which is left as a surprise!

Theorem 6.2.1 If AB is a real line segment with finite length L ∈ {RX
0 }∪R1

0,
then no point X ∈ AB has a unique algebraic representation as one and only
one real number.

Proof. From the statement of the theorem, we have L = len(AB) = ℵX + b
with 0 < X ≤ 1 and b ∈ R0. By Definition 2.3.14, every point in a line segment
has an algebraic representation

X ≡X = [x1, x2] .

It follows that

min[D†
AB(AX)] =

len[0, x1]

len[0,ℵX + b]
=

x1
ℵX + b

.

Now suppose x0 ∈ R+
0 and z = x1 + x0, so z > x1. Then

len[0, z]

len[0,ℵX + b]
=

z

ℵX + b
=
x1 + x0
ℵX + b

=
x1
ℵX + b

+
x0
ℵX + b

.

By Axiom 5.2.13, the x0 term vanishes, so we find

len[0, z]

len[0,ℵX + b]
=

x1
ℵX + b

= min[D†
AB(AX)] .
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Invoking the single-valuedness of bijective functions, we find that

min[D†
AB(AX)] = max[D†

AB(AX)] =
x2
ℵX + b

=⇒ x1 < z ≤ x2 .

Therefore x1 ̸= x2, and the theorem is proven. l

Theorem 6.2.2 The derivative of f(x) = ℵx with respect to x is infinite.

Proof. The definition of the derivative of f(x) with respect to x is

d

dx
f(x) = lim

∆x→0

f(x+∆x)− f(x)
∆x

.

For f(x) = ℵx, we have

d

dx
ℵx = lim

∆x→0

ℵ(x+∆x) − ℵx
∆x

= lim
∆x→0

ℵx + ℵ∆x − ℵx
∆x

= lim
∆x→0

1

∆x
ℵ∆x

= ℵ1 . l

Definition 6.2.3 For 0 < X < 1, NX is a subset of real numbers such that

NX =
{
ℵX + w

∣∣ w ∈W
}
,

where the whole numbers are W = {. . . ,−2,−1, 0, 1, 2, . . . }. The set {NX}
is called the set of all NX such that 0 < X < 1. Complementing N in the
neighborhood of the origin, define a set

N̂ =
{
∞̂ − n

∣∣ n ∈ N
}
,

called natural numbers in the maximal neighborhood of infinity. The set of all
extended natural numbers is

N∞ = N ∪ {NX} ∪ N̂ .

Definition 6.2.4 The function Ex is defined as

Ex =
∞∑
k=0

xk

k!
,

where the sum is taken to mean all k ∈ N∞ ∪ {0}. This function is called the
big exponential function.
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Theorem 6.2.5 For any x ∈ R0, the big exponential function is equal to the
usual exponential function:

x ∈ R0 =⇒ Ex = ex .

Proof. The usual exponential function is

ex =
∞∑
k=0

xk

k!
,

with the upper bound on k meaning “as the integer k increases without
bound.” This notation also gives an implicit restriction k ∈ N0 = N ∪ {0}.
To prove the theorem, it will suffice to show that all terms vanish when k ̸= 0
and k ̸∈ N. We have

Ex =
∑
k∈N0

xk

k!
+
∑
k∈NX1

xk

k!
+
∑
k∈NX2

xk

k!
+ . . .

= ex +
∞∑
k=0
k∈N0

x(ℵX1
+k)(

ℵX1 + k
)
!
+

∞∑
k=1
k∈N

x(ℵX1
−k)(

ℵX1 − k
)
!
+

∞∑
k=0
k∈N0

x(ℵX2
+k)(

ℵX2 + k
)
!
+ . . . .

Now it will suffice to show that the sum over k ∈ NX vanishes for any X >
0. This follows if the summed quotients vanish for all such k. Although
multiplication and division are not associative in general, Axiom 5.2.12 allows
us to move factors of x ∈ R0 into or out of quotients, as per usual. Therefore,
let z = x−1 so that

x(ℵX±k)(
ℵX ± k

)
!
=

1

z

x(ℵX±k−1)(
ℵX ± k

)(
ℵX ± k − 1

)
!
=

x(ℵX±k−1)(
ℵ(zX ) ± kz

)(
ℵX ± k − 1

)
!
.

The number of parenthetical terms in the factorial is equal to the number of
factors of x in the numerator, so, after bringing down every factor of x, we
obtain

x(ℵX±k)(
ℵX ± k

)
!
=

1(
ℵ(zX ) ± kz

)(
ℵ(zX ) ± kz − z

)
. . .

= 0 .

This quotient always vanishes if X > 0 and x ∈ R0. The theorem is proven.l

Example 6.2.6 This example gives a good thinking device for understanding
limits in the form n→∞ when n steps in integer increments. Usually, n→∞
is taken to mean “as the iterator n increases without bound,” but, in this
example, we will suggest that n → ∞ might be better read as “the sum over
every n ∈ N∞,” at least in certain contexts.
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Definition 2.2.2 gives two definitions for the ∞ symbol, one of which is

lim
n→∞

n∑
k=1

k =∞ .

Axiom 5.2.1 grants the closure of R0 under its operations, so the partial sums
will always be another R0 number for any n ∈ N. In other words, it will be
less than ℵX for any X > 0. However, the statement “as n increases without
bound” induces the notion of the non-convergence of the partial sums. In turn,
this allows us to think of the sum as exceeding certain ℵX , so it may more
plainly demonstrate the notion of non-convergence when we take n → ∞ to
mean the sum over all n ∈ N∞. In that case, the partial sums will eventually
have individual terms greater than ℵX for any 0 < X < 1, and it is obvious
that ℵX cannot be an upper bound on the partial sums over n ∈ N∞. Taking
m ∈ N, observe that the n ∈ N∞ convention gives

lim
n→∞

n∑
k=1

k > lim
n→m

n∑
k=1

(
ℵ(m−1) + k

)
> mℵ(m−1) = ℵ1 .

It is obvious that the limit of the partial sums diverges in R as the big part of
the partial sums will easily exceed ℵ1 = ∞̂. Certainly, it is obvious that the
partial sums diverge if n ∈ N or n ∈ N∞, but it may be more obvious when
n ∈ N∞. When n is said to increase without bound and is also taken as n ∈ N,
then there is an intuitive hiccup seeing that the sequence of the sums should
diverge when every element in the sequence of partial sums is less than any
ℵX ∈ {RX}. So, instead, it may be better to think of the n→∞ notation as
meaning the sum over all n ∈ N∞.

This example has demonstrated the utility of N∞ as a thinking device, and
it makes a distinction between the two formulae

lim
x→0+

1

x
=∞ , and lim

n→∞

n∑
k=1

k =∞ . (6.1)

In the partial sums definition, and under the N∞ convention, the distinction
between geometric infinity and algebraic infinity is suggested as

∞̂ = ℵ1 , and ∞ = ℵℵℵ...
.

This would require a significant revision of the entire text to accommodate
|ℵ1| ≠ |∞|, but we point out the possibility of the alternative convention with
a nod toward future inquiry. Until then, we still have |∞̂| =∞. Per Definition
2.2.1, both limits in Equation (6.1) diverge in R, and we cannot differentiate
|ℵ1| from |ℵℵ... | without first making a transfinite analytic continuation. This
continuation is surely something to be explored because it is the longitudinal
continuation of R beyond its endpoints perfectly dual to the famous transverse
continuation of R onto C. Where the latter has yielded so much fruit in the
history of mathematics, the former ought to bear some fruit as well.
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Main Theorem 6.2.7 If (i) ABC is a right triangle such that ∠ABC = π
2
,

(ii) ∥AB∥, ∥BC∥ ∈ {RX
0 }, and (iii) ∥AB∥ ̸= c0∥BC∥, and if the Pythagorean

theorem is phrased as

∥AC∥ =
√
∥AB∥2 + ∥BC∥2 , with ∥AC∥ = len(AC) ,

then
len(AC) ̸∈ R0

ℵ ∪ {RX
ℵ } ∪ R1

ℵ .

Proof. From ∥AB∥, ∥BC∥ ∈ {RX
0 }, the squared lengths of the legs are

∥AB∥2 =
(
ℵX + x

)2
= ℵ(ℵ(X2)+2xX) + x2 ,

and
∥BC∥2 =

(
ℵY + y

)2
= ℵ(ℵ(Y2)+2yY) + y2 .

If we directly state the Pythagorean theorem in terms of the lengths (per the
statement of the theorem), then we find

∥AC∥2 = ℵ(ℵ(X2+Y2)+2(xX+yY)) + x2 + y2 .

Assuming ∥AC∥ = ℵA + a, we find

ℵ(ℵ(A2)+2aA) + a2 = ℵ(ℵ(X2+Y2)+2(xX+yY)) + x2 + y2 .

Setting the big parts equal yields

ℵ(A2) + 2aA = ℵ(X 2+Y2) + 2(xX + yY) ,

which still has separable big and little parts. Doing the maximum possible
separation of all the big and little parts yields

A2 = X 2 + Y2

aA = xX + yY
a2 = x2 + y2 .

Since ∥AB∥ ̸= c0∥BC∥, meaning that there does not exist a c0 such that
x = c0y and X = c0Y , we have three inconsistent equations in two variables
a and A. No real-valued length ∥AC∥ squared will satisfy the Pythagorean
theorem as stated. The theorem is proven. l

Definition 6.2.8 A number is a complex number z ∈ C if and only if

z = x+ iy , and x, y ∈ R .

Theorem 6.2.9 If we assign an algebraic representation to the hypotenuse
AC ≡ z ∈ C rather than the AC ≡ ∥AC∥ ∈ R disallowed by Main Theorem
6.2.7, then the Pythagorean identity is satisfied by AC2 ≡ z̄z.

72



Jonathan W. Tooker

Proof. Given two legs, we want to find the hypotenuse through the Pythagorean
theorem. We assume that the legs are real line segments so that

AB2 ≡ ∥AB∥2 , and BC2 ≡ ∥BC∥2 .

If we take ∥AB∥, ∥BC∥ ∈ C such that Im(∥AB∥) = Im(∥BC∥) = 0, then
each is its own complex conjugate, and the quantity squared retains its usual
meaning. Still, the geometric identity

AC2 = AB2 +BC2 ,

needs an algebraic interpretation if we are to do trigonometry. The present
theorem concerns the “squared,” exponent 2 operation being identified as mul-
tiplication by the complex conjugate in the sense that the inner product of a
1D vector z⃗ ∈ C1 with itself is z⃗ 2 = ⟨z|z⟩ = z̄z. The vector space axioms are
known to be satisfied in C = C1, so it is only an irrelevant matter of notation
whether we specify a complex number z or a 1D complex vector z⃗. As in the
previous theorem, we find〈

AB
∣∣AB〉 = (ℵX + x

)2
= ℵ(ℵ(X2)+2xX) + x2 ,

and 〈
BC
∣∣BC〉 = (ℵY + y

)2
= ℵ(ℵ(Y2)+2yY) + y2 .

The present statement of the Pythagorean theorem is〈
AC
∣∣AC〉 = ℵ(ℵ(X2+Y2)+2(xX+yY)) + x2 + y2 .

Let z ∈ C be such that (i) it conforms to Definition 6.2.8, (ii) AC ≡ z = |AC⟩,
and (iii)

z = ℵ(X±iY) + x± iy =
(
ℵX + x

)
+ i
(
ℵY + y

)
.

We have

z̄z =
〈
AC
∣∣AC〉 = [ℵ(X±iY) + (x± iy)

]∗[ℵ(X±iY) + (x± iy)
]

=
[
ℵ(X∓iY) + (x∓ iy)

][
ℵ(X±iY) + (x± iy)

]
= ℵ(X∓iY)ℵ(X±iY)

+ ℵ(X∓iY)(x± iy)
+ ℵ(X±iY)(x∓ iy) + (x∓ iy)(x± iy)

= ℵ(ℵ(X2+Y2))
+ ℵ(xX±iyX∓ixY+yY)

+ ℵ(xX∓iyX±ixY+yY) + x2 + y2

= ℵ(ℵ(X2+Y2)+2(xX+yY)) + x2 + y2 .

Therefore, 〈
AC
∣∣AC〉 = 〈AB∣∣AB〉+ 〈BC∣∣BC〉 ,

and the Pythagorean theorem is satisfied as stated. This proves the theorem.l
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Corollary 6.2.10 If we assign an algebraic representation to the hypotenuse
AC ≡ x⃗ ∈ R2 rather than the AC ≡ ∥AC∥ ∈ R disallowed by Main Theorem
6.2.7, then the Pythagorean identity is satisfied by AC2 ≡ x⃗ · x⃗.

Proof. This corollary follows from Theorem 6.2.9 in the way that everything
in C has two equivalent vector space representations in C1 and R2. Let x⃗ ∈ R2

be a vector in the Cartesian plane equipped as a vector space. We have three
real vectors defining ABC in R2:

A⃗B = (ℵX +x, 0) , B⃗C = (0,ℵY +y) , and A⃗C = (ℵX +x,ℵY +y) .

The Pythagorean theorem yields

A⃗C · A⃗C = A⃗B · A⃗B + B⃗C · B⃗C .

Again, we find

A⃗B · A⃗B =
(
ℵX + x

)2
= ℵ(ℵ(X2)+2xX) + x2 ,

and
B⃗C · B⃗C =

(
ℵY + y

)2
= ℵ(ℵ(Y2)+2yY) + y2 .

Checking the given form of A⃗C ∈ R2, we find

A⃗C · A⃗C = (ℵX + x,ℵY + y) · (ℵX + x,ℵY + y)

= A⃗B · A⃗B + B⃗C · B⃗C .

The Pythagorean identity is satisfied with an algebraic representation of the
hypotenuse AC such that AC ≡ A⃗C ∈ R2. The theorem is proven. l

Example 6.2.11 If a right triangle has two equal legs ∥AB∥ = ∥BC∥, then
the hypotenuse AC should be such that ∥AC∥ =

√
2∥AB∥. Since this is a case

of ∥AB∥ = c0∥BC∥ not considered in Main Theorem 6.2.7, we will include it
now for completeness. We have two equal legs AB and BC with length ℵX +x
such that √

2∥AB∥ =
√
2∥BC∥ = ℵ√2X +

√
2x .

We square it to check the Pythagorean theorem and find(
ℵ√2X +

√
2x
)2

= ℵ(√2Xℵ√
2X )

+ 2ℵ√2X

√
2x+ 2x2

= ℵℵ(2X2)
+ ℵ4xX + 2x2

= ℵ(ℵ2X2+4xX) + 2x2 .

Indeed, the hypotenuse is real-valued and scaled by
√
2 when the legs are

equal:

ℵ(ℵ2X2+4xX) + 2x2 = 2
(
ℵX + x

)2
=⇒ ∥AC∥ =

√
2∥AB∥ .
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It is good that the geometry of a small triangle remains intact even when it is
uniformly resized to have a characteristic scale in the neighborhood of infinity.
However, what would happen if we rescaled one leg and not the other? Would
it suddenly gain an imaginary part? In the complex algebraic representation
of the hypotenuse AC ≡ z = ℵ(X±iY) + x ± iy, as in Theorem 6.2.9, we have
randomly chosen BC ≡ ([Y ], [y]) as governing the imaginary part. However, if
the two legs are real, then why should ([Y ], [y]) govern the imaginary part of z
and not AB ≡ ([X ], [x])? Having raised these issues, we leave them to future
work on 2D planar Euclidean geometry. After one more related example,
we will return to the present considerations regarding the 1D geometry of a
straight line (which is not as simple as might be assumed.)

Example 6.2.12 This example demonstrates a ramification of Main Theorem
6.2.7 for the ordinary notions of trigonometry. Consider a right triangle ABC
such that ∠ABC = π

2
. Suppose ∥AB∥ = ℵX + x and ∥BC∥ = ℵY + y. Let

α = ∠CAB such that 0 < α < π
2
. Ordinary notions of trigonometry suggest

∥AC∥ sin(α) = ℵY + y , and ∥AC∥ cos(α) = ℵX + x . (6.2)

It follows that

∥AC∥ = ℵ( Y
sin(α))

+
y

sin(α)
, and ∥AC∥ = ℵ( X

cos(α))
+

x

cos(α)

Equating the big and little parts yields

tan(α) =
Y
X

, and tan(α) =
y

x
.

Although this is a contradiction for every case in which Y
X ̸=

y
x
, which is equally

stated as ∥AB∥ ≠ c0∥BC∥, the result is self-consistent in the framework of
fractional distance analysis. If the trigonometry functions in Equation (6.2) are
real-valued, then the equality cannot hold when Im(∥AC∥) ̸= 0 because each
RHS is real-valued. We have shown in Example 6.2.11 that the hypotenuse is
real-valued for the case of ∥AB∥ = c0∥BC∥ with c0 = 1, and the trigonometry
functions should work as usual for any c0 ∈ R. That will enforce the equal
relative scale Y

X = y
x
for the ratios of the big and little parts of the lengths of

the legs. In other cases, we might expect the angle α to acquire an imaginary
part.

Remark 6.2.13 In leaving the real line and going onto the plane, we have
exceeded the scope of this analysis. Other than a C application in Section 8
to demonstrate the negation of the Riemann hypothesis, we will not continue
to exceed the confines of R. Even given the solution to that very famous
problem in Section 8, however, it is the opinion of this writer that the principle
demonstrated in Main Theorem 6.2.7 is certainly the most important result
given herein. It cleanly demonstrates that the extension L ∈ R0 → L ∈ R∞
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is not the trivial exercise that might be intuitively assumed. Among the two
valid interpretations given for the Pythagorean identity (Theorem 6.2.9 and
Corollary 6.2.10) the z ∈ C representation of the length of the hypotenuse is
more relevant than x⃗ ∈ R2 because z is a 1D scalar number whose real part is
a cut in the real number line. In other words, z is a cut in the real number line
added to a cut in the imaginary number line. Since cuts in the real number line
are known to have both zero and non-zero imaginary parts, meaning some real
numbers are the real parts of complex numbers with non-zero imaginary parts,
z ∈ C is far more germane to the standard analysis of R than is x⃗ ∈ R2. Vector
structure in vector analysis requires an entire axiomatic framework for vector
arithmetic, but all of the arithmetic for z ∈ C can be derived immediately if i
is added to the arithmetic axioms.

Theorem 6.2.14 A real number x ∈ {RX
ℵ } ∪ R1

ℵ does not have a real-valued
square root.

Proof. Let there be two real numbers

z = ℵZ + a , and x = ℵX + b .

Assume z2 = x so that (
ℵZ + a

)2
= ℵX + b . (6.3)

We have (
ℵZ + a

)2
= ℵ(ℵ(Z2)+2aZ) + z2 ,

so we should set the big and little parts of the left and right sides of Equation
(6.3) equal to each other. This gives

ℵ(Z2) + 2aZ = X , and z2 = b .

The former constraint equation gives Z = 0 because the RHS has zero big
part. It follows that X = 0. This is a contradiction because we have already
selected ℵX as the non-zero big part of x ∈ {RX

ℵ } ∪ R1
ℵ. l

Example 6.2.15 Consider the limit

lim
b→∞
ℵX − b = l .

It remains to be clarified precisely what is meant by the notation b→∞ be-
cause we should have options for at least two distinct behaviors. For example,
one might wish to define

lim
b→∞
ℵX − b = −∞ , and lim

b→∞̂
ℵX − b = ℵX − ∞̂ = −ℵ(1−X ) ,

where b → ∞̂ means that b approaches ∞̂ while b → ∞ would mean that
b increases without bound—even including transfinite numbers larger than
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∞̂—such that b approaches some geometric infinity whose absolute value is
in some sense greater than that of algebraic infinity. We will not make such
definitions here because the requisite formal definitions for x > ∞̂ are out of
scope. However, simply based on the absorption or non-absorption of ∞ and
∞̂ respectively, the limits given in this example should be presumed correct.

§6.3 The Archimedes Property of Real Numbers

While there are many ways to state the Archimedes property of real num-
bers with symbolic logic, the modern establishment has adopted a standard
statement

∀x, y ∈ R s.t. x < y ∃n ∈ N s.t. nx > y .

For this statement to accurately characterize the property as it appeared in
the first edition Greek language copy of Euclid’s Elements, it must depend on
an unstated axiom that every real number is less than some natural number.
Without that axiom, the statement is wrong, and there is no other word than
“wrong” by which it should be described. In this section, we will consult
the original text in The Elements [1]. We will use the original text to prove
absolutely that the above symbolic statement is not the Archimedes property
of real numbers given so famously by Euclid in antiquity.

For the above statement to agree with that which was given by Euclid in
Greek, one must first take the axiom that every real number is less than some
natural number. Without a statement or implicit acknowledgment of such an
axiom, the above Latin symbolic statement is wrongly called the Archimedes
property of real numbers.

Definition 6.3.1 The statement of the Archimedes property which appears
in Euclid’s tome The Elements, which was attributed by Archimedes to his
predecessor Eudoxus, and which must be taken as the definitive statement
of the Archimedes property of real numbers, appears as Definition 4
in Book 5 of The Elements. The original Greek is translated as follows [1].

“Magnitudes are said to have a ratio with respect to one another
which, being multiplied, are capable of exceeding one another.”

Remark 6.3.2 As it appears in The Elements, a straightforward mathemat-
ical statement of the property would be

∀x, y ∈ R s.t. x < y ∃z ∈ R s.t. zx > y .

There is no mention of multiplication by a positive integer n ∈ N. To prove
that the Archimedes property of real numbers does not implicitly restrict the
multiplier to n ∈ N, we will examine the context in the original text.

Definition 6.3.3 In Reference [1], Fitzpatrick translates Book 5, Definitions
1 through 5 as follows.
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1. A magnitude is a part of a(nother) magnitude, the lesser of the greater,
when it measures the greater.

2. And the greater is a multiple of the lesser whenever it is measured by the
lesser.

3. A ratio is a certain type of condition with respect to size of two magni-
tudes of the same kind.

4. (Those) magnitudes are said to have a ratio with respect to one another
which, being multiplied, are capable of exceeding one another.

5. Magnitudes are said to be in the same ratio, the first to the second,
and the third to the fourth, when equal multiples of the first and third
both exceed, are both equal to, or are both less than, equal multiples of
the second and fourth, respectively, being taken in corresponding order,
according to any kind of multiplication whatever.

Remark 6.3.4 Though we may prove directly from Euclid’s own words that
the multiplier in the Archimedes property is not defined as a natural num-
ber, Fitzpatrick gives footnotes qualifying his translations of Euclid’s original
Greek. These footnotes support the wrongness of the supposition that Euclid
meant to imply that the multiplier must always be a natural number. We will
list the footnotes here for thoroughness, though we will not rely on them in
Theorem 6.3.5. The footnotes are as follows.

1. In other words, α is said to be a part of β if β = mα.

2. (No footnote given.)

3. In modern notation, the ratio of two magnitudes, α and β, is denoted
α : β.

4. In other words, α has a ratio with respect to β if mα > β and nβ > α,
for some m and n.

5. In other words, α : β :: γ : δ if and only ifmα > nβ whenevermγ > nδ,
mα = nβ whenever mγ = nδ, and mα < nβ whenever mγ < nδ, for all
m and n. This definition is the kernel of Eudoxus’ theory of proportion,
and is valid even if α, β, etc., are irrational.

Footnote 5 makes it exceedingly obvious that the multipliers are “all m and
n” in R. As Definition 5 is the “kernel of Eudoxus’ theory of proportion,” and
to the extent that Eudoxus is the originator of the Archimedes property, we
will argue that the multiplicative criterion in that property regards “any kind
of multiplication whatever” rather than strict natural number multiplication.
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Theorem 6.3.5 The statement

∀x, y ∈ R s.t. x < y ∃n ∈ N s.t. nx > y .

is not a proper statement of the Archimedes property of real numbers as given
in antiquity.

Proof. It follows from Book 5, Definition 5, of Euclid’s original text that if
y ∈ R is a multiple of z ∈ R, then there exists some “multiplier” x ∈ R such
that xy = z. To prove the present theorem by contradiction, assume that
Euclid meant to restrict the multiplier in his definitions as n ∈ N, and then
consider Definition 2:

“And the greater is a multiple of the lesser whenever it is measured
by the lesser.”

Suppose y = 2 and z = 3 so that, among the two numbers, z is the greater. If
the multiplier by which z is to be measured by y is restricted to n ∈ N rather
than x ∈ R, then z cannot be measured by y. This is an affront to reason ,
firstly, and it directly contradicts Definition 1:

“A magnitude is a part of a(nother) magnitude, the lesser of the
greater, when it measures the greater.”

It is self-evidently true that 3 > 2, so, for 2 to be a part of 3, it must measure
the greater. “Measure” is defined by Definition 2 in terms of multiples, which
are thence defined in terms of multiplication. For 2 be a part of 3 in the sense
of Definition 1, we must do multiplication with a multiplier x = 1.5 ̸∈ N. This
proves the theorem. l

Remark 6.3.6 In Book 7, Definition 2, Euclid defines “numbers” as natural
numbers, but what are today called real numbers are instead the “magnitudes”
described in Book 5. Euclid in no way implied that the multiplier in Definition
4 should be taken strictly as n ∈ N, and, so, neither was Euclid of the opinion
that Archimedes meant to do so in his own earlier paraphrasing of Eudoxus.

Example 6.3.7 This example demonstrates that if one presupposes the non-
existence of real numbers greater than any natural number, taking it purely as
an unproven axiomatic definition, one which violates the contrary proof of the
existence of such numbers given in Main Theorem 3.2.6, then the statement

∀x, y ∈ R s.t. x < y ∃n ∈ N s.t. nx > y ,

does adequately encapsulate the Archimedes property of antiquity. Proof of
this statement is given by Rudin as follows [11].

“Let A be the set of all nx, where n runs through the positive inte-
gers. If [the symbolic statement given above in the present example]
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were false, then y would be an upper bound of A. But then A has
a least upper bound in R. Put α = supA. Since x > 0, α − x < α,
and α− x is not an upper bound of A. Hence α− x < mx for some
positive integer m. But then α < (m+1)x ∈ A, which is impossible
since α is an upper bound of A.”

Here, Rudin has followed the reasoning of Proposition 7.1.14, in which it will be
claimed that R0 cannot have a supremum in R. After we discuss the existence
of this supremum in Section 7.1, we will revisit the issue most specifically in
Section 7.5.

Remark 6.3.8 If we adopt

∀x, y ∈ R s.t. x < y ∃z ∈ R s.t. zx > y .

as the definitive statement of the Archimedes property, as in Remark 6.3.2,
then we will have taken away the Archimedes property of real numbers from
the maximal whole neighborhood of infinity R1

ℵ. For instance, if

∞̂ − a < ∞̂ − b ,

then we cannot multiply the LHS by a number greater than one and have
a real-valued product due to the identity ℵX = X · ∞̂. If we multiply by a
positive number less than one, call it δ, then

ℵδ − δa < ∞̂ − a < ∞̂ − b ,

does not conform to the usual Archimedean requirement that δ(∞̂−a) > ∞̂−b.
If this were to force the ejection of R1

ℵ from R because such numbers were found
not to exhibit the Archimedes property, then that would cause a breakdown
in Axiom 2.1.7 giving R = (−∞,∞). If we suppose, correctly, that all real
numbers obey the Archimedes property, then we might write

R+ = (0,∞) \ R1
ℵ , (6.4)

but this is highly disfavorable because we lose the perfect infinite geometric
line construction that we have sought to preserve. In terms of the topology,
Equation (6.4) breaks the usual topology of R such that its basis is no longer
all open subsets (a, b) ⊂ (−∞,∞).

In what manner shall the maximal neighborhood of infinity exhibit the
Archimedes property of real numbers? How might we solve this problem?
The answer lies in Euclid’s original Greek:

“Magnitudes are said to have a ratio with respect to one another
which, being multiplied, are capable of exceeding one another.”

In Remark 6.3.2, we have adopted the convention that the multiplier must
attach to the lesser part of x < y, but no such requirement is given by Euclid’s
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totally symmetric statement. For one to exceed the other upon multiplica-
tion allows us to state the property in terms of multiplication of either the
greater or the lesser among x and y, i.e.: according to any kind of mul-
tiplication whatsoever . In Euclid’s own parlance, for one to exceed the
other only requires that each is a “part” or “multiple” of the other without
specifying a requirement for which is which. Taking careful note of the non-
specificity of the ordering relation in Euclid’s Definition 4, we will preserve the
highly favorable definition R = (−∞,∞) by giving a symbolic statement of
the Archimedes property obeyed by x ∈ R1

ℵ, as well as the rest of R. At the
end of this section, we will give a new, modern statement of the Archimedes
property such that its application is greatly simplified, but first we will show
that the fractional distance model of R obeys a symbolically appropriate Latin
restatement of Euclid’s small handful of original Greek words. Once we show
that the ancient definition is satisfied, we will make a simplifying axiom such
that demonstrating the property is simplified.

Definition 6.3.9 The most general statement of the ancient Archimedes prop-
erty of real numbers is

∀x, y ∈ R s.t. x < y ∃z1, z2 ∈ R+ s.t. z1x > z2y .

Main Theorem 6.3.10 The CAB
Q construction of R is such that every x, y ∈

R0
ℵ ∪ {RX

ℵ } ∪ R1
ℵ exhibit the ancient Archimedes property of real numbers.

Proof. By Definition 6.3.9, it suffices to demonstrate

∀x, y ∈ R s.t. x < y ∃z1, z2 ∈ R+ s.t. z1x > z2y .

We will consider the general forms

x = ℵX + b , and y = ℵY + a ,

such that x ∈ RX
ℵ and y ∈ RY

ℵ , and we will assume constraints x < y and
0 ≤ X ≤ Y ≤ 1. Further assume that a and b are constrained appropriately
for X and/or Y equal to one or zero so that x and y are always in R+. The
starting point for demonstrating the Archimedes property is x < y, which we
write as

ℵX + b < ℵY + a .

To prove the theorem, we will consider the distinct cases. In each equality
listed below, we will put z1x on the left and z2y on the right.

• (x ∈ R0
ℵ and y ∈ R0

ℵ) Here, both x and y have vanishing big parts, so
x < y defines the ordering of the little parts. Choose z1 = ℵZ + z such that
0 < Zb < 1 and choose z2 = 1. Then(

ℵZ + z
)
b = ℵ(Zb) + zb > a .
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• (x ∈ R0
ℵ and y ∈ RY

ℵ ) Here, x has a vanishing big part, and y has a non-
vanishing big part. Choose z1 = ℵ( 1+Y

2b ) + z and z2 = 1. Then(
ℵ( 1+Y

2b ) + z
)
b = ℵ( 1+Y

2 ) + zb > ℵY + a .

Since 1+Y
2

is the average of Y and 1, it is guaranteed to be a number in the
open interval (Y , 1).

• (x ∈ R0
ℵ and y ∈ R1

ℵ) Here, x has a vanishing big part, and y has big part
ℵ1. Choose z1 = ℵZ + z and z2 such that 0 < z2 < Zb < 1. Then

(ℵZ + z) b = ℵ(Zb) + zb > z2
(
ℵ1 + a

)
= ℵ(z2) + z2a .

• (x ∈ RX
ℵ and y ∈ RY

ℵ such that X < Y) Here, neither x nor y has a vanishing
big part, and the big part of x is less than big part of y. Choose z1 =

1+Y
2X and

z2 = 1. Then

1 + Y
2X

(ℵX + b) = ℵ( 1+Y
2 ) + b

1 + Y
2X

> ℵY + a .

• (x, y ∈ RX
ℵ such that X = Y) Here, x and y have equal big parts, so it follows

from x < y that the little parts are ordered accordingly. Choose z1 = z such
that X < zX < 1 and z2 = 1. Then

z (ℵX + b) = ℵ(zX ) + zb > ℵX + a .

• (x ∈ RX
ℵ and y ∈ R1

ℵ) Here, x and y have unequal, non-zero big parts with
the big part of y being the greater. Choose z1 = 1 and z2 =

X
2
. Then

ℵX + b >
X
2

(
ℵ1 − a

)
= ℵ(X

2 )
− aX

2
.

• (x, y ∈ R1
ℵ) Here, x and y have equal big parts ℵ1, and x < y defines the

ordering of the little parts. Choose z1 = 1 and z2 =
1
2
. Then

ℵ1 + b >
1

2

(
ℵ1 − a

)
= ℵ( 1

2)
− a

2
.

We have considered every combination of x < y among the various neigh-
borhoods and shown that they comply uniformly with Definition 6.3.9. The
theorem is proven. l
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Remark 6.3.11 If it were not for the extremal case of x ∈ R0
ℵ and y ∈ R1

ℵ,
we might have formulated the symbolic statement of the Archimedes property
as

∀x, y ∈ R s.t. x < y ∃z ∈ R+ s.t. zx > y or x > zy .

This form is nice because it uses only a single multiplication operation and
exactly reflects Fitzpatrick’s footnote:

“In other words, α has a ratio with respect to β if mα > β and
nβ > α, for some m and n.”

However, it is not possible to phrase the symbolic statement of the property
with only a single multiplier due to the extremal case in which (i) x is in
the neighborhood of the origin, and (ii) y is in the maximal neighborhood of
infinity. Even then, however, Euclid does not precisely require a condition of
the form, “multiplication of just one can exceed the other.” As it is written:

“Magnitudes are said to have a ratio with respect to one another
which, being multiplied, are capable of exceeding one another.”

This statement absolutely allows the two multiplier form given in Definition
6.3.9. This statement is equally well clarified with a similar but slightly differ-
ent footnote than that given by Fitzpatrick. An alternative footnote explaining
the meaning of the property would be the following.

In other words, α has a ratio with respect to β if m1α > n1β and
m2β > n2α, for some m1,m2, n1, and n2.

This is exactly what is given in Definition 6.3.9. It is well consistent with the
ratio-of-ratios language seen in Book 5, Definition 5, as well as the statement
about “any kind of multiplication.”

In general, we have made a rather large statement

∀x, y ∈ R s.t. x < y ∃z1, z2 ∈ R+ s.t. z1x > z2y , (6.5)

of Euclid’s few original words. The reasoning behind including the Archimedes
property of real numbers as a supplemental constraint on the behavior of cuts
in the real number line is that it is supposed to be an elegantly simple statement
of a simple behavior, but Equation (6.5) is not quite elegant. Therefore, having
already independently demonstrated rigorous compliance with Euclid in the
absence of a simplifying modern axiom, now we will give such an axiom.

Axiom 6.3.12 The Archimedes property of 1D transfinitely continued real
numbers is

∀x, y ∈ R s.t. x < y ∃n ∈ N s.t. nx > y and/or ℵnx > y .

This axiom defines the implicit transfinite ordering required for ≤ to be a
relation among real numbers R and 1D transfinitely continued real numbers T
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whose big parts ℵX are such that X > 1. As a subset of the 1D transfinitely
continued real numbers, the real numbers themselves automatically inherit
compliance with the Archimedes property.

Remark 6.3.13 If the real number line ends at infinity, that indicates an
endpoint there, and endpoints are associated with ∞̂ when we take the con-
vention that the notion of infinite geometric extent precludes the existence
of endpoints at ∞. Therefore, the lack of a terminating point for the line at
infinity automatically implies the 1D transfinite continuation of R = (−ℵ1,ℵ1)
onto T = (−ℵ∞,ℵ∞). If R didn’t continue onto T, then it would end at ∞: a
contradiction if ∞ is not allowed to be an endpoint. Since it is only required
that ∞̂ = ℵ1 is the supremum of the real numbers, there is no requirement
whatsoever that it is the largest number. Axiom 6.3.12 generates the requisite
definition of transfinite ordering such that given x, y ∈ R and x < y, zx can
be greater than y without zx itself being zx ∈ R. Here, we define ordering
for zx ∈ T, and then we use this ordering to satisfy the zx > y condition irre-
ducibly cited in The Elements. In the scheme of Axiom 6.3.12, all the bulleted
cases of x < y statements in Main Theorem 6.3.10 are replaced with elegantly
simple formulae.

§7 The Topology of the Real Number Line

§7.1 Basic Set Properties

In this section, we give some elementary set properties of the natural neigh-
borhoods and begin to approach the logical connection to the whole neighbor-
hoods. Recall that the natural neighborhoods RX

0 are defined with little part
|b| ∈ R0

0, and the whole neighborhoods are defined with |b| ∈ R0
ℵ.

Lemma 7.1.1 Every natural neighborhood in {RX
0 } is an open set.

Proof. By Definition 4.1.4, the set of all intermediate natural neighborhoods
of infinity is {

RX
0

}
=
{
ℵX + b

∣∣ b ∈ R0, 0 < X < 1
}
.

A given RX
0 defined with a particular X is open if and only if there is a δ-

neighborhood of each of its elements such that every element of that neighbor-
hood is also an element of RX

0 . We will use the ball function δ-neighborhood
as in Definition 4.1.11 rather than Definition 4.1.12 because the elements of
RX

0 are numbers, not points. This theorem is proven with a δ-neighborhood
of an arbitrary x ∈ RX

0 . Defining b
± = b± δ, we have

Ball(x ∈ RX
0 , δ) = (ℵX + b− δ,ℵX + b+ δ) = (ℵX + b−,ℵX + b+) .

Axiom 5.2.1 requires that R0 is closed under the ± operations so b, δ ∈ R0

implies b± ∈ R0. The set RX
0 is open because

(ℵX + b−,ℵX + b+) ⊂ RX
0 =

{
ℵX + b

∣∣ b ∈ R0

}
.
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Alternatively, no RX
0 set in {RX

0 } contains its boundary points so each such
set is open. l

Theorem 7.1.2 Given two natural neighborhoods RX
0 and RY

0 with 0 ≤ X <
Y ≤ 1, there exists another natural neighborhood RZ

0 such that X < Z < Y.

Proof. Consider the interval

(ℵX ,ℵY) ⊂ R .

By Definition 3.2.1, the number at the center of this interval is

ℵY + ℵX
2

= ℵ(Y+X
2 ) .

We have

X <
Y + X

2
< Y ,

so let Z = Y+X
2

. Any number z ∈ Z ∈ AB of the form

z = ℵZ + z0 , for z0 ∈ R0 ,

will be such that
DAB(AZ) = Z .

Since X < Z < Y , the theorem is proven. l

Corollary 7.1.3 Given two whole neighborhoods RX
ℵ and RY

ℵ with 0 ≤ X <
Y ≤ 1, there exists another whole neighborhood RZ

ℵ such that X < Z < Y.

Proof. Following the proof of Theorem 7.1.2, we arrive at a number z ∈ Z ∈
AB of the form

z = ℵZ + z0 , for z0 ∈ R0
ℵ ,

Even in the whole neighborhood exceeding the natural neighborhood, z0 has
no fractional magnitude with respect to AB. Therefore, the total fractional
distance is completely determined by the big part as

Big(z) = ℵZ ⇐⇒ DAB(AZ) = Z .

Proof follows from X < Z < Y , as in Theorem 7.1.2. l

Definition 7.1.4 An open set S is disconnected if and only if there exist two
open, non-empty sets U and V such that

S = U ∪ V , and U ∩ V = ∅ .

If a set is not disconnected, it is connected.
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Corollary 7.1.5 RX
0 ∪ RY

0 is a disconnected set for any 0 ≤ X < Y ≤ 1.

Proof. An open set is disconnected if it is the union of two disjoint, non-empty
open sets. By Lemma 7.1.1, RX

0 is open, and it is obvious that such sets are
non-empty. It follows from Theorem 7.1.2 that they are disjoint, i.e.:

RX
0 ∩ RY

0 = ∅ .

The union RX
0 ∪ RY

0 satisfies the definition of a disconnected set. l

Remark 7.1.6 During the development of the intermediate neighborhoods
of infinity, we found it useful to separate the X = 0 and X = 1 cases from
the intermediate neighborhoods {RX

ℵ }. For efficacy of notation, now we will
combine all the different neighborhoods into a streamlined, unified notation.
The following definitions supplement Definitions 4.1.3 and 4.1.4 to include the
cases of X = 0 and X = 1.

Definition 7.1.7 To streamline notation, define

R∪
ℵ =

⋃
0≤X≤1

RX
ℵ = R0

ℵ ∪
{
RX

ℵ
}
∪ R1

ℵ

R∪
0 =

⋃
0≤X≤1

RX
0 = R0

0 ∪
{
RX

0

}
∪ R1

0 .

Definition 7.1.8 The complement of RX
0 in RX

ℵ is RX
C :

RX
C = RX

ℵ \ RX
0 .

Theorem 7.1.9 There exist more positive real numbers than are in R∪
0 . In

other words,
R+ \ R∪

0 ̸= ∅ .

Proof. By the definition of an interval, and through Axiom 2.1.7 explicitly
granting the connectedness of R = (−∞,∞), the interval R+ = (0,∞) is
connected. To prove the present theorem, it will suffice to show that R∪

0 is
disconnected. Disconnection follows from Corollary 7.1.5. l

Remark 7.1.10 It was already expected that there may be real numbers not
contained in the natural neighborhoods. It was for this reason that we defined
distinct whole neighborhoods RX

ℵ ⊇ RX
0 . In Section 7.4, we will conjecture

RX
C = ∅, but first we will prove another result: one far more interesting.

Main Theorem 7.1.11 There exist more positive real numbers than are in
R∪

ℵ. In other words,
R+ \ R∪

ℵ ̸= ∅ .
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Proof. R+ is a connected interval. R∪
ℵ \ {0} is a disjoint union of open subsets

of R+. A connected interval cannot be covered with a disconnected set. The
theorem is proven. l

Theorem 7.1.12 For any X > 0, ℵX is an upper bound of R0.

Proof. An upper bound of a set is greater than or equal to every element of
that set. Suppose

X, Y ∈ AB , x ∈ R0 , x ∈ X , and ℵX ∈ Y .

It follows that

DAB(AX) = 0 , and DAB(AY ) = X .

By the ordering of R (Axioms 3.1.13 and 5.2.18), ℵX is an upper bound of R0

whenever X > 0. l

Corollary 7.1.13 N is bounded from above.

Proof. If n ∈ N, then n ∈ R0. By Theorem 7.1.12, all x ∈ R0 are bounded
from above. N is bounded from above. l

Proposition 7.1.14 R0 ⊂ R does not have a least upper bound sup(R0) ∈ R.
In other words, R does not have the least upper bound property.

Justification. To invoke a contradiction, suppose s ∈ R is the least upper bound
of R0. If s− 1 was an upper bound of R0, then s could not be the least upper
bound because s − 1 < s. Therefore, s = sup(R0) implies (s − 1) ∈ R0. By
Axiom 5.2.1, R0 is closed under addition. It follows that (s − 1 + 2) ∈ R0

because 2 ∈ R0. Since s+1 > s, we obtain a contradiction having shown that
there exist elements of R0 greater than the assumed supremum s. l

Remark 7.1.15 The issue described in the justification of Proposition 7.1.14
shall be referred to as “the least upper bound problem.” This proposition
is usually presented as a theorem, and it brings us to one of the most finely
nuanced issues in the present treatment of R. This proposition makes a con-
vincing case that R0 cannot have a supremum in R, but, if R0 is a subset of the
connected interval (−∞̂, ∞̂), then it most certainly must have a least
upper bound in R. Otherwise (−∞̂, ∞̂) is not connected. In Section 7.5,
we will return to the topic of algebraic contradictions related to the suprema
required for the connectedness of the interval containing the various discon-
nected neighborhoods. If R is to have the usual topology overall, then it must
have the least upper bound property.
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§7.2 Cantor-like Sets of Real Numbers

In this section, we will continue to develop the properties of R by comparing
the properties of R+ \R∪

ℵ and R+ \R∪
0 to the well-known properties of Cantor

sets.

Definition 7.2.1 Munkres constructs a Cantor set C as follows [13].

“Let A0 be the closed interval [0, 1] in R. Let A1 be the set obtained
from A0 by deleting its ‘middle third’ (1

3
, 2
3
). Let A2 be the set

obtained from A1 by deleting its ‘middle thirds’ (1
9
, 2
9
) and (7

9
, 8
9
). In

general, define An by the equation

An = An−1 −
∞⋃
k=0

(
1 + 3k

3n
,
2 + 3k

3n

)
.

The intersection
C =

⋂
n∈Z+

An ,

is called the [ternary ] Cantor set; it is a subspace of [0, 1].”

Remark 7.2.2 The interval [0, 1] is the image of AB under the fractional
distance map. This likeness will serve as the basis for the analytical direction
of the present section.

Definition 7.2.3 Define two Cantor-like sets

F0 = [0,∞] \ R∪
0 , and Fℵ = [0,∞] \ R∪

ℵ .

Corollary 7.2.4 Neither F0 nor Fℵ is the empty set.

Proof. Proof follows from Theorem 7.1.9 and Main Theorem 7.1.11: there exist
more positive real numbers than are in either variant of R∪. The interval [0,∞]
is connected by Axiom 2.1.7. A connected set cannot be covered by a disjoint
union of its open subsets. (We say R0

0 and R0
ℵ are open sets in the subspace

topology of [0,∞] even though they are not strictly open in R.) The corollary
is proven. l

Remark 7.2.5 To construct F0 and Fℵ, we have subtracted from [0,∞] the
relevant neighborhood of ℵX for every infinite decimal number 0 ≤ X ≤ 1.
Whatever remains is a “dust” of some sort. For this reason, we call F0 and Fℵ
Cantor-like sets.

Lemma 7.2.6 Fℵ is a strict subset of F0, or it is exactly equal to F0, i.e.:
Fℵ ⊆ F0.
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Proof. Proof follows from Definition 7.2.3. Fℵ is constructed by deleting open
intervals whose lengths are at least as great as those deleted in the construction
of F0. Each variant of deleted interval is centered about ℵX . Fℵ ⊆ F0 because
RX

0 ⊆ RX
ℵ . If RX

C = ∅, then Fℵ = F0 (which is what we will choose in Section
7.4.) l

Theorem 7.2.7 F0 and Fℵ are closed subsets of [0,∞].

Proof. A subset S ⊂ T is closed in T if and only if its complement in T is open.
The complements of F0 and Fℵ in [0,∞] are R∪

0 and R∪
ℵ respectively, both of

which are disjoint unions of open sets. F0 and Fℵ are closed in [0,∞]. l

Remark 7.2.8 When constructing the ternary Cantor set (Definition 7.2.1),
the least element of the final result of iterative deletions is zero. By construc-
tion, the endpoints of the intervals left after each deletion of a middle third
will remain forever, so it is already given at the A1 step that the least number
in the parent interval [0, 1], which is zero, will be the least element of the
resultant Cantor set. When defining F in either variant, it is not immediately
apparent what will be the least element because 0 ∈ R0

ℵ ⊇ R0
0 is deleted at the

first step. Since F is closed, however, we know it does have a least element.

Definition 7.2.9 The connected elements of F0 are provisionally labeled F0(n)
and the connected elements of Fℵ are provisionally labeled Fℵ(n). The labeling
convention in either variant is such that

∀x ∈ F(n) ∀y ∈ F(m) s.t. n > m =⇒ x > y .

Each F(n) is connected, and every two F(n),F(m) are disconnected whenever
n ̸= m.

Remark 7.2.10 We have deleted an uncountable infinity of RX
ℵ neighbor-

hoods to construct Fℵ. The elements of Fℵ separate these neighborhoods, so
the number of disconnected elements Fℵ must be uncountably infinite. Such
elements cannot be enumerated with n ∈ N. To the contrary, the set N∞
(Definition 6.2.3) has a countably infinite number of elements ℵX − n and a
similar number of ℵX + n for each of an uncountably infinite number of X . It
is guaranteed that n ∈ N∞ will provide a sufficient labeling scheme for F(n).

Definition 7.2.11 Among a collection of RX
0 or RX

ℵ sets, the set with the
greatest value of X is said to be the rightmost set and that with the least
value of X is said to be the leftmost set.

Proposition 7.2.12 For every F0(n) or Fℵ(n), the respective subset of R∪
0 or

R∪
ℵ whose elements are less than any x in F0(n) or Fℵ(n) has a rightmost set,
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and the subset of R∪
0 or R∪

ℵ whose elements are greater than x has a leftmost
set.

Justification. We will neglect the 0 and ℵ subscripts in this justification. Let
R∪

− be the set of all RX whose elements are less than any x ∈ F(n), and let R∪
+

be the set of all RX whose elements are greater. By Definition 7.2.9, F(n) is a
connected interval, and every two F(j),F(k) are disconnected whenever j ̸= k.
Furthermore, Corollary 7.1.5 proves that every two RX ̸= RY are disconnected.
Since [0,∞] is a connected union of F(n) and R∪, with the former being closed
intervals and the latter being open, it follows that the structure of R+ is an
ordered union

R+ = . . .F(n) ∪ RX ∪ F(n+ 1) ∪ RY ∪ F(n+ 2) . . . .

This contradicts Theorem 7.1.2, however. If there was an RZ between RX and
RY , then it would necessarily be RZ ⊂ F(n + 1) contradicting the definition
of F. The connected property of R requires, therefore, that we introduce an
alternative labeling scheme before continuing with this justification.

Definition 7.2.13 For n ∈ N∞, the connected elements of R∪
0 are labeled

R0(n), and the connected elements of R∪
ℵ are labeled Rℵ(n). The labeling

convention in either variant is such that

∀x ∈ R(n) ∀y ∈ R(m) s.t. n > m =⇒ x > y .

It follows that R0
0 = R0(1) and R0

ℵ = Rℵ(1). We say that R0(n) is the natu-
ral neighborhood of ℵ(n) and Rℵ(n) is its whole neighborhood. Specifically,
ℵ(1) = ℵ0 = 0.

Continuing with the justification of Proposition 7.2.12, we may now infer
that [0,∞) is constructed as an ordered union in the form

[0,∞) = R(1) ∪ F(1) . . .R(n) ∪ F(n) ∪ R(n+ 1) ∪ F(n+ 1) . . . .

Since the connectedness of R requires the sequential alternation of the dis-
connected R(n) and F(n) in the total ordered union, it follows that R(k) is
the rightmost set in the R∪

− whose elements are less than any x ∈ F(k), and
R(k + 1) is the leftmost set in the R∪

+ whose elements are greater than any
x ∈ F(k). This concludes the justification of Proposition 7.2.12. l

Remark 7.2.14 In Example 6.2.15, we considered

lim
b→∞

(
ℵX − b

)
= −∞ , and lim

b→∞̂

(
ℵX − b

)
= ℵX − ∞̂ = −ℵ(1−X ) ,

as two desirable modes of limit behavior. Now the F(n) notation suggests a
third desirable behavior such that

lim
b→ℵ(2)

ℵ(n) + b = ℵ(n+ 1) .
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It may or may not be possible to accommodate this limiting mode. It might
be that any sequence which does not converge its own local neighborhood
of fractional distance must diverge all the way to infinity in one variety or
another. Indeed, the property d

dx
ℵx = ∞̂ (Theorem 6.2.2) suggests in some

sense that once a sequence fails to converge in its local ℵX -neighborhood, it
has to keep diverging to some maximal value.

The likely issue with such a limiting mode as b → ℵ(2), something which
may even amount to a flaw in the justification of Proposition 7.2.12, is that
ℵ(2) = ℵXmin

is such that Xmin is the smallest positive real number. It is gener-
ally understood that no such number exists. We have developed a requirement
for such a number in the course of supporting Proposition 7.2.12, but the lack
of a smallest positive real number is so well established that we might suppose
no such number exists. Contrary to our conjuring of ℵX by requirement, there
exists a large body of demonstrations that no such Xmin can exist while ℵX has
only been supposed not to exist. If such a number as Xmin can be derived from
the ordered union given in Proposition 7.2.12, then that will be very exciting.
However, there are many problems associated with such a line of reasoning.
We will present a few of them in Section 7.3, and then we will not use the (n)
notations in a formal way moving forward.

Definition 7.2.15 This definition regards both 0,ℵ subscript variants of the
relevant objects. To avoid the problematic (n) notation, label each connected
element of F as FX . For every RX , there exists a unique FX such that

x ∈ RX , z ∈ FX =⇒ x < z ,

and
y ∈ RY , z ∈ FX , Y > X =⇒ y > z .

In other words, there is a closed interval FX right-adjacent to every RX when-
ever 0 ≤ X < 1. With this definition, we move the elements of F into the
non-problematic superscript X labeling scheme as opposed to moving the RX

into the (n) scheme, as in Definition 7.2.13.

§7.3 Paradoxes Related to Infinitesimals

In this section, we demonstrate a few paradoxes, or contradictions, invoked by
the R0(n) enumeration scheme and its corollary concept of a least positive real
number. We solve some of the paradoxes in this section with the superscript
X label (Definition 7.2.15), and the other paradoxes are resolved in Section
7.5.

Definition 7.3.1 F(n) ∈ R is the unique real number in the center of F0(n)
and Fℵ(n) ⊆ F0(n). If F0(n) = [a, b] and Fℵ(n) = [c, d], then

len[a,F(n)] = len[F(n), b] , and len[a,F(n)] = len[F(n), b] ,
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as in Definition 3.2.1. In the alternative labeling scheme, FX is the number in
the center of FX

0 and FX
ℵ . In either label, the number has the properties

Big(FX ) = FX , and Lit(FX ) = 0 .

Theorem 7.3.2 The number F(1) = F0 has infinitesimal fractional magni-
tude with respect to AB.

Proof. We will use Robinson’s standard non-standard definition of a hyperreal
infinitesimal [14,15]. A number ε is a positive infinitesimal number if and only
if

∀x ∈ R+ ∃ε ̸∈ R s.t. 0 < ε < x .

By construction, F(1) is the number in the center of the gap between Rℵ(1) =
R0

ℵ and Rℵ(2) ∈ {RX
ℵ }. Since F(1) is not in Rℵ(1) = R0

ℵ, it cannot have
zero fractional magnitude; R0

ℵ is the set of all numbers having zero fractional
magnitude along AB. If F(1) had non-zero real fractional magnitude, then
it would be F(1) ∈ {RX

0 }, an obvious contradiction because F(1) has less
fractional magnitude than any nested element in that set of sets. If we denote
the fractional magnitude of F(1) with the symbol ε, the properties of this
magnitude are exactly those given above in the definition of an infinitesimal.
The theorem is proven. l

Definition 7.3.3 A number is said to be a measurable number if it can exist
within the algebraic representation of some X ∈ AB. If a number is not
measurable, then it is immeasurable.

Theorem 7.3.4 Every x ∈ F is an immeasurable number.

Proof. The FDFs are bijective between their domain AB and range [0, 1] ⊂ R.
The range is a real interval containing no numbers with infinitesimal parts
(Axiom 2.1.6), so this tells us that F(n) is not in the algebraic representation
of any geometric X ∈ AB. In the X notation, the numbers in each FX have
infinitesimally more fractional distance along AB than the numbers in each
RX . l

Remark 7.3.5 We have granted that every geometric point X has an alge-
braic representation (Axiom 2.3.12), but we have not required the opposite.
Therefore, there is no problem with an infinitesimal fractional magnitude for
F(1) because there is no corresponding point X ∈ AB that is required to
have infinitesimal fractional distance. Although F(1) = F0 has infinitesimal
fractional magnitude, the number itself is very large. It is greater than any
natural number.
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Paradox 7.3.6 As the number in the center of the set separating successive
neighborhoods of fractional distance, every F(n) has the property

F(n) = ℵ(n) + ℵ(n+ 1)

2
. (7.1)

Every RX
0 can be obtained by a translation operation on another element of

{RX
0 }. Doing set-wise arithmetic, we may write, for instance

T̂ (ℵδ)R(X−δ)
0 = ℵδ + R(X−δ)

0 = RX
0 .

Letting AB ≡ [ℵ(n),ℵ(n+ 1)] for some n ≥ 2, define

Sn = R0(n) ∩ AB , and Sn+1 = R0(n+ 1) ∩ AB ,

and note that translational symmetry requires

len
(
Sn
)
= len

(
Sn+1

)
.

Since
AB = Sn ∪ F0(n) ∪ Sn+1 ,

and since F(k) is the number in the center of the closed interval F0(k), it
is obvious that F(n) is the unique number in the center of the line segment
AB. In the Euclidean metric, this number is always the average of the least
and greatest numbers in the algebraic representations of A and B respectively.
However, if the R0(n) notation is a label for RX

0 where X is strictly a real
number, then, using the original labeling scheme without (n), we find

F(n) = ℵX + ℵY
2

= ℵ(X+Y
2 ) .

This number is most obviously an element of R(
X+Y

2 )
0 . This contradicts the

definition F(n) ∈ F0(n). It is paradoxical that ℵ(n + 1) as in Equation (7.1)
cannot have any corresponding ℵY .

Paradox Resolution 7.3.7 Paradox 7.3.6 does not exist in the FX notation.
If we never suppose the existence of ℵ(n + 1), then there is no starting point
in Equation (7.1), and the paradox cannot be demonstrated, i.e.:

FX ̸=
ℵX + ℵY

2
.

Neither can we write in that case [ℵ(n),ℵ(n+ 1)] = [ℵX ,ℵY ] because the con-
tinuous spectrum of fractional distance does not allow us to select consecutive
X ,Y .
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Paradox 7.3.8 The neighborhood of the origin R0
0 = R0(1) contains num-

bers of the form ℵX + b for b strictly non-negative (and X = 0), but every
intermediate neighborhood allows both signs for b. It follows that

len
(
R0(1)

)
=

1

2
len
(
R0(2)

)
, and F(1) = 1

3
F(2) .

Every element of R0(2) has positive real fractional magnitude because R0(2) ⊂
{RX

0 }, but, if F(1) has infinitesimal fractional magnitude ε, then 3ε is also
less than any real number (according to Robinson’s arithmetic for hyperreal
numbers [14,15].) If 3ε is infinitesimal, then that contradicts the ordering

x ∈ R0(n) =⇒ x < F(n) .

Paradox Resolution 7.3.9 Paradox 7.3.8 is resolved in the FX formalism.
We can uniquely associate F(1) = F0 but there is no FXmin

that we might
associate with F(2).

Paradox 7.3.10 Each F0(n) ⊂ F0 is a closed, connected interval. It is re-
quired, then, that

F0(1) = [a, b] , and F(1) = b− a
2

.

Assuming the normal arithmetic for x ∈ F (which has not yet been axioma-
tized), it follows that

a = sup(R0) = b− 2F(1) .

This is paradoxical for the reasons presented in Proposition 7.1.14: R0 ought
not have a supremum.

Paradox 7.3.11 If F(1) is a real number centered in the closed interval F(1),
then, assuming the normal arithmetic for x ∈ F, we find that 2F(1) = ℵXmin

with Xmin being the least positive real number. This number is thought not
to exist, with good reason. Therefore, the implied identity

F(1) = ℵXmin

2
,

has the appearance of being inadmissibly paradoxical.

§7.4 Complements of Natural Neighborhoods

In this section, we take many of the facts established in the previous sections
and begin to put them together to form a coherent picture of FX , RX

0 , RX
ℵ ,

RX
C , and the rest. This is what we know so far:

� We have defined RX
0 ∪ RX

C = RX
ℵ .
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Figure 2: This figure (not to scale! ) shows the neighborhood of the origin R0
ℵ, the substruc-

ture of that neighborhood, and the associated structure from the Cantor-like sets. F−(1)
refers to the subset of F(1) which is less than or equal to F(1) = F0.

� We do not know whether or not RX
C = ∅. This will be the main issue

decided in the present section.

� We have not yet defined any arithmetic operations for x ∈ FX ∪ RX
C .

� We have not yet given an algebraic construction for x ∈ FX ∪ RX
C .

Remark 7.4.1 In this section, we will use F(1) = F0 to refer to a real number
which is an upper bound on R0 without assuming an attendant problematic
(n) enumeration scheme.

Theorem 7.4.2 If we assume the usual arithmetic for FX , then the set R0
ℵ

lies within the left endpoint A of the line segment AB = [0,F0]. In other
words, every element of R0

ℵ has zero fractional magnitude even with respect to
len[0,F0] ≪ lenAB.

Proof. Every interval has a unique number at its center. For AB = [0,F0],
this number is c = 1

2
F0, as in Figure 2. If c ∈ R0

ℵ, meaning that the fractional
magnitude with respect toAB was zero, then 2c = F0 would also have 2×0 = 0
fractional magnitude with respect to AB. This is contradictory because it
would require F0 ∈ R0

ℵ. Continuing the argument, we find that for any n ∈ N,
the number 1

n
F0 must not be an element of R0

ℵ. Now assume 1
n
F0 ∈ X ∈

AB ≡ [0,F0] and X ̸= A. Since the quotient of two line segments is defined as
a real number (Definition 3.1.1), and since the difference of two real numbers
is always greater than some inverse natural number (Axiom 2.1.6), we may
write for some m ∈ N

AX

AB
− AA

AB
>

1

m
.

This is satisfied for any X ̸= A, so 1
n
F0 can be a number in the algebraic

representation of any X ̸= A. Since 1
n
F0 ̸∈ R0

ℵ, R0
ℵ must be a subset of, or

equal to, the algebraic representation of the left endpoint A of AB ≡ [0,F0].l
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Corollary 7.4.3 If we assume the usual arithmetic for FX , then for any x ∈
R0 such that x ∈ X, and for X ∈ AB such that AB ≡ [0,F0], we have

DAB(AX) = 0 .

Proof. By the property R0
0 ⊆ R0

ℵ, proof follows from Theorem 7.4.2.

Alternatively, DAB is such that

DAB(AX) = D†
AB(AX) =

x

F0

.

The case of x = 0 is trivial. To prove the other cases by contradiction, suppose
z > 0 and that x

F0

= z .

Since x < F0 and x,F0 ∈ R+, it follows that 0 < z < 1. All such z ∈ R0 have
a multiplicative inverse z−1 ∈ R0 so

x

zF0

= 1 ⇐⇒ z−1x = F0 .

This is a contradiction because z−1x ∈ R0 but F0 is greater than any element
of R0. l

Remark 7.4.4 Suppose we define 𭟋X = X ·F0 so that it mirrors the structure
of ℵX = X ·∞̂. Since R0

ℵ has zero fractional distance even along AB ≡ [0,F0],
we could define a set of whole neighborhoods along AB

RX
F =

{
𭟋X + b

∣∣ b ∈ R0
ℵ
}
,

exactly dual to the elements of {RX
ℵ } spaced along AB ≡ [0,∞]. By subtract-

ing every RX
F from the interval [0,F0], we would create another Cantor-like set.

Following the prescription given in Section 7.2, we would invoke the connect-
edness of the interval to label the disconnected elements of the new Cantor-like
set, and we would label the numbers in the centers of each of those discon-
nected intervals. Call those numbers G(n) labeled with n ∈ N∞ so that they
are dual to the F(n) in the duality transformation [0,∞]→ [0,F0]. The G(n)
will have a non-problematic labeling scheme GX with X measuring fractional
distance along AB ≡ [0,F0] ≢ AB. By replicating the present course of anal-
ysis, we could show that no element of R0

ℵ has non-zero fractional magnitude
even with respect to len[0,G0] ≪ len[0,F0] ≪ len(AB). We could do this
forever, defining more and more, tinier and tinier Cantor-like sets, and R0

ℵ
would never leave the left endpoint A of the line segment whose algebraic rep-
resentation is [0,Γ0] with Γ0 being the number in the center of the leftmost
connected element of the umpteenth Cantor-like set. This overarching condi-
tion of scale invariance among [0, ∞̂], [0,F0], [0,G0], and so on reflects what is
called fractal structure.
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Remark 7.4.5 To accommodate the interpretation of the positive branch of
R as a Euclidean line segment, we were forced to introduce numbers in the
form ℵX . As a consequence, we were forced to introduce numbers of the form
F(n) = FX to describe the numbers in the Cantor-like sets whose elements
are FX . If we tried to define FX as a neighborhood in the form

FX ?
=
{
FX + b

∣∣ |b| ∈ R0
ℵ
}
,

then we would immediately encounter a problem. This set is clearly open,
while we have already proven that it must be closed (Theorem 7.2.7). There-
fore, we are left with a mystery set F0 whose elements are not easily decided.
Since this is the second such set we have—RX

C being the first—we ought to com-
bine them into a single mystery set. To do so, we will conjecture RX

ℵ \RX
0 = ∅,

which will be tantamount to axiomatizing it in advance of the reliance on this
conjecture. With this conjecture (Conjecture 7.4.6), we will establish that ev-
ery number which is (i) not in RX

0 , (ii) greater than any x ∈ RX
0 , and yet (iii)

not greater than y ∈ RY
0 for any Y > X , must be in FX right-adjacent to RX

0 .
We have not proven that RX

ℵ \ RX
0 = ∅, but neither have we proven the

existence of such numbers (RX
ℵ \RX

0 ̸= ∅) as we have with ℵX and FX . Rather,
we have required with Axioms 4.2.6 and 4.2.17 that every x ∈ R may be
constructed algebraically as an element of CAB

Q ⊂ CQ × CQ, or as a partition

of CAB
Q . So far, we have only given such constructions for the numbers in

the natural neighborhoods of ℵX . To avoid needless complication, therefore,
we will conjecture that RX

C is the empty set and that, consequently, F0 = Fℵ.
Then we will have all of the RX

0 = RX
ℵ = RX neighborhoods cleanly defined

with elements of CAB
Q , and we will move everything else into the Cantor-like

set F, whose numbers we will define as partitions of CAB
Q . By the following

conjecture, we will have given algebraic constructions and arithmetic axioms
for every number in R∪

0 = R∪
ℵ. Everything which remains to be completed is

transferred by Conjecture 7.4.6 into F.

Conjecture 7.4.6 Every number having zero fractional magnitude with re-
spect to AB is an element of R0. Most generally,

RX
ℵ = RX

0 , and RX
C = ∅ .

Remark 7.4.7 One would also want to conjecture the countercase to Conjec-
ture 7.4.6 and examine the requirements for establishing naturally numbered
tiers of increasingly large numbers, larger than any natural number but still
having zero fractional distance with respect to AB. However, we will take the
opposite tack here. Now that we have conjectured that the whole and natural
neighborhoods are the same, we will drop the 0 and ℵ subscripts from their
respective objects.
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§7.5 Immeasurable Numbers and The Least Upper Bound
Problem

Axiom 4.2.6 gave every x ∈ R as the value of a function f : CQ × CQ → CAB
Q

(Definition 4.2.13), or as a partition of CAB
Q . Later, Axiom 4.2.17 granted that

every element of CAB
Q may be represented as an ordered pair ([X ], [b]) specify-

ing the big and little parts of some x ∈ R∪. In this section, we will invoke the
partition clause to define the immeasurable x ∈ F as Dedekind partitions of
CAB

Q . We have already defined the arithmetic of the equivalence classes in Sec-
tion 5.2, but we have not proven that partitions obey the arithmetic axioms in
the way that we have for the direct equivalence classes [x] ∈ CAB

Q ⊂ CQ×CQ.
In this section, we will also prove that the immeasurables do not, and cannot,
obey the arithmetic axioms. This will be due mainly to the least upper bound
problem (Proposition 7.1.14) which we will solve and avoid. We will prove that
every x ∈ F is some FX , or that, equivalently, F = {FX}, meaning the subsets
of F are unions of isolated points. F will be a discrete set of numbers. This
will require that each successive pair of RX share an extremum; the supremum
of one is the infimum of the next. In dealing with F, we will suggest that the
x ∈ F can be used as a set of analogue natural numbers for the construction
of a chart related to the original Euclidean chart by a scale factor F0, where
F0 = F(1) is the least immeasurable number. Motivated by the regular spac-
ing of the FX = F(n), we would define (hypothetically) a transfinite, rescaled
version of N, call it NF, whose unit increment is such that natural numbers
n ∈ N have vanishing fractional distance with respect to 1 ∈ NF. Then we
would define zero as the least number in the algebraic representation of the
left endpoint of some AB to infer an analogue QF supporting the construc-
tion of F-labeled analogues of CQ and CAB

Q . In this way, the formal algebraic
construction of a transfinite number system follows as direct consequence of
R without any further, extraneous inputs beyond the initial supposition that
N does exist. We will conclude this section showing that the immeasurables
conform to the requirements of the Archimedes property of real numbers.

Definition 7.5.1 A Dedekind cut is a partition of the rationals Q into two
sets L and R such that every real number is equal to some partition x = (L,R)
with the following properties.

� L ̸= Q is non-empty.

� If (i) x, y ∈ Q, (ii) x < y, and (iii) y ∈ L, then x ∈ L.

� If x ∈ L, then there exists y ∈ L such that y > x.

Definition 7.5.2 An extended Dedekind cut is a partition of CAB
Q into two

sets L and R such that every real number is equal to some partition x = (L,R)
with the following properties.

� L ̸= CAB
Q is non-empty.
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� If (i) x, y ∈ CAB
Q , (ii) x < y, and (iii) y ∈ L, then x ∈ L.

� If x ∈ L, then there exists y ∈ L such that y > x.

Theorem 7.5.3 The number F0 ∈ R is an extended Dedekind partition of
CAB

Q .

Proof. Let

L0 =
{
[x] ⊂ CAB

Q
∣∣ Big(x) = 0

}
, and R0 =

{
[x] ⊂ CAB

Q
∣∣ Big(x) > 0

}
,

and consider that Dedekind himself wrote the following [3].

“In every case in which a cut (A1, A2) is given that is not produced
by a rational number, we create a new number, an irrational number
a, which we consider to be completely defined by this cut; we will
say that the number corresponds to this cut or that it produces the
cut.”

In that vein, the cut (L0, R0) is not produced by a measurable number [x] ⊂
CAB

Q , so we create the new number F0: an immeasurable number. We say
that the cut “produces” this number, or vice versa. Therefore, F0 = (L0, R0),
and the theorem is proven. l

Definition 7.5.4 The extended Dedekind form of FX = (LX , RX ) ∈ R is such
that

LX =
{
[x] ⊂ CAB

Q
∣∣ Big(x) ≤ ℵX}

RX =
{
[x] ⊂ CAB

Q
∣∣ Big(x) > ℵX} .

Main Theorem 7.5.5 FX is the only number in FX ⊂ R. In other words,
FX = FX or, equivalently, F = {FX}.

Proof. It will suffice to prove this theorem if we show that FX is a one-point
set. Definition 7.2.15 gives

x ∈ RX , z ∈ FX =⇒ x < z ,

and
y ∈ RY , z ∈ FX , Y > X =⇒ y > z .

This definition establishes that z ∈ FX is an upper bound on RX , and a lower
bound on RY for any Y > X . If z ∈ FX is simultaneously (i) the least upper
bound of RX , and (ii) the greatest lower bound of some RY , then z = FX is the
unique z ∈ FX , and the proof will be completed. For proof by contradiction,
assume u ∈ R is an upper bound on RX with the property

u < FX .
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By Axioms 4.2.6 and 4.2.17, u must be a partition of CAB
Q or an equivalence

class therein. We will divide the proof, therefore, into two parts.

• (Equivalence class) If u was [u] ⊂ CAB
Q , then u ∈ RU ⊂ R∪. If U > X , then

u > FX , a contradiction. If U ≤ X , then u is not an upper bound on RX ,
another contradiction. Now it is proven that u ̸= [u] ⊂ CAB

Q .

• (Partition) The partition definition is

u = (Lu, Ru) .

If u < FX , and FX = (L,R), then there exists a non-empty Σ ⊂ L such that

Lu = L \ Σ , and Ru = R ∪ Σ . (7.2)

Specifically, Σ = [u,FX ). From Definition 7.5.4, we have

L =
{
[x] ⊂ CAB

Q
∣∣ Big(x) ≤ ℵX} .

Since u is an upper bound on RX , there is no non-empty Σ ⊂ L that can satisfy
Equation (7.2). We contradict the supposition that such a Σ does exist. Since
there is no upper bound on RX less than FX , FX must be the least upper
bound of RX .

A similar demonstration proves that FX must be the greatest lower bound of
some RY with Y > X . It follows that FX is a one-point set. The theorem is
proven. l

Remark 7.5.6 The least upper bound problem rears its comely head. With
Main Theorem 7.5.5, we have given FX = sup(RX ), but we have already made
a strong case that no such supremum can exist (Proposition 7.1.14). In the
remainder of this section, we will conclude the development of the fractional
distance approach to R such that the reasoning behind the least upper bound
problem is carefully sidestepped.

Before we continue, we will outline exactly what it means “to conclude the
development.” With Main Theorem 7.5.5, we have now given a construction
by Cauchy equivalence classes for every x ∈ R. Every measurable x ∈ R∪ is
directly a subset of CAB

Q . The arithmetic of such numbers is given in Section
5. Every immeasurable x ∈ F is now formally constructed as an extended
Dedekind partition of CAB

Q . Since R = R∪ ∪ F, all real numbers now have a
direct algebraic construction. We assume N, define 0, construct Q, CQ and
CAB

Q thence, and then we take x ∈ R as the elements and partitions of CAB
Q . In

Section 5.5, however, it was only proven that the equivalence classes themselves
obey the arithmetic axioms. We cannot simply throw FX in there—not in any
rigorous fashion—because there is not a Cauchy equivalence class [FX ] ⊂ CAB

Q
for any [X ] ⊂ CQ. Even if we forced the arithmetic axioms onto FX with more
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axioms, we would immediately hit the least upper bound problem developed
in Proposition 7.1.14. Main Theorem 7.5.5 shows that FX is the supremum of
RX , but RX is not supposed to have a supremum. Now we will solve the least
upper bound problem and begin moving toward the Archimedes property of
F ⊂ R.

Definition 7.5.7 If a real number is [x] ⊂ CAB
Q , then it is called an arithmatic

number (pronounced arith·matic). All measurable numbers R∪ = CAB
Q are

arithmatic. If a real number is a partition of CAB
Q not given by any element

therein, then it is called a non-arithmatic number. All immeasurable numbers
are non-arithmatic.

Axiom 7.5.8 Arithmetic operations are not defined among arithmatic and
non-arithmatic numbers.

Remark 7.5.9 What we have done with the separation of the reals into
arithmatic and non-arithmatic numbers mirrors the usual separation between
canonically algebraic numbers, which are the roots of non-zero polynomials
with rational coefficients, and canonically non-algebraic numbers which are
not the roots of any such polynomials. Canonically non-algebraic numbers are
supposed to exist because they are needed to fill in the gaps in Q which are not
allowed if R is to satisfy the definition of a simply connected 1D interval. Now
we have gone one step further and shown that non-arithmatic numbers
are needed to fill in the connectedness of the many neighborhoods .

Definition 7.5.10 If R has the least upper bound property, then every non-
empty subset S ⊂ R that has an upper bound must have a least upper bound
u ∈ R such that u = sup(S).

Proposition 7.5.11 (Restatement of Proposition 7.1.14: the least upper bou-
nd problem.) R does not have the least upper bound property because R0

cannot have a supremum if arithmetic is defined for x ∈ F in the usual way.
If F0 = sup(R0), and if F were to obey the arithmetic axioms in compositions
with x ∈ R∪, then F0 − 1 would be an element of R0. By the closure of R0,
F0 − 1 + 2 would be another element of R0. This contradicts the identity
F0 = sup(R0) because F0 < F0 + 1.

Refutation. Let x be an arithmatic real number. Axiom 7.5.8 is such that

F0 = sup(R0) =⇒ sup(R0)± x = undefined .

The arithmetic axioms cannot be used to demonstrate the condition in the jus-
tification of this proposition. R0 most certainly can have a supremum .
The supremum of each RX (the open set of numbers that are 100×X% of the
way down the real number line) is FX : a non-arithmatic number. l
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Theorem 7.5.12 R has the least upper bound property, which is also called
the Dedekind property or Dedekind completeness.

Proof. If L and R are two non-empty subsets of R such that R = L ∪ R,
meaning that (L,R) is a partition of R, and

x ∈ L , y ∈ R =⇒ x < y ,

then the Dedekind property requires that either L has a greatest member or
R has a least member. This property is implicit in the connectedness of the
algebraic interval. With Main Theorem 7.5.5, we have established the con-
nectedness of the successive disconnected intervals in R∪. They are connected
by the elements of F. All subsets of R with an upper bound also have a
least upper bound because {FX} guarantees the simple connectedness. The
connectedness proves the theorem. l

Remark 7.5.13 The non-arithmatic, immeasurable numbers inherit their or-
dering with respect to the ≤ relation from the total ordering of R. The supre-
mum of one measurable neighborhood is the infimum of the next. The maximal
neighborhood R1 does not have a supremum in R, but it is exempted from the
Dedekind property because R1 does not have a real upper bound at all. The
upper bound of the maximal neighborhood of infinity diverges. Since no upper
bound u ∈ R exists for R1 at all, a real least upper bound on R1 cannot exist.

Definition 7.5.14 A set S is totally ordered if it obeys the following order
axioms.

� (O1a) Elements of S have trichotomy: If x, y ∈ S, then one and only one
of the following is true: (i) x < y, (ii) x = y, or (iii) x > y.

� (O2a) The < relation is transitive: If x, y, z ∈ S, then x < y and y < z
together imply x < z.

� (O3a) If x, y, z ∈ S, then x < y implies x+ z < y+ z, or at least one sum
is undefined.

� (O4a) If x, y, z ∈ S, and if z > 0, then x < y implies xz < yz, or at least
one product is undefined.

Remark 7.5.15 Axioms (O1a)-(O4a) are almost exactly the (O1)-(O4) or-
dering axioms of a complete ordered number field (Axiom 5.4.8). We have
changed the two axioms involving the arithmetic operations + and ×. The
changes make allowances for the immeasurable x ∈ F which are truncated
from existence when one adopts a field-related axiom that every real number
is less than some natural number.

Theorem 7.5.16 R is a totally ordered set.
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Proof. We will prove each of (O1a) to (O4a).

• (O1a) Trichotomy is trivially inherent to the order established for R∪ (Axiom
5.2.18). Trichotomy is fully satisfied in R = R∪∪F by the result FX = sup(RX ).

• (O2a) Transitivity is satisfied by Axiom 5.2.18 and the corollary results for
the extrema {FX}.

• (O3a) Since we have restricted the inequalities in this part of Definition
7.5.14 to the arithmatic numbers, the arithmetic axioms give compliance as
stated.

• (O4a) Satisfaction follows in the manner of (O3a).

The ordering relation ≤ for R is such that R is totally ordered. l

Remark 7.5.17 Since we are not using a number field approach to R, we
need not state the definition of total order in the exact form of the axioms
of a totally ordered complete number field having unified laws of arithmetic.
In Definition 7.5.14, we have minimally modified the usual definition of total
order (Axiom 5.4.8) so that (O3a) and (O4a) distinguish arithmatic and non-
arithmatic numbers. We will justify this exception to the usual definition of
total order as follows.

The lack of arithmetic definitions for immeasurable numbers doesn’t affect
their well ordering with respect to the measurable ones. The lack of defined
operations has no bearing on the concept of the ordering of the set. Indeed, re-
garding the geometric notions of addition and multiplication to which we have
referred throughout this analysis of fractional distance, there should not exist
geometrically identical arithmetic operations for numbers with and without
geometrically measurable fractional distance. Shared geometry-based arith-
metic operations would necessarily imply a shared character of measurablity
or immeasurablity, but not both characteristics shared simultaneously.

A supposed requirement for this shared character is the root of the discrep-
ancy in the least upper bound problem (Proposition 7.5.11). In our initial
development of the least upper bound problem (Proposition 7.1.14), it was
implicitly assumed that sup(R0) must be an arithmatic number in the way
that all real numbers were supposed to be algebraic until the con-
nectedness of the interval demanded non-algebraic numbers to fill
in the gaps. A number is said to be canonically algebraic if it is the root
of a certain polynomial, but this is not what is meant when we use the ad-
jective “algebraic” to describe the immeasurables. Presently, x ∈ F may be
called algebraic due to the lack of a geometric picture of fractional distance
for x ∈ F. The geometric picture of x ∈ F comes from an algebraic ordering
with the ≤ relation being defined over all of R. It is clear that the FX are
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geometric Euclidean magnitudes, or cuts, measured relative to the origin 0̂ of
an infinitely long line, but it is not clear how this works in the metric space
picture of R where

d(0,FX ) =
∣∣FX − 0

∣∣ = undefined .

Toward the metric space picture, it is interesting that we have shown in
Main Theorem 6.1.1 that arithmetic in the neighborhood of infinity allows us
to take all-important limits at infinity within the realm of standard analysis.
There is no need to invoke the metric space definition of R to take these
limits. The metric space is the canonical workaround for a supposed failure
of the Cauchy limit criterion at infinity, but here we take the Cauchy limit at
infinity with the modernized definition of R (Main Theorem 6.1.1). Why, then,
should it be a problem that the metric function is undefined? In Definition
2.1.2, we defined a number line as a line equipped with a chart x and the
Euclidean metric d(x, y) = |y − x|, but now that we have closely examined
all the details, we can otherwise define a number line as a line equipped with
the totally ordered fractional distance chart ±x ∈ R∪ ∪ F (which is just the
Euclidean chart.) With this definition taken a priori as an axiom, it is possible
to reproduce the entire fractional distance analysis without any dependence on
a metric function whose domain only holds the measurables R∪. If desired, it
could be assumed that the metric definition of a number line (Definition 2.1.2)
is overwritten as needed for consistency. By the end of this section, however,
we will have restored the metric functionality.

Paradox Resolution 7.5.18 (Resolution of Paradox 7.3.10.) The paradox
depends on assumed usual arithmetic for non-arithmatic immeasurable num-
bers. The paradox is remedied by the non-arithmatic property of FX .

Paradox Resolution 7.5.19 (Resolution of Paradox 7.3.11.) The paradox
depends on assumed usual arithmetic for non-arithmatic immeasurable num-
bers. The paradox is remedied by the non-arithmatic property of FX .

Remark 7.5.20 Throughout this analysis, we have referred many times to the
geometric notions of addition and multiplication. If FX is an immeasurable
number x ̸∈ R∪ such that ordinary notions of geometry cannot be applied
to it universally, by what means might we axiomatize the arithmetic of non-
arithmatic numbers? We have shown in Section 7.3 that the straightforward
introduction of infinitesimals is not the correct way forward, and we have
shown it for all the reasons that infinitesimals are usually not allowed into
standard analysis. So, to pierce the reader’s probable veil of likely skepticism
regarding some perceived absurdity about ordered but non-arithmatic real
numbers FX , which are not one iota more specious a construction than the
non-algebraic numbers which were brought into standard analysis for the exact
same reason, we now point out that the {FX} are the only real numbers not
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forced into the arithmetic axioms by some identification as an element of CAB
Q .

Immeasurable real numbers x ∈ F are partitions of the big parts of CAB
Q only.

They are not uniquely identified with any [x] ∈ CAB
Q whose corresponding

Dedekind partition would specify a big part and a little part. Measurable
numbers differ from immeasurable numbers because the Dedekind partition
corresponding to any x ∈ R∪ must specify a little part. Thus, having entirely
different algebraic constructions, measurable and immeasurable numbers are
so markedly different in their qualia, it is certainly reasonable to suppose that
they obey different arithmetic axioms.

Remark 7.5.21 Now, in advance of the material presented in the remainder
of this section, we will laboriously belabor the point that there is no pre-
ferred scale for standard analysis. As mentioned in the preamble to this
section, we will suggest taking the immeasurables F(n) as the extended natu-
rals on a number line whose unit of distance is the spacing between successive
immeasurables Fk,Fk+1 ∈ R. We will use the label RF to distinguish the new
number line, and we will identify the cut F0 ∈ R with 1 ∈ RF. In Theorem
7.5.29, we will show that this identification requires that the origin of RF is
shifted with respect to that in R.

Geometric infinity ∞ is not affected in any way, ever, by any conformal
rescaling parameter. From a geometric perspective, then, we should expect
RF to be R itself identically. For instance, consider a convention such that

R = [−ℵ1,ℵ1] , and T = [−ℵ∞̂,ℵ∞̂] ,

where the existence of some T separate from R is implied by the notion of
geometric infinity as proffered in Example 4.4.10: a number which cannot be
written as an endpoint without contradicting the notion of the infinite geomet-
ric extent of a number line. In the hypothetical formalization of such a scheme,
and in the context of this remark only, one might introduce a new symbol or a
term like “ultimate transfinite infinity” to avoid ambiguity with∞ (geometric
infinity) in our working identity |ℵ1| = ∞. If R had an endpoint at ultimate
transfinite infinity, then that would contradict the notion of infinite geometric
extent forbidding it being an endpoint, so the existence of a continued superset
such as T is implied. Even then, ℵ∞̂ must be less than ultimate transfinite
infinity because transfinite infinity can no more be an endpoint for T than it
could for R. Thus, R, RF, and T are three rescaled copies of the same object,
and we might rightfully call any of them R. All that is required is a chart to
normalize the interval as (−ℵ1,ℵ1).

The limit definition of algebraic infinity∣∣ℵ1∣∣ = lim
x→0±

1

x
,

is such that the scale of the unit 1 ∈ N in the numerator does not affect our
ability to construct (−ℵ1,ℵ1) ⊆ (−ℵ∞̂,ℵ∞̂). However large or small we take
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the scale of 1 ∈ N, the resultant extended real line [−∞̂, ∞̂] will always be a
subset of T, which cannot itself extend to ultimate transfinite infinity because,
in part, ℵ∞̂ < ℵ∞̂+1. So, regardless of the scale of 1 ∈ N, the interval (−∞̂, ∞̂)
is always going to be the same set R, even if we add supplemental labeling to
denote the relative scale of different copies of it, and even if the relative scale
is on the order of F0 or greater. There is no scale factor by which we might
stretch algebraic infinity as in R = (−∞̂, ∞̂) to be more than a drop in the
bucket with respect to an interval extending to ultimate transfinite infinity in
both directions. Even T, which necessarily falls short of ultimate transfinite
infinity due to its ±ℵ∞̂ endpoints, will always be infinitely longer than R on a
given scale. For every instance of R charted with x, there is a rescaled chart
over R′ containing x′ to the right of x = ∞̂ such that those x′ are still real
numbers to the left of the ∞̂ that bounds R′. As this is true on any scale,
those transfinite points will always belong to an interval infinitely longer than
any given instance of R: one extending to ultimate transfinite infinity in both
directions. Thus, we are well enough motivated to use the immeasurables as
the natural numbers in some RF such that len(RF) ≫ len(R).

Now we have laboriously belabored the point about there being no preferred
scale for R. In the remainder of this remark, we will continue to do so and
infer that the immeasurables behave like the naturals on a copy of R which is
quite large relative to another copy: one scaled by an immeasurable quantity.
We will define F(n) = n ∈ NF and then claim that NF = N because there
is no unique scale for R (or N). Having supposed the existence of natural
numbers as a prerequisite to Q in our construction of R by Cauchy sequences
of rationals (Section 4.2), we will find that the curious remainder set F left over
at the end is exactly what we have put in to begin with: N. Indeed, we will
find that the natural numbers which served as the starting point for CAB

Q were
simply the F(n) on a smaller copy of R whose existence can be inferred by the
self-similarity of R on any scale. It’s tortoises all the way down, basically.

By the least upper bound problem (Proposition 7.5.11), we have demon-
strated a requirement that standard analysis must not contain any compositive
Cartesian products in the forms

R∪ × F =


{
x+ FX

∣∣ x = [x], F[X ] ∈ F, [x], [X ] ⊂ CAB
Q
}{

x · FX
∣∣ x = [x], F[X ] ∈ F, [x], [X ] ⊂ CAB

Q
}{

x÷FX
∣∣ x = [x], F[X ] ∈ F, [x], [X ] ⊂ CAB

Q
}

.

Accordingly, the fractional distance axioms forbid such products. What, then,
shall we do with F? Undefined definitions beg for definitions. En route to
some definitions for the arithmetic of {FX}, let us examine the process of R’s
algebraic construction.

To construct R by Cauchy equivalence classes of rationals in Section 4.2,
we have implicitly assumed N as a discrete set without first requiring that
the natural numbers are regularly spaced cuts along the real line. Rather,
we have assumed N as an abstract (algebraic) set of counting of numbers and
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then appended it to the least number x = 0 in the algebraic representation
of the geometric left endpoint of AB. We have also defined x = 0 to be the
additive identity for n ∈ N so that n = 0 + n. By doing so, we may associate
the Cauchy equivalence classes of rationals with cuts in [0, ∞̂). Due to AB
being equipped with a metric (Definition 2.1.2), the notion of x ∈ Q as a
cut some distance away from x = 0 is implied, and then we may infer the
irrationals as cuts from the connectedness of the interval. This stands as a
parallel construction of R in which we have not presupposed that numbers are
cuts in a line. We have only supposed that lines (or line segments) exist, that
N exists, that n ∈ N has an additive identity, and that the ratios of n,m ∈ N
exist as elements of Q. Strictly speaking, the idea of one apple or 52 apples
does not require the presupposition of the existence of a 1D Hausdorff space
extending infinitely far in both directions. It suffices to grant that if whole
apples are had, we can have a natural number of them: one, a few, or a lot.
With the introduction of a metric function, however, it is granted that units of
distance can be counted like apples, and that increments of distance separate
unequal numbers: numbers are cuts in a line.

We have assumed N at the outset of our algebraic constructive process to
write

N −→ N ∪ {0} −→ Q −→ CQ −→ CAB
Q −→ R −→ F .

If we complement the undefined definitions for the arithmetic of immeasurable
numbers such that they obey the arithmetic of the natural numbers
in a rescaled chart whose 1 ∈ NF is on the order of F0 ∈ R in a “smaller”
chart, then the process leading to the mystery set F becomes

N −→ N ∪ {0} −→ Q −→ CQ −→ CAB
Q −→ R −→ F −→ NF ,

Having constructed a bigger version of N, we can use it to construct a transfi-
nite chart without having to assume a second transfinite copy of the naturals
with which to begin another constructive process for RF. We can continue to
construct “bigger and bigger” copies of R forever with scale factors greater
than or equal to any n ∈ N, and we will never require any intuitive supposi-
tions beyond the existence of the n ∈ N that we have already supposed. We
might rescale bigger and bigger forever, and we will never fail to have a resul-
tant set which is infinitely small with respect to a given instance of T. Even
if we chose the scale factor ℵ∞̂, we could make use of the notation being such
that ℵ(ℵX ) = X ·∞̂2 to preserve the infinitely-larger-ness of T as

T = (−ℵℵℵℵ...
,ℵℵℵℵ...

) = (−∞̂∞̂∞̂∞̂...

, ∞̂∞̂∞̂∞̂...

) .

Since the previous (−ℵ∞̂,ℵ∞̂) construction for T makes it identical to R on
another scale, a better definition for T, one which would distinguish it from
R, might be to set T itself as the interval extending to ultimate transfinite
infinity in both directions. However, there is no need for such distinctions and
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clarifications in real analysis. Real analysis ends at ℵ1, while T lives only in
transfinite analysis where “beyond infinity” has meaning.

Due to the absorptive properties of geometric infinity (in the usual sense
of the absolute value of algebraic infinity |∞̂| being equal to ∞), a conformal
rescaling parameter such as F0 or ℵX will never change the Euclidean concep-
tual component underlying everything: R = (−∞,∞). For this reason, the
scale that we assign to any particular copy of R will never disrupt the con-
figuration of an infinite line along which the interval (−∞̂, ∞̂) can be shown
to exist as a conformal chart on some finite subset. It follows that NF is just
another copy of N with a rescaled unit increment, so it must be that NF = N.
However, since the scale of the two sets is different, we cannot allow them to
interact by arithmetic. That would require NF ̸= N. Thus, we take Axiom
7.5.8 to disallow arithmetic among measurable and immeasurable numbers. If
we took NF ̸= N, then there would be an implied preferred scale for R when
no such scale exists. Thus, we have that which was assumed at the outset of
the constructive process as the output at the end of the same:

N −→ N ∪ {0} −→ Q −→ CQ −→ CAB
Q −→ R −→ F −→ N .

Since arithmetic between the measurables and immeasurables is forbidden,
there is little reason to retain the subscript label F which reminds us that the
scale of one instance of N differs from another. When that matters, we may
call the larger numbers F(n) noting that the problems associated with the (n)
notation have been done away with by Axiom 7.5.8. Citing one such problem,
there are irreparable contradictions with the idea that 1

2
F0 =

1
2
F(1) should be

a cut x ∈ R0, but there is no problem when 1
2
F(1) is cut in the separate big real

line RF where the quantity is expressed as 1
2
F(1)→ 1

2
· 1 = 1

2
with 1

2
, 1 ∈ QF.

Now the label (n) tells us which (extended) natural number n ∈ NF is each
F(n) ∈ R, and we have a ready-made set of arithmetic axioms for {FX}: they
should obey the arithmetic laws of natural numbers with themselves. We will
formalize this with Axiom 7.5.24.

Going back to Definition 2.1.3, we see that the real line is only a line with an
appended label “real,” so the requirement R = RF simply augments the label
we put on the line. In this case, we have R as “the real line” and RF as “the
big real line” with a specification of relative scale between them. Among the
two number lines, however, it necessarily follows that the real line is identically
the big real line in another convention where we attach the label real to what
would be “the small real line,” call it RF−1 . Having supposed the preexistence
of N as something separate from R, now we have a nice explanation for the
abstract n which show up as regularly spaced cuts in R once we have it built
from geometry: N ⊂ R are the F(n) from the small real line. In this way, we
might construct an infinite tier of increasingly large or small copies of R, call
them RFk , without any further supplemental abstractions. Since all copies of R
are the same, meaning that they differ by nothing more than a label to specify
the scale, there is no strict requirement to define bigger or smaller lines at all.
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It will suffice for an extended transfinite analysis to define separate charts on
a single line: xFk ∈ RFk ⊂ T. Since we have taken (−∞̂, ∞̂) as embeddable on
the finite subintervals of (−∞,∞), there is no problem assuming other charts
over R whose linear extent exceeds or falls short of (−∞̂, ∞̂) as measured
according to another xFj .

Example 7.5.22 As an example of a possible application for a framework
of analysis in RFk , consider the widely accepted formula for the sum of the
positive integers

∞∑
n=1

n = − 1

12
.

Perhaps taking this result to mean that the sum of all n ∈ NFj is equal to
− 1

12
∈ QFj+1 could serve as a Rosetta stone of sorts for translating between R

and RF in the new transfinite analysis proposed here.

Definition 7.5.23 Given a chart x on R ⊂ T, there exists another chart
xF on RF ⊂ T such that x = F(n) and xF = n are the same cut in T.
Successive immeasurables in R are identified with successive naturals in RT.
The identification of F(n) ∈ R with n ∈ RF means that the two charts are
pinned as follows. If X > 0, and line segment AB has simultaneous algebraic
representations

AB ≡ [0,ℵX ] ⊂ R , and AB ≡ [xF, yF] ⊂ RF ,

then splitting AB into AX and XB such that

AX ≡ [0,F(n)) ⊂ R , and XB = [F(n),ℵX ] ⊂ R ,

requires that

AX ≡ [xF, n) ⊂ RF , and XB = [n, yF] ⊂ RF .

Axiom 7.5.24 The arithmetic operations of immeasurable real numbers with
themselves are the arithmetic operations of the extended natural numbers N∞
(Definition 6.2.3) such that there exists a one-to-one correspondence

R ∋ F(n) ←→ n ∈ RF .

These operations take two immeasurable FX ∈ R and return a cut in an-
other number line which is an identical but distinctly labeled copy of R. In
particular, we have

F(n) + F(m) = F(n+m) −→ n+m ∈ RF

F(n) · F(m) = F(n ·m) −→ n · m ∈ RF

F(n)÷F(m) = F(n÷m) −→ n÷m ∈ RF .
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Remark 7.5.25 With Axiom 7.5.8, we have avoided the least upper bound
problem. Namely, expressions such as FX ± b are undefined when b ∈ R0.
However, it remains to show that FX ∈ R satisfies the Archimedes property or
real numbers. There is most likely no concise symbolic representation of the
statement, “Magnitudes are said to have a ratio with respect to one another
which, being multiplied, are capable of exceeding one another,” that does not
rely on arithmetic, so, therefore, we should define arithmetic operations for
non-arithmatic numbers with themselves. This is achieved with Axiom 7.5.24.
Axiom 7.5.8 only forbids arithmetic between measurables and immeasurables,
so we have retained the freedom to define arithmetic operations among im-
measurable numbers.

Main Theorem 7.5.26 Immeasurable numbers FX ∈ R obey the Archimedes
property of real numbers.

Proof. Definition 6.3.9 gives the Archimedes property of real numbers as

∀x, y ∈ R s.t. x < y ∃z1, z2 ∈ R+ s.t. z1x > z2y .

As in the proof of Main Theorem 6.3.10, we will divide this proof into cases
of the Archimedean statement x < y.

• (x ∈ RX , y = FY , Y ≥ X ) We have x < y so choose two multipliers z1 =
Z
X

such that Y < Z < 1, and z2 = F0 = F(1) where F0 ∈ R is the multiplicative
identity 1 ∈ RF for the arithmetic of the immeasurables granted by Axiom
7.5.24. Then

Z
X
(
ℵX + b

)
= ℵZ +

bZ
X

> FY .

• (x = FX , y ∈ RY , Y ≥ X ) Choose z1 = F0 and z2 = Z
Y such that Z ≤ X .

Then

FX >
Z
Y
(
ℵY + b

)
= ℵZ +

bZ
Y

.

• (x = FX , y = FY , Y ≥ X ) This case will be remarked upon, and then proven
below.

Remark 7.5.27 For the purposes of the arithmetic of the immeasurables,
there is no problem using the FX = F(n) notation. For x = FX and y = FY
with Y ≥ X , we take the F(n) = n ∈ NF as a discrete exterior set upon
which the cuts in RF are constructed. All of the problems demonstrated in
and around Section 7.3 relied upon assumptions of the form

x+ y = f+(x, y) : R× R→ R
x · y = f×(x, y) : R× R→ R
x÷ y = f÷(x, y) : R× R→ R ,
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which we find are now better written in the respective forms of

f(x, y) : R∪ × R∪ → R ,

because the arithmetic of x ∈ R∪ and x ∈ F is differentiated. Noting that
Axiom 7.5.8 forbids the domain R∪×F for any of f+, f×, or f÷, and recalling
that Euclid wrote in Book 5 of The Elements, Definition 3, “A ratio is a certain
type of condition with respect to size of two magnitudes of the same kind,”
Axiom 7.5.24 now grants forms following

f(FX ,FY) : F× F→ RF .

Cuts in RF are taken as Euclidean magnitudes “of a different kind” than those
in R. By defining the non-arithmatic real numbers of one kind as simultaneous
natural numbers of another kind, we avoid all of the problems associated with
the F(n) notation: the notation x = FX tells us to treat x as a cut in R and
x = F(n) tells us to treat it as a cut in RF. In either case, x is a cut in the
real number line.

Now we will conclude the proof of Main Theorem 7.5.26. Regarding the
Archimedes property for x = FX and y = FY (the third bulleted case above),
let

FX = F(n) , and FY = F(m) ,

so that F(n) < F(m). Choose z1 = F(k) such that nk > m, and z2 = F(1)
so that Axiom 7.5.24 gives

F(k) · F(n) = F(kn) > F(m) .

We have demonstrated the main cases and conclude the proof with an as-
sumption that the other cases follow directly. Non-arithmatic, immeasurable
numbers satisfy the ancient Archimedes property of real numbers. l

Remark 7.5.28 Due to the explicit requirement for multiplication by n or
ℵn in the Archimedes property of 1D transfinitely continued real numbers
(Axiom 6.3.12), we cannot directly demonstrate the compliance of FX ∈ F.
The problem lies with the inadmissible domain of

f× : F× R∪ → RF .

To the extent that Axiom 6.3.12 was proposed only to simplify the demon-
stration of the compliance of numbers in the neighborhood of infinity with the
Archimedes property, we could more precisely call this axiom the Archimedes
property of 1D transfinitely continued arithmatic real numbers.

Theorem 7.5.29 The x and xF charts cannot share an origin.
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Proof. The radius of the neighborhood of the origin R0 is one half the length
of any element of {RX}. The origin of the x chart lies one half as far to
the left of F(1) = 1 ∈ NF as F(2) = 2 ∈ NF lies to the right of it. Now
that we have given arithmetic for the immeasurables, we may quantify the
notion of immeasurables lying to the left and right of each other with the
ordinary Euclidean metric d(xF, yF) = |yF − xF|. This metric requires that
distance is uniform over the line, so, therefore, the cut 0 ∈ R cannot have a
simultaneous algebraic definition as 0 ∈ RF. Such a definition would require
a non-Euclidean notion of distance rendering the line in question something
other than a number line as given by Definition 2.1.2. With or without a
metric, numbers must be spaced evenly along a number line for the purposes
of Euclidean geometry. l

§7.6 The Topology of the Real Number Line

The thesis of the fractional distance analysis presented here has to been pre-
serve the Euclidean geometric construction of R through an algebraic construc-
tion which does not preclude the existence of the neighborhood of infinity. We
began with Axiom 2.1.7 stating that real numbers are represented in algebraic
interval notation as R = (−∞,∞), and this axiom is totally equivalent to a
requirement that R has the usual topology. In this section, we will define two
different topologies on R: the usual topology and another one which we will
call the fractional distance topology.

Definition 7.6.1 A topology on a set S is a collection T of open subsets of
S with the following properties.

� T contains S and ∅.

� T contains the union of any of the elements of T , namely
⋃
τk ∈ T .

� T contains the finite intersection of the elements of T . If n < ∞, then
n⋂
k=1

τk ∈ T .

The open sets in T are called the basis of the topology. The topology is the
set of all unions of the sets in its basis. Together, the pair (S, T ) is called a
topological space.

Definition 7.6.2 A basis B for a topology T on S is a set {Bk} of subsets
Bk ⊂ S such that (i) for every s ∈ S there is at least one basis element which
contains s, and such that (ii) if s ∈ B1 ∩ B2, then there exists B3 ⊆ B1 ∩ B2
such that s ∈ B3.

Definition 7.6.3 The usual basis B0 for the usual topology on R is the col-
lection of all 1D open intervals such that

B0 =
{
(a, b)

∣∣ [a], [b] ⊂ CQ, a < b
}
,
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The topology generated by B0 is called T0.

Theorem 7.6.4 B0 is not a basis for a topology on R.

Proof. Definition 7.6.2 requires that

∀x ∈ R ∃(a, b) ∈ B0 s.t. x ∈ (a, b) .

Consider x = ℵ0.5 ∈ R. We have

∀a = [a] ∀b = [b] s.t. [a], [b] ∈ CQ ∃n ∈ N s.t. a, b < n .

It follows that there is no interval (a, b) ∈ B0 which contains x > n. This
proves the theorem. l

Theorem 7.6.5 The pair (R0, T0) is a topological space when T0 is the topology
generated by B0.

Proof. Proof follows from Definitions 7.6.1, 7.6.2, and 7.6.3. l

Remark 7.6.6 The usual topology is granted by Axiom 2.1.7 giving R =
(−∞,∞). If all of R is axiomatically taken to reside within the neighborhood
of the origin, then (R, T0) is a well-defined topological space, and T0 is the usual
topology on R. This is a restatement of Theorem 7.6.5 with an alternative
definition for R. Since we have included the neighborhood of infinity in R,
rightly, however, we cannot construct (generate) the usual topology with its
usual basis B0. We need to adjust the basis to reflect the results of fractional
distance analysis. Only then will we be able to put R = R0 ∪ R∞ = R∪ ∪ F
into a topological space with the usual topology. For breadth in this section,
we will also define a fractional distance topology TFD separate from the usual
topology TU on R. To contrast these topologies, we will provide two new
axioms regarding possible constructions for R, and then we will show that the
axiomatic requirements are satisfied by one topology or the other. However,
in the way that an axiom about all real numbers existing in the neighborhood
of the origin was mentioned above without overwriting the fractional distance
axioms, the following axioms are given only for consideration. By stating
them, we will continue the program of contrast between geometry and algebra
which is a theme of this analytical work. Namely, we will show how the two
topologies are tailored to one axiomatic system or another: one emphasizing
geometry or one emphasizing algebra.

Axiom 7.6.7 The fundamental axiom of geometric construction .
Up to a sign, real numbers are the finite elements of algebraic representations
of points in the infinitely long line segment AB, i.e.:

R =
{
±x

∣∣ x ∈ X ∈ AB, 0 ≤ x < ∞̂
}
.
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Axiom 7.6.8 The fundamental axiom of algebraic construction. The
topology of the real number line is the usual one.

Remark 7.6.9 Axiom 7.6.7 posits the existence of every measurable number
x ∈ R∪. Axiom 7.6.8 posits the further existence of the immeasurables x ∈ F
so that there are no gaps in (−∞,∞) to prevent us from taking the usual
topology TU as the set of all unions of (a, b) ⊂ (−∞,∞). Without granting
{FX} ⊂ R, intervals of the form (ℵX ,ℵX+δ) with 0 < δ < (1 − X ) would not
be connected subsets of R. They would be disconnected at the immeasurable
extrema of the RX neighborhoods. In fact, they would not be intervals at all
because intervals are necessarily connected.

Definition 7.6.10 The fractional distance topology on R∪ is TFD generated
by a basis BFD = BX ∪ B∞ such that

BX =
{
(ℵX + a,ℵX + b)

∣∣ [X ], [a], [b] ⊂ CQ, a < b, − 1 < X < 1
}

B∞ =
{
(±∞̂ ∓ a,±∞̂ ∓ b)

∣∣ [a], [b]⊂CQ, a>b>0 if +∞̂, 0<a<b if −∞̂
}
.

Theorem 7.6.11 The topological space (R∪, TFD) satisfies Axiom 7.6.7.

Proof. Proof follows from Definition 7.6.10. Every x required by Axiom 7.6.7
appears in the basis BFD of the topology TFD. l

Remark 7.6.12 If an almost-usual topological space that excludes immea-
surable numbers is desired, then (R∪, TFD) is suggested. It is consistent with
the fundamental axiom of geometric construction, and topological applications
devoid of non-arithmatic numbers are easy to imagine. However, TFD is not a
topology on R. In the present conventions, (R∪, TFD) is a well-defined topo-
logical space but (R, TFD) is not. TFD does not contain any x ∈ F. If desired,
however, one could axiomatize (R, TFD) as a topological space such that every
real number is measurable. This would necessarily overwrite the fundamental
axiom of algebraic construction, but one might find an analytical framework
devoid of immeasurables more useful in certain circumstances.

Definition 7.6.13 The fractional distance basis BU for the usual topology TU
on R is the collection of all 1D open intervals such that

BU =
{
(a, b)

∣∣ a, b ∈ R, a < b
}
.

Remark 7.6.14 The usual basis B0 for the usual topology (in its incarna-
tion T0, as per Definition 7.6.3) assumes that all real numbers are identically
Cauchy equivalence classes of rationals [x] ⊂ CQ. The fractional distance basis
BU for the usual topology TU takes into account the current convention that
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real numbers are either extended equivalence classes [x] ⊂ CAB
Q or extended

Dedekind partitions x = (L,R).

Theorem 7.6.15 The topological space (R, TU) satisfies the fundamental ax-
iom of algebraic construction (Axiom 7.6.8). In other words, TU is the usual
topology on R.

Proof. Proof follows from Definition 7.6.13. Every open set (a, b) ⊂ R required
by Axiom 7.6.8 appears in the basis sets of TU. l

§8 The Riemann Hypothesis

§8.1 The Riemann Zeta Function

The Riemann hypothesis dates to Riemann’s 1859 paper [16]. Since the ax-
ioms of a complete ordered number field date to Hilbert’s 1899 paper [4] at
the earliest, it would be improper to claim that the Riemann hypothesis is
formulated in terms of the ordered field definition of R. Likewise, Dedekind’s
partition definition of real numbers [3] and Cantor’s definition as equivalence
classes of rationals [2] date to a pair of 1872 papers. It follows, then, that
the Riemann hypothesis cannot be understood as being phrased in the lan-
guage of real numbers as Dedekind cuts or Cauchy equivalence classes. The
topological space did not exist as a mathematical concept until well into the
20th century, so it would be similarly absurd to claim that the Riemann’s hy-
pothesis is formulated in terms of the usual topology on R. While we cannot
directly show what definition of R Riemann had in mind when formulating his
hypothesis, we may glean very much from the plain fact that Riemann made
no comment or nod toward any definition of R whatsoever. This should be
taken to mean that Riemann felt his definition of R would have been known
a priori, absolutely and unambiguously, to his intended audience. The only
possible definition which might have been available to satisfy this condition in
1859 was Euclid’s definition of real numbers as geometric magnitudes. Indeed,
Riemann’s program of Riemannian geometry is a direct extension of Euclidean
geometry so, to a very high degree, this qualitatively supports the notion that
Riemann had in mind the cut-in-a-number-line definition of R given by Euclid
in The Elements.

When one examines The Elements [1], the many diagrams, definitions, and
postulates make it exceedingly obvious that Euclid’s definition of a real number
as a magnitude, one having a proportion and ratio with respect to all other
magnitudes of the same kind, is exactly the one given here as Definition 2.1.4.
This definition gives

R \ x = (−∞, x) ∪ (x,∞) ,

as an alternative, identical formulation of the Euclidean statement

x ∈ R+ ⇐⇒ (0,∞) = (0, x] ∪ (x,∞) .
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It is reasonable to conclude that Riemann formulated his hypothesis with it in
mind that any definition of R consistent with the Euclidean magnitude would
be sufficient. The domain of ζ(z), namely C, would be constructed from two
orthogonal copies of R, one of them having the requisite phase factor i. Rather
than the underlying definition of R, the object of relevance in the Riemann
hypothesis should be the behavior of ζ(z) at various z.

Definition 8.1.1 Complementing Definition 6.2.8 which gave z ∈ C as any
z = x + iy such that x, y ∈ R, we define the complex neighborhood of the
origin as

C0 =
{
x+ iy

∣∣ x, y ∈ R0

}
.

Definition 8.1.2 The arithmatic subset of the complex plane C∪ ⊂ C is such
that

C∪ =
{
x+ iy

∣∣ x, y ∈ R∪} .

Definition 8.1.3 For x ∈ R, the Dirichlet series is

D(x) =
∞∑
n=1

1

nx
.

This series converges absolutely for all x ∈ R∪ such that x > 1. Formally, D(x)
is a special case of Dirichlet series, but we will simply call it the Dirichlet series.

Definition 8.1.4 For z ∈ C, the Dirichlet form of the Riemann ζ function is

ζ(z) =
∞∑
n=1

1

nz
.

This series converges absolutely for all z ∈ C such that Re(z) > 1.

Remark 8.1.5 The Riemann hypothesis primarily concerns the behavior of
D continued onto the region of C with real parts exceeding the domain of
convergence of D, i.e.: the region (−∞, 1]. Riemann’s famous functional
equation for ζ(z) [16–28] (Definition 8.1.6) enforces the absolute convergence
of ζ on regions of C whose real parts exceed the domain of convergence of D.
In Theorem 8.1.8, we will prove that D(x) converges even for x ∈ F. Then
it will follow trivially that the convergent behavior of D at non-arithmatic
x ∈ R \ R∪ carries over to ζ at non-arithmatic z ∈ C \ C∪. This follows
because (i) Definition 8.1.4 sets the ζ function exactly equal to D(x) when
Re(z) > 1 and Im(z) = 0, and (ii) the functional form given in Definition
8.1.6 is exactly equal to the Dirichlet form of ζ on its domain of convergence.
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Definition 8.1.6 Riemann’s functional equation for the absolutely conver-
gent analytic continuation of D is

ζ(z) =
(2π)z

π
sin
(πz
2

)
Γ(1− z)ζ(1− z) .

In the region Re(z) > 1, this form of ζ is exactly equal the Dirichlet form
given in Definition 8.1.4.

Remark 8.1.7 Under the classical assumption that C\C0 = ∅, it is said that
Riemann’s functional equation converges absolutely on C \ Z1 where

Z1 = z(x, y) = z(r, θ) = 1 ,

is such that ζ(Z1) ̸∈ C. Presently, the many historical demonstrations of the
convergence of Riemann’s functional equation for ζ are only valid on C∪ \ Z1

because the immeasurables have not been previously considered in this context.
In fact, they are only valid on C0 \ Z1 because R∞ has not been considered,
but we will assume such results hold on C∪ \ Z1. Terms like n−z vanish when
z > 0 and Re(z) ̸∈ R0, and convergence for ζ when z < 0 (and Re(z) ̸∈ R0)
should follow from Definition 8.1.6. So, although D(FX ) is not yet clarified,
we can say with certainty that Riemann’s functional equation is absolutely
convergent on C∪ \ Z1. Aside from the behavior of ζ on C \ C∪, however,
we already have all the tools needed to determine its behavior on C∪. These
tools are sufficient to close the book on the Riemann hypothesis as an open
question. The relevant analyses are presented in Sections 8.2 and 8.3. First,
it will be good for thoroughness to understand the behavior of D(x) at x ∈ F.

It is understood that D(x) is absolutely convergent on the ray x > 1. This
ray includes immeasurable, non-arithmatic numbers {FX} ⊂ (1,∞), but we
have not yet given a concise definition for the xFX needed to compute D(FX ).
The absolute convergence of D everywhere on this ray is usually framed in
the context of every real number being less than some natural number, so we
should give due consideration to the numbers in the neighborhood of infinity.
It follows from the arithmetic axioms that D(x) = 1 for any x ∈ R∪ \R0, but
the case of

D(FX ) =
∞∑
n=1

1

nFX
,

remains to be clarified. We have required with Axiom 7.5.8 that arithmetic op-
erations between measurable and immeasurable numbers are not defined, but
the definition of exponentiation is such that nFX involves arithmetic operations
between natural numbers only:

nFX = n · n · n · n · n · n . . . n︸ ︷︷ ︸
product of FX n’s

.

Raising a natural number to the power of an immeasurable number only makes
a call to the immeasurables when one wants to count the number of products of
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naturals. Therefore, there is no obvious reason to discount nFX as an undefined
operation.

Theorem 8.1.8 If 0 ≤ X < 1, then the quantity D(FX ) is equal to one.

Proof. The Dirichlet series is

D(x) =
∞∑
n=1

n−x =
∞∑
n=1

(
elnn

)−x
=

∞∑
n=1

e−x lnn ,

so we have
d

dx
D(x) =

∞∑
n=1

− lnn
(
e−x lnn

)
.

The derivative of D(x) is non-positive on x > 1 due to the overall minus sign.
Since the function never increases on the ray, it follows that D(x) is monotonic
decreasing or constant on the ray. The arithmetic axioms give

x0 ∈
{
RX} =⇒ D(x0) =

∞∑
n=1

1

nℵX+b
= 1 +

∞∑
n=2

1

nℵX+b
= 1 ,

so D(x) is constant on (ℵX ,ℵY) ⊂ (1,∞). Since FX ∈ (ℵX ,ℵY), and D is
constant on this interval, it follows that

X > 0 =⇒ D(FX ) = 1 .

It follows, therefore, that

n > 1 , X > 0 =⇒ 1

nFX
= 0 .

To complete the proof of the present theorem, we need to show

n > 1 =⇒ 1

nF0
= 0 .

We will prove this remaining case by contradiction. If n−F0 > 0, then

∃m ∈ N s.t.
1

nF0
>

1

m
=⇒ nF0 < m .

Since n ∈ N, the condition n > 1 is equivalent to the condition n ≥ 2. Since
F0 > 1, it follows that

1

nF0
<

1

2
=⇒ m > 2 .

Every such m may be expressed as m = nk for some k ∈ R0. Then

nF0 < m =⇒ nF0 < nk =⇒ F0 < k .

Since k ∈ R0, we have obtained a contradiction. The theorem is proven. l
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Remark 8.1.9 In Theorem 6.2.5, we used the result(
ℵX ± k

)
! = ℵℵℵ...

=∞ ,

to prove that the big exponential function Ex is equal to the regular exponen-
tial function ex for any x ∈ R0. Similarly, Theorem 8.1.8 suggests

xFX =∞ ,

which is not unlike Axiom 5.1.9 giving

x∞̂ =∞ ,

Since the factorial grows faster than the exponential in the sense that

lim
n→∞

xn

n!
= 0 ,

all three results are consistent. Exponentiation by a number greater than any
natural number yields ∞, c.f.: Remark 2.2.5.

§8.2 Non-trivial Zeros in the Critical Strip

In this section, we will prove the negation of the Riemann hypothesis.

Remark 8.2.1 The Riemann ζ function is holomorphic on C \ Z1. It is a
well-known property of holomorphic functions that their zeros are isolated on
a domain, or else the function is constant on that domain. However, this
property relies on the implicit axiom that all pairs of points (z1, z2) in any
subdomain D ⊂ C are such that the distance between them is d(z1, z2) ∈ R0.
When we do not take this implicit axiom limitingD to a single neighborhood of
fractional distance, further specification is required. With a requisite caveat,
the property becomes the following. If the zeros of a holomorphic function
are not isolated, then the function is constant everywhere on a disc of radius
r0 ∈ R0 about any of the non-isolated zeros.

Proposition 8.2.2 If (i) f is a holomorphic function defined everywhere on
an open connected set D ⊂ C, and (ii) there exists more than one z0 ∈ D
such that f(z0) = 0, then f is constant on D or the set containing all z0 ∈ D
is totally disconnected.

Refutation. This proposition is usually proven by a line of reasoning starting
with the following. By the holomorphism of f and the property f(z0) = 0,
we know there exists a convergent Taylor series representation of f(z) for all
|z − z0| < r0 with r0 ∈ R. Here, however, the proposition immediately fails
pseudo-trivially because we can select r0 ∈ {RX} and assume∣∣z − z0∣∣ > (ℵX + a

)
,
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to show that the Taylor series does not converge when X > 0. We have

f(z) = f(z0) + f ′(z0)
(
z − z0

)
+
f ′′(z0)

2!

(
z − z0

)2
+ . . . .

The first term in the series vanishes by definition so, therefore, we have by
assumption

f(z) > f ′(z0)
(
ℵX + b

)
+

∞∑
n=2

f (n)(z0)

n!

(
ℵX + b

)n
.

The Taylor series expansion of f does not converge in R for |z − z0| ∈ RX
0 .

This follows from (ℵX + b)n > ℵ1 for all n ≥ 2, as per Axiom 5.2.6. l

Theorem 8.2.3 If (i) f is a holomorphic function defined everywhere on an
open connected set D ⊂ C, (ii) there exists more than one z0 ∈ D such that
f(z0) = 0, and (iii) every p ∈ D is such that |z0 − p| ∈ R0, then f is constant
on D or the set containing all z0 ∈ D is totally disconnected.

Proof. Various proofs of Theorem 8.2.3 are well known. They are taken for
granted. l

Main Theorem 8.2.4 If {γn} is an increasing sequence containing the imag-
inary parts of the non-trivial zeros of the Riemann ζ function in the upper
complex half-plane, then

lim
n→(ℵX+b)

∣∣γn+1 − γn
∣∣ = 0 .

Proof. To prove the theorem, we will follow Titchmarsh’s proof [17] of a theo-
rem of Littlewood [29]. The original theorem is stated as follows.

“For every large T , ζ(s) has a zero β + iγ satisfying∣∣γ − T ∣∣ < A

log log log T
.”

Note that A is some constant A ∈ R0. For proof by contradiction, assume

lim
n→(ℵX+b)

∣∣γn+1 − γn
∣∣ ̸= 0 .

Then there exists some m(n) and some a ∈ R+
0 such that

lim
m(n)→(ℵX+b)

∣∣γm(n)+1 − γm(n)

∣∣ > 2a .

Let Tn be the average of γm(n)+1 and γm(n) so

Tn =
γm(n)+1 + γm(n)

2
.
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Now we have
lim

Tn→(ℵX+b)

∣∣γ − Tn∣∣ > a ,

because Tn is centered between the next greater and next lesser γn. We have
shown that this pair of γn are separated by more than 2a. This contradicts
Littlewood’s result∣∣γ − Tn∣∣ < A

log log log Tn
, whenever

A

log log log Tn
< a .

The limit Tn → ℵX + b is exactly such a case because

log(ℵX + b) = log(X∞̂) + log(b) = log(X ) log(∞̂) + log(b) .

If we take log(∞̂) = ∞̂ or log(∞̂) = ∞, evaluating the log a few more times
will yield

A

f(log(∞̂))
= 0 .

This shows that the expression is always less than a ∈ R+
0 . Therefore, the

elements of {γn} form an unbroken line when |Im(z)| ∈ R∞. This proves the
theorem. l

Remark 8.2.5 Note that {γn} is not such that each element can be labeled
with n ∈ N because the zeros become uncountably infinite in the neighborhood
of infinity. Rather, {γn} must be a sequence in the sense that it is an ordered
set of mathematical objects, some of which may be assembled as intervals. Also
note that {γn} is a proper sequence in the usual sense when we take n ∈ N∞,
as in Definition 6.2.3. The extended natural numbers are uncountably infinite.

Corollary 8.2.6 The Riemann ζ function has zeros within the critical strip
yet off the critical line.

Proof. Proof follows from Theorem 8.2.3 and Main Theorem 8.2.4. If the
imaginary parts of the zeros form an unbroken line in the neighborhood of
infinity, then the zeros are not isolated. Since ζ is holomorphic on C∪ \ Z1,
it must have zeros everywhere on a disc of radius r0 ∈ R0 about any of the
zeros on the critical line in the neighborhood of infinity. Some of these zeros,
obviously, are within the critical strip yet not on the critical line. l

Remark 8.2.7 The Riemann hypothesis is false.

§8.3 Non-trivial Zeros in the Neighborhood of Minus Infinity

The trivial zeros of the Riemann ζ function are the negative even integers
z = −2,−4,−6, . . . [30]. In this section, we will prove that ζ has non-trivial
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zeros outside of the critical strip. The theorem of Hadamard and de la Vallée-
Poussin [31, 32] is usually taken to rule out the existence of such zeros, so
here we will conjecture that the theorem fails in the neighborhood of infinity.
Indeed, it follows from Corollary 8.2.6 that ζ has zeros on the line Re(z) = 1,
and this is something else which contradicts the theorem of Hadamard and de
la Vallée-Poussin. We will conjecture that their result fails in the neighborhood
of infinity, most likely due to something about quotients of the form R0 ÷RX

being surprising identical zeros.

Theorem 8.3.1 The Riemann ζ function is equal to one for any Re(z) ∈ RX

such that 0 < X ≤ 1.

Proof. Observe that the Dirichlet form of ζ

ζ(z) =
∑
n∈N

1

nz
,

takes z0 =
(
ℵX + b

)
+ iy as

ζ(z0) =
∑
n=1

1

n(ℵX+b)+iy

=
∑
n=1

n−bn−iy

nℵX

=
∑
n=1

n−b(
nX
)̂∞( cos(y lnn)− i sin(y lnn)

)
= 1 +

∑
n=2

n−b

∞

(
cos(y lnn)− i sin(y lnn)

)
= 1 . l

Main Theorem 8.3.2 The Riemann ζ function has non-trivial zeros z0 such
that −Re(z0) ∈ RX for 0 < X ≤ 1. In other words, ζ has non-trivial zeros in
the neighborhood of minus real infinity.

Proof. Definition 8.1.6 gives Riemann’s functional form of ζ [16] as

ζ(z) =
(2π)z

π
sin
(πz
2

)
Γ(1− z)ζ(1− z) .

Theorem 8.3.1 gives ζ(ℵX +b) = 1 when we set y = 0, so we will use Riemann’s
equation to prove the present theorem by computing ζ(z) at z0 = −(ℵX+b)+1.
(This value for z0 follows from 1− z0 = ℵX + b.) We have

ζ
[
−(ℵX + b) + 1

]
= lim

z→−(ℵX+b)+1

(
(2π)z

π
sin
(πz
2

))
lim

z→(ℵX+b)

(
Γ(z)ζ(z)

)
(8.1)
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= lim
z→−(ℵX+b)+1

(
2 sin

(πz
2

))
lim

z→(ℵX+b)

(
(2π)−zΓ(z)ζ(z)

)
.

For the limit involving Γ, we will compute the limit as a product of two limits.
We separate terms as

lim
z→(ℵX+b)

(
(2π)−zΓ(z)ζ(z)

)
= lim

z→(ℵX+b)

(
(2π)−zΓ(z)

)
lim

z→(ℵX+b)
ζ(z) .

From Theorem 8.3.1, we know the limit involving ζ on the right is equal to
one. For the remaining limit, we will insert the identity and again compute it
as the product of two limits. If z approaches (ℵX + b) along the real axis, then
it follows from Axiom 5.2.13 that

1 =
z − (ℵX + b)

z − (ℵX + b)
.

Inserting the identity yields

lim
z→(ℵX+b)

(
(2π)−zΓ(z)

)
= lim

z→(ℵX+b)

(
(2π)−zΓ(z)

z − (ℵX + b)

z − (ℵX + b)

)
.

Let

α = Γ(z)

(
z − (ℵX + b)

)
, and β =

(2π)−z

z − (ℵX + b)
.

To get the limit of α into workable form, we will use the property Γ(z) =
z−1Γ(z + 1) to derive an expression for Γ[z − (ℵX + b) + 1]. If we can write
Γ(z) in terms of Γ[z − (ℵX + b) + 1], then the limit as z approaches (ℵX + b)
will be very easy to compute. Observe that

Γ
[
z − (ℵX + b) + 1

]
= Γ

[
z − (ℵX + b) + 2

](
z − (ℵX + b) + 1

)−1

,

where we have written Γ(z) as Γ[z]. On the RHS, we see that Γ’s argument
is increased by one with respect to the Γ function that appears on the LHS.
The purpose of inserting the identity

z − (ℵX + b)

z − (ℵX + b)
= 1 ,

was precisely to exploit this self-referential identity of the Γ function, which is
most generally expressed as

Γ
(
z
)
= Γ

(
z + 1

)
z−1 .

By taking a limit of recursion, we will let z approach a number in the neigh-
borhood of infinity. Then through the axiomatized addition of such numbers
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(Axiom 5.2.3), we will cast the argument of Γ into the neighborhood of the
origin where Γ’s properties are well known. The limit is

Γ
[
z − (ℵX + b) + 1

]
= Γ(z) lim

n→(ℵX+b)

n∏
k=1

(
z − (ℵX + b) + k

)−1

.

Moving the infinite product to the other side yields

Γ(z) = Γ
[
z − (ℵX + b) + 1

]
lim

n→(ℵX+b)

n∏
k=1

(
z − (ℵX + b) + k

)
.

We have let α = Γ(z)(z − (ℵX + b)) where the coefficient z − (ℵX + b) can be
expressed as the k = 0 term in the infinite product. It follows that

α = Γ
[
z − (ℵX + b) + 1

]
lim

n→(ℵX+b)

n∏
k=0

(
z − (ℵX + b) + k

)
.

To evaluate the limit of αβ, we will take the limits of α and β separately. The
limit of α is

lim
z→(ℵX+b)

α = Γ
[
(ℵX + b)− (ℵX + b) + 1

]
×

× lim
n→(ℵX+b)

n∏
k=0

(
(ℵX + b)− (ℵX + b) + k

)
.

Axiom 5.2.3 gives (ℵX + b)− (ℵX + b) = 0 so

lim
z→(ℵX+b)

A = Γ(1) lim
n→(ℵX+b)

n∏
k=0

k = 0 .

Direct evaluation of the z → (ℵX +b) limit of β = (2π)−z(z− (ℵX +b))−1 gives
0
0
so we need to use L’Hôpital’s rule. Evaluation yields

lim
z→(ℵX+b)

β
∗
= lim

z→(ℵX+b)


d

dz
(2π)−z

d

dz

(
z − (ℵX + b)

)


= lim
z→(ℵX+b)

d

dz
e−z ln(2π)

= − ln(2π) e−(ℵX+b) ln(2π)

= − ln(2π)
e−b ln(2π)(
eX ln(2π)

)̂∞
= − ln(2π)

e−b ln(2π)

∞
.
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By Axiom 5.1.3 giving 1
∞ = 0, we find that the limit of αβ is 0. It follows

from Equation (8.1) that

ζ
[
−(ℵX + b) + 1

]
= lim

z→−(ℵX+b)+1
2 sin

(πz
2

)
· 0 = 0 .

This proves the theorem. l

Example 8.3.3 In Theorem 8.3.1, we found that ζ(z) = 1 for any z ∈ C such
that Re(z) ∈ RX and 0 < X ≤ 1. Riemann’s functional equation

ζ(z) =
(2π)z

π
sin
(πz
2

)
Γ(1− z)ζ(1− z) , (8.2)

allows us to compute the value of ζ at any z in the leftward region of the
complex plane whenever an appropriate ζ(1 − z) is known (Definition 8.1.6).
In Main Theorem 8.3.2, we used Theorem 8.3.1 to set

ζ(1− z0) = ζ(ℵX + b) = 1 ,

so that we were able to compute

ζ(z0) = ζ(−ℵX − b+ 1) = 0 ,

in the neighborhood of minus real infinity. In this example, we will demon-
strate that Riemann’s functional form of ζ is robust by checking for consistency
when the orientation of z and 1− z is reversed so that 1− z is in the left com-
plex half-plane. Namely, we will examine whether the formula disagrees with
ζ(ℵX ) = 1 (Theorem 8.3.1) when we choose

ζ(1− z0) = ζ(−ℵX + 1) = 0 .

With the ζ(1− z) term on the right of the Equation (8.2) already determined,
we will use the formula

Γ(z) =
1

z

∞∏
n=1

[(
1 +

z

n

)−1
(
1 +

1

n

)z ]
,

to compute the Γ function as

Γ(−ℵX + 1) =
1

−ℵX + 1

∞∏
n=1

(1− ℵ(X
n )

+
1

n

)−1(
1 +

1

n

)−ℵX+1
 = 0 .

Evaluation of Riemann’s equation yields

ζ(ℵX ) = π−1 (2π)ℵX︸ ︷︷ ︸
∞

sin

(
πℵX
2

)
Γ(−ℵX + 1)︸ ︷︷ ︸

0

ζ(−ℵX + 1)︸ ︷︷ ︸
0

.
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This equation is undefined due to the product ∞ · 0. We cannot obtain a
contradiction. We have not taken the limit z → ℵX following the form of
Main Theorem 8.3.2 because the relevant quantities are easily computed. A
more nuanced treatment, however, one befitting a theorem, might resolve the
intractable form dependent on ∞ · 0.

This example has demonstrated the robust character of Riemann’s func-
tional equation in the neighborhood of infinity. It has also demonstrated why
we must take x∞̂ = ∞ for x > 1 (Axiom 5.1.9). If this expression was said
to be equal to algebraic infinity, as in x∞̂ = ∞̂, then Axiom 5.1.6 giving
∞̂ · 0 = 0 would produce a contradiction in Riemann’s functional equation
under the reversal of z and 1− z.

Remark 8.3.4 If one requires that Riemann’s functional equation can never
be undefined, meaning that it is not sufficient for the equation to simply de-
termine ζ on left complex half-plane from its behavior on the right, but that
it must determine one equally from the other, then we must introduce a con-
vention such that ∞ · 0 = 1. With this definition, the derivation followed
in Example 8.3.3 would confirm Theorem 8.3.1 giving ζ(ℵX ) = 1. For many
reasons, the product 0 · ∞ is taken as undefined, and yet there are certain
realms of mathematics in which it is given the definition 0 ·∞ = 1. Therefore,
one would explore whether or not a scheme of transfinite numbers as the 1D
longitudinal analytic continuation of R onto RFk , or onto T via the order re-
lation |∞̂| <∞, might allow for 0 · ∞ = 1. For the purposes of the Riemann
hypothesis, however, it is sufficient that the functional equation determines ζ
on the left complex half-plane without invoking a contradiction.

Conjecture 8.3.5 The theorem of Hadamard and de la Vallée-Poussin [31,32]
showing that ζ never vanishes on the line Re(z) = 1 should fail along the
portions of that line lying in the neighborhood of infinity. A corollary of this
theorem is refuted in Reference [8]. The corollary is said to prove that the
Riemann ζ function cannot have non-trivial zeros beyond the critical strip,
such as those demonstrated in Main Theorem 8.3.2, but the corollary fails due
to the arithmetic of numbers in the neighborhood of infinity. The theorem of
Hadamard and de la Vallée-Poussin itself should fail for the same reason.

Remark 8.3.6 Patterson writes the following in reference [18].

“There is a second representation of ζ due to Euler in 1749 which
[...] is the reason for the significance of the zeta-function. This is

ζ(s) =
∏

p∈ primes

(
1− p−s

)−1
,

where the product is taken over all prime numbers p. This is called
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the Euler Product representation of the zeta-function and gives an-
alytic expression to the fundamental theorem of arithmetic.”

The fundamental theorem of arithmetic is given in The Elements [1] as
Book 7, Propositions 30, 31, and 32. A modern statement of the fundamental
theorem of arithmetic is that every natural number greater than one is a prime
number, or it is a product of prime numbers. With the ultimate goal of number
theory being concerned with the distribution of the prime numbers, now we
will demonstrate as a corollary result that the Euler product form of ζ [18,33]
shares at least some zeros with the Riemann ζ function in the left complex
half-plane where the absolute convergence of the Euler product to the Riemann
ζ function is not historically proven.

Corollary 8.3.7 The Euler product from of ζ has non-trivial zeros with neg-
ative real parts in R∞.

Proof. Consider a number z0 ∈ C such that

z0 = −(ℵX + b) + iy , where b, y ∈ R0 .

Observe that the Euler product form of ζ [33] takes z0 as

ζ(z0) =
∏
p

1

1− p(ℵX+b)−iy

=

(
1

1− P (Xℵ1+b)−iy

)∏
p ̸=P

1

1− p(ℵX+b)−iy

=

(
1

1− P b
(
PX
)̂∞

[cos(y lnP )− i sin(y lnP )]

)∏
p̸=P

1

1− p(ℵX+b)−iy
.

Let y lnP = 2nπ for some prime P and (n+ 1) ∈ N. Then

ζ(z0) =
1

∞

∏
p̸=P

1

1− p(ℵX+b)−iy
= 0 . l
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§A Developing Mathematical Systems Historically

Because this treatise so concisely follows a very long trail of preexisting philo-
sophical pursuits in mathematics, we present here as an appendix a concise
summary of some of the important questions which motivated the modernist
approach to complementing Euclid as the foundation of real analysis. In the
article The Real Numbers: From Stevin to Hilbert, O’Connor and Robertson
write the following [34].

“By the time Stevin proposed the use of decimal fractions in 1585,
the concept of a real number had developed little from that of Eu-
clid’s Elements. Details of the earlier contributions are examined
in some detail in our article The real numbers: from Pythagoras to
Stevin.”

This appendix summarizes two articles by O’Connor and Robertson which
outline the history of what are called “the real numbers” today [34,35]. With
this summary, we will essentialize the trail of facts supporting the present
axiom-constructive fractional distance approach to the real number system.
Setting the stage for the theme, O’Connor and Robertson write the following.

“By the beginning of the 20th century then, the concept of a real
number had moved away completely from the concept of a number
which had existed from the most ancient times to the beginning
of the 19th century, namely its connection with measurement and
quantity.”

Pertaining to the introduction of decimal fractions, O’Connor and Robertson
cite Wallis as writing the following about irrational numbers in 1684 [34].

“[S]uch proportion is not to be expressed in the commonly received
ways of notation.”

Wallis makes a wholehearted declaration of the matter contended in frac-
tional distance analysis. Sometimes it is necessary in mathematics to introduce
new notations such as ℵX , ∞̂, and FX . Should it be claimed that one may
not simply declare a thing such as ℵX , Wallis is cited as evidence that one
may, and that, at times, one must. The program by which we have intro-
duced infinity hat for the algebraic representation and analysis of numbers
in the neighborhood of infinity is a seamless continuation of the most proper
traditions in mathematical scholarship. Further emphasizing the importance
of the influx of new notations into contemporary mathematics, O’Connor and
Robertson write the following [35].

“A major advance was made by Stevin in 1585 in La Thiende when
he introduced decimal fractions. One has to understand here that
in fact it was in a sense fortuitous that his invention led to a much
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deeper understanding of numbers for he certainly did not introduce
the notation with that in mind. Only finite decimals were allowed,
so with his notation only certain rationals [were] to be represented
exactly. Other rationals could be represented approximately and
Stevin saw the system as a means to calculate with approximate
rational values. His notation was to be taken up by Clavius and
Napier but others resisted using it since they saw it as a backwards
step to adopt a system which could not even represent 1

3
exactly.”

Still yet further emphasizing the rightful place of new notations in mathemat-
ics, O’Connor and Robertson write the following [34].

“[T ]he question of the existence of numbers can only refer to the
thinking subject or to those objects of thought whose relations are
represented by numbers. Strictly speaking, only that which is logi-
cally impossible (i.e.: which contradicts itself) counts as impossible
for the mathematician.”

New numbers require new notations. As it was from the naturals to the
rationals, irrationals, and complex numbers, etc., so it is to the neighborhood
of infinity. All progress in mathematics must be predicated from time to time
upon the introduction of new notations such as ℵX and ∞̂. Stevin introduced
decimal fractions, and now we have introduced infinity hat. Leibniz gave us the
integral symbol, and now there exists a real number ℵ0.5 (which was already
known at least as long ago Euler who wrote i

2
in the 18th century [7].) Now

we have shown the qualitative likeness of the present course to the previous
course, and we will emphasize that the course in question has always been the
means by which to unify algebra and geometry.

O’Connor and Robertson write the following [34].

“Similarly Cantor realized that if he wants the line to represent
the real numbers [emphasis added ] then he has to introduce an
axiom to recover the connection between the way real numbers are
now being defined and the old concept of measurement.”

O’Connor and Robertson specifically identify Cantor’s motivations as the same
given here: how can we best preserve the geometric notion of an infinite line in
the algebraic arena? If one supposes that “infinity is not allowed” and lets that
be the end of inquiry into the preservation of the notion of infinite geometric
extent, then it is unlikely that the resulting mathematical system will make
sufficient provisions for this fundamental notion. Indeed, the entire theme of
this work has been to modify existing mathematical systems so as to better
accommodate the notion of infinite geometric extent.

Cantor himself writes the following [2].

“[One may ] add an axiom which simply says that every numerical
quantity also has a determined point on the straight line whose co-
ordinate is equal to that quantity.”
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In the present treatise, we have established Cantor’s suggested axiom as the
definition of a real number with Definitions 2.1.4 and 2.1.5. However, we
have extended Cantor to separately consider the “determined” geometric point
from the numbers in the algebraic representation of that point. Indeed, this
is the main distinction between our own approach and Cantor’s approach.
This issue fairly well represents the issue cited in Remark 3.1.20 as the source
of “much pathology” in modern analysis: the presumption of a one-to-one
correspondence between numbers and geometric points is a fair proxy for one’s
choice to distinguish algebraic FDFs of the first and second kinds (Definitions
3.1.9 and 3.1.11). Cantor’s implied concept of fractional distance seems to

favor D†
AB = D′′

AB, whereas we have demonstrated the philosophical superiority

of D†
AB = D′

AB. We can glean from Cantor’s words that he likely associated
only one number with each point, but we have shown that this is only best on
a line segment with length in the neighborhood of the origin. If the determined
point is in an infinitely long line or a line segment with non-vanishing fractional
distance such as X ∈ AB, then we have proven that the determined point does
not have one uniquely associated real number.

We have sought to nourish the continuing synthesis of algebra and geometry
that is the best fruit in the garden of modern mathematics, and we have also
identified a weed in that garden that must be pulled up by its roots. What
is called the Archimedes property of real numbers today disallows a corner
case allowed by the property as it was recorded in The Elements. Where Bugs
Bunny might lament that he should have taken a left turn at Albuquerque, this
writer demands that the mathematical establishment must retrace its steps
and make the right turn at Archimedes. Pointing to the proper course, we
have properly restated the ancient Archimedes property with English verbiage
and Latin mathematical symbols (Definition 6.3.9), and we have also given a
separate statement as the Archimedes property of 1D transfinitely continued
real numbers (Axiom 6.3.12).

In a similar program, Hilbert gave his own modernized restatement of the
Archimedes property in The Foundations of Geometry [4]. O’Connor and
Robertson write the following [34].

“[Hilbert’s statement of the Archimedes property was ] that given pos-
itive numbers a and b then it is possible to add a to itself a finite
number of times so that the sum exceeds b.”

Townsend translates Hilbert’s original German as follows [36].

“Let A1 be any point upon a straight line between the arbitrarily
chosen points A and B. Take the points A2, A3, A4, . . . so that A1

lies between A and A2, A2 between A1 and A3, A3 between A2 and
A4 etc. Moreover, let the segments

AA1, A1A2, A2A3, A3A4, . . .
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be equal to one another. Then, among this series of points, there
always exists a certain An such that B lies between A and An.”

Hilbert’s reliance on the AB notation to give a statement of the Archimedes
property for a Euclidean line segment powerfully highlights the historical simil-
itude of the present fractional distance approach to a modernizing algebraic
capstone on Euclidean geometry. Hilbert’s axioms of geometry applied to
Dedekind cuts give us the highly regarded field axioms, more or less, so it is
remarkable that this writer was likewise called—while working to the same
ends as Hilbert—to give a restatement of what Euclid meant when he said he
had it on good authority that Archimedes had heard from Eudoxus that such
and such was the real Archimedes property of real numbers. In the case of
Hilbert’s statement of the property, we see that Hilbert gave a finite multiplier
which is implicitly, but not explicitly, n ∈ N. The extended natural numbers
n ∈ N∞ will provide the multipliers needed to preserve Hilbert’s statement of
the property in fractional distance analysis. As O’Connor and Robertson have
paraphrased him, Archimedean multipliers are constrained as finite m < ∞,
not n ∈ N.

Regarding the very ancient history, O’Connor and Robertson write the
following [35].

“It seems clear that Pythagoras would have thought of 1, 2, 3, 4 . . .
(the natural numbers in the terminology of today) in a geometrical
way, not as lengths of a line as we do, but rather in the form of
discrete points. Addition, subtraction, and multiplication of integers
are natural concepts with this type of representation but there seems
to have been no notion of division.”

Even as long ago as Pythagoras, the open question of the separation of alge-
braic numbers from geometric magnitudes was already one of import. Most
interestingly, O’Connor and Robertson present an apt and distinct likeness
here. We might give the regularly-spaced, disconnected immeasurable num-
bers FX ∈ F an arithmetic such that they behave like the natural numbers on
another copy of the real line, as in Remark 7.5.21. An immeasurable number
has certain difficulties as the length of a line segment, but no such difficulties
exist when we consider {F(n)} as a set of discrete points.

In the present treatise overall, like Hilbert very recently and those who came
after Pythagoras in antiquity, we have sought to build a hybrid, constructive
framework for mathematical analysis which maximizes the synergy between
algebra and geometry. O’Connor and Robertson write the following.

“[I ]t should be mentioned at this stage that the Egyptians and the
Babylonians had a different notion of a number to that of the ancient
Greeks. The Babylonians looked at reciprocals and also at approxi-
mations to irrational numbers, such as

√
2, long before Greek math-

ematicians considered approximations. The Egyptians also looked
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at approximating irrational numbers.
“Let us now look at [...] Euclid’s Elements. This is an impor-

tant stage since it would remain the state of play for nearly the next
2000 years. In Book 5 Euclid considers magnitudes and the theory
of proportion of magnitudes. It is probable (and claimed in a later
version of The Elements) that this was the work of Eudoxus. Usu-
ally when Euclid wants to illustrate a theorem about magnitudes
he gives a diagram representing the magnitude by a line segment.
However magnitude is an abstract concept to Euclid and applies to
lines, surfaces and solids. Also, more generally, Euclid also knows
that his theory applies to time and angles.

“Given that Euclid is famous for an axiomatic approach to mathe-
matics, one might expect him to begin with a definition of magnitude
and state some unproved axioms. However he leaves the concept of
magnitude undefined and his first two definitions refer to the part of
a magnitude and a multiple of a magnitude.”

O’Connor and Robertson proceed to break down Euclid’s Book 5 as we
have when examining the Archimedes property in Section 6.3. Therefore, we
will list the properties of magnitudes again and present comments on them in
consolidated form. Fitzpatrick’s comments on Euclid’s original text are labeled
(RF), our own comments are labeled (JT), and the comments of O’Connor and
Robertson are labeled (OR).

Book 5, Definition 1 A magnitude is a part of a(nother) magnitude, the
lesser of the greater, when it measures the greater.

(RF) In other words, α is said to be a part of β if β = mα.

(JT) The first definition makes it obvious that the Archimedean
multiplier is not meant to be a natural number. If the magnitude
of ten units of geometric length is to be greater than one of nine,
meaning that nine is to be a part of ten, then there must exist non-
integer multipliers such as ten ninths.

(OR) Again the term “measures” here is undefined but clearly Euclid
means that (in modern symbols) the smaller magnitude x is a part
of the greater magnitude y if nx = y for some natural number n > 1.

When O’Connor and Robertson cite n ∈ N, they do not take into consid-
eration numbers having non-integer quotients, e.g.: 10 : 9, or else they are
only giving a subcase of what is meant in the original context. Even if they
meant to write nx > y, which is not unlikely, using the natural numbers to
demonstrate the property only makes sense if one takes the auxiliary axiom
that there are no real numbers greater than every natural number. In that
case, the Archimedes property is irreducibly represented in the natural number
statement of the Archimedean multiplier, and one notes that the supposition
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that every real number is in the neighborhood of the origin was a normal axiom
at the time of the publication of References [34, 35].

The primary theme of the past centuries’ mathematics has been one of at-
tempting to subordinate geometry to algebra. Many historical approaches have
assumed some algebraic axioms and tried to fit everything inside those axioms
by ignoring geometric infinity and making a rule that one must never mention
it. In taking the fractional distance tack, we have eschewed such efforts. The
main difference between the present approach and the usual (or historical) ap-
proaches to merging geometry and algebra is that we have not tried to squeeze
the notion of geometric infinity into the algebraic sector. Rather, ∞̂ is such
that the algebraic structure is totally subordinated to the geometric structure.

Note the equal weighting of the gravity of the matters in the choice to
suppose one of the two following axioms.

Axiom A.1 There exists a non-empty set of real numbers greater than any
natural number.

Axiom A.2 There does not exist any real number greater than every natural
number.

An assigned superiority in the algebraic sector might make Axiom A.2 the
more attractive axiom because it allows everything to be written with the field
axioms. By assigning the superior quality as the historical geometric concep-
tion of numbers, however, we are drawn toward Axiom A.1 as the preferable
axiom. Additionally, we have proven multiply that Axiom A.2 causes un-
desirable contradictions with the geometric notion of fractional distance and
the concise statement R = (−∞,∞). Even when algebraic considerations are
chosen as superior to geometric ones, the superior axiom must not contradict
its inferior complement. The neighborhood of infinity does exist; fractional
distance requires it. The question is nothing more than whether or not we
should adopt an algebraic convention which reflects the geometric reality.

Book 5, Definition 2 And the greater is a multiple of the lesser whenever it
is measured by the lesser.

(JT) This definition makes it explicitly clear that the manner in
which one magnitude may measure another is such that, for example,
nine can measure ten by 10:9.

(OR) Then comes the definition of ratio.

Book 5, Definition 3 A ratio is a certain type of condition with respect to
size of two magnitudes of the same kind.

(RF) In modern notation, the ratio of two magnitudes, α and β, is
denoted α : β.
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(JT) This definition tells us that R is equipped with the ≤ relation.
The specification of two magnitudes of the same kind tells us, essen-
tially, that Euclid does not want his reader to compare lengths with
areas, volumes, angles, time, hypervolumes, etc. Likewise, once we
have conjured RF from an interpretation of F(n) ∈ R as n ∈ NF, we
must be careful to distinguish the underlying magnitudes as different
kinds.

(OR) This is an exceptionally vague definition of ratio which basi-
cally fails to define it at all. [Euclid ] then defines when magnitudes
have a ratio, which according to the definition is when there is a
multiple (by a natural number) of the first which exceeds the second
and a multiple of the second which exceeds the first.

Book 5, Definition 4 (Those) magnitudes are said to have a ratio with
respect to one another which, being multiplied, are capable of exceeding one
another.

(RF) In other words, α has a ratio with respect to β if mα > β and
nβ > α, for some m and n.

(JT) The Archimedes property of real numbers requires that for
every real number, there is a greater real number. In other words
and in a general way, there is no largest real number because ℵ1 ̸∈ R.
Usually it is said that a smallest real number is also precluded by
the inverse of the unbounded large number, but, surprisingly, the
usual topology requirement of the fundamental axiom of algebraic
construction (Axiom 7.6.8 and/or Axiom 2.1.7) seems to indicate
that a smallest real number must exist (Proposition 7.2.12). This is
the Xmin value of ℵ(2) = ℵXmin

. As the issue of a smallest positive real
number might vex one’s intuition, it may be considered an exciting
topic for new inquiry.
Regarding the intuitive notion of a smallest real number, consider

the following. If every interior point in a connected interval (−1, 1) ⊂
R is left- and right-adjacent to another point, meaning the interval
is not disconnected, then writing

(−1, 1) = (−1, 0] ∪ (0, 1) ,

suggests, in an intuitive way at least, that zero must be left-adjacent
to the smallest positive real number. However, the protocols of math-
ematics override intuition, and it is said that zero is not left-adjacent
to any element of (0, 1) because every element of (0, 1) has a δ-
neighborhood lying totally within (0, 1). So, if some way is found to
claw a least positive real number from the analysis of fractional dis-
tance functions, then the concept of no greatest real number would
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also have to be done away with due to the invariance of AB under
permutations of the labels of its endpoints. Infinity minus the least
positive real number would be the greatest real number.

(OR) The Archimedean axiom stated that given positive numbers a
and b then it is possible to add a to itself a finite number of times
so that the sum exceed b.

Book 5, Definition 5 Magnitudes are said to be in the same ratio, the first
to the second, and the third to the fourth, when equal multiples of the first and
third both exceed, are both equal to, or are both less than, equal multiples
of the second and fourth, respectively, being taken in corresponding order,
according to any kind of multiplication whatever.

(RF) In other words, α : β :: γ : δ if and only ifmα > nβ whenever
mγ > nδ, mα = nβ whenever mγ = nδ, and mα < nβ whenever
mγ < nδ, for all m and n. This definition is the kernel of Eudoxus’
theory of proportion, and is valid even if α, β, etc., are irrational.

(JT) This definition gives the trichotomy of the ≤ relation. Note
well, the ratio of ratios is like the ratio of two fractional distances.

(OR) Then comes the vital definition of when two magnitudes are
in the same ratio as a second pair of magnitudes. As it is quite hard
to understand in Euclid’s language, let us translate it into modern
notation. It says that a : b = c : d if given any natural numbers n
and m we have

na > mb if and only if nc > md

na = mb if and only if nc = md

na < mb if and only if nc < md .

Euclid then goes on to prove theorems which look to a modern math-
ematician as if magnitudes are vectors, integers are scalars, and he
is proving the vector space axioms.

The main hurdle in the vector space conception of R is that the product
of two vectors is a scalar, while the product of two real numbers is another
real number. Even in the transfinite continuation beyond algebraic infinity,
and even when the product of two things in the line always remains within the
geometrically infinite line as if it were a vector space, the problem remains that
the product of any two x ∈ T will be another x ∈ T. There is no distinguishing
a vector from a scalar. Despite this difficulty, one easily imagines ∞̂ as an
anchor point for 1D vectors x ∈ R different than the anchor point at the
origin, which we might label 0̂. Vectors anchored in the neighborhood of the

origin look like 0̂ + b⃗, and those anchored in the neighborhood of positive
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infinity look like ∞̂ − b⃗. The 1D vector space picture is very becoming the
notion of a 1D geometric space, but the lack of distinction among vectors and
scalars forbids any approach to the commonly stated, modern vector space
axioms.
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§B Toward Mathematical Physics

To the extent that the present fractional distance work in pure mathematics
grew from, and was motivated by, a preexisting research program in theoretical
physics, some things should be pointed out. Beyond this appendix, further
details and other physical applications for fractional distance analysis are given
throughout Reference [37].

Interaction Ranges

The first salient point regards the finite or infinite interaction ranges of the
fundamental forces. Gravity and electromagnetism are said to have infinite
ranges because the relevant classical forces between massive or charged par-
ticles go as 1

r2
. When all finite numbers are assumed to be less than some

natural number, it is a direct consequence that such inverse squared force laws
can never go to zero for any r ∈ R. The arithmetic axioms, however, allow
these forces to go to zero for finite separations in the neighborhood of infin-
ity. Indeed, the full scope of the initial inquiry into infinity which resulted
in the fruits presented here was the following question. How might we have
two physical objects (where physicality requires that they are separated in
spacetime by finite spacetime interval) whose mutual gravitational interaction
is precisely zero? Now r ∈ R \ R0 provides the requisite finite scale.

The Radius of the Universe

As an example for how the neighborhood of infinity might be worked into
the progenitive cosmological scenario which spurred this research—the Modi-
fied Cosmological Model (MCM) [37–39]—we could set the scale of F0 as the
∼13.7Gcy radius of the observable universe. Nothing beyond the cosmic mi-
crowave background (CMB) at that distance can be observed, yet it might be
helpful for the development of new theories if we could set the interactions be-
tween the local frame and the occulted region beyond the CMB to an identical
zero rather than the almost zero value which results from forces with infinite
ranges. ”Almost zero” may be negligible in an application, but will always
have a big impact on quantum mechanics, and usually across cosmological
timescales.

Wavepackets

Another good use for the neighborhood of infinity is the mathematical descrip-
tion of wavepackets. In the efforts of physicists to describe the wave-particle
duality of quantum particles, many quantum states are formally rendered as
enveloped wave-packets whose tails extend to infinity. Often times, the non-
vanishing tails of these wavepackets can be ignored. For instance, if the prob-
ability that an electron will be observed in a lab during one moment and then
observed 40cy from the Earth in the next moment is on the order of one in
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10−50, then we may treat this as zero probability and proceed accordingly
without shooting our theories in the foot. However, in the regime of ultra-fast
quantum optics, the tails of mathematical wave-packets describing picosecond
laser pulses generate notorious discrepancies with what is observed in the lab.
Having developed the neighborhood of infinity, one might develop a language
for wave-packets whose tails go to zero on the scale of F0 while the universe
itself, or the lab frame, could be said to have a characteristic scale on the order
of ℵ1. Although we have spoken of the big parts of numbers as unfathomably
huge, we might equally take the small parts of numbers to be unusually small.
Any number of such schemes could be developed.

Levels of Aleph

Throughout the cosmology research that led to the present fractional distance
analysis, we have developed a requirement for some intermediate scale between
the scale of natural numbers and the scale of infinity. Specifically, we have used
the concept of “odd and even levels of aleph” to describe the behaviors required
for the underlying cosmological model [37–41]. In the language of Robinson’s
hyperreal analysis, we have “limiteds” and “unlimiteds,” but the model which
spurred the present analysis generated a requirement for some intermediate
scale between them: the odd level of aleph where the hyperreal limited and
unlimited scales would represent two successive even levels. In that language,
we say that infinity is two levels of aleph higher than the level of aleph upon
which resides the origin of the abstract inertial lab frame. Robinson’s canonical
method for mixing limiteds and unlimiteds does not provide any tools for
accessing the odd level of aleph which is expected to be important for the unit
cell of the MCM’s lattice cosmology. In the present work, we have generated
the “super-finite” F0 scale which can serve as the basis for an odd level of
aleph between Robinson’s limiteds and unlimiteds. (See Reference [42] for a
treatment of the Riemann hypothesis in terms of odd and even levels of aleph.)

(Fractional) Quantization

In the course of developing the MCM, we have shown that the structure of the
standard model of particle physics arises as the elementary structure of the
unit cell of the model’s lattice cosmology [37, 40]. In the present mathemat-
ical analysis, we have found yet more of the fundamental quantum numbers
in the underlying analytical structure. Quantum mechanics has the curiously
measurable half-integer spin quantization of fermions, and now we have demon-
strated a half-integer interval of spacing inherent between the origins of the
successively transfinite, scaled copies of RFk (Theorem 7.5.29). Furthermore,
the number F(1) lies one third of the way down the interval [0,F(2)], so we
also have structure alike to the asymmetric fractional electric charges of the
quarks: −1

3
e for three of them and +2

3
e for the other three. Since we have

previously obtained the spectrum of the fundamental particles of the stan-
dard model as the elements of the cosmological unit cell whose worldsheets
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are separated by immeasurable distance [37, 40], one would attempt to corre-
late the more nuanced aspects of elementary particles’ quantizations with the
fundamentals of fractional distance analysis.

Quantum Mechanics

It is notable that the [0, 1] interval containing big parts of positive real numbers
is identically the [0, 1] domain of positive-definite probabilities in quantum me-
chanics. This likeness suggests a ready home for fractional distance analysis
in quantum theory. Furthermore, the instantaneous collapse of the wavefunc-
tion has no good mathematical description in the canonical theory where ∂ψ
obeys the Schrödinger equation, but the infinite derivate of f(x) = ℵx seems
well suited to instantaneous processes. Quantum theory, in its current incar-
nation, is such that time and space domains are often forced into artificial
and unphysical restrictions to avoid divergent integrals, and we might avoid
such divergences through the arithmetic axioms for x ∈ R∪, or through the
arithmetic of R0 under new rules for treating F(n) ∈ R as n ∈ RF.

Quantum Theory for the Riemann ζ Function

Beyond applications for fractional distance analysis in physics, there may exist
applications for physics in mathematics as well. For instance, there is a widely
held (but nebulous) belief in some fundamental (but unknown) connection
between the Riemann ζ function and quantum field theory, so one might invoke
physical principles in an area of pure mathematics where they usually have no
place: the analysis of ζ.

In the absence of an observation to collapse a system’s wavefunction, quan-
tum theory dictates that the system must be represented by a superposition
of its eigenstates. As we have extensively discussed the lack of any preferred
scale for R in Remark 7.5.21, one might attempt to study the real line as the
simultaneous superposition of all possible scales for R. Theorem 7.5.29 proves
that the x and xF charts cannot share an origin—xF = 1

2
is pinned to x = 0—

but we might suppose that all possible scaled charts of R can share an origin
with either of x or xF. In essence, these would be copies of R on odd and even
levels of aleph, and we might then restrict ourselves to a countably infinite
set of “linearly independent” xFk charts among uncountably many possible
copies of R. In fact, we might simplify to just two linearly independent charts:
x and xF associated respectively with the linearly dependent even levels of
aleph and the linearly dependent odd levels. In doing so, the idea suggested
here (which is relegated to an appendix rather than posed as conjecture in
Section 8 because it is highly speculative) is that we would try to associate
the structure of the critical strip in the domain of ζ(z) with the origins of
the charts on the odd and even levels of aleph. Although the superposition of
two linearly independent quantum states does not constitute a third linearly
independent state, one might seek to obtain a coordinate system (chart) with
its origin on the critical line as a superposition of the x and xF charts whose
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origins are located at at 0 and 1 in an appropriate coordinate system. One
might alternatively derive a third origin by an appeal to uncertainty between
(x, xF) and (xF−1 , x) or in the direction of increase from xF = 1 after it is
pinned to x = F0. Ultimately, the intention would be to make a connection
to the time arrow cosmology eigenstates in the MCM. The critical strip would
be asymmetric in C for the same reason that a universe has to have a time
arrow pointing in one direction or the other. Although MCM time is a quan-
tum superposition of time eigenstates because there is no absolute standard
against which an observer might determine if time goes “forward” or “back-
ward,” the observer does always find a symmetry-breaking arrow of time when
measurements are made. Similarly, we cannot know if the critical strip is in
the “left” or “right” complex half-plane because the real line might increase
in either direction. Barring Galilean coordinate transformations, ζ’s critical
line is always offset from the imaginary axis in C, toward one direction or the
other.

Spinor Transformations

Quantum spinor states do not transform as vectors. This, more than almost
anything, underpins the inability of physicists to describe quantum mechanical
processes with classical analogues. To develop fractional distance analysis, we
have made extensive appeal to the invariance of line segments under permuta-
tions of the labels of their endpoints [9], but we have not studied what happens
to functions when their domain in the neighborhood of the origin is replaced
with a domain in the neighborhood of infinity. As it is usual in physics to
artificially restrict a wavefunction’s domain to some finite region, we should
consider the behavior of

ψ : D → C , with D = (−b, b) ,

when the permutation of 0̂ and ∞̂ results in

ψ : D → C , with D = [∞̂ − b, ∞̂] ∪ [−∞̂,−∞̂+ b] .

The change in the structure of D is at least superficially suggestive of the
out-of-phase variation of the components of a spinor relative to the in-phase
variation of the components of a vector. As “supersymmetry transformations”
swap vectorial bosons for spinorial fermions, one would attempt to liken su-
persymmetry transformations with permutations of the labels of the endpoints
of Euclidean line segments.
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