On the study of two Ramanujan's equations of the "Ramanujan's first letter to Hardy". Mathematical connections with various sectors of String Theory (Supersymmetry Breaking).

Michele Nardelli ${ }^{1}$, Antonio Nardelli ${ }^{2}$

Abstract

In this research thesis, we analyze two Ramanujan's equations of the "Ramanujan's first letter to Hardy". We describe new possible mathematical connections with various sectors of String Theory (Supersymmetry Breaking).

[^0]From:

Collected Papers of Srinivasa Ramanujan - 2000 of Srinivasa
Ramanujan (Author), G. H. Hardy, P. V. Seshu Aiyar, B. M. Wilson, Bruce Berndt

We analyze the following equation:

$$
\int_{0}^{\infty} \frac{1+\frac{x^{2}}{(b+1)^{2}}}{1+\frac{x^{2}}{a^{2}}} \times \frac{1+\frac{x^{2}}{(b+2)^{2}}}{1+\frac{x^{2}}{(a+1)^{2}}} \times \cdots d x=\frac{\sqrt{\pi}}{2} \times \frac{\Gamma\left(a+\frac{1}{2}\right) \Gamma(b+1) \Gamma(b-a+1)}{\Gamma(a) \Gamma\left(b+\frac{1}{2}\right) \Gamma\left(b-a+\frac{1}{2}\right)}
$$

Integrate $\left(\left(\left(\left(\left(\left(1+x^{\wedge} 2 /\left((b+1)^{\wedge} 2\right)\right)\right)\right) /\left(\left(\left(1+\left(x^{\wedge} 2\right) /\left(a^{\wedge} 2\right)\right)\right)\right)\right)\right)\right)^{*}\left(\left(\left(\left(\left(\left(1+x^{\wedge} 2 /\left((b+2)^{\wedge} 2\right)\right)\right)\right) /\right.\right.\right.$ $\left(\left(\left(\left(\left(1+x^{\wedge} 2 /\left((a+1)^{\wedge} 2\right)\right)\right)\right)\right.\right.$
$\operatorname{sqrt}(\mathrm{Pi}) / 2 * \operatorname{gamma}(\mathrm{a}+1 / 2) \operatorname{gamma}(\mathrm{b}+1) \operatorname{gamma}(\mathrm{b}-\mathrm{a}+1) / \operatorname{gamma}(\mathrm{a}) \operatorname{gamma}(\mathrm{b}+1 / 2)$ $\operatorname{gamma}(b-a+1 / 2)$

We have:
Integrate $\left.\left(\left(\left(\left(\left(\left(1+x^{\wedge} 2 /\left((b+1)^{\wedge} 2\right)\right)\right)\right) /\left(\left(\left(1+\left(x^{\wedge} 2\right) /\left(a^{\wedge} 2\right)\right)\right)\right)\right)\right)\right)\right)^{*}\left(\left(\left(\left(\left(\left(1+x^{\wedge} 2 /\left((b+2)^{\wedge} 2\right)\right)\right)\right)\right)\right)\right) /$ $\left(\left(\left(\left(\left(\left(1+x^{\wedge} 2 /\left((a+1)^{\wedge} 2\right)\right)\right)\right)\right)\right)\right) x$

Indefinite integral

$$
\begin{aligned}
& \int \frac{\left(1+\frac{x^{2}}{(b+1)^{2}}\right)\left(1+\frac{x^{2}}{(b+2)^{2}}\right) x}{\left(1+\frac{x^{2}}{a^{2}}\right)\left(1+\frac{x^{2}}{(a+1)^{2}}\right)} d x= \\
& \left(a ^ { 2 } (a + 1) ^ { 2 } \left(\left(a^{4}-a^{2}\left(2 b^{2}+6 b+5\right)+\left(b^{2}+3 b+2\right)^{2}\right) \log \left(a^{2}+x^{2}\right)-\right.\right. \\
& \left(a^{4}+4 a^{3}+a^{2}\left(-2 b^{2}-6 b+1\right)-2 a\left(2 b^{2}+6 b+3\right)+\right. \\
& \left.\left.\left.\quad b\left(b^{3}+6 b^{2}+11 b+6\right)\right) \log \left(a^{2}+2 a+x^{2}+1\right)+(2 a+1) x^{2}\right)\right) / \\
& \quad\left(2(2 a+1)\left(b^{2}+3 b+2\right)^{2}\right)+\text { constant }
\end{aligned}
$$

Alternate forms of the integral

$$
\begin{aligned}
& \left(a ^ { 2 } (a + 1) ^ { 2 } \left((a - b - 1) (a + b + 2) \left((a-b-2)(a+b+1) \log \left(a^{2}+x^{2}\right)-(a-b)(a+\right.\right.\right. \\
& \left.\left.\left.b+3) \log \left((a+1)^{2}+x^{2}\right)\right)+(2 a+1) x^{2}\right)\right) /\left(2(2 a+1)(b+1)^{2}(b+2)^{2}\right)+\text { constant }
\end{aligned}
$$

$$
\begin{aligned}
& \frac{a^{2}(a+1)^{2} x^{2}}{2(b+1)^{2}(b+2)^{2}}+ \\
& \frac{a^{2}(a+1)^{2}(a-b-2)(a-b-1)(a+b+1)(a+b+2) \log \left(a^{2}+x^{2}\right)}{2(2 a+1)(b+1)^{2}(b+2)^{2}}- \\
& \frac{a^{2}(a+1)^{2}(a-b-1)(a-b)(a+b+2)(a+b+3) \log \left(a^{2}+2 a+x^{2}+1\right)}{2(2 a+1)(b+1)^{2}(b+2)^{2}}+\text { constant }
\end{aligned}
$$

$$
\begin{gathered}
\left(a ^ { 2 } (a + 1) ^ { 2 } \left(2 a\left(\left(2 b^{2}+6 b+3\right) \log \left(a^{2}+2 a+x^{2}+1\right)+x^{2}\right)+\left(a^{4}+a^{2}\left(-2 b^{2}-6 b-\right.\right.\right.\right. \\
\left.5)+b^{4}+6 b^{3}+13 b^{2}+12 b+4\right) \log \left(a^{2}+x^{2}\right)+\left(-a^{4}-4 a^{3}+a^{2}\left(2 b^{2}+6 b-1\right)-\right. \\
\left.\left.\left.b^{4}-6 b^{3}-11 b^{2}-6 b\right) \log \left(a^{2}+2 a+x^{2}+1\right)+x^{2}\right)\right) /\left(2(2 a+1)\left(b^{2}+3 b+2\right)^{2}\right)+
\end{gathered}
$$

[^1]
Expanded form of the integral

$$
\begin{aligned}
& \frac{\log \left(a^{2}+x^{2}\right) a^{8}}{2(2 a+1)\left(b^{2}+3 b+2\right)^{2}}-\frac{\log \left(a^{2}+2 a+x^{2}+1\right) a^{8}}{2(2 a+1)\left(b^{2}+3 b+2\right)^{2}}+\frac{\log \left(a^{2}+x^{2}\right) a^{7}}{(2 a+1)\left(b^{2}+3 b+2\right)^{2}}- \\
& \frac{3 \log \left(a^{2}+2 a+x^{2}+1\right) a^{7}}{(2 a+1)\left(b^{2}+3 b+2\right)^{2}}-\frac{b^{2} \log \left(a^{2}+x^{2}\right) a^{6}}{(2 a+1)\left(b^{2}+3 b+2\right)^{2}}-\frac{3 b \log \left(a^{2}+x^{2}\right) a^{6}}{(2 a+1)\left(b^{2}+3 b+2\right)^{2}}- \\
& \frac{2 \log \left(a^{2}+x^{2}\right) a^{6}}{(2 a+1)\left(b^{2}+3 b+2\right)^{2}}+\frac{b^{2} \log \left(a^{2}+2 a+x^{2}+1\right) a^{6}}{(2 a+1)\left(b^{2}+3 b+2\right)^{2}}+ \\
& \frac{3 b \log \left(a^{2}+2 a+x^{2}+1\right) a^{6}}{(2 a+1)\left(b^{2}+3 b+2\right)^{2}}-\frac{5 \log \left(a^{2}+2 a+x^{2}+1\right) a^{6}}{(2 a+1)\left(b^{2}+3 b+2\right)^{2}}+ \\
& \frac{x^{2} a^{5}}{(2 a+1)\left(b^{2}+3 b+2\right)^{2}}-\frac{2 b^{2} \log \left(a^{2}+x^{2}\right) a^{5}}{(2 a+1)\left(b^{2}+3 b+2\right)^{2}}-\frac{6 b \log \left(a^{2}+x^{2}\right) a^{5}}{(2 a+1)\left(b^{2}+3 b+2\right)^{2}}- \\
& \frac{5 \log \left(a^{2}+x^{2}\right) a^{5}}{(2 a+1)\left(b^{2}+3 b+2\right)^{2}}+\frac{4 b^{2} \log \left(a^{2}+2 a+x^{2}+1\right) a^{5}}{(2 a+1)\left(b^{2}+3 b+2\right)^{2}}+ \\
& \frac{12 b \log \left(a^{2}+2 a+x^{2}+1\right) a^{5}}{(2 a+1)\left(b^{2}+3 b+2\right)^{2}}+\frac{5 x^{2} a^{4}}{2(2 a+1)\left(b^{2}+3 b+2\right)^{2}}+ \\
& \frac{b^{4} \log \left(a^{2}+x^{2}\right) a^{4}}{2(2 a+1)\left(b^{2}+3 b+2\right)^{2}}+\frac{3 b^{3} \log \left(a^{2}+x^{2}\right) a^{4}}{(2 a+1)\left(b^{2}+3 b+2\right)^{2}}+\frac{11 b^{2} \log \left(a^{2}+x^{2}\right) a^{4}}{2(2 a+1)\left(b^{2}+3 b+2\right)^{2}}+ \\
& \frac{3 b \log \left(a^{2}+x^{2}\right) a^{4}}{(2 a+1)\left(b^{2}+3 b+2\right)^{2}}-\frac{\log \left(a^{2}+x^{2}\right) a^{4}}{2(2 a+1)\left(b^{2}+3 b+2\right)^{2}}-\frac{b^{4} \log \left(a^{2}+2 a+x^{2}+1\right) a^{4}}{2(2 a+1)\left(b^{2}+3 b+2\right)^{2}}- \\
& \frac{3 b^{3} \log \left(a^{2}+2 a+x^{2}+1\right) a^{4}}{(2 a+1)\left(b^{2}+3 b+2\right)^{2}}-\frac{b^{2} \log \left(a^{2}+2 a+x^{2}+1\right) a^{4}}{2(2 a+1)\left(b^{2}+3 b+2\right)^{2}}+ \\
& \frac{12 b \log \left(a^{2}+2 a+x^{2}+1\right) a^{4}}{(2 a+1)\left(b^{2}+3 b+2\right)^{2}}+\frac{11 \log \left(a^{2}+2 a+x^{2}+1\right) a^{4}}{2(2 a+1)\left(b^{2}+3 b+2\right)^{2}}+ \\
& \frac{2 x^{2} a^{3}}{(2 a+1)\left(b^{2}+3 b+2\right)^{2}}+\frac{b^{4} \log \left(a^{2}+x^{2}\right) a^{3}}{(2 a+1)\left(b^{2}+3 b+2\right)^{2}}+\frac{6 b^{3} \log \left(a^{2}+x^{2}\right) a^{3}}{(2 a+1)\left(b^{2}+3 b+2\right)^{2}}+ \\
& \frac{13 b^{2} \log \left(a^{2}+x^{2}\right) a^{3}}{(2 a+1)\left(b^{2}+3 b+2\right)^{2}}+\frac{12 b \log \left(a^{2}+x^{2}\right) a^{3}}{(2 a+1)\left(b^{2}+3 b+2\right)^{2}}+\frac{4 \log \left(a^{2}+x^{2}\right) a^{3}}{(2 a+1)\left(b^{2}+3 b+2\right)^{2}}- \\
& \frac{b^{4} \log \left(a^{2}+2 a+x^{2}+1\right) a^{3}}{(2 a+1)\left(b^{2}+3 b+2\right)^{2}}-\frac{6 b^{3} \log \left(a^{2}+2 a+x^{2}+1\right) a^{3}}{(2 a+1)\left(b^{2}+3 b+2\right)^{2}}- \\
& \frac{9 b^{2} \log \left(a^{2}+2 a+x^{2}+1\right) a^{3}}{(2 a+1)\left(b^{2}+3 b+2\right)^{2}}+\frac{3 \log \left(a^{2}+2 a+x^{2}+1\right) a^{3}}{(2 a+1)\left(b^{2}+3 b+2\right)^{2}}+ \\
& \frac{x^{2} a^{2}}{2(2 a+1)\left(b^{2}+3 b+2\right)^{2}}+\frac{b^{4} \log \left(a^{2}+x^{2}\right) a^{2}}{2(2 a+1)\left(b^{2}+3 b+2\right)^{2}}+\frac{3 b^{3} \log \left(a^{2}+x^{2}\right) a^{2}}{(2 a+1)\left(b^{2}+3 b+2\right)^{2}}+ \\
& \frac{13 b^{2} \log \left(a^{2}+x^{2}\right) a^{2}}{2(2 a+1)\left(b^{2}+3 b+2\right)^{2}}+\frac{6 b \log \left(a^{2}+x^{2}\right) a^{2}}{(2 a+1)\left(b^{2}+3 b+2\right)^{2}}+\frac{2 \log \left(a^{2}+x^{2}\right) a^{2}}{(2 a+1)\left(b^{2}+3 b+2\right)^{2}}- \\
& \frac{b^{4} \log \left(a^{2}+2 a+x^{2}+1\right) a^{2}}{2(2 a+1)\left(b^{2}+3 b+2\right)^{2}}-\frac{3 b^{3} \log \left(a^{2}+2 a+x^{2}+1\right) a^{2}}{(2 a+1)\left(b^{2}+3 b+2\right)^{2}}- \\
& \frac{11 b^{2} \log \left(a^{2}+2 a+x^{2}+1\right) a^{2}}{2(2 a+1)\left(b^{2}+3 b+2\right)^{2}}-\frac{3 b \log \left(a^{2}+2 a+x^{2}+1\right) a^{2}}{(2 a+1)\left(b^{2}+3 b+2\right)^{2}}+\text { constant }
\end{aligned}
$$

Series expansion of the integral at $\mathbf{x}=\mathbf{0}$

$$
\begin{aligned}
& \left(a^{2}(a+1)^{2}\left(a^{2}+a-b^{2}-3 b-2\right)\right. \\
& \left.\quad\left(\left(a^{2}-a-b^{2}-3 b-2\right) \log \left(a^{2}\right)+\left(-a^{2}-3 a+b(b+3)\right) \log \left((a+1)^{2}\right)\right)\right) / \\
& \quad\left(2(2 a+1)\left(b^{2}+3 b+2\right)^{2}\right)+\frac{x^{2}}{2}+O\left(x^{4}\right)
\end{aligned}
$$

(Taylor series)

Series expansion of the integral at $x=\infty$

$$
\begin{aligned}
& \frac{a^{2}(a+1)^{2} x^{2}}{2\left(b^{2}+3 b+2\right)^{2}}-\frac{2\left(a^{2}(a+1)^{2}\left(a^{2}+a-b^{2}-3 b-2\right) \log (x)\right)}{\left(b^{2}+3 b+2\right)^{2}}- \\
& \frac{1}{2\left(b^{2}+3 b+2\right)^{2} x^{2}} a^{2}(a+1)^{2}\left(3 a^{4}+6 a^{3}-a^{2}\left(4 b^{2}+12 b+3\right)-\right. \\
& \left.\quad 2 a\left(2 b^{2}+6 b+3\right)+b\left(b^{3}+6 b^{2}+11 b+6\right)\right)+O\left(\left(\frac{1}{x}\right)^{4}\right)
\end{aligned}
$$

(Puiseux series)
$\operatorname{sqrt}(\mathrm{Pi}) / 2 *(((\operatorname{gamma}(\mathrm{a}+1 / 2) \operatorname{gamma}(\mathrm{b}+1) \operatorname{gamma}(\mathrm{b}-\mathrm{a}+1)))) /(((\operatorname{gamma}(\mathrm{a})$ $\operatorname{gamma}(\mathrm{b}+1 / 2) \operatorname{gamma}(\mathrm{b}-\mathrm{a}+1 / 2))))$

Input

$\frac{\sqrt{\pi}}{2} \times \frac{\Gamma\left(a+\frac{1}{2}\right) \Gamma(b+1) \Gamma(b-a+1)}{\Gamma(a) \Gamma\left(b+\frac{1}{2}\right) \Gamma\left(b-a+\frac{1}{2}\right)}$
$\Gamma(x)$ is the gamma function

Exact result

$\sqrt{\pi} \Gamma\left(a+\frac{1}{2}\right) \Gamma(b+1) \Gamma(-a+b+1)$ $2 \Gamma(a) \Gamma\left(b+\frac{1}{2}\right) \Gamma\left(-a+b+\frac{1}{2}\right)$

3D plot (figure that can be related to a D-brane)

Contour plot

Roots

(no roots exist)

Series expansion at $\mathbf{a}=\infty$

$$
\begin{aligned}
& \cos (\pi(a-b)) \csc (\pi(-a+b+1)) \\
& \left(\frac{\sqrt{\pi} \Gamma(b+1) a}{2 \Gamma\left(b+\frac{1}{2}\right)}-\frac{(2 b+1) \sqrt{\pi} \Gamma(b+1)}{8 \Gamma\left(b+\frac{1}{2}\right)}-\frac{\left(4 b^{2}-1\right) \sqrt{\pi} \Gamma(b+1)}{64 \Gamma\left(b+\frac{1}{2}\right) a}+O\left(\left(\frac{1}{a}\right)^{2}\right)\right)
\end{aligned}
$$

Derivative

$$
\begin{aligned}
& \frac{\partial}{\partial a}\left(\frac{\sqrt{\pi}\left(\Gamma\left(a+\frac{1}{2}\right) \Gamma(b+1) \Gamma(b-a+1)\right)}{2\left(\Gamma(a) \Gamma\left(b+\frac{1}{2}\right) \Gamma\left(b-a+\frac{1}{2}\right)\right)}\right)= \\
& \left(\sqrt { \pi } \Gamma (a + \frac { 1 } { 2 }) \Gamma (b + 1) \Gamma (- a + b + 1) \left(\psi^{(0)}\left(-a+b+\frac{1}{2}\right)-\psi^{(0)}(-a+b+1)-\right.\right. \\
& \left.\left.\quad \psi^{(0)}(a)+\psi^{(0)}\left(a+\frac{1}{2}\right)\right)\right) /\left(2 \Gamma(a) \Gamma\left(b+\frac{1}{2}\right) \Gamma\left(-a+b+\frac{1}{2}\right)\right)
\end{aligned}
$$

From:
$\frac{\sqrt{\pi} \Gamma\left(a+\frac{1}{2}\right) \Gamma(b+1) \Gamma(-a+b+1)}{2 \Gamma(a) \Gamma\left(b+\frac{1}{2}\right) \Gamma\left(-a+b+\frac{1}{2}\right)}$

For $\mathrm{a}=2, \mathrm{~b}=3$, we obtain :
$(\operatorname{sqrt}(\pi) \Gamma(2+1 / 2) \Gamma(3+1) \Gamma(-2+3+1)) /(2 \Gamma(2) \Gamma(3+1 / 2) \Gamma(-2+3+1 / 2))$

Input

$\sqrt{\pi} \Gamma\left(2+\frac{1}{2}\right) \Gamma(3+1) \Gamma(-2+3+1)$
$2 \Gamma(2) \Gamma\left(3+\frac{1}{2}\right) \Gamma\left(-2+3+\frac{1}{2}\right)$

Exact result

$\frac{12}{5}$

Decimal form

2.4
2.4

The study of this function provides the following representations:

Alternative representations

$$
\frac{\sqrt{\pi}\left(\Gamma\left(2+\frac{1}{2}\right) \Gamma(3+1) \Gamma(-2+3+1)\right)}{2 \Gamma(2) \Gamma\left(3+\frac{1}{2}\right) \Gamma\left(-2+3+\frac{1}{2}\right)}=\frac{1!\times \frac{3}{2}!\times 3!\sqrt{\pi}}{2 \times \frac{1}{2}!\times 1!\times \frac{5}{2}!}
$$

$\frac{\sqrt{\pi}\left(\Gamma\left(2+\frac{1}{2}\right) \Gamma(3+1) \Gamma(-2+3+1)\right)}{2 \Gamma(2) \Gamma\left(3+\frac{1}{2}\right) \Gamma\left(-2+3+\frac{1}{2}\right)}=\frac{e^{0} e^{-\log (2)+\log (12)} e^{-\log \mathrm{G}(5 / 2)+\log \mathrm{G}(7 / 2)} \sqrt{\pi}}{2 e^{0} e^{-\log \mathrm{G}(3 / 2)+\log \mathrm{G}(5 / 2)} e^{-\log \mathrm{G}(7 / 2)+\log \mathrm{G}(9 / 2)}}$
$\frac{\sqrt{\pi}\left(\Gamma\left(2+\frac{1}{2}\right) \Gamma(3+1) \Gamma(-2+3+1)\right)}{2 \Gamma(2) \Gamma\left(3+\frac{1}{2}\right) \Gamma\left(-2+3+\frac{1}{2}\right)}=\frac{\Gamma(2,0) \Gamma\left(\frac{5}{2}, 0\right) \Gamma(4,0) \sqrt{\pi}}{2 \Gamma\left(\frac{3}{2}, 0\right) \Gamma(2,0) \Gamma\left(\frac{7}{2}, 0\right)}$

Series representations

$$
\begin{aligned}
& \frac{\sqrt{\pi}\left(\Gamma\left(2+\frac{1}{2}\right) \Gamma(3+1) \Gamma(-2+3+1)\right)}{2 \Gamma(2) \Gamma\left(3+\frac{1}{2}\right) \Gamma\left(-2+3+\frac{1}{2}\right)}= \\
& \frac{\exp \left(i \pi\left\lfloor\frac{\arg (\pi-x)}{2 \pi}\right\rfloor\right) \Gamma\left(\frac{5}{2}\right) \Gamma(4) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(\pi-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}}{2 \Gamma\left(\frac{3}{2}\right) \Gamma\left(\frac{7}{2}\right)} \text { for }(x \in \mathbb{R} \text { and } x<0)
\end{aligned}
$$

$\frac{\sqrt{\pi}\left(\Gamma\left(2+\frac{1}{2}\right) \Gamma(3+1) \Gamma(-2+3+1)\right)}{2 \Gamma(2) \Gamma\left(3+\frac{1}{2}\right) \Gamma\left(-2+3+\frac{1}{2}\right)}=$

$$
\frac{\Gamma\left(\frac{5}{2}\right) \Gamma(4)\left(\frac{1}{z_{0}}\right)^{1 / 2\left\lfloor\arg \left(\pi-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{1 / 2\left(1+\left\lfloor\arg \left(\pi-z_{0}\right) /(2 \pi)\right\rfloor\right\rfloor} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(\pi-z_{0}\right)^{k} z_{0}^{-k}}{k!}}{2 \Gamma\left(\frac{3}{2}\right) \Gamma\left(\frac{7}{2}\right)}
$$

$$
\begin{aligned}
& \frac{\sqrt{\pi}\left(\Gamma\left(2+\frac{1}{2}\right) \Gamma(3+1) \Gamma(-2+3+1)\right)}{2 \Gamma(2) \Gamma\left(3+\frac{1}{2}\right) \Gamma\left(-2+3+\frac{1}{2}\right)}= \\
& \frac{\sqrt{-1+\pi} \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \sum_{k_{3}=0}^{\infty} \frac{(-1+\pi)^{-k}}{2\left(\sum_{k=0}^{\infty} \frac{\left(\frac{1}{2}-z_{0}\right)^{k} \Gamma^{(k)}\left(z_{0}\right)}{k!}\right) \sum_{k=0}^{\infty} \frac{\left(\frac{5}{2}-z_{0}\right)^{k_{2}}\left(4-z_{0}\right)^{k} \Gamma^{k} \Gamma^{\left(k_{2}\right)}\left(z_{0}\right) \Gamma^{\left(k_{3}\right)}\left(z_{0}\right)}{k_{2}!k_{3}!}}}{k!}
\end{aligned}
$$

for ($z_{0} \notin \mathbb{Z}$ or $z_{0}>0$)

Integral representations

$\frac{\sqrt{\pi}\left(\Gamma\left(2+\frac{1}{2}\right) \Gamma(3+1) \Gamma(-2+3+1)\right)}{2 \Gamma(2) \Gamma\left(3+\frac{1}{2}\right) \Gamma\left(-2+3+\frac{1}{2}\right)}=\int_{0}^{1} \int_{0}^{1} \log ^{3 / 2}\left(\frac{1}{t_{1}}\right) \log ^{3}\left(\frac{1}{t_{2}}\right) d t_{2} d t_{1}$

$$
\begin{aligned}
& \frac{\sqrt{\pi}\left(\Gamma\left(2+\frac{1}{2}\right) \Gamma(3+1) \Gamma(-2+3+1)\right)}{2 \Gamma(2) \Gamma\left(3+\frac{1}{2}\right) \Gamma\left(-2+3+\frac{1}{2}\right)}= \\
& \frac{1}{2} \exp \left(\int_{0}^{1} \frac{-3-3 \sqrt{x}+2 x^{3 / 2}+2 x^{2}+2 x^{7 / 2}}{2(1+\sqrt{x}) \log (x)} d x\right) \sqrt{\pi}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\sqrt{\pi}\left(\Gamma\left(2+\frac{1}{2}\right) \Gamma(3+1) \Gamma(-2+3+1)\right)}{2 \Gamma(2) \Gamma\left(3+\frac{1}{2}\right) \Gamma\left(-2+3+\frac{1}{2}\right)}=\frac{1}{2} \exp (\\
& -\frac{3 \gamma}{2}+\int_{0}^{1} \frac{x^{3 / 2}-x^{5 / 2}+x^{7 / 2}-x^{4}-\log \left(x^{3 / 2}\right)+\log \left(x^{5 / 2}\right)-\log \left(x^{7 / 2}\right)+\log \left(x^{4}\right)}{\log (x)-x \log (x)} \\
& \quad d x) \sqrt{\pi}
\end{aligned}
$$

From:

$$
\begin{aligned}
& \int \frac{\left(1+\frac{x^{2}}{(b+1)^{2}}\right)\left(1+\frac{x^{2}}{(b+2)^{2}}\right) x}{\left(1+\frac{x^{2}}{a^{2}}\right)\left(1+\frac{x^{2}}{(a+1)^{2}}\right)} d x= \\
& \left(a ^ { 2 } (a + 1) ^ { 2 } \left(\left(a^{4}-a^{2}\left(2 b^{2}+6 b+5\right)+\left(b^{2}+3 b+2\right)^{2}\right) \log \left(a^{2}+x^{2}\right)-\right.\right. \\
& \left(a^{4}+4 a^{3}+a^{2}\left(-2 b^{2}-6 b+1\right)-2 a\left(2 b^{2}+6 b+3\right)+\right. \\
& \left.\left.\left.b\left(b^{3}+6 b^{2}+11 b+6\right)\right) \log \left(a^{2}+2 a+x^{2}+1\right)+(2 a+1) x^{2}\right)\right) / \\
& \quad\left(2(2 a+1)\left(b^{2}+3 b+2\right)^{2}\right)+\text { constant }
\end{aligned}
$$

$\log (x)$ is the natural logarithm

For:

$$
\begin{aligned}
& \left(a ^ { 2 } (a + 1) ^ { 2 } \left((a - b - 1) (a + b + 2) \left((a-b-2)(a+b+1) \log \left(a^{2}+x^{2}\right)-(a-b)(a+\right.\right.\right. \\
& \left.\left.\left.b+3) \log \left((a+1)^{2}+x^{2}\right)\right)+(2 a+1) x^{2}\right)\right) /\left(2(2 a+1)(b+1)^{2}(b+2)^{2}\right)+\text { constant }
\end{aligned}
$$

If we consider $x=1$, we obtain:
$\left(a^{\wedge} 2(a+1)^{\wedge} 2\left((a-b-1)(a+b+2)\left((a-b-2)(a+b+1) \log \left(a^{\wedge} 2+1\right)-(a-b)(a+b+3)\right.\right.\right.$
$\left.\left.\left.\log \left((a+1)^{\wedge} 2+1\right)\right)+(2 a+1)\right)\right) /\left(2(2 a+1)(b+1)^{\wedge} 2(b+2)^{\wedge} 2\right)=2.4$

Input

$$
\begin{gathered}
\left(a ^ { 2 } (a + 1) ^ { 2 } \left((a - b - 1) (a + b + 2) \left((a-b-2)(a+b+1) \log \left(a^{2}+1\right)-\right.\right.\right. \\
\left.\left.\left.(a-b)(a+b+3) \log \left((a+1)^{2}+1\right)\right)+(2 a+1)\right)\right) / \\
\left(2(2 a+1)(b+1)^{2}(b+2)^{2}\right)=2.4
\end{gathered}
$$

Implicit plot

The study of this function provides the following representations:

Solutions for the variable b

$$
\begin{aligned}
& b \approx 0.5 \\
& \left(-\sqrt{ }\left(9-\left(2 \left(10 a^{6} \log \left((a+1)^{2}+1\right)+40 a^{5} \log \left((a+1)^{2}+1\right)+40 a^{4} \log \left((a+1)^{2}+\right.\right.\right.\right.\right. \\
& \text { 1) }+20 a^{2} \log \left(a^{2}+1\right)-10 a^{2} \log \left((a+1)^{2}+1\right)- \\
& 10 a^{6} \log \left(a^{2}+1\right)-20 a^{5} \log \left(a^{2}+1\right)+ \\
& 10 a^{4} \log \left(a^{2}+1\right)+40 a^{3} \log \left(a^{2}+1\right)- \\
& \sqrt{ }\left(\left(-10 a^{6} \log \left((a+1)^{2}+1\right)-40 a^{5} \log \left((a+1)^{2}+1\right)-\right.\right. \\
& 40 a^{4} \log \left((a+1)^{2}+1\right)-20 a^{2} \log \left(a^{2}+1\right)+ \\
& 10 a^{2} \log \left((a+1)^{2}+1\right)+10 a^{6} \log \left(a^{2}+1\right)+ \\
& 20 a^{5} \log \left(a^{2}+1\right)-10 a^{4} \log \left(a^{2}+1\right)- \\
& \left.40 a^{3} \log \left(a^{2}+1\right)+192 a+96\right)^{2}- \\
& 4\left(-5 a^{4} \log \left((a+1)^{2}+1\right)-10 a^{3} \log \left((a+1)^{2}+1\right)+\right. \\
& 5 a^{2} \log \left(a^{2}+1\right)-5 a^{2} \log \left((a+1)^{2}+1\right)+5 a^{4} \\
& \left.\log \left(a^{2}+1\right)+10 a^{3} \log \left(a^{2}+1\right)-48 a-24\right) \\
& \left(-5 a^{8} \log \left((a+1)^{2}+1\right)-30 a^{7} \log \left((a+1)^{2}+1\right)-\right. \\
& 50 a^{6} \log \left((a+1)^{2}+1\right)+10 a^{5}+ \\
& 25 a^{4}+55 a^{4} \log \left((a+1)^{2}+1\right)+ \\
& 20 a^{3}+30 a^{3} \log \left((a+1)^{2}+1\right)+5 a^{2}+ \\
& 20 a^{2} \log \left(a^{2}+1\right)+5 a^{8} \log \left(a^{2}+1\right)+ \\
& 10 a^{7} \log \left(a^{2}+1\right)-20 a^{6} \log \left(a^{2}+1\right)- \\
& 50 a^{5} \log \left(a^{2}+1\right)-5 a^{4} \log \left(a^{2}+1\right)+40 a^{3} \\
& \left.\left.\left.\left.\log \left(a^{2}+1\right)-192 a-96\right)\right)-192 a-96\right)\right) / \\
& \left(-5 a^{4} \log \left((a+1)^{2}+1\right)-10 a^{3} \log \left((a+1)^{2}+1\right)+\right. \\
& 5 a^{2} \log \left(a^{2}+1\right)- \\
& 5 a^{2} \log \left((a+1)^{2}+1\right)+ \\
& 5 a^{4} \log \left(a^{2}+1\right)+ \\
& 10 a^{3} \log \left(a^{2}+1\right)- \\
& 48 a-24))-3 \text {) }
\end{aligned}
$$

$$
\begin{aligned}
& b \approx \\
& 0.5\left(\sqrt { } \left(9-\left(2 \left(10 a^{6} \log \left((a+1)^{2}+1\right)+40 a^{5} \log \left((a+1)^{2}+1\right)+40 a^{4} \log \left((a+1)^{2}+\right.\right.\right.\right.\right. \\
& \text { 1) }+20 a^{2} \log \left(a^{2}+1\right)- \\
& 10 a^{2} \log \left((a+1)^{2}+1\right)-10 a^{6} \log \left(a^{2}+1\right)- \\
& 20 a^{5} \log \left(a^{2}+1\right)+10 a^{4} \log \left(a^{2}+1\right)+40 a^{3} \log \left(a^{2}+1\right)- \\
& \sqrt{ }\left(\left(-10 a^{6} \log \left((a+1)^{2}+1\right)-40 a^{5} \log \left((a+1)^{2}+1\right)-\right.\right. \\
& 40 a^{4} \log \left((a+1)^{2}+1\right)-20 a^{2} \log \left(a^{2}+1\right)+ \\
& 10 a^{2} \log \left((a+1)^{2}+1\right)+10 a^{6} \log \left(a^{2}+1\right)+ \\
& 20 a^{5} \log \left(a^{2}+1\right)-10 a^{4} \log \left(a^{2}+1\right)- \\
& \left.40 a^{3} \log \left(a^{2}+1\right)+192 a+96\right)^{2}-4 \\
& \left(-5 a^{4} \log \left((a+1)^{2}+1\right)-10 a^{3} \log \left((a+1)^{2}+1\right)+\right. \\
& 5 a^{2} \log \left(a^{2}+1\right)-5 a^{2} \log \left((a+1)^{2}+1\right)+ \\
& \left.5 a^{4} \log \left(a^{2}+1\right)+10 a^{3} \log \left(a^{2}+1\right)-48 a-24\right) \\
& \left(-5 a^{8} \log \left((a+1)^{2}+1\right)-30 a^{7} \log \left((a+1)^{2}+1\right)-\right. \\
& 50 a^{6} \log \left((a+1)^{2}+1\right)+10 a^{5}+ \\
& 25 a^{4}+55 a^{4} \log \left((a+1)^{2}+1\right)+ \\
& 20 a^{3}+30 a^{3} \log \left((a+1)^{2}+1\right)+5 a^{2}+ \\
& 20 a^{2} \log \left(a^{2}+1\right)+5 a^{8} \log \left(a^{2}+1\right)+ \\
& 10 a^{7} \log \left(a^{2}+1\right)-20 a^{6} \log \left(a^{2}+1\right)- \\
& 50 a^{5} \log \left(a^{2}+1\right)-5 a^{4} \log \left(a^{2}+1\right)+40 a^{3} \\
& \left.\left.\left.\left.\log \left(a^{2}+1\right)-192 a-96\right)\right)-192 a-96\right)\right) / \\
& \left(-5 a^{4} \log \left((a+1)^{2}+1\right)-10 a^{3} \log \left((a+1)^{2}+1\right)+\right. \\
& 5 a^{2} \log \left(a^{2}+1\right)- \\
& 5 a^{2} \log \left((a+1)^{2}+1\right)+ \\
& 5 a^{4} \log \left(a^{2}+1\right)+ \\
& 10 a^{3} \log \left(a^{2}+1\right)- \\
& 48 a-24))-3 \text {) }
\end{aligned}
$$

$b \approx 0.5$
$\left(-\sqrt{ }\left(9-\left(2\left(10 a^{6} \log \left((a+1)^{2}+1\right)+40 a^{5} \log \left((a+1)^{2}+1\right)+40 a^{4} \log \left((a+1)^{2}+\right.\right.\right.\right.\right.$

1) $+20 a^{2} \log \left(a^{2}+1\right)-10 a^{2} \log \left((a+1)^{2}+1\right)-$ $10 a^{6} \log \left(a^{2}+1\right)-20 a^{5} \log \left(a^{2}+1\right)+$ $10 a^{4} \log \left(a^{2}+1\right)+40 a^{3} \log \left(a^{2}+1\right)+$ $\sqrt{ }\left(\left(-10 a^{6} \log \left((a+1)^{2}+1\right)-40 a^{5} \log \left((a+1)^{2}+1\right)-\right.\right.$ $40 a^{4} \log \left((a+1)^{2}+1\right)-20 a^{2} \log \left(a^{2}+1\right)+$ $10 a^{2} \log \left((a+1)^{2}+1\right)+10 a^{6} \log \left(a^{2}+1\right)+$ $20 a^{5} \log \left(a^{2}+1\right)-10 a^{4} \log \left(a^{2}+1\right)-$ $\left.40 a^{3} \log \left(a^{2}+1\right)+192 a+96\right)^{2}-$ $4\left(-5 a^{4} \log \left((a+1)^{2}+1\right)-10 a^{3} \log \left((a+1)^{2}+1\right)+\right.$ $5 a^{2} \log \left(a^{2}+1\right)-5 a^{2} \log \left((a+1)^{2}+1\right)+5 a^{4}$
$\left.\log \left(a^{2}+1\right)+10 a^{3} \log \left(a^{2}+1\right)-48 a-24\right)$
$\left(-5 a^{8} \log \left((a+1)^{2}+1\right)-30 a^{7} \log \left((a+1)^{2}+1\right)-\right.$
$50 a^{6} \log \left((a+1)^{2}+1\right)+10 a^{5}+$ $25 a^{4}+55 a^{4} \log \left((a+1)^{2}+1\right)+$ $20 a^{3}+30 a^{3} \log \left((a+1)^{2}+1\right)+5 a^{2}+$ $20 a^{2} \log \left(a^{2}+1\right)+5 a^{8} \log \left(a^{2}+1\right)+$ $10 a^{7} \log \left(a^{2}+1\right)-20 a^{6} \log \left(a^{2}+1\right)-$ $50 a^{5} \log \left(a^{2}+1\right)-5 a^{4} \log \left(a^{2}+1\right)+40 a^{3}$ $\left.\left.\left.\left.\log \left(a^{2}+1\right)-192 a-96\right)\right)-192 a-96\right)\right) /$ $\left(-5 a^{4} \log \left((a+1)^{2}+1\right)-10 a^{3} \log \left((a+1)^{2}+1\right)+\right.$ $5 a^{2} \log \left(a^{2}+1\right)-$ $5 a^{2} \log \left((a+1)^{2}+1\right)+$ $5 a^{4} \log \left(a^{2}+1\right)+$ $10 a^{3} \log \left(a^{2}+1\right)-$ $48 a-24))-3$)

$$
\begin{aligned}
& b \approx \\
& 0.5\left(\sqrt { } \left(9-\left(2 \left(10 a^{6} \log \left((a+1)^{2}+1\right)+40 a^{5} \log \left((a+1)^{2}+1\right)+40 a^{4} \log \left((a+1)^{2}+\right.\right.\right.\right.\right. \\
& \text { 1) }+20 a^{2} \log \left(a^{2}+1\right)- \\
& 10 a^{2} \log \left((a+1)^{2}+1\right)-10 a^{6} \log \left(a^{2}+1\right)- \\
& 20 a^{5} \log \left(a^{2}+1\right)+10 a^{4} \log \left(a^{2}+1\right)+40 a^{3} \log \left(a^{2}+1\right)+ \\
& \sqrt{ }\left(\left(-10 a^{6} \log \left((a+1)^{2}+1\right)-40 a^{5} \log \left((a+1)^{2}+1\right)-\right.\right. \\
& 40 a^{4} \log \left((a+1)^{2}+1\right)-20 a^{2} \log \left(a^{2}+1\right)+ \\
& 10 a^{2} \log \left((a+1)^{2}+1\right)+10 a^{6} \log \left(a^{2}+1\right)+ \\
& 20 a^{5} \log \left(a^{2}+1\right)-10 a^{4} \log \left(a^{2}+1\right)- \\
& \left.40 a^{3} \log \left(a^{2}+1\right)+192 a+96\right)^{2}-4 \\
& \left(-5 a^{4} \log \left((a+1)^{2}+1\right)-10 a^{3} \log \left((a+1)^{2}+1\right)+\right. \\
& 5 a^{2} \log \left(a^{2}+1\right)-5 a^{2} \log \left((a+1)^{2}+1\right)+ \\
& \left.5 a^{4} \log \left(a^{2}+1\right)+10 a^{3} \log \left(a^{2}+1\right)-48 a-24\right) \\
& \left(-5 a^{8} \log \left((a+1)^{2}+1\right)-30 a^{7} \log \left((a+1)^{2}+1\right)-\right. \\
& 50 a^{6} \log \left((a+1)^{2}+1\right)+10 a^{5}+ \\
& 25 a^{4}+55 a^{4} \log \left((a+1)^{2}+1\right)+ \\
& 20 a^{3}+30 a^{3} \log \left((a+1)^{2}+1\right)+5 a^{2}+ \\
& 20 a^{2} \log \left(a^{2}+1\right)+5 a^{8} \log \left(a^{2}+1\right)+ \\
& 10 a^{7} \log \left(a^{2}+1\right)-20 a^{6} \log \left(a^{2}+1\right)- \\
& 50 a^{5} \log \left(a^{2}+1\right)-5 a^{4} \log \left(a^{2}+1\right)+40 a^{3} \\
& \left.\left.\left.\left.\log \left(a^{2}+1\right)-192 a-96\right)\right)-192 a-96\right)\right) / \\
& \left(-5 a^{4} \log \left((a+1)^{2}+1\right)-10 a^{3} \log \left((a+1)^{2}+1\right)+\right. \\
& 5 a^{2} \log \left(a^{2}+1\right)- \\
& 5 a^{2} \log \left((a+1)^{2}+1\right)+ \\
& 5 a^{4} \log \left(a^{2}+1\right)+ \\
& 10 a^{3} \log \left(a^{2}+1\right)- \\
& 48 a-24))-3 \text {) }
\end{aligned}
$$

For $b=5$, we obtain :

$$
\begin{aligned}
& \left(a ^ { \wedge } 2 (a + 1) ^ { \wedge } 2 \left((a - 5 - 1) (a + 5 + 2) \left((a-5-2)(a+5+1) \log \left(a^{\wedge} 2+1\right)-(a-5)(a+5+3)\right.\right.\right. \\
& \left.\left.\left.\log \left((a+1)^{\wedge} 2+1\right)\right)+(2 a+1)\right)\right) /\left(2(2 a+1)(5+1)^{\wedge} 2(5+2)^{\wedge} 2\right)=2.4
\end{aligned}
$$

Input

$$
\begin{gathered}
\left(a ^ { 2 } (a + 1) ^ { 2 } \left((a - 5 - 1) (a + 5 + 2) \left((a-5-2)(a+5+1) \log \left(a^{2}+1\right)-\right.\right.\right. \\
\left.\left.\left.(a-5)(a+5+3) \log \left((a+1)^{2}+1\right)\right)+(2 a+1)\right)\right) / \\
\left(2(2 a+1)(5+1)^{2}(5+2)^{2}\right)=2.4
\end{gathered}
$$

$\log (x)$ is the natural logarithm

Result

$$
\begin{aligned}
& \frac{1}{3528(2 a+1)} a^{2}(a+1)^{2} \\
& \quad\left((a-6)(a+7)\left((a-7)(a+6) \log \left(a^{2}+1\right)-(a-5)(a+8) \log \left((a+1)^{2}+1\right)\right)+\right. \\
& \quad 2 a+1)=2.4
\end{aligned}
$$

Plot

Solutions

$$
a=-6.95971
$$

$$
a=-3.80038
$$

```
a=2.80038
```

$$
a=5.95971
$$

Numerical solutions

$a \approx-6.95970536173634 \ldots$
$a \approx-3.80038113094299 \ldots$
$a \approx 2.80038113094299 \ldots$
$a \approx 5.95970536173634 \ldots$

For $\mathrm{a}=5.9597053$, we obtain :
$\left(5.9597053 \wedge 2(5.9597053+1)^{\wedge} 2((5.9597053-6)(5.9597053+7)((5.9597053-\right.$
7) $(5.9597053+6) \log (5.9597053 \wedge 2+1)-(5.9597053-5)(5.9597053+8)$
$\left.\left.\left.\ln \left((5.9597053+1)^{\wedge} 2+1\right)\right)+(2 * 5.9597053+1)\right)\right) /(2(2 * 5.9597053+1) 36 * 49)$

Input interpretation

$$
\begin{aligned}
&\left(5.9597053^{2}\right.(5.9597053+1)^{2}((5.9597053-6)(5.9597053+7) \\
&\left((5.9597053-7)(5.9597053+6) \log \left(5.9597053^{2}+1\right)-\right. \\
&\left.((5.9597053-5)(5.9597053+8)) \log \left((5.9597053+1)^{2}+1\right)\right)+ \\
&(2 \times 5.9597053+1))) /(2(2 \times 5.9597053+1)(36 \times 49))
\end{aligned}
$$

Result

2.40000...
2.4

The study of this function provides the following representations:

Alternative representations

$$
\begin{gathered}
\left(5 . 9 5 9 7 1 ^ { 2 } \left((5.95971+1)^{2}((5.95971-6)(5.95971+7)\right.\right. \\
\left((5.95971-7)(5.95971+6) \log \left(5.95971^{2}+1\right)-\right. \\
\left.((5.95971-5)(5.95971+8)) \log \left((5.95971+1)^{2}+1\right)\right)+ \\
(2 \times 5.95971+1)))) /(2(2 \times 5.95971+1)(36 \times 49))= \\
\frac{1}{45579.7}\left(12.9194-0.522207\left(-12.4416 \log (a) \log _{a}\left(1+5.95971^{2}\right)-\right.\right. \\
\left.\left.13.3972 \log (a) \log _{a}\left(1+6.95971^{2}\right)\right)\right) 5.95971^{2} \times 6.95971^{2}
\end{gathered}
$$

$$
\begin{gathered}
\left(5 . 9 5 9 7 1 ^ { 2 } \left((5.95971+1)^{2}((5.95971-6)(5.95971+7)((5.95971-7)(5.95971+6)\right.\right. \\
\log \left(5.95971^{2}+1\right)-((5.95971-5)(5.95971+8)) \\
\left.\left.\left.\left.\log \left((5.95971+1)^{2}+1\right)\right)+(2 \times 5.95971+1)\right)\right)\right) / \\
(2(2 \times 5.95971+1)(36 \times 49))=\frac{1}{45579.7}(12.9194- \\
\left.0.522207\left(-12.4416 \log _{e}\left(1+5.95971^{2}\right)-13.3972 \log _{e}\left(1+6.95971^{2}\right)\right)\right) \\
5.95971^{2} \times 6.95971^{2}
\end{gathered}
$$

$$
\begin{aligned}
& \left(5 . 9 5 9 7 1 ^ { 2 } \left(\begin{array}{l}
(5.95971+1)^{2}((5.95971-6)(5.95971+7) \\
\left((5.95971-7)(5.95971+6) \log \left(5.95971^{2}+1\right)-\right. \\
\left.((5.95971-5)(5.95971+8)) \log \left((5.95971+1)^{2}+1\right)\right)+ \\
(2 \times 5.95971+1)))) /(2(2 \times 5.95971+1)(36 \times 49))=\frac{1}{45579.7} \\
\left(12.9194-0.522207\left(12.4416 \operatorname{Li}_{1}\left(-5.95971^{2}\right)+13.3972 \operatorname{Li}_{1}\left(-6.95971^{2}\right)\right)\right) \\
5.95971^{2} \times \\
6.95971^{2}
\end{array}\right.\right.
\end{aligned}
$$

Series representations

```
(5.95971 2}((5.95971 + 1) 2 ((5.95971 - 6) (5.95971 + 7) ((5.95971 - 7) (5.95971 + 6) 
    log(5.95971 2 + 1) - ((5.95971 - 5) (5.95971 + 8))
    log((5.95971 + 1) 2 + 1)) +(2 5.95971 + 1))))/
    (2(2\times5.95971+1)(36\times49))}=0.487644+0.24523
    log(
        35.5181) +
    0.264069 log(48.4375) +
    \sum
```

$\left(5.95971^{2}\left((5.95971+1)^{2}((5.95971-6)(5.95971+7)((5.95971-7)(5.95971+6)\right.\right.$
$\log \left(5.95971^{2}+1\right)-((5.95971-5)(5.95971+8))$
$\left.\left.\left.\left.\log \left((5.95971+1)^{2}+1\right)\right)+(2 \times 5.95971+1)\right)\right)\right) /$
$(2(2 \times 5.95971+1)(36 \times 49))=0.487644+$
0.490467
i
π
$\left\lfloor\frac{\arg (36.5181-x)}{2 \pi}\right\rfloor+$
$0.528138 i \pi\left\lfloor\frac{\arg (49.4375-x)}{2 \pi}\right\rfloor+$
$0.509302 \log (x)+$
$\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(-0.245234(36.5181-x)^{k}-0.264069(49.4375-x)^{k}\right) x^{-k}}{k}$ for $x<$
0

```
\(\left(5.95971^{2}\left((5.95971+1)^{2}(5.95971-6)(5.95971+7)(5.95971-7)(5.95971+6)\right.\right.\)
                    \(\log \left(5.95971^{2}+1\right)-((5.95971-5)(5.95971+8))\)
    \(\left.\left.\left.\left.\log \left((5.95971+1)^{2}+1\right)\right)+(2 \times 5.95971+1)\right)\right)\right) /\)
\((2(2 \times 5.95971+1)(36 \times 49))=0.487644+0.245234\)
    \(\left\lfloor\frac{\arg \left(36.5181-z_{0}\right)}{2 \pi}\right\rfloor\)
    \(\log \left(\frac{1}{z_{0}}\right)^{2 \pi}+\)
\(0.264069\left\lfloor\frac{\arg \left(49.4375-z_{0}\right)}{2 \pi}\right\rfloor\)
    \(\log \left(\frac{1}{z_{0}}\right)+0.509302\)
    \(\log \left(z_{0}\right)+\)
    \(0.245234\left\lfloor\frac{\arg \left(36.5181-z_{0}\right)}{2 \pi}\right\rfloor \log \left(z_{0}\right)+\)
    0.264069
        \(\left\lfloor\frac{\arg \left(49.4375-z_{0}\right)}{2 \pi}\right\rfloor \log \left(z_{0}\right)+\)
\(\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(-0.245234\left(36.5181-z_{0}\right)^{k}-0.264069\left(49.4375-z_{0}\right)^{k}\right) z_{0}^{-k}}{k}\)
```


Integral representation

$$
\begin{gathered}
\left(5 . 9 5 9 7 1 ^ { 2 } \left((5.95971+1)^{2}((5.95971-6)(5.95971+7)((5.95971-7)(5.95971+6)\right.\right. \\
\log \left(5.95971^{2}+1\right)-((5.95971-5)(5.95971+8)) \\
\left.\left.\left.\left.\log \left((5.95971+1)^{2}+1\right)\right)+(2 \times 5.95971+1)\right)\right)\right) / \\
(2(2 \times 5.95971+1)(36 \times 49))=0.487644+ \\
\int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{0.132034 e^{-7.45032 s}\left(e^{3.57004 s}+0.928673 e^{3.88027 s}\right) \Gamma(-s)^{2} \Gamma(1+s)}{i \pi \Gamma(1-s)} d s \\
\text { for }-1< \\
\gamma< \\
0
\end{gathered}
$$

Thence, we obtain, in conclusion:

$$
\frac{\sqrt{\pi} \Gamma\left(2+\frac{1}{2}\right) \Gamma(3+1) \Gamma(-2+3+1)}{2 \Gamma(2) \Gamma\left(3+\frac{1}{2}\right) \Gamma\left(-2+3+\frac{1}{2}\right)}
$$

$\Gamma(x)$ is the gamma function

$$
\begin{aligned}
& =\frac{12}{5} \\
& =2.4
\end{aligned}
$$

is equal to :

$$
\begin{aligned}
& \int \frac{\left(1+\frac{x^{2}}{(b+1)^{2}}\right)\left(1+\frac{x^{2}}{(b+2)^{2}}\right) x}{\left(1+\frac{x^{2}}{a^{2}}\right)\left(1+\frac{x^{2}}{(a+1)^{2}}\right)} d x= \\
& \left(a ^ { 2 } (a + 1) ^ { 2 } \left(\left(a^{4}-a^{2}\left(2 b^{2}+6 b+5\right)+\left(b^{2}+3 b+2\right)^{2}\right) \log \left(a^{2}+x^{2}\right)-\right.\right. \\
& \quad\left(a^{4}+4 a^{3}+a^{2}\left(-2 b^{2}-6 b+1\right)-2 a\left(2 b^{2}+6 b+3\right)+\right. \\
& \left.\left.\left.b\left(b^{3}+6 b^{2}+11 b+6\right)\right) \log \left(a^{2}+2 a+x^{2}+1\right)+(2 a+1) x^{2}\right)\right) / \\
& \quad\left(2(2 a+1)\left(b^{2}+3 b+2\right)^{2}\right)+\text { constant }
\end{aligned}
$$

From:

$$
\begin{aligned}
& \left(a ^ { 2 } (a + 1) ^ { 2 } \left((a - b - 1) (a + b + 2) \left((a-b-2)(a+b+1) \log \left(a^{2}+x^{2}\right)-(a-b)(a+\right.\right.\right. \\
& \left.\left.\left.b+3) \log \left((a+1)^{2}+x^{2}\right)\right)+(2 a+1) x^{2}\right)\right) /\left(2(2 a+1)(b+1)^{2}(b+2)^{2}\right)+\text { constant }
\end{aligned}
$$

for $b=5$, we obtain :
$\left(a^{\wedge} 2(a+1)^{\wedge} 2\left((a-5-1)(a+5+2)\left((a-5-2)(a+5+1) \log \left(a^{\wedge} 2+1\right)-(a-5)(a+5+3)\right.\right.\right.$
$\left.\left.\left.\log \left((\mathrm{a}+1)^{\wedge} 2+1\right)\right)+(2 \mathrm{a}+1)\right)\right) /\left(2(2 \mathrm{a}+1)(5+1)^{\wedge} 2(5+2)^{\wedge} 2\right)=2.4$

$$
\begin{gathered}
\left(a ^ { 2 } (a + 1) ^ { 2 } \left((a - 5 - 1) (a + 5 + 2) \left((a-5-2)(a+5+1) \log \left(a^{2}+1\right)-\right.\right.\right. \\
\left.\left.\left.(a-5)(a+5+3) \log \left((a+1)^{2}+1\right)\right)+(2 a+1)\right)\right) / \\
\left(2(2 a+1)(5+1)^{2}(5+2)^{2}\right)=2.4
\end{gathered}
$$

and for $\mathrm{a}=5.9597053$, we obtain :

$$
\begin{aligned}
&\left(5.9597053^{2}\right.(5.9597053+1)^{2}((5.9597053-6)(5.9597053+7) \\
&\left((5.9597053-7)(5.9597053+6) \log \left(5.9597053^{2}+1\right)-\right. \\
&\left.((5.9597053-5)(5.9597053+8)) \log \left((5.9597053+1)^{2}+1\right)\right)+ \\
&(2 \times 5.9597053+1))) /(2(2 \times 5.9597053+1)(36 \times 49))
\end{aligned}
$$

$$
=2.40000 \ldots
$$

Now, for $a=8$ and $b=64$,
$\frac{\sqrt{\pi}}{2} \times \frac{\Gamma\left(a+\frac{1}{2}\right) \Gamma(b+1) \Gamma(b-a+1)}{\Gamma(a) \Gamma\left(b+\frac{1}{2}\right) \Gamma\left(b-a+\frac{1}{2}\right)}$
we obtain:
$(\operatorname{sqrt}(\pi) \Gamma(8+1 / 2) \Gamma(64+1) \Gamma(-8+64+1)) /(2 \Gamma(8) \Gamma(64+1 / 2) \Gamma(-8+64+1 / 2))$

Input

$$
\frac{\sqrt{\pi} \Gamma\left(8+\frac{1}{2}\right) \Gamma(64+1) \Gamma(-8+64+1)}{2 \Gamma(8) \Gamma\left(64+\frac{1}{2}\right) \Gamma\left(-8+64+\frac{1}{2}\right)}
$$

Exact result

13479973333575319897333507543509815336818572211270286240551 :
90861297665263806397852504259184867012180701150408708366012 :
722575

Decimal approximation

148.35770212347189226490825070847834610348244898384466234402961177
148.35770212....

The study of this function provides the following representations:

Alternative representations

$\frac{\sqrt{\pi}\left(\Gamma\left(8+\frac{1}{2}\right) \Gamma(64+1) \Gamma(-8+64+1)\right)}{2 \Gamma(8) \Gamma\left(64+\frac{1}{2}\right) \Gamma\left(-8+64+\frac{1}{2}\right)}=\frac{\frac{15}{2}!\times 56!\times 64!\sqrt{\pi}}{2 \times 7!\times \frac{111}{2}!\times \frac{127}{2}!}$
$\frac{\sqrt{\pi}\left(\Gamma\left(8+\frac{1}{2}\right) \Gamma(64+1) \Gamma(-8+64+1)\right)}{2 \Gamma(8) \Gamma\left(64+\frac{1}{2}\right) \Gamma\left(-8+64+\frac{1}{2}\right)}=\frac{\Gamma\left(\frac{17}{2}, 0\right) \Gamma(57,0) \Gamma(65,0) \sqrt{\pi}}{2 \Gamma(8,0) \Gamma\left(\frac{113}{2}, 0\right) \Gamma\left(\frac{129}{2}, 0\right)}$
$\frac{\sqrt{\pi}\left(\Gamma\left(8+\frac{1}{2}\right) \Gamma(64+1) \Gamma(-8+64+1)\right)}{2 \Gamma(8) \Gamma\left(64+\frac{1}{2}\right) \Gamma\left(-8+64+\frac{1}{2}\right)}=\frac{(1)_{\frac{15}{2}}(1)_{56}(1)_{64} \sqrt{\pi}}{2(1)_{7}(1)_{\frac{111}{2}}(1) \frac{127}{2}}$

Series representations

$$
\begin{aligned}
& \frac{\sqrt{\pi}\left(\Gamma\left(8+\frac{1}{2}\right) \Gamma(64+1) \Gamma(-8+64+1)\right)}{2 \Gamma(8) \Gamma\left(64+\frac{1}{2}\right) \Gamma\left(-8+64+\frac{1}{2}\right)}= \\
& \frac{\exp \left(i \pi\left\lfloor\frac{\arg (\pi-x)}{2 \pi}\right\rfloor\right) \Gamma\left(\frac{17}{2}\right) \Gamma(57) \Gamma(65) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(\pi-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}}{2 \Gamma(8) \Gamma\left(\frac{113}{2}\right) \Gamma\left(\frac{129}{2}\right)}
\end{aligned}
$$

for $(x \in \mathbb{R}$ and $x<0)$

$$
\begin{gathered}
\frac{\sqrt{\pi}\left(\Gamma\left(8+\frac{1}{2}\right) \Gamma(64+1) \Gamma(-8+64+1)\right)}{2 \Gamma(8) \Gamma\left(64+\frac{1}{2}\right) \Gamma\left(-8+64+\frac{1}{2}\right)}=\frac{1}{2 \Gamma(8) \Gamma\left(\frac{113}{2}\right) \Gamma\left(\frac{129}{2}\right)} \Gamma\left(\frac{17}{2}\right) \Gamma(57) \Gamma(65) \\
\quad\left(\frac{1}{z_{0}}\right)^{\left.1 / 2 \arg \left(\pi-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{1 / 2\left(1+\left\lfloor\arg \left(\pi-z_{0}\right) /(2 \pi)\right\rfloor\right\rfloor} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(\pi-z_{0}\right)^{k} z_{0}^{-k}}{k!}
\end{gathered}
$$

$$
\begin{aligned}
& \frac{\sqrt{\pi}\left(\Gamma\left(8+\frac{1}{2}\right) \Gamma(64+1) \Gamma(-8+64+1)\right)}{2 \Gamma(8) \Gamma\left(64+\frac{1}{2}\right) \Gamma\left(-8+64+\frac{1}{2}\right)}= \\
& \left(\sqrt{-1+\pi} \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \sum_{k_{3}=0}^{\infty} \sum_{k_{4}=0}^{\infty} \frac{1}{k_{2}!k_{3}!k_{4}!}(-1+\pi)^{-k_{1}}\binom{\frac{1}{2}}{k_{1}}\left(\frac{17}{2}-z_{0}\right)^{k_{2}}\right. \\
& \left.\quad\left(57-z_{0}\right)^{k_{3}}\left(65-z_{0}\right)^{k_{4}} \Gamma^{\left(k_{2}\right)}\left(z_{0}\right) \Gamma^{\left(k_{3}\right)}\left(z_{0}\right) \Gamma^{\left(k_{4}\right)}\left(z_{0}\right)\right) / \\
& \quad\left(2\left(\sum_{k=0}^{\infty} \frac{\left(8-z_{0}\right)^{k} \Gamma^{(k)}\left(z_{0}\right)}{k!}\right)\left(\sum_{k=0}^{\infty} \frac{\left(\frac{113}{2}-z_{0}\right)^{k} \Gamma^{(k)}\left(z_{0}\right)}{k!}\right) \sum_{k=0}^{\infty} \frac{\left(\frac{129}{2}-z_{0}\right)^{k} \Gamma^{(k)}\left(z_{0}\right)}{k!}\right)
\end{aligned}
$$

for ($z_{0} \notin \mathbb{Z}$ or $z_{0}>0$)

Integral representations

$$
\begin{aligned}
& \frac{\sqrt{\pi}\left(\Gamma\left(8+\frac{1}{2}\right) \Gamma(64+1) \Gamma(-8+64+1)\right)}{2 \Gamma(8) \Gamma\left(64+\frac{1}{2}\right) \Gamma\left(-8+64+\frac{1}{2}\right)}= \\
& \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \log ^{15 / 2}\left(\frac{1}{t_{1}}\right) \log ^{56}\left(\frac{1}{t_{2}}\right) \log ^{64}\left(\frac{1}{t_{3}}\right) d t_{3} d t_{2} d t_{1}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\sqrt{\pi}\left(\Gamma\left(8+\frac{1}{2}\right) \Gamma(64+1) \Gamma(-8+64+1)\right)}{2 \Gamma(8) \Gamma\left(64+\frac{1}{2}\right) \Gamma\left(-8+64+\frac{1}{2}\right)}= \\
& \frac{1}{2} \exp \left(\int_{0}^{1} \frac{-3-3 \sqrt{x}+2 x^{8}+2 x^{113 / 2}+2 x^{129 / 2}}{2(1+\sqrt{x}) \log (x)} d x\right) \sqrt{\pi}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\sqrt{\pi}\left(\Gamma\left(8+\frac{1}{2}\right) \Gamma(64+1) \Gamma(-8+64+1)\right)}{2 \Gamma(8) \Gamma\left(64+\frac{1}{2}\right) \Gamma\left(-8+64+\frac{1}{2}\right)}=\frac{1}{2} \exp \left(-\frac{3 \gamma}{2}+\right. \\
& \int_{0}^{1} \frac{1}{\log (x)-x \log (x)}\left(x^{8}-x^{17 / 2}+x^{113 / 2}-x^{57}+x^{129 / 2}-x^{65}-\log \left(x^{8}\right)+\right. \\
&\left.\left.\log \left(x^{17 / 2}\right)-\log \left(x^{113 / 2}\right)+\log \left(x^{57}\right)-\log \left(x^{129 / 2}\right)+\log \left(x^{65}\right)\right) d x\right) \sqrt{\pi}
\end{aligned}
$$

$\log (x)$ is the natural logarithm

We obtain also:
$(\operatorname{sqrt}(\pi) \Gamma(8+1 / 2) \Gamma(64+1) \Gamma(-8+64+1)) /(2 \Gamma(8) \Gamma(64+1 / 2) \Gamma(-8+64+1 / 2))-$ $29-\Phi$

Input

$\frac{\sqrt{\pi} \Gamma\left(8+\frac{1}{2}\right) \Gamma(64+1) \Gamma(-8+64+1)}{2 \Gamma(8) \Gamma\left(64+\frac{1}{2}\right) \Gamma\left(-8+64+\frac{1}{2}\right)}-29-\Phi$
$\Gamma(x)$ is the gamma function (1) is the golden ratio conjugate

Exact result

```
10844995701282669511795784919993454193465331877908433697937:
        436169933 /
    90861297665263806397852504259184867012180701150408708366:
        012722575 - Ф
```


Exact form

10935856998947933318193637424252639060477512579058842406303 : 448892508 /
90861297665263806397852504259184867012180701150408708366 : $012722575-\phi$

Decimal approximation

118.73966813472199741670366387411270798576213980403889948189416314
$118.73966813 \ldots$ result very near to the value of the following soliton mass, deriving from:

The total energy or the soliton mass for a single soliton becomes.

$$
\begin{aligned}
E=\int d x 2 U(\phi)= & \int d x\left(\frac{\lambda}{2}\left(\phi^{2}-v^{2}\right)^{2}\right)=\mp \frac{2 \lambda v}{\sqrt{2} m} \int_{0}^{ \pm v} d \phi\left(\phi^{2}-v^{2}\right) \\
& =\mp \frac{2 \lambda v}{\sqrt{2} m}\left(\mp \frac{2 v^{3}}{3}\right)=\frac{2 \sqrt{2} m^{3}}{3 \lambda}
\end{aligned}
$$

$\left(2 * \mathrm{sqrt} 2 * 125.35^{\wedge} 3\right) /\left(3^{*} 125.35^{\wedge} 2\right)$

Input interpretation

$$
\frac{2 \sqrt{2} \times 125.35^{3}}{3 \times 125.35^{2}}
$$

Result

118.18111336231164291152778771979043609913891305233362731513120343 118.18111336.....

The study of this function provides the following representations:

Alternate form

(10844995701282669511795784919993454193465331877908433697937:

$$
436169933 \text { - }
$$

90861297665263806397852504259184867012180701150408708366 : 012722575 Ф)/
90861297665263806397852504259184867012180701150408708366012 : 722575

From:

$$
\begin{aligned}
& \int \frac{\left(1+\frac{x^{2}}{(b+1)^{2}}\right)\left(1+\frac{x^{2}}{(b+2)^{2}}\right) x}{\left(1+\frac{x^{2}}{a^{2}}\right)\left(1+\frac{x^{2}}{(a+1)^{2}}\right)} d x= \\
& \left(a ^ { 2 } (a + 1) ^ { 2 } \left(\left(a^{4}-a^{2}\left(2 b^{2}+6 b+5\right)+\left(b^{2}+3 b+2\right)^{2}\right) \log \left(a^{2}+x^{2}\right)-\right.\right. \\
& \left(a^{4}+4 a^{3}+a^{2}\left(-2 b^{2}-6 b+1\right)-2 a\left(2 b^{2}+6 b+3\right)+\right. \\
& \left.\left.\left.\quad b\left(b^{3}+6 b^{2}+11 b+6\right)\right) \log \left(a^{2}+2 a+x^{2}+1\right)+(2 a+1) x^{2}\right)\right) / \\
& \quad\left(2(2 a+1)\left(b^{2}+3 b+2\right)^{2}\right)+\text { constant }
\end{aligned}
$$

$$
\begin{aligned}
& \left(a ^ { 2 } (a + 1) ^ { 2 } \left((a - b - 1) (a + b + 2) \left((a-b-2)(a+b+1) \log \left(a^{2}+x^{2}\right)-(a-b)(a+\right.\right.\right. \\
& \left.\left.\left.b+3) \log \left((a+1)^{2}+x^{2}\right)\right)+(2 a+1) x^{2}\right)\right) /\left(2(2 a+1)(b+1)^{2}(b+2)^{2}\right)+\text { constant }
\end{aligned}
$$

$$
\left(a ^ { \wedge } 2 (a + 1) ^ { \wedge } 2 \left((a - b - 1) (a + b + 2) \left((a-b-2)(a+b+1) \log \left(a^{\wedge} 2+1\right)-(a-b)(a+b\right.\right.\right.
$$

$$
\left.\left.\left.+3) \log \left((a+1)^{\wedge} 2+1\right)\right)+(2 a+1)\right)\right) /\left(2(2 a+1)(b+1)^{\wedge} 2(b+2)^{\wedge} 2\right)=148.357702
$$

Input interpretation

$$
\begin{gathered}
\left(a ^ { 2 } (a + 1) ^ { 2 } \left((a - b - 1) (a + b + 2) \left((a-b-2)(a+b+1) \log \left(a^{2}+1\right)-\right.\right.\right. \\
\left.\left.\left.(a-b)(a+b+3) \log \left((a+1)^{2}+1\right)\right)+(2 a+1)\right)\right) / \\
\left(2(2 a+1)(b+1)^{2}(b+2)^{2}\right)=148.357702
\end{gathered}
$$

Implicit plot

Solutions for the variable b :

$$
\begin{aligned}
& b \approx 0.5\left(-\sqrt{ }\left(9-\left(2 \left(500000 a^{6} \log \left((a+1)^{2}+1\right)+2000000 a^{5} \log \left((a+1)^{2}+1\right)+\right.\right.\right.\right. \\
& 2000000 a^{4} \log \left((a+1)^{2}+1\right)+ \\
& 1000000 a^{2} \log \left(a^{2}+1\right)-500000 a^{2} \log \left((a+1)^{2}+1\right)- \\
& 500000 a^{6} \log \left(a^{2}+1\right)-1000000 a^{5} \log \left(a^{2}+1\right)+ \\
& 500000 a^{4} \log \left(a^{2}+1\right)+2000000 a^{3} \log \left(a^{2}+1\right)- \\
& \sqrt{ }\left(\left(-500000 a^{6} \log \left((a+1)^{2}+1\right)-2000000 a^{5}\right.\right. \\
& \log \left((a+1)^{2}+1\right)-2000000 a^{4} \log (\\
& \left.(a+1)^{2}+1\right)-1000000 a^{2} \log \left(a^{2}+1\right)+ \\
& 500000 a^{2} \log \left((a+1)^{2}+1\right)+500000 \\
& a^{6} \log \left(a^{2}+1\right)+1000000 a^{5} \log \left(a^{2}+1\right)- \\
& 500000 a^{4} \log \left(a^{2}+1\right)-2000000 a^{3} \log (\\
& \left.\left.a^{2}+1\right)+593430808 a+296715404\right)^{2}- \\
& 4\left(-250000 a^{4} \log \left((a+1)^{2}+1\right)-500000 a^{3}\right. \\
& \log \left((a+1)^{2}+1\right)+250000 a^{2} \log \left(a^{2}+1\right)- \\
& 250000 a^{2} \log \left((a+1)^{2}+1\right)+ \\
& 250000 a^{4} \log \left(a^{2}+1\right)+500000 a^{3} \\
& \left.\log \left(a^{2}+1\right)-148357702 a-74178851\right) \\
& \left(-250000 a^{8} \log \left((a+1)^{2}+1\right)-\right. \\
& 1500000 a^{7} \log \left((a+1)^{2}+1\right)- \\
& 2500000 a^{6} \log \left((a+1)^{2}+1\right)+500000 a^{5}+ \\
& 1250000 a^{4}+2750000 a^{4} \log \left((a+1)^{2}+1\right)+ \\
& 1000000 a^{3}+1500000 a^{3} \log \left((a+1)^{2}+1\right)+ \\
& 250000 a^{2}+1000000 a^{2} \log \left(a^{2}+1\right)+ \\
& 250000 a^{8} \log \left(a^{2}+1\right)+500000 a^{7} \\
& \log \left(a^{2}+1\right)-1000000 a^{6} \log \left(a^{2}+1\right)- \\
& 2500000 a^{5} \log \left(a^{2}+1\right)-250000 a^{4} \\
& \log \left(a^{2}+1\right)+2000000 a^{3} \log \left(a^{2}+1\right)- \\
& 593430808 a-296715404) \text {) - } \\
& 593430808 a-296715404)) / \\
& \left(-250000 a^{4} \log \left((a+1)^{2}+1\right)-500000 a^{3}\right. \\
& \log \left((a+1)^{2}+1\right)+ \\
& 250000 a^{2} \log \left(a^{2}+1\right)- \\
& 250000 a^{2} \log \left((a+1)^{2}+1\right)+ \\
& 250000 a^{4} \log \left(a^{2}+1\right)+ \\
& 500000 a^{3} \log \left(a^{2}+1\right)- \\
& 148357702 a- \\
& \text { 74178851)) - 3) }
\end{aligned}
$$

$$
\begin{aligned}
& b \approx 0.5\left(\sqrt { } \left(9-\left(2 \left(500000 a^{6} \log \left((a+1)^{2}+1\right)+2000000 a^{5} \log \left((a+1)^{2}+1\right)+\right.\right.\right.\right. \\
& 2000000 a^{4} \log \left((a+1)^{2}+1\right)+ \\
& 1000000 a^{2} \log \left(a^{2}+1\right)-500000 a^{2} \log \left((a+1)^{2}+1\right)- \\
& 500000 a^{6} \log \left(a^{2}+1\right)-1000000 a^{5} \log \left(a^{2}+1\right)+ \\
& 500000 a^{4} \log \left(a^{2}+1\right)+2000000 a^{3} \log \left(a^{2}+1\right)- \\
& \sqrt{ }\left(\left(-500000 a^{6} \log \left((a+1)^{2}+1\right)-2000000 a^{5}\right.\right. \\
& \log \left((a+1)^{2}+1\right)-2000000 a^{4} \log (\\
& \left.(a+1)^{2}+1\right)-1000000 a^{2} \log \left(a^{2}+1\right)+ \\
& 500000 a^{2} \log \left((a+1)^{2}+1\right)+500000 \\
& a^{6} \log \left(a^{2}+1\right)+1000000 a^{5} \log \left(a^{2}+1\right)- \\
& 500000 a^{4} \log \left(a^{2}+1\right)-2000000 a^{3} \log (\\
& \left.\left.a^{2}+1\right)+593430808 a+296715404\right)^{2}- \\
& 4\left(-250000 a^{4} \log \left((a+1)^{2}+1\right)-500000\right. \\
& a^{3} \log \left((a+1)^{2}+1\right)+250000 a^{2} \log \left(a^{2}+1\right)- \\
& 250000 a^{2} \log \left((a+1)^{2}+1\right)+ \\
& 250000 a^{4} \log \left(a^{2}+1\right)+500000 a^{3} \\
& \left.\log \left(a^{2}+1\right)-148357702 a-74178851\right) \\
& \left(-250000 a^{8} \log \left((a+1)^{2}+1\right)-\right. \\
& 1500000 a^{7} \log \left((a+1)^{2}+1\right)- \\
& 2500000 a^{6} \log \left((a+1)^{2}+1\right)+500000 a^{5}+ \\
& 1250000 a^{4}+2750000 a^{4} \log \left((a+1)^{2}+1\right)+ \\
& 1000000 a^{3}+1500000 a^{3} \log \left((a+1)^{2}+1\right)+ \\
& 250000 a^{2}+1000000 a^{2} \log \left(a^{2}+1\right)+ \\
& 250000 a^{8} \log \left(a^{2}+1\right)+500000 a^{7} \\
& \log \left(a^{2}+1\right)-1000000 a^{6} \log \left(a^{2}+1\right)- \\
& 2500000 a^{5} \log \left(a^{2}+1\right)-250000 a^{4} \\
& \log \left(a^{2}+1\right)+2000000 a^{3} \log \left(a^{2}+1\right)- \\
& 593430808 a-296715404) \text {) - } \\
& 593430808 a-296715404) \text {)/ } \\
& \left(-250000 a^{4} \log \left((a+1)^{2}+1\right)-\right. \\
& 500000 \\
& a^{3} \\
& \log \left((a+1)^{2}+1\right)+ \\
& 250000 a^{2} \log \left(a^{2}+1\right)- \\
& 250000 a^{2} \\
& \log \left((a+1)^{2}+1\right)+ \\
& 250000 a^{4} \log \left(a^{2}+1\right)+ \\
& 500000 a^{3} \log \left(a^{2}+1\right)- \\
& 148357702 a \text { - } \\
& \text { 74178851)) - 3) }
\end{aligned}
$$

$$
\begin{aligned}
& b \approx 0.5\left(-\sqrt{ }\left(9-\left(2 \left(500000 a^{6} \log \left((a+1)^{2}+1\right)+2000000 a^{5} \log \left((a+1)^{2}+1\right)+\right.\right.\right.\right. \\
& 2000000 a^{4} \log \left((a+1)^{2}+1\right)+ \\
& 1000000 a^{2} \log \left(a^{2}+1\right)-500000 a^{2} \log \left((a+1)^{2}+1\right)- \\
& 500000 a^{6} \log \left(a^{2}+1\right)-1000000 a^{5} \log \left(a^{2}+1\right)+ \\
& 500000 a^{4} \log \left(a^{2}+1\right)+2000000 a^{3} \log \left(a^{2}+1\right)+ \\
& \sqrt{ }\left(\left(-500000 a^{6} \log \left((a+1)^{2}+1\right)-2000000 a^{5}\right.\right. \\
& \log \left((a+1)^{2}+1\right)-2000000 a^{4} \log (\\
& \left.(a+1)^{2}+1\right)-1000000 a^{2} \log \left(a^{2}+1\right)+ \\
& 500000 a^{2} \log \left((a+1)^{2}+1\right)+500000 \\
& a^{6} \log \left(a^{2}+1\right)+1000000 a^{5} \log \left(a^{2}+1\right)- \\
& 500000 a^{4} \log \left(a^{2}+1\right)-2000000 a^{3} \log (\\
& \left.\left.a^{2}+1\right)+593430808 a+296715404\right)^{2}- \\
& 4\left(-250000 a^{4} \log \left((a+1)^{2}+1\right)-500000 a^{3}\right. \\
& \log \left((a+1)^{2}+1\right)+250000 a^{2} \log \left(a^{2}+1\right)- \\
& 250000 a^{2} \log \left((a+1)^{2}+1\right)+ \\
& 250000 a^{4} \log \left(a^{2}+1\right)+500000 a^{3} \\
& \left.\log \left(a^{2}+1\right)-148357702 a-74178851\right) \\
& \left(-250000 a^{8} \log \left((a+1)^{2}+1\right)-\right. \\
& 1500000 a^{7} \log \left((a+1)^{2}+1\right)- \\
& 2500000 a^{6} \log \left((a+1)^{2}+1\right)+500000 a^{5}+ \\
& 1250000 a^{4}+2750000 a^{4} \log \left((a+1)^{2}+1\right)+ \\
& 1000000 a^{3}+1500000 a^{3} \log \left((a+1)^{2}+1\right)+ \\
& 250000 a^{2}+1000000 a^{2} \log \left(a^{2}+1\right)+ \\
& 250000 a^{8} \log \left(a^{2}+1\right)+500000 a^{7} \\
& \log \left(a^{2}+1\right)-1000000 a^{6} \log \left(a^{2}+1\right)- \\
& 2500000 a^{5} \log \left(a^{2}+1\right)-250000 a^{4} \\
& \log \left(a^{2}+1\right)+2000000 a^{3} \log \left(a^{2}+1\right)- \\
& 593430808 a-296715404) \text {) - } \\
& 593430808 a-296715404) \text {)/ } \\
& \left(-250000 a^{4} \log \left((a+1)^{2}+1\right)-500000 a^{3}\right. \\
& \log \left((a+1)^{2}+1\right)+ \\
& 250000 a^{2} \log \left(a^{2}+1\right)- \\
& 250000 a^{2} \log \left((a+1)^{2}+1\right)+ \\
& 250000 a^{4} \log \left(a^{2}+1\right)+ \\
& 500000 a^{3} \log \left(a^{2}+1\right)- \\
& 148357702 a \text { - } \\
& 74178851) \text {) }-3 \text {) }
\end{aligned}
$$

$$
\begin{aligned}
& b \approx 0.5\left(\sqrt { } \left(9-\left(2 \left(500000 a^{6} \log \left((a+1)^{2}+1\right)+2000000 a^{5} \log \left((a+1)^{2}+1\right)+\right.\right.\right.\right. \\
& 2000000 a^{4} \log \left((a+1)^{2}+1\right)+ \\
& 1000000 a^{2} \log \left(a^{2}+1\right)-500000 a^{2} \log \left((a+1)^{2}+1\right)- \\
& 500000 a^{6} \log \left(a^{2}+1\right)-1000000 a^{5} \log \left(a^{2}+1\right)+ \\
& 500000 a^{4} \log \left(a^{2}+1\right)+2000000 a^{3} \log \left(a^{2}+1\right)+ \\
& \sqrt{ }\left(\left(-500000 a^{6} \log \left((a+1)^{2}+1\right)-2000000 a^{5}\right.\right. \\
& \log \left((a+1)^{2}+1\right)-2000000 a^{4} \log (\\
& \left.(a+1)^{2}+1\right)-1000000 a^{2} \log \left(a^{2}+1\right)+ \\
& 500000 a^{2} \log \left((a+1)^{2}+1\right)+500000 \\
& a^{6} \log \left(a^{2}+1\right)+1000000 a^{5} \log \left(a^{2}+1\right)- \\
& 500000 a^{4} \log \left(a^{2}+1\right)-2000000 a^{3} \log (\\
& \left.\left.a^{2}+1\right)+593430808 a+296715404\right)^{2}- \\
& 4\left(-250000 a^{4} \log \left((a+1)^{2}+1\right)-500000\right. \\
& a^{3} \log \left((a+1)^{2}+1\right)+250000 a^{2} \log \left(a^{2}+1\right)- \\
& 250000 a^{2} \log \left((a+1)^{2}+1\right)+ \\
& 250000 a^{4} \log \left(a^{2}+1\right)+500000 a^{3} \\
& \left.\log \left(a^{2}+1\right)-148357702 a-74178851\right) \\
& \left(-250000 a^{8} \log \left((a+1)^{2}+1\right)-\right. \\
& 1500000 a^{7} \log \left((a+1)^{2}+1\right)- \\
& 2500000 a^{6} \log \left((a+1)^{2}+1\right)+500000 a^{5}+ \\
& 1250000 a^{4}+2750000 a^{4} \log \left((a+1)^{2}+1\right)+ \\
& 1000000 a^{3}+1500000 a^{3} \log \left((a+1)^{2}+1\right)+ \\
& 250000 a^{2}+1000000 a^{2} \log \left(a^{2}+1\right)+ \\
& 250000 a^{8} \log \left(a^{2}+1\right)+500000 a^{7} \\
& \log \left(a^{2}+1\right)-1000000 a^{6} \log \left(a^{2}+1\right)- \\
& 2500000 a^{5} \log \left(a^{2}+1\right)-250000 a^{4} \\
& \log \left(a^{2}+1\right)+2000000 a^{3} \log \left(a^{2}+1\right)- \\
& 593430808 a-296715404) \text {) - } \\
& 593430808 a-296715404)) / \\
& \left(-250000 a^{4} \log \left((a+1)^{2}+1\right)-\right. \\
& 500000 \\
& a^{3} \\
& \log \left((a+1)^{2}+1\right)+ \\
& 250000 a^{2} \log \left(a^{2}+1\right)- \\
& 250000 a^{2} \\
& \log \left((a+1)^{2}+1\right)+ \\
& 250000 a^{4} \log \left(a^{2}+1\right)+ \\
& 500000 a^{3} \log \left(a^{2}+1\right)- \\
& 148357702 a \text { - } \\
& \text { 74178851) }-3 \text {) }
\end{aligned}
$$

for $b=10$, we obtain :

$$
\begin{aligned}
& \left(a ^ { \wedge } 2 (a + 1) ^ { \wedge } 2 \left((a - 1 0 - 1) (a + 1 0 + 2) \left((a-10-2)(a+10+1) \log \left(a^{\wedge} 2+1\right)-(a-5)(a+5+3)\right.\right.\right. \\
& \left.\left.\left.\log \left((a+1)^{\wedge} 2+1\right)\right)+(2 a+1)\right)\right) /\left(2(2 a+1)(5+1)^{\wedge} 2(5+2)^{\wedge} 2\right)=148.357702
\end{aligned}
$$

Input interpretation

$$
\begin{gathered}
\left(a ^ { 2 } (a + 1) ^ { 2 } \left((a - 1 0 - 1) (a + 1 0 + 2) \left((a-10-2)(a+10+1) \log \left(a^{2}+1\right)-\right.\right.\right. \\
\left.\left.\left.(a-5)(a+5+3) \log \left((a+1)^{2}+1\right)\right)+(2 a+1)\right)\right) / \\
\left(2(2 a+1)(5+1)^{2}(5+2)^{2}\right)=148.357702
\end{gathered}
$$

$\log (x)$ is the natural logarithm

Result

$$
\begin{aligned}
& \frac{1}{3528(2 a+1)} a^{2}{ }_{(a+1)^{2}} \\
& \quad\left((a-11)(a+12)\left((a-12)(a+11) \log \left(a^{2}+1\right)-(a-5)(a+8) \log \left((a+1)^{2}+1\right)\right)+\right. \\
& \quad 2 a+1)=148.358
\end{aligned}
$$

Plot

Solutions

$a=-21.5994$

```
a=-0.499842
```

$a=2.93925$
$a=10.9561$

Numerical solution

$a \approx 2.93924957302642 \ldots$

For $\mathrm{a}=2.93925$, we obtain :
(2.93925^2 (2.93925+1)^2 ((2.93925-10-1)(2.93925+10+2)((2.93925-10-2)
$(2.93925+10+1) \log \left(2.93925^{\wedge} 2+1\right)-(2.93925-5)(2.93925+5+3)$
$\left.\left.\left.\log \left((2.93925+1)^{\wedge} 2+1\right)\right)+(2 * 2.93925+1)\right)\right) /(2(2 * 2.93925+1) 36 * 49)$

Input interpretation

$$
\begin{gathered}
\left(2.93925^{2}(2.93925+1)^{2}((2.93925-10-1)(2.93925+10+2)\right. \\
\left((2.93925-10-2)(2.93925+10+1) \log \left(2.93925^{2}+1\right)-\right. \\
\left.(2.93925-5)(2.93925+5+3) \log \left((2.93925+1)^{2}+1\right)\right)+ \\
(2 \times 2.93925+1))) /(2(2 \times 2.93925+1) \times 36 \times 49)
\end{gathered}
$$

Result

148.358...
148.358....

The study of this function provides the following representations:

Alternative representations

$$
\begin{gathered}
\left(2 . 9 3 9 2 5 ^ { 2 } \left((2.93925+1)^{2}((2.93925-10-1)(2.93925+10+2)\right.\right. \\
\left((2.93925-10-2)(2.93925+10+1) \log \left(2.93925^{2}+1\right)-\right. \\
\left.(2.93925-5)(2.93925+5+3) \log \left((2.93925+1)^{2}+1\right)\right)+ \\
(2 \times 2.93925+1))) /(2(2 \times 2.93925+1) 36 \times 49)= \\
\frac{1}{24267.3}\left(6.8785-120.422\left(-126.3 \log (a) \log _{a}\left(1+2.93925^{2}\right)+\right.\right. \\
\left.\left.22.5431 \log (a) \log _{a}\left(1+3.93925^{2}\right)\right)\right) 2.93925^{2} \times 3.93925^{2}
\end{gathered}
$$

```
(2.93925 }\mp@subsup{}{}{2}((2.93925 + 1) 2 ((2.93925 - 10-1) (2.93925 + 10 + 2) 
    ((2.93925-10 - 2) (2.93925 + 10 + 1) log(2.93925 2 + 1) -
    (2.93925 - 5) (2.93925 + 5 + 3) log((2.93925 + 1) 2 + 1)) +
    (2\times2.93925+1))))/(2(2\times2.93925+1)36\times49)=}\frac{1}{24267.3
    (6.8785-120.422(-126.3 増}(1+2.939252) + 22.5431 増 (1+3.93925 2 ))) 
    2.93925 }\mp@subsup{}{}{2
    3.93925}\mp@subsup{}{}{2
```

```
(2.93925 }\mp@subsup{}{}{2}((2.93925 + 1) '2 ((2.93925 - 10-1) (2.93925 + 10 + 2) 
    ((2.93925-10 - 2) (2.93925 + 10 + 1) log(2.93925 2 + 1) -
    (2.93925-5)(2.93925 + 5 + 3) log((2.93925 + 1) 2}+1))
    (2\times2.93925+1))))/(2(2\times2.93925+1) 36 < 49) =
```



```
    2.93925 }\mp@subsup{}{}{2
    3.93925}\mp@subsup{}{}{2
```


Series representations

```
(2.93925 }\mp@subsup{}{}{2}((2.93925+1)\mp@subsup{)}{}{2}((2.93925-10-1)(2.93925 + 10 + 2)
        ((2.93925 - 10-2) (2.93925 + 10 + 1) log(2.93925 2 + 1) -
                            (2.93925 - 5) (2.93925 + 5 + 3) log((2.93925 + 1) 2}+1))
    (2\times2.93925+1))))/(2(2\times2.93925+1) 36\times49)=
    0.0379989 + 84.0206 log(8.63919) - 14.9967
        log}(15.5177)
    \sum
```

```
\(\left(2.93925^{2}\left((2.93925+1)^{2}((2.93925-10-1)(2.93925+10+2)\right.\right.\)
            \(\left((2.93925-10-2)(2.93925+10+1) \log \left(2.93925^{2}+1\right)-\right.\)
                \(\left.(2.93925-5)(2.93925+5+3) \log \left((2.93925+1)^{2}+1\right)\right)+\)
    \((2 \times 2.93925+1)))) /\)
    \((2(2 \times 2.93925+1) 36 \times 49)=0.0379989+\)
    168.041
    \(i\)
    \(\pi\)
    \(\left\lfloor\frac{\arg (9.63919-x)}{2 \pi}\right\rfloor-\)
    \(29.9933 i \pi\left[\frac{\arg (16.5177-x)}{2 \pi}\right\rfloor+69.0239\)
    \(\log (x)+\)
    \(\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(-84.0206(9.63919-x)^{k}+14.9967(16.5177-x)^{k}\right) x^{-k}}{k}\) for \(x<\)
```

 0
 $$
\begin{aligned}
& \begin{array}{r}
\left(2 . 9 3 9 2 5 ^ { 2 } \left((2.93925+1)^{2}((2.93925-10-1)(2.93925+10+2)\right.\right. \\
\left((2.93925-10-2)(2.93925+10+1) \log \left(2.93925^{2}+1\right)-\right. \\
\left.(2.93925-5)(2.93925+5+3) \log \left((2.93925+1)^{2}+1\right)\right)+ \\
(2 \times 2.93925+1))) /(2(2 \times 2.93925+1) 36 \times 49)= \\
0.0379989+84.0206\left\lfloor\frac{\arg \left(9.63919-z_{0}\right)}{2 \pi}\right\rfloor \\
\log \left(\frac{1}{z_{0}}\right)- \\
14.9967\left\lfloor\frac{\arg \left(16.5177-z_{0}\right)}{2 \pi}\right\rfloor \\
\log \left(\frac{1}{z_{0}}\right)+69.0239
\end{array} \\
& \quad \log \left(z_{0}\right)+\quad \arg \left(9.63919-z_{0}\right) \\
& 84.0206\left\lfloor\frac{2 \pi}{2 \pi}\right\rfloor \\
& \log \left(z_{0}\right)- \\
& 14.9967\left\lfloor\left.\frac{\arg \left(16.5177-z_{0}\right)}{2 \pi} \right\rvert\, \log \left(z_{0}\right)+\right. \\
& \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(-84.0206\left(9.63919-z_{0}\right)^{k}+14.9967\left(16.5177-z_{0}\right)^{k}\right) z_{0}^{-k}}{k}
\end{aligned}
$$

Integral representation

$$
\begin{gathered}
\left(2 . 9 3 9 2 5 ^ { 2 } \left((2.93925+1)^{2}((2.93925-10-1)(2.93925+10+2)\right.\right. \\
\left((2.93925-10-2)(2.93925+10+1) \log \left(2.93925^{2}+1\right)-\right. \\
\left.(2.93925-5)(2.93925+5+3) \log \left((2.93925+1)^{2}+1\right)\right)+ \\
(2 \times 2.93925+1))) / \\
\int_{-i \infty+\gamma}-\frac{7.49834 e^{-4.89829 s}\left(e^{2.15631 s}-5.60261 e^{2.74198 s}\right) \Gamma(-s)^{2} \Gamma(1+s)}{i \pi \Gamma(1-s)} \\
d s \text { for }-1<\gamma<0
\end{gathered}
$$

Now, for $\mathrm{a}=64$ and $\mathrm{b}=128$,

$$
\frac{\sqrt{\pi}}{2} \times \frac{\Gamma\left(a+\frac{1}{2}\right) \Gamma(b+1) \Gamma(b-a+1)}{\Gamma(a) \Gamma\left(b+\frac{1}{2}\right) \Gamma\left(b-a+\frac{1}{2}\right)}
$$

we obtain:
$(\operatorname{sqrt}(\pi) \Gamma(64+1 / 2) \Gamma(128+1) \Gamma(-64+128+1)) /(2 \Gamma(64) \Gamma(128+1 / 2) \Gamma(-64+128$ $+1 / 2)$)

Input

$$
\frac{\sqrt{\pi} \Gamma\left(64+\frac{1}{2}\right) \Gamma(128+1) \Gamma(-64+128+1)}{2 \Gamma(64) \Gamma\left(128+\frac{1}{2}\right) \Gamma\left(-64+128+\frac{1}{2}\right)}
$$

Exact result

```
1852673427797059126777135760139006525652319754650249024631321:
        344126610074238976/
        2884329411724603169044874178931143443870105850987581016304:
        218283632259375395
```


Decimal approximation

642.32379986352025789577314705862646447370857549025692089819461318
642.32379986....

The study of this function provides the following representations:

Alternative representations

$\frac{\sqrt{\pi}\left(\Gamma\left(64+\frac{1}{2}\right) \Gamma(128+1) \Gamma(-64+128+1)\right)}{2 \Gamma(64) \Gamma\left(128+\frac{1}{2}\right) \Gamma\left(-64+128+\frac{1}{2}\right)}=\frac{\frac{127}{2}!\times 64!\times 128!\sqrt{\pi}}{2 \times 63!\times \frac{127}{2}!\times \frac{255}{2}!}$
$\frac{\sqrt{\pi}\left(\Gamma\left(64+\frac{1}{2}\right) \Gamma(128+1) \Gamma(-64+128+1)\right)}{2 \Gamma(64) \Gamma\left(128+\frac{1}{2}\right) \Gamma\left(-64+128+\frac{1}{2}\right)}=\frac{\Gamma\left(\frac{129}{2}, 0\right) \Gamma(65,0) \Gamma(129,0) \sqrt{\pi}}{2 \Gamma(64,0) \Gamma\left(\frac{129}{2}, 0\right) \Gamma\left(\frac{257}{2}, 0\right)}$

$$
\frac{\sqrt{\pi}\left(\Gamma\left(64+\frac{1}{2}\right) \Gamma(128+1) \Gamma(-64+128+1)\right)}{2 \Gamma(64) \Gamma\left(128+\frac{1}{2}\right) \Gamma\left(-64+128+\frac{1}{2}\right)}=\frac{(1)_{\frac{127}{2}}(1)_{64}(1)_{128} \sqrt{\pi}}{2(1)_{63}(1)_{\frac{127}{2}}(1)_{\frac{255}{2}}}
$$

Series representations

$$
\begin{aligned}
& \frac{\sqrt{\pi}\left(\Gamma\left(64+\frac{1}{2}\right) \Gamma(128+1) \Gamma(-64+128+1)\right)}{2 \Gamma(64) \Gamma\left(128+\frac{1}{2}\right) \Gamma\left(-64+128+\frac{1}{2}\right)}= \\
& \frac{\exp \left(i \pi\left\lfloor\frac{\arg (\pi-x)}{2 \pi}\right\rfloor\right) \Gamma(65) \Gamma(129) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(\pi-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}}{2 \Gamma(64) \Gamma\left(\frac{257}{2}\right)}
\end{aligned}
$$

for $(x \in \mathbb{R}$ and $x<0)$
$\frac{\sqrt{\pi}\left(\Gamma\left(64+\frac{1}{2}\right) \Gamma(128+1) \Gamma(-64+128+1)\right)}{2 \Gamma(64) \Gamma\left(128+\frac{1}{2}\right) \Gamma\left(-64+128+\frac{1}{2}\right)}=$
$\frac{\Gamma(65) \Gamma(129)\left(\frac{1}{z_{0}}\right)^{\left.1 / 2 \arg \left(\pi-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{1 / 2\left(1+\arg \left(\pi-z_{0}\right) /(2 \pi)\right\rfloor} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(\pi-z_{0}\right)^{k} z_{0}^{-k}}{k!}}{2 \Gamma(64) \Gamma\left(\frac{257}{2}\right)}$

$$
\begin{aligned}
& \frac{\sqrt{\pi}\left(\Gamma\left(64+\frac{1}{2}\right) \Gamma(128+1) \Gamma(-64+128+1)\right)}{2 \Gamma(64) \Gamma\left(128+\frac{1}{2}\right) \Gamma\left(-64+128+\frac{1}{2}\right)}= \\
& \frac{\sqrt{-1+\pi} \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \sum_{k_{3}=0}^{\infty} \frac{(-1+\pi)^{-k_{1}}\binom{\frac{1}{2}}{k_{1}}\left(65-z_{0}\right)^{k_{2}}\left(129-z_{0}\right)^{k_{3}} \Gamma^{\left(k_{2}\right)}\left(z_{0}\right) \Gamma^{\left(k_{3}\right)}\left(z_{0}\right)}{2\left(\sum_{k=0}^{\infty} \frac{\left(64-z_{0}\right)^{k} \Gamma^{(k)}\left(z_{0}\right)}{k!}\right) \sum_{k=0}^{\infty} \frac{k_{2}!k_{3}!}{\left.\frac{(257}{2}-z_{0}\right)^{k} \Gamma^{(k)}\left(z_{0}\right)}} k!}{k!}
\end{aligned}
$$

for ($z_{0} \notin \mathbb{Z}$ or $z_{0}>0$)

Integral representations

$\frac{\sqrt{\pi}\left(\Gamma\left(64+\frac{1}{2}\right) \Gamma(128+1) \Gamma(-64+128+1)\right)}{2 \Gamma(64) \Gamma\left(128+\frac{1}{2}\right) \Gamma\left(-64+128+\frac{1}{2}\right)}=\int_{0}^{1} \int_{0}^{1} \log ^{64}\left(\frac{1}{t_{1}}\right) \log ^{128}\left(\frac{1}{t_{2}}\right) d t_{2} d t_{1}$

$$
\begin{aligned}
& \frac{\sqrt{\pi}\left(\Gamma\left(64+\frac{1}{2}\right) \Gamma(128+1) \Gamma(-64+128+1)\right)}{2 \Gamma(64) \Gamma\left(128+\frac{1}{2}\right) \Gamma\left(-64+128+\frac{1}{2}\right)}= \\
& \frac{1}{2} \exp \left(\int_{0}^{1} \frac{-3-3 \sqrt{x}+2 x^{64}+2 x^{129 / 2}+2 x^{257 / 2}}{2(1+\sqrt{x}) \log (x)} d x\right) \sqrt{\pi}
\end{aligned}
$$

$\frac{\sqrt{\pi}\left(\Gamma\left(64+\frac{1}{2}\right) \Gamma(128+1) \Gamma(-64+128+1)\right)}{2 \Gamma(64) \Gamma\left(128+\frac{1}{2}\right) \Gamma\left(-64+128+\frac{1}{2}\right)}=\frac{1}{2} \exp \left(-\frac{3 \gamma}{2}+\right.$
$\quad \int_{0}^{1} \frac{x^{64}-x^{65}+x^{257 / 2}-x^{129}-\log \left(x^{64}\right)+\log \left(x^{65}\right)-\log \left(x^{257 / 2}\right)+\log \left(x^{129}\right)}{\log (x)-x \log (x)}$
$d x) \sqrt{\pi}$
$\log (x)$ is the natural logarithm
γ is the Euler-Mascheroni constant

From:

$$
\begin{aligned}
& \int \frac{\left(1+\frac{x^{2}}{(b+1)^{2}}\right)\left(1+\frac{x^{2}}{(b+2)^{2}}\right) x}{\left(1+\frac{x^{2}}{a^{2}}\right)\left(1+\frac{x^{2}}{(a+1)^{2}}\right)} d x= \\
& \left(a ^ { 2 } (a + 1) ^ { 2 } \left(\left(a^{4}-a^{2}\left(2 b^{2}+6 b+5\right)+\left(b^{2}+3 b+2\right)^{2}\right) \log \left(a^{2}+x^{2}\right)-\right.\right. \\
& \left(a^{4}+4 a^{3}+a^{2}\left(-2 b^{2}-6 b+1\right)-2 a\left(2 b^{2}+6 b+3\right)+\right. \\
& \left.\left.\left.b\left(b^{3}+6 b^{2}+11 b+6\right)\right) \log \left(a^{2}+2 a+x^{2}+1\right)+(2 a+1) x^{2}\right)\right) / \\
& \quad\left(2(2 a+1)\left(b^{2}+3 b+2\right)^{2}\right)+\text { constant }
\end{aligned}
$$

$$
\begin{aligned}
& \left(a ^ { 2 } (a + 1) ^ { 2 } \left((a - b - 1) (a + b + 2) \left((a-b-2)(a+b+1) \log \left(a^{2}+x^{2}\right)-(a-b)(a+\right.\right.\right. \\
& \left.\left.\left.b+3) \log \left((a+1)^{2}+x^{2}\right)\right)+(2 a+1) x^{2}\right)\right) /\left(2(2 a+1)(b+1)^{2}(b+2)^{2}\right)+\text { constant }
\end{aligned}
$$

We consider:
$\left(\mathrm{a}^{\wedge} 2(\mathrm{a}+1)^{\wedge} 2\left((\mathrm{a}-\mathrm{b}-1)(\mathrm{a}+\mathrm{b}+2)\left((\mathrm{a}-\mathrm{b}-2)(\mathrm{a}+\mathrm{b}+1) \log \left(\mathrm{a}^{\wedge} 2+1\right)-(\mathrm{a}-\mathrm{b})(\mathrm{a}+\mathrm{b}\right.\right.\right.$ $\left.\left.\left.+3) \log \left((a+1)^{\wedge} 2+1\right)\right)+(2 a+1)\right)\right) /\left(2(2 a+1)(b+1)^{\wedge} 2(b+2)^{\wedge} 2\right)=642.323799$

Input interpretation

$$
\begin{gathered}
\left(a ^ { 2 } (a + 1) ^ { 2 } \left((a - b - 1) (a + b + 2) \left((a-b-2)(a+b+1) \log \left(a^{2}+1\right)-\right.\right.\right. \\
\left.\left.\left.(a-b)(a+b+3) \log \left((a+1)^{2}+1\right)\right)+(2 a+1)\right)\right) / \\
\left(2(2 a+1)(b+1)^{2}(b+2)^{2}\right)=642.323799
\end{gathered}
$$

Implicit plot

$$
\begin{aligned}
& b \approx 0.5\left(-\sqrt{ }\left(9-\left(2 \left(1000000 a^{6} \log \left((a+1)^{2}+1\right)+4000000 a^{5} \log \left((a+1)^{2}+1\right)+\right.\right.\right.\right. \\
& 4000000 a^{4} \log \left((a+1)^{2}+1\right)+ \\
& 2000000 a^{2} \log \left(a^{2}+1\right)-1000000 a^{2} \log \left((a+1)^{2}+1\right)- \\
& 1000000 a^{6} \log \left(a^{2}+1\right)-2000000 a^{5} \log \left(a^{2}+1\right)+ \\
& 1000000 a^{4} \log \left(a^{2}+1\right)+4000000 a^{3} \log \left(a^{2}+1\right)- \\
& \sqrt{ }\left(\left(-1000000 a^{6} \log \left((a+1)^{2}+1\right)-4000000 a^{5} \log (\right.\right. \\
& \left.(a+1)^{2}+1\right)-4000000 a^{4} \log \left((a+1)^{2}+\right. \\
& \text { 1) }-2000000 a^{2} \log \left(a^{2}+1\right)+1000000 a^{2} \\
& \log \left((a+1)^{2}+1\right)+1000000 a^{6} \log \left(a^{2}+\right. \\
& \text { 1) }+2000000 a^{5} \log \left(a^{2}+1\right)-1000000 a^{4} \\
& \log \left(a^{2}+1\right)-4000000 a^{3} \log \left(a^{2}+1\right)+ \\
& 5138590392 a+2569295196)^{2}- \\
& 4\left(-500000 a^{4} \log \left((a+1)^{2}+1\right)-1000000 a^{3}\right. \\
& \log \left((a+1)^{2}+1\right)+500000 a^{2} \log \left(a^{2}+1\right)- \\
& 500000 a^{2} \log \left((a+1)^{2}+1\right)+500000 \\
& a^{4} \log \left(a^{2}+1\right)+1000000 a^{3} \log \left(a^{2}+1\right)- \\
& 1284647598 a-642323799) \\
& \left(-500000 a^{8} \log \left((a+1)^{2}+1\right)-\right. \\
& 3000000 a^{7} \log \left((a+1)^{2}+1\right)- \\
& 5000000 a^{6} \log \left((a+1)^{2}+1\right)+1000000 a^{5}+ \\
& 2500000 a^{4}+5500000 a^{4} \log \left((a+1)^{2}+1\right)+ \\
& 2000000 a^{3}+3000000 a^{3} \log \left((a+1)^{2}+1\right)+ \\
& 500000 a^{2}+2000000 a^{2} \log \left(a^{2}+1\right)+ \\
& 500000 a^{8} \log \left(a^{2}+1\right)+1000000 a^{7} \\
& \log \left(a^{2}+1\right)-2000000 a^{6} \log \left(a^{2}+1\right)- \\
& 5000000 a^{5} \log \left(a^{2}+1\right)-500000 a^{4} \\
& \log \left(a^{2}+1\right)+4000000 a^{3} \log \left(a^{2}+1\right)- \\
& 5138590392 a-2569295 \text { 196)) - } \\
& 5138590392 a-2569295 \text { 196)) / } \\
& \left(-500000 a^{4} \log \left((a+1)^{2}+1\right)-1000000 a^{3}\right. \\
& \log \left((a+1)^{2}+1\right)+ \\
& 500000 a^{2} \log \left(a^{2}+1\right)- \\
& 500000 a^{2} \log \left((a+1)^{2}+1\right)+ \\
& 500000 a^{4} \log \left(a^{2}+1\right)+ \\
& 1000000 a^{3} \log \left(a^{2}+1\right)- \\
& 1284647598 a- \\
& \text { 642323799) }-3 \text {) }
\end{aligned}
$$

```
b\approx0.5(\sqrt{}{}(9-(2(1000000\mp@subsup{a}{}{6}\operatorname{log}((a+1)\mp@subsup{)}{}{2}+1)+4000000\mp@subsup{a}{}{5}\operatorname{log}((a+1)}\mp@subsup{)}{}{2}+1)
    4000000 a }\mp@subsup{}{}{4}\operatorname{log}((a+1\mp@subsup{)}{}{2}+1)
    2000000 \mp@subsup{a}{}{2}\operatorname{log}(\mp@subsup{a}{}{2}+1)-1000000\mp@subsup{a}{}{2}\operatorname{log}((a+1\mp@subsup{)}{}{2}+1)-
    1000000 a}\mp@subsup{a}{}{6}\operatorname{log}(\mp@subsup{a}{}{2}+1)-2000000\mp@subsup{a}{}{5}\operatorname{log}(\mp@subsup{a}{}{2}+1)
    1000000 a }\mp@subsup{a}{}{4}\operatorname{log}(\mp@subsup{a}{}{2}+1)+4000000\mp@subsup{a}{}{3}\operatorname{log}(\mp@subsup{a}{}{2}+1)
    V}((-1000000\mp@subsup{a}{}{6}\operatorname{log}((a+1\mp@subsup{)}{}{2}+1)-4000000\mp@subsup{a}{}{5}\operatorname{log}
        (a+1)}\mp@subsup{)}{}{2}+1)-4000000\mp@subsup{a}{}{4}\operatorname{log}((a+1\mp@subsup{)}{}{2}
            1) -2000000 a}\mp@subsup{a}{}{2}\operatorname{log}(\mp@subsup{a}{}{2}+1)+1000000\mp@subsup{a}{}{2
            log}((a+1\mp@subsup{)}{}{2}+1)+1000000\mp@subsup{a}{}{6}\operatorname{log}(\mp@subsup{a}{}{2}
                    1)+2000000 a}\mp@subsup{a}{}{5}\operatorname{log}(\mp@subsup{a}{}{2}+1)-1000000\mp@subsup{a}{}{4
            log(\mp@subsup{a}{}{2}+1)-4000000\mp@subsup{a}{}{3}\operatorname{log}(\mp@subsup{a}{}{2}+1)+
            5138590392a+2569295196)}\mp@subsup{)}{}{2}-
        (-500000 a }\mp@subsup{a}{}{4}\operatorname{log}((a+1\mp@subsup{)}{}{2}+1)-100000
            a}\mp@subsup{a}{}{3}\operatorname{log}((a+1\mp@subsup{)}{}{2}+1)+500000\mp@subsup{a}{}{2}\operatorname{log}(\mp@subsup{a}{}{2}+1)
            500000 \mp@subsup{a}{}{2}\operatorname{log}((a+1\mp@subsup{)}{}{2}+1)+500000
            a}\mp@subsup{}{}{4}\operatorname{log}(\mp@subsup{a}{}{2}+1)+1000000\mp@subsup{a}{}{3}\operatorname{log}(\mp@subsup{a}{}{2}+1)
        1284647598 a-642323799)
        (-500000 a 8}\operatorname{log}((a+1\mp@subsup{)}{}{2}+1)
            3000000 a }\mp@subsup{a}{}{7}\operatorname{log}((a+1\mp@subsup{)}{}{2}+1)
            5000000 a}\mp@subsup{}{}{6}\operatorname{log}((a+1\mp@subsup{)}{}{2}+1)+1000000\mp@subsup{a}{}{5}
            2500000 \mp@subsup{a}{}{4}+5500000\mp@subsup{a}{}{4}\operatorname{log}((a+1\mp@subsup{)}{}{2}+1)+
            2000000 a 3}+3000000\mp@subsup{a}{}{3}\operatorname{log}((a+1\mp@subsup{)}{}{2}+1)
            500000 a 2 +2000000 a 2 log(a}\mp@subsup{a}{}{2}+1)
            5 0 0 0 0 0 a ^ { 8 } \operatorname { l o g } ( a ^ { 2 } + 1 ) + 1 0 0 0 0 0 0 a ^ { 7 }
            log(\mp@subsup{a}{}{2}+1)-2000000 a}\mp@subsup{a}{}{6}\operatorname{log}(\mp@subsup{a}{}{2}+1)
            5000000 a }\mp@subsup{}{}{5}\operatorname{log}(\mp@subsup{a}{}{2}+1)-500000\mp@subsup{a}{}{4
            log(\mp@subsup{a}{}{2}+1)+4000000 \mp@subsup{a}{}{3}\operatorname{log}(\mp@subsup{a}{}{2}+1)-
            5138590392a-2569295 196)) -
        5138590392a-2569295 196))/
(-500000 a 4 log((a+1) 2}+1)
    1000000
        a
        log((a+1)}\mp@subsup{)}{}{2}+1)
    500000 a}\mp@subsup{a}{}{2}\operatorname{log}(\mp@subsup{a}{}{2}+1)
    500000 a }\mp@subsup{}{}{2
        log((a+1)}\mp@subsup{)}{}{2}+1)
    500000 a 4 log(a}\mp@subsup{a}{}{2}+1)
    1000000 a}\mp@subsup{}{}{3}\operatorname{log}(\mp@subsup{a}{}{2}+1)
    1284647598a-
    642323799)) - 3)
```

$$
\begin{aligned}
& b \approx 0.5\left(-\sqrt{ }\left(9-\left(2 \left(1000000 a^{6} \log \left((a+1)^{2}+1\right)+4000000 a^{5} \log \left((a+1)^{2}+1\right)+\right.\right.\right.\right. \\
& 4000000 a^{4} \log \left((a+1)^{2}+1\right)+ \\
& 2000000 a^{2} \log \left(a^{2}+1\right)-1000000 a^{2} \log \left((a+1)^{2}+1\right)- \\
& 1000000 a^{6} \log \left(a^{2}+1\right)-2000000 a^{5} \log \left(a^{2}+1\right)+ \\
& 1000000 a^{4} \log \left(a^{2}+1\right)+4000000 a^{3} \log \left(a^{2}+1\right)+ \\
& \sqrt{ }\left(\left(-1000000 a^{6} \log \left((a+1)^{2}+1\right)-4000000 a^{5} \log (\right.\right. \\
& \left.(a+1)^{2}+1\right)-4000000 a^{4} \log \left((a+1)^{2}+\right. \\
& \text { 1) }-2000000 a^{2} \log \left(a^{2}+1\right)+1000000 a^{2} \\
& \log \left((a+1)^{2}+1\right)+1000000 a^{6} \log \left(a^{2}+\right. \\
& \text { 1) }+2000000 a^{5} \log \left(a^{2}+1\right)-1000000 a^{4} \\
& \log \left(a^{2}+1\right)-4000000 a^{3} \log \left(a^{2}+1\right)+ \\
& 5138590392 a+2569295196)^{2}- \\
& 4\left(-500000 a^{4} \log \left((a+1)^{2}+1\right)-1000000 a^{3}\right. \\
& \log \left((a+1)^{2}+1\right)+500000 a^{2} \log \left(a^{2}+1\right)- \\
& 500000 a^{2} \log \left((a+1)^{2}+1\right)+500000 \\
& a^{4} \log \left(a^{2}+1\right)+1000000 a^{3} \log \left(a^{2}+1\right)- \\
& 1284647598 a-642323799) \\
& \left(-500000 a^{8} \log \left((a+1)^{2}+1\right)-\right. \\
& 3000000 a^{7} \log \left((a+1)^{2}+1\right)- \\
& 5000000 a^{6} \log \left((a+1)^{2}+1\right)+1000000 a^{5}+ \\
& 2500000 a^{4}+5500000 a^{4} \log \left((a+1)^{2}+1\right)+ \\
& 2000000 a^{3}+3000000 a^{3} \log \left((a+1)^{2}+1\right)+ \\
& 500000 a^{2}+2000000 a^{2} \log \left(a^{2}+1\right)+ \\
& 500000 a^{8} \log \left(a^{2}+1\right)+1000000 a^{7} \\
& \log \left(a^{2}+1\right)-2000000 a^{6} \log \left(a^{2}+1\right)- \\
& 5000000 a^{5} \log \left(a^{2}+1\right)-500000 a^{4} \\
& \log \left(a^{2}+1\right)+4000000 a^{3} \log \left(a^{2}+1\right)- \\
& 5138590392 a-2569295 \text { 196)) - } \\
& 5138590392 a-2569295 \text { 196)) / } \\
& \left(-500000 a^{4} \log \left((a+1)^{2}+1\right)-1000000 a^{3}\right. \\
& \log \left((a+1)^{2}+1\right)+ \\
& 500000 a^{2} \log \left(a^{2}+1\right)- \\
& 500000 a^{2} \log \left((a+1)^{2}+1\right)+ \\
& 500000 a^{4} \log \left(a^{2}+1\right)+ \\
& 1000000 a^{3} \log \left(a^{2}+1\right)- \\
& 1284647598 a \text { - } \\
& 642323799) \text { - } 3 \text {) }
\end{aligned}
$$

$$
\begin{aligned}
& b \approx 0.5\left(\sqrt { } \left(9-\left(2 \left(1000000 a^{6} \log \left((a+1)^{2}+1\right)+4000000 a^{5} \log \left((a+1)^{2}+1\right)+\right.\right.\right.\right. \\
& 4000000 a^{4} \log \left((a+1)^{2}+1\right)+ \\
& 2000000 a^{2} \log \left(a^{2}+1\right)-1000000 a^{2} \log \left((a+1)^{2}+1\right)- \\
& 1000000 a^{6} \log \left(a^{2}+1\right)-2000000 a^{5} \log \left(a^{2}+1\right)+ \\
& 1000000 a^{4} \log \left(a^{2}+1\right)+4000000 a^{3} \log \left(a^{2}+1\right)+ \\
& \sqrt{ }\left(\left(-1000000 a^{6} \log \left((a+1)^{2}+1\right)-4000000 a^{5} \log (\right.\right. \\
& \left.(a+1)^{2}+1\right)-4000000 a^{4} \log \left((a+1)^{2}+\right. \\
& \text { 1) }-2000000 a^{2} \log \left(a^{2}+1\right)+1000000 a^{2} \\
& \log \left((a+1)^{2}+1\right)+1000000 a^{6} \log \left(a^{2}+\right. \\
& \text { 1) }+2000000 a^{5} \log \left(a^{2}+1\right)-1000000 a^{4} \\
& \log \left(a^{2}+1\right)-4000000 a^{3} \log \left(a^{2}+1\right)+ \\
& 5138590392 a+2569295196)^{2}-4 \\
& \left(-500000 a^{4} \log \left((a+1)^{2}+1\right)-1000000\right. \\
& a^{3} \log \left((a+1)^{2}+1\right)+500000 a^{2} \log \left(a^{2}+1\right)- \\
& 500000 a^{2} \log \left((a+1)^{2}+1\right)+500000 \\
& a^{4} \log \left(a^{2}+1\right)+1000000 a^{3} \log \left(a^{2}+1\right)- \\
& 1284647598 a-642323799) \\
& \left(-500000 a^{8} \log \left((a+1)^{2}+1\right)-\right. \\
& 3000000 a^{7} \log \left((a+1)^{2}+1\right)- \\
& 5000000 a^{6} \log \left((a+1)^{2}+1\right)+1000000 a^{5}+ \\
& 2500000 a^{4}+5500000 a^{4} \log \left((a+1)^{2}+1\right)+ \\
& 2000000 a^{3}+3000000 a^{3} \log \left((a+1)^{2}+1\right)+ \\
& 500000 a^{2}+2000000 a^{2} \log \left(a^{2}+1\right)+ \\
& 500000 a^{8} \log \left(a^{2}+1\right)+1000000 a^{7} \\
& \log \left(a^{2}+1\right)-2000000 a^{6} \log \left(a^{2}+1\right)- \\
& 5000000 a^{5} \log \left(a^{2}+1\right)-500000 a^{4} \\
& \log \left(a^{2}+1\right)+4000000 a^{3} \log \left(a^{2}+1\right)- \\
& 5138590392 a-2569295196)) \text { - } \\
& 5138590392 a-2569295196) \text {)/ } \\
& \left(-500000 a^{4} \log \left((a+1)^{2}+1\right)-\right. \\
& 1000000 \\
& a^{3} \\
& \log \left((a+1)^{2}+1\right)+ \\
& 500000 a^{2} \log \left(a^{2}+1\right)- \\
& 500000 a^{2} \\
& \log \left((a+1)^{2}+1\right)+ \\
& 500000 a^{4} \log \left(a^{2}+1\right)+ \\
& 1000000 a^{3} \log \left(a^{2}+1\right)- \\
& 1284647598 \text { a- } \\
& \text { 642323799) }) \text { - 3) }
\end{aligned}
$$

for $b=40$, we obtain :
$\left(a^{\wedge} 2(a+1)^{\wedge} 2\left((a-40-1)(a+40+2)\left((a-40-2)(a+40+1) \log \left(a^{\wedge} 2+1\right)-(a-40)\right.\right.\right.$ $\left.\left.\left.(a+40+3) \log \left((a+1)^{\wedge} 2+1\right)\right)+(2 a+1)\right)\right) /\left(2(2 a+1)(40+1)^{\wedge} 2(40+2)^{\wedge} 2\right)=$ 642.323799

Input interpretation

$$
\begin{gathered}
\left(a ^ { 2 } (a + 1) ^ { 2 } \left((a - 4 0 - 1) (a + 4 0 + 2) \left((a-40-2)(a+40+1) \log \left(a^{2}+1\right)-\right.\right.\right. \\
\left.\left.\left.(a-40)(a+40+3) \log \left((a+1)^{2}+1\right)\right)+(2 a+1)\right)\right) / \\
\left(2(2 a+1)(40+1)^{2}(40+2)^{2}\right)=642.323799
\end{gathered}
$$

$\log (x)$ is the natural logarithm

Result

$$
\begin{aligned}
& \frac{1}{5930568(2 a+1)} \\
& a^{2}(a+1)^{2}\left((a - 4 1) (a + 4 2) \left((a-42)(a+41) \log \left(a^{2}+1\right)-(a-40)\right.\right. \\
& \left.\left.\quad(a+43) \log \left((a+1)^{2}+1\right)\right)+2 a+1\right)=642.324
\end{aligned}
$$

Plot

Solutions

$$
a=-40.8018
$$

$$
a=23.0923
$$

$$
a=39.8018
$$

For $\mathrm{a}=39.8018$, we obtain :
(39.8018^2 (39.8018+1)^2 ((39.8018-40-1)(39.8018+40+2)((39.8018-40-2)
$(39.8018+40+1) \log \left(39.8018^{\wedge} 2+1\right)-(39.8018-40)(39.8018+40+3)$
$\left.\left.\left.\log \left((39.8018+1)^{\wedge} 2+1\right)\right)+(2 * 39.8018+1)\right)\right) /\left(2(2 * 39.8018+1)(41)^{\wedge} 2(42)^{\wedge} 2\right)$

Input interpretation

$\left(39.8018^{2}(39.8018+1)^{2}((39.8018-40-1)(39.8018+40+2)\right.$

$$
\begin{aligned}
& \left((39.8018-40-2)(39.8018+40+1) \log \left(39.8018^{2}+1\right)-\right. \\
& \left.(39.8018-40)(39.8018+40+3) \log \left((39.8018+1)^{2}+1\right)\right)+ \\
& (2 \times 39.8018+1))) /\left(2\left((2 \times 39.8018+1) \times 41^{2}\right) \times 42^{2}\right)
\end{aligned}
$$

Result

642.34667108981606306639984939820214379434090687069925960491078853
642.346671089816.....

The study of this function provides the following representations:

Alternative representations

$$
\begin{gathered}
\left(3 9 . 8 0 1 8 ^ { 2 } \left((39.8018+1)^{2}((39.8018-40-1)(39.8018+40+2)\right.\right. \\
\left((39.8018-40-2)(39.8018+40+1) \log \left(39.8018^{2}+1\right)-\right. \\
\left.(39.8018-40)(39.8018+40+3) \log \left((39.8018+1)^{2}+1\right)\right)+ \\
(2 \times 39.8018+1)))) /\left(2\left((2 \times 39.8018+1) 41^{2}\right) 42^{2}\right)= \\
\frac{1}{161.207 \times 41^{2} \times 42^{2}}\left(80.6036-98.0149\left(-177.619 \log (a) \log _{a}\left(1+39.8018^{2}\right)+\right.\right. \\
\left.\left.16.4113 \log (a) \log _{a}\left(1+40.8018^{2}\right)\right)\right) 39.8018^{2} \times 40.8018^{2}
\end{gathered}
$$

$$
\begin{gathered}
\left(3 9 . 8 0 1 8 ^ { 2 } \left((39.8018+1)^{2}((39.8018-40-1)(39.8018+40+2)\right.\right. \\
\left((39.8018-40-2)(39.8018+40+1) \log \left(39.8018^{2}+1\right)-\right. \\
(39.8018-40)(39.8018+40+3) \\
\left.\left.\left.\left.\log \left((39.8018+1)^{2}+1\right)\right)+(2 \times 39.8018+1)\right)\right)\right) / \\
\left(2\left((2 \times 39.8018+1) 41^{2}\right) 42^{2}\right)=\frac{1}{161.207 \times 41^{2} \times 42^{2}} \\
(80.6036- \\
\left.98.0149\left(-177.619 \log _{e}\left(1+39.8018^{2}\right)+16.4113 \log _{e}\left(1+40.8018^{2}\right)\right)\right) \\
39.8018^{2} \times 40.8018^{2}
\end{gathered}
$$

$$
\begin{aligned}
& \left(3 9 . 8 0 1 8 ^ { 2 } \left((39.8018+1)^{2}((39.8018-40-1)(39.8018+40+2)\right.\right. \\
& \quad\left((39.8018-40-2)(39.8018+40+1) \log \left(39.8018^{2}+1\right)-\right. \\
& (39.8018-40)(39.8018+40+3) \\
& \left.\left.\left.\left.\log \left((39.8018+1)^{2}+1\right)\right)+(2 \times 39.8018+1)\right)\right)\right) / \\
& \left(2\left((2 \times 39.8018+1) 41^{2}\right) 42^{2}\right)=\frac{1}{161.207 \times 41^{2} \times 42^{2}} \\
& (80.6036- \\
& \left.98.0149\left(177.619 \mathrm{Li}_{1}\left(-39.8018^{2}\right)-16.4113 \mathrm{Li}_{1}\left(-40.8018^{2}\right)\right)\right) \\
& 39.8018^{2} \times 40.8018^{2}
\end{aligned}
$$

Series representations

$$
\begin{gathered}
\left(3 9 . 8 0 1 8 ^ { 2 } \left((39.8018+1)^{2}((39.8018-40-1)(39.8018+40+2)\right.\right. \\
\left((39.8018-40-2)(39.8018+40+1) \log \left(39.8018^{2}+1\right)-\right. \\
\left.(39.8018-40)(39.8018+40+3) \log \left((39.8018+1)^{2}+1\right)\right)+ \\
(2 \times 39.8018+1))) /\left(2\left((2 \times 39.8018+1) 41^{2}\right) 42^{2}\right)= \\
0.444701+96.0492 \log (1584.18)-8.8746 \\
\log (1664.79)+ \\
\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(8.8746 e^{-7.41745 k}-96.0492 e^{-7.36782 k}\right)}{k}
\end{gathered}
$$

$\left(39.8018^{2}\left((39.8018+1)^{2}((39.8018-40-1)(39.8018+40+2)\right.\right.$

$$
\left((39.8018-40-2)(39.8018+40+1) \log \left(39.8018^{2}+1\right)-\right.
$$

$$
(39.8018-40)(39.8018+40+3)
$$

$$
\left.\left.\left.\left.\log \left((39.8018+1)^{2}+1\right)\right)+(2 \times 39.8018+1)\right)\right)\right) /
$$

$$
\left(2\left((2 \times 39.8018+1) 41^{2}\right) 42^{2}\right)=0.444701+
$$

$$
192.098
$$

i
π
$\left\lfloor\frac{\arg (1585.18-x)}{2 \pi}\right\rfloor-17.7492$
i
π
$\left\lfloor\frac{\arg (1665.79-x)}{2 \pi}\right\rfloor+87.1746$
$\log (x)+$

$$
\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(-96.0492(1585.18-x)^{k}+8.8746(1665.79-x)^{k}\right) x^{-k}}{k} \text { for }
$$

0

```
\(\left(39.8018^{2}\left((39.8018+1)^{2}((39.8018-40-1)(39.8018+40+2)\right.\right.\)
    \(\left((39.8018-40-2)(39.8018+40+1) \log \left(39.8018^{2}+1\right)-\right.\)
                                    \(\left.(39.8018-40)(39.8018+40+3) \log \left((39.8018+1)^{2}+1\right)\right)+\)
    \((2 \times 39.8018+1)))) /\left(2\left((2 \times 39.8018+1) 41^{2}\right) 42^{2}\right)=\)
\(0.444701+96.0492\left\lfloor\frac{\arg \left(1585.18-z_{0}\right)}{2 \pi}\right\rfloor\)
    \(\log (\)
        \(\left.\frac{1}{z_{0}}\right)-\)
    \(8.8746\left\lfloor\frac{\arg \left(1665.79-z_{0}\right)}{2 \pi}\right\rfloor\)
    \(\log \left(\frac{1}{z_{0}}\right)+87.1746\)
    \(\log \left(z_{0}\right)+\)
\(96.0492\left\lfloor\frac{\arg \left(1585.18-z_{0}\right)}{2 \pi}\right\rfloor\)
    \(\log \left(z_{0}\right)-\)
    \(8.8746\left[\frac{\arg \left(1665.79-z_{0}\right)}{2 \pi}\right] \log \left(z_{0}\right)+\)
    \(\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(-96.0492\left(1585.18-z_{0}\right)^{k}+8.8746\left(1665.79-z_{0}\right)^{k}\right) z_{0}^{-k}}{k}\)
```


Integral representation

$$
\begin{gathered}
\left(3 9 . 8 0 1 8 ^ { 2 } \left((39.8018+1)^{2}((39.8018-40-1)(39.8018+40+2)\right.\right. \\
\left((39.8018-40-2)(39.8018+40+1) \log \left(39.8018^{2}+1\right)-\right. \\
(39.8018-40)(39.8018+40+3) \\
\left.\left.\left.\left.\log \left((39.8018+1)^{2}+1\right)\right)+(2 \times 39.8018+1)\right)\right)\right) / \\
\left(2\left((2 \times 39.8018+1) 41^{2}\right) 42^{2}\right)=0.444701+ \\
\int_{-i \infty+\gamma}^{i \infty+\gamma}-\frac{4.4373 e^{-14.7853 s}\left(e^{7.36782 s}-10.8229 e^{7.41745 s}\right) \Gamma(-s)^{2} \Gamma(1+s)}{i \pi \Gamma(1-s)} \\
d s \text { for }-1<\gamma<0
\end{gathered}
$$

For $\mathrm{a}=8$ and $\mathrm{b}=64$,
from

$$
\frac{\sqrt{\pi}}{2} \times \frac{\Gamma\left(a+\frac{1}{2}\right) \Gamma(b+1) \Gamma(b-a+1)}{\Gamma(a) \Gamma\left(b+\frac{1}{2}\right) \Gamma\left(b-a+\frac{1}{2}\right)}
$$

we obtain:
$(\operatorname{sqrt}(\pi) \Gamma(8+1 / 2) \Gamma(64+1) \Gamma(-8+64+1)) /(2 \Gamma(8) \Gamma(64+1 / 2) \Gamma(-8+64+1 / 2))$

Input

$$
\frac{\sqrt{\pi} \Gamma\left(8+\frac{1}{2}\right) \Gamma(64+1) \Gamma(-8+64+1)}{2 \Gamma(8) \Gamma\left(64+\frac{1}{2}\right) \Gamma\left(-8+64+\frac{1}{2}\right)}
$$

Exact result

90861297665263806397852504259184867012180701150408708366012 :
722575

Decimal approximation

148.35770212347189226490825070847834610348244898384466234402961177
...
148.357702123....

From:

$$
\begin{aligned}
& \int \frac{\left(1+\frac{x^{2}}{(b+1)^{2}}\right)\left(1+\frac{x^{2}}{(b+2)^{2}}\right) x}{\left(1+\frac{x^{2}}{a^{2}}\right)\left(1+\frac{x^{2}}{(a+1)^{2}}\right)} d x= \\
& \left(a ^ { 2 } (a + 1) ^ { 2 } \left(\left(a^{4}-a^{2}\left(2 b^{2}+6 b+5\right)+\left(b^{2}+3 b+2\right)^{2}\right) \log \left(a^{2}+x^{2}\right)-\right.\right. \\
& \left(a^{4}+4 a^{3}+a^{2}\left(-2 b^{2}-6 b+1\right)-2 a\left(2 b^{2}+6 b+3\right)+\right. \\
& \left.\left.\left.b\left(b^{3}+6 b^{2}+11 b+6\right)\right) \log \left(a^{2}+2 a+x^{2}+1\right)+(2 a+1) x^{2}\right)\right) / \\
& \quad\left(2(2 a+1)\left(b^{2}+3 b+2\right)^{2}\right)+\text { constant }
\end{aligned}
$$

$\left(a^{2}(a+1)^{2}\left((a-b-1)(a+b+2)\left((a-b-2)(a+b+1) \log \left(a^{2}+x^{2}\right)-(a-b)(a+\right.\right.\right.$ $\left.\left.\left.b+3) \log \left((a+1)^{2}+x^{2}\right)\right)+(2 a+1) x^{2}\right)\right) /\left(2(2 a+1)(b+1)^{2}(b+2)^{2}\right)+$ constant
$\left(\mathrm{a}^{\wedge} 2(\mathrm{a}+1)^{\wedge} 2\left((\mathrm{a}-\mathrm{b}-1)(\mathrm{a}+\mathrm{b}+2)\left((\mathrm{a}-\mathrm{b}-2)(\mathrm{a}+\mathrm{b}+1) \log \left(\mathrm{a}^{\wedge} 2+1\right)-(\mathrm{a}-\mathrm{b})(\mathrm{a}+\mathrm{b}\right.\right.\right.$
$\left.\left.\left.+3) \log \left((a+1)^{\wedge} 2+1\right)\right)+(2 a+1)\right)\right) /\left(2(2 a+1)(b+1)^{\wedge} 2(b+2)^{\wedge} 2\right)=148.357702$

For $b=10$ and $a=2.93925$, we obtain :
(2.93925^2 (2.93925+1)^2 ((2.93925-10-1)(2.93925+10+2)((2.93925-10-2)
$(2.93925+10+1) \log \left(2.93925^{\wedge} 2+1\right)-(2.93925-5)(2.93925+5+3)$
$\left.\left.\left.\log \left((2.93925+1)^{\wedge} 2+1\right)\right)+(2 * 2.93925+1)\right)\right) /(2(2 * 2.93925+1) 36 * 49)$

Input interpretation

$\left(2.93925^{2}(2.93925+1)^{2}((2.93925-10-1)(2.93925+10+2)\right.$

$$
\begin{gathered}
\left((2.93925-10-2)(2.93925+10+1) \log \left(2.93925^{2}+1\right)-\right. \\
\left.(2.93925-5)(2.93925+5+3) \log \left((2.93925+1)^{2}+1\right)\right)+ \\
(2 \times 2.93925+1))) /(2(2 \times 2.93925+1) \times 36 \times 49)
\end{gathered}
$$

Result

148.358...
148.358....

The study of this function provides the following representations:

Alternative representations

$$
\begin{gathered}
\left(2 . 9 3 9 2 5 ^ { 2 } \left((2.93925+1)^{2}((2.93925-10-1)(2.93925+10+2)\right.\right. \\
\left((2.93925-10-2)(2.93925+10+1) \log \left(2.93925^{2}+1\right)-\right. \\
\left.(2.93925-5)(2.93925+5+3) \log \left((2.93925+1)^{2}+1\right)\right)+ \\
(2 \times 2.93925+1))) /(2(2 \times 2.93925+1) 36 \times 49)= \\
\frac{1}{24267.3}\left(6.8785-120.422\left(-126.3 \log (a) \log _{a}\left(1+2.93925^{2}\right)+\right.\right. \\
\left.\left.22.5431 \log (a) \log _{a}\left(1+3.93925^{2}\right)\right)\right) 2.93925^{2} \times 3.93925^{2}
\end{gathered}
$$

$$
\begin{aligned}
& \left(2 . 9 3 9 2 5 ^ { 2 } \left((2.93925+1)^{2}((2.93925-10-1)(2.93925+10+2)\right.\right. \\
& \left((2.93925-10-2)(2.93925+10+1) \log \left(2.93925^{2}+1\right)-\right. \\
& \left.(2.93925-5)(2.93925+5+3) \log \left((2.93925+1)^{2}+1\right)\right)+ \\
& (2 \times 2.93925+1)))) /(2(2 \times 2.93925+1) 36 \times 49)=\frac{1}{24267.3} \\
& \left(6.8785-120.422\left(-126.3 \log _{e}\left(1+2.93925^{2}\right)+22.5431 \log _{e}\left(1+3.93925^{2}\right)\right)\right) \\
& 2.93925^{2} \times \\
& 3.93925^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \left(2 . 9 3 9 2 5 ^ { 2 } \left((2.93925+1)^{2}((2.93925-10-1)(2.93925+10+2)\right.\right. \\
& \left((2.93925-10-2)(2.93925+10+1) \log \left(2.93925^{2}+1\right)-\right. \\
& \left.(2.93925-5)(2.93925+5+3) \log \left((2.93925+1)^{2}+1\right)\right)+ \\
& (2 \times 2.93925+1)))) /(2(2 \times 2.93925+1) 36 \times 49)= \\
& \frac{1}{24267.3}\left(6.8785-120.422\left(126.3 \mathrm{Li}_{1}\left(-2.93925^{2}\right)-22.5431 \mathrm{Li}_{1}\left(-3.93925^{2}\right)\right)\right) \\
& 2.93925^{2} \times \\
& 3.93925^{2}
\end{aligned}
$$

Series representations

$$
\begin{gathered}
\left(2 . 9 3 9 2 5 ^ { 2 } \left((2.93925+1)^{2}((2.93925-10-1)(2.93925+10+2)\right.\right. \\
\left((2.93925-10-2)(2.93925+10+1) \log \left(2.93925^{2}+1\right)-\right. \\
\left.(2.93925-5)(2.93925+5+3) \log \left((2.93925+1)^{2}+1\right)\right)+ \\
(2 \times 2.93925+1)))) /(2(2 \times 2.93925+1) 36 \times 49)= \\
0.0379989+84.0206 \log (8.63919)-14.9967 \\
\log (15.5177)+ \\
\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(14.9967 e^{-2.74198 k}-84.0206 e^{-2.15631 k}\right)}{k}
\end{gathered}
$$

```
\(\left(2.93925^{2}\left((2.93925+1)^{2}((2.93925-10-1)(2.93925+10+2)\right.\right.\)
            \(\left((2.93925-10-2)(2.93925+10+1) \log \left(2.93925^{2}+1\right)-\right.\)
                        \(\left.(2.93925-5)(2.93925+5+3) \log \left((2.93925+1)^{2}+1\right)\right)+\)
                \((2 \times 2.93925+1)))) /\)
    \((2(2 \times 2.93925+1) 36 \times 49)=0.0379989+\)
    168.041
    \(i\)
    \(\pi\)
    \(\left\lfloor\frac{\arg (9.63919-x)}{2 \pi}\right\rfloor-\)
    \(29.9933 i \pi\left\lfloor\frac{\arg (16.5177-x)}{2 \pi}\right\rfloor+69.0239\)
    \(\log (x)+\)
    \(\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(-84.0206(9.63919-x)^{k}+14.9967(16.5177-x)^{k}\right) x^{-k}}{k}\) for \(x<\)
    0
```

$$
\begin{aligned}
& \begin{array}{r}
\left(2 . 9 3 9 2 5 ^ { 2 } \left((2.93925+1)^{2}((2.93925-10-1)(2.93925+10+2)\right.\right. \\
\left((2.93925-10-2)(2.93925+10+1) \log \left(2.93925^{2}+1\right)-\right. \\
\left.(2.93925-5)(2.93925+5+3) \log \left((2.93925+1)^{2}+1\right)\right)+ \\
(2 \times 2.93925+1))) /(2(2 \times 2.93925+1) 36 \times 49)= \\
0.0379989+84.0206\left\lfloor\frac{\arg \left(9.63919-z_{0}\right)}{2 \pi}\right\rfloor \\
\log \left(\frac{1}{z_{0}}\right)- \\
14.9967\left\lfloor\frac{\arg \left(16.5177-z_{0}\right)}{2 \pi}\right\rfloor \\
\log \left(\frac{1}{z_{0}}\right)+69.0239
\end{array} \\
& \quad \log \left(z_{0}\right)+\quad \\
& 84.0206\left\lfloor\frac{\arg \left(9.63919-z_{0}\right)}{2 \pi}\right\rfloor \\
& \log \left(z_{0}\right)- \\
& 14.9967\left\lfloor\frac{\arg \left(16.5177-z_{0}\right)}{2 \pi}\right\rfloor \log \left(z_{0}\right)+ \\
& \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(-84.0206\left(9.63919-z_{0}\right)^{k}+14.9967\left(16.5177-z_{0}\right)^{k}\right) z_{0}^{-k}}{k}
\end{aligned}
$$

Integral representation

$$
\begin{gathered}
\left(2 . 9 3 9 2 5 ^ { 2 } \left((2.93925+1)^{2}((2.93925-10-1)(2.93925+10+2)\right.\right. \\
\left((2.93925-10-2)(2.93925+10+1) \log \left(2.93925^{2}+1\right)-\right. \\
\left.(2.93925-5)(2.93925+5+3) \log \left((2.93925+1)^{2}+1\right)\right)+ \\
(2 \times 2.93925+1)))) / \\
(2(2 \times 2.93925+1) 36 \times 49)=0.0379989+ \\
\int_{-i \infty+\gamma}^{i \infty+\gamma}-\frac{7.49834 e^{-4.89829 s}\left(e^{2.15631 s}-5.60261 e^{2.74198 s}\right) \Gamma(-s)^{2} \Gamma(1+s)}{i \pi \Gamma(1-s)} \\
d s \text { for }-1<\gamma<0
\end{gathered}
$$

We obtain also:

```
233/(((2.93925^2 (2.93925+1)^2 ((2.93925-10-1)(2.93925+10+2)((2.93925-10-2)
(2.93925+10+1) log(2.93925^2+1)-(2.93925-5) (2.93925+5+3)
log((2.93925+1)^2+1)) + (2*2.93925+1)))/(2(2*2.93925+1)36*49))-4)
```


Input interpretation

$$
\begin{gathered}
233 /\left(\left(2.93925^{2}(2.93925+1)^{2}((2.93925-10-1)(2.93925+10+2)\right.\right. \\
\left((2.93925-10-2)(2.93925+10+1) \log \left(2.93925^{2}+1\right)-\right. \\
\left.(2.93925-5)(2.93925+5+3) \log \left((2.93925+1)^{2}+1\right)\right)+ \\
(2 \times 2.93925+1))) /(2(2 \times 2.93925+1) \times 36 \times 49)-4)
\end{gathered}
$$

$\log (x)$ is the natural logarithm

Result

1.6140453479199832516747061971083704720064123039513612854760866757
$1.6140453479 \ldots$ result that is a very good approximation to the value of the golden ratio 1.618033988749...

The study of this function provides the following representations:

Alternative representations

$$
\begin{aligned}
& 233 /\left(\left(2 . 9 3 9 2 5 ^ { 2 } \left((2.93925+1)^{2}\right.\right.\right. \\
& ((2.93925-10-1)(2.93925+10+2)((2.93925-10-2) \\
& (2.93925+10+1) \log \left(2.93925^{2}+1\right)-(2.93925-5) \\
& \left.(2.93925+5+3) \log \left((2.93925+1)^{2}+1\right)\right)+ \\
& (2 \times 2.93925+1))) /(2(2 \times 2.93925+1) 36 \times 49)-4)= \\
& 233
\end{aligned}
$$

$$
\begin{gathered}
233 /\left(\left(2 . 9 3 9 2 5 ^ { 2 } \left((2.93925+1)^{2}((2.93925-10-1)(2.93925+10+2)\right.\right.\right. \\
\left((2.93925-10-2)(2.93925+10+1) \log \left(2.93925^{2}+1\right)-\right. \\
(2.93925-5)(2.93925+5+3) \log (\\
\left.\left.\left.\left.\left.(2.93925+1)^{2}+1\right)\right)+(2 \times 2.93925+1)\right)\right)\right) / \\
(2(2 \times 2.93925+1) 36 \times 49)-4)=233 /(-4+ \\
\frac{1}{24267.3}\left(6.8785-120.422\left(-126.3 \log (a) \log _{a}\left(1+2.93925^{2}\right)+\right.\right. \\
\left.\left.\left.22.5431 \log (a) \log _{a}\left(1+3.93925^{2}\right)\right)\right) 2.93925^{2} \times 3.93925^{2}\right)
\end{gathered}
$$

$$
\begin{aligned}
& 233 /\left(\left(2 . 9 3 9 2 5 ^ { 2 } \left((2.93925+1)^{2}\right.\right.\right. \\
& ((2.93925-10-1)(2.93925+10+2)((2.93925-10-2) \\
& (2.93925+10+1) \log \left(2.93925^{2}+1\right)-(2.93925-5) \\
& \left.(2.93925+5+3) \log \left((2.93925+1)^{2}+1\right)\right)+ \\
& (2 \times 2.93925+1))) /(2(2 \times 2.93925+1) 36 \times 49)-4)= \\
& 233
\end{aligned}
$$

Series representations

$$
\begin{gathered}
233 /\left(\left(2 . 9 3 9 2 5 ^ { 2 } \left((2.93925+1)^{2}((2.93925-10-1)(2.93925+10+2)\right.\right.\right. \\
\left((2.93925-10-2)(2.93925+10+1) \log \left(2.93925^{2}+1\right)-\right. \\
(2.93925-5)(2.93925+5+3) \log (\\
\left.\left.\left.\left.\left.(2.93925+1)^{2}+1\right)\right)+(2 \times 2.93925+1)\right)\right)\right) / \\
(2(2 \times 2.93925+1) 36 \times 49)-4)=2.77313 / \\
(-0.0471551+\log (8.63919)-0.178488 \\
\log (15.5177)+ \\
\left.\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(0.178488 e^{-2.74198 k}-e^{-2.15631 k}\right)}{k}\right)
\end{gathered}
$$

$233 /\left(\left(2.93925^{2}\right)(2.93925+1)^{2}((2.93925-10-1)(2.93925+10+2)\right.$

$$
((2.93925-10-2)(2.93925+10+1) \log (
$$

$$
\left.2.93925^{2}+1\right)-(2.93925-5)(2.93925+5+3)
$$

$$
\left.\left.\left.\left.\log \left((2.93925+1)^{2}+1\right)\right)+(2 \times 2.93925+1)\right)\right)\right) /
$$

$(2(2 \times 2.93925+1) 36 \times 49)-4)=1.38657 /$
$\left(-0.0235776+i \pi\left\lfloor\frac{\arg (9.63919-x)}{2 \pi}\right\rfloor-\right.$
0.178488
$i \pi\left\lfloor\frac{\arg (16.5177-x)}{2 \pi}\right\rfloor+$
$0.410756 \log (x)+$
$\left.\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(-0.5(9.63919-x)^{k}+0.0892441(16.5177-x)^{k}\right) x^{-k}}{k}\right)$
for $x<0$
$233 /\left(\left(2.93925^{2}\left((2.93925+1)^{2}\right)(2.93925-10-1)(2.93925+10+2)\right.\right.$ $\left((2.93925-10-2)(2.93925+10+1) \log \left(2.93925^{2}+1\right)-\right.$ $(2.93925-5)(2.93925+5+3) \log ($ $\left.\left.\left.\left.\left.(2.93925+1)^{2}+1\right)\right)+(2 \times 2.93925+1)\right)\right)\right) /$ $(2(2 \times 2.93925+1) 36 \times 49)-4)=2.77313 /$

$$
\left(-0.0471551+\left\lfloor\frac{\arg \left(16.5177-z_{0}\right)}{2 \pi}\right\rfloor\right.
$$

$$
\left(-0.178488 \log \left(\frac{1}{z_{0}}\right)-0.178488 \log \left(z_{0}\right)\right)+
$$

$0.821512 \log \left(z_{0}\right)+$

$$
\begin{aligned}
& \left\lfloor\frac{\arg \left(9.63919-z_{0}\right)}{2 \pi}\right\rfloor \\
& \left(\log \left(\frac{1}{z_{0}}\right)+\log \left(z_{0}\right)\right)+ \\
& \left.\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(-\left(9.63919-z_{0}\right)^{k}+0.178488\left(16.5177-z_{0}\right)^{k}\right) z_{0}^{-k}}{k}\right)
\end{aligned}
$$

Integral representation

```
233/((2.93925 2
    ((2.93925-10 - 1) (2.93925 + 10 + 2) ((2.93925 - 10-2)
                                    (2.93925 + 10 + 1) log(2.93925 2 + 1) - (2.93925 -
                                    5) }(2.93925+5+3)\operatorname{log}((2.93925+1) 2 +1))
        (2\times2.93925+1))))/(2(2\times2.93925+1)36\times49)-4)=
        58.8087 i\pi
    i\pi+\mp@subsup{\int}{-i\infty+\gamma}{i\infty+\gamma}
    for - 1<
    \gamma
```

We obtain also:
$(236+3 / 2) /\left(\left(\left(2.93925^{\wedge} 2(2.93925+1)^{\wedge} 2((2.93925-11)(2.93925+12)((2.93925-10-2)\right.\right.\right.$
$\left.(2.93925+11) \log \left(2.93925^{\wedge} 2+1\right)-(2.93925-5)(2.93925+5+3) \log \left((2.93925+1)^{\wedge} 2+1\right)\right)$ $+(2 * 2.93925+1))) /(2(2 * 2.93925+1) 36 * 49))-4)$

Input interpretation

$$
\begin{gathered}
\left(236+\frac{3}{2}\right) / \\
\left(\left(2.93925^{2}(2.93925+1)^{2}((2.93925-11)(2.93925+12)((2.93925-10-2)\right.\right. \\
(2.93925+11) \log \left(2.93925^{2}+1\right)- \\
\left.(2.93925-5)(2.93925+5+3) \log \left((2.93925+1)^{2}+1\right)\right)+ \\
(2 \times 2.93925+1))) /(2(2 \times 2.93925+1) \times 36 \times 49)-4)
\end{gathered}
$$

$\log (x)$ is the natural logarithm

Result

1.6452178975579228423722863597134677558005275630405506665260540149
$1.64521789755 \ldots \approx \zeta(2)=\frac{\pi^{2}}{6}=1.644934 \ldots$

The study of this function provides the following representations:

Alternative representations

$$
\begin{aligned}
& \left(236+\frac{3}{2}\right) / \\
& \left(\left(2 . 9 3 9 2 5 ^ { 2 } \left((2.93925+1)^{2}((2.93925-11)(2.93925+12)((2.93925-10-2)\right.\right.\right. \\
& (2.93925+11) \log \left(2.93925^{2}+1\right)-(2.93925-5) \\
& \left.(2.93925+5+3) \log \left((2.93925+1)^{2}+1\right)\right)+ \\
& (2 \times 2.93925+1)))) /(2(2 \times 2.93925+1) 36 \times 49)-4)= \\
& 475
\end{aligned} \frac{24267.3}{2\left(-4+\frac{\left(6.8785-120.422\left(-126.3 \log _{e}\left(1+2.93925^{2}\right)+22.5431 \log _{e}\left(1+3.93925^{2}\right)\right)\right) 2.93925^{2} \times 3.93925^{2}}{24}\right)}
$$

$$
\begin{aligned}
& \left(236+\frac{3}{2}\right) / \\
& \left(\left(2 . 9 3 9 2 5 ^ { 2 } \left((2.93925+1)^{2}((2.93925-11)(2.93925+12)((2.93925-10-2)\right.\right.\right. \\
& (2.93925+11) \log \left(2.93925^{2}+1\right)-(2.93925-5) \\
& \left.(2.93925+5+3) \log \left((2.93925+1)^{2}+1\right)\right)+ \\
& (2 \times 2.93925+1)))) /(2(2 \times 2.93925+1) 36 \times 49)-4)= \\
& 475 /\left(2 \left(-4+\frac{1}{24267.3}\left(6.8785-120.422\left(-126.3 \log (a) \log _{a}\left(1+2.93925^{2}\right)+\right.\right.\right.\right. \\
& \left.\left.\left.\left.22.5431 \log (a) \log _{a}\left(1+3.93925^{2}\right)\right)\right) 2.93925^{2} \times 3.93925^{2}\right)\right)
\end{aligned}
$$

$$
\left(236+\frac{3}{2}\right) /
$$

$$
\left(\left(2 . 9 3 9 2 5 ^ { 2 } \left((2.93925+1)^{2}((2.93925-11)(2.93925+12)((2.93925-10-2)\right.\right.\right.
$$

$$
(2.93925+11) \log \left(2.93925^{2}+1\right)-(2.93925-5)
$$

$$
\left.(2.93925+5+3) \log \left((2.93925+1)^{2}+1\right)\right)+
$$

$$
(2 \times 2.93925+1)))) /(2(2 \times 2.93925+1) 36 \times 49)-4)=
$$

$$
475
$$

$$
2\left(-4+\frac{\left(6.8785-120.422\left(126.3 \mathrm{Li}_{1}\left(-2.93925^{2}\right)-22.5431 \mathrm{Li}_{1}\left(-3.93925^{2}\right)\right)\right) 2.93925^{2} \times 3.93925^{2}}{24267.3}\right)
$$

Series representations

$$
\begin{aligned}
& \left(236+\frac{3}{2}\right) / \\
& \left(\left(2 . 9 3 9 2 5 ^ { 2 } \left((2.93925+1)^{2}((2.93925-11)(2.93925+12)((2.93925-10-2)\right.\right.\right. \\
& (2.93925+11) \log \left(2.93925^{2}+1\right)-(2.93925-5) \\
& \left.(2.93925+5+3) \log \left((2.93925+1)^{2}+1\right)\right)+ \\
& (2 \times 2.93925+1)))) /(2(2 \times 2.93925+1) 36 \times 49)-4)=
\end{aligned}
$$

$$
2.82669 /(-0.0471551+\log (8.63919)-0.178488
$$

$$
\log (15.5177)+
$$

$$
\left.\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(0.178488 e^{-2.74198 k}-e^{-2.15631 k}\right)}{k}\right)
$$

$$
\begin{aligned}
& \left(236+\frac{3}{2}\right) / \\
& \begin{array}{r}
\left(\left(2 . 9 3 9 2 5 ^ { 2 } \left((2 . 9 3 9 2 5 + 1) ^ { 2 } \left(\begin{array}{l}
(2.93925-11)(2.93925+12)((2.93925-10-2)
\end{array}\right.\right.\right.\right. \\
(2.93925+11) \log \left(2.93925^{2}+1\right)-(2.93925-5) \\
\left.(2.93925+5+3) \log \left((2.93925+1)^{2}+1\right)\right)+ \\
(2 \times 2.93925+1))) /(2(2 \times 2.93925+1) 36 \times 49)-4)= \\
1.41334 /\left(-0.0235776+i \pi\left\lfloor\frac{\arg (9.63919-x)}{2 \pi}\right\rfloor-\right. \\
0.178488 i \pi\left\lfloor\frac{\arg (16.5177-x)}{2 \pi}\right\rfloor+
\end{array} \\
& \begin{array}{r}
0.410756 \log (x)+\quad
\end{array} \\
& \left.\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(-0.5(9.63919-x)^{k}+0.0892441(16.5177-x)^{k}\right) x^{-k}}{k}\right) \\
& \text { for } x<0
\end{aligned}
$$

$$
\left.\begin{array}{l}
\begin{array}{r}
\left(236+\frac{3}{2}\right) / \\
\left(\left(2 . 9 3 9 2 5 ^ { 2 } \left((2.93925+1)^{2}((2.93925-11)(2.93925+12)((2.93925-10-2)\right.\right.\right. \\
(2.93925+11) \log \left(2.93925^{2}+1\right)-(2.93925-5) \\
\left.(2.93925+5+3) \log \left((2.93925+1)^{2}+1\right)\right)+ \\
(2 \times 2.93925+1))) /(2(2 \times 2.93925+1) 36 \times 49)-4)= \\
2.82669 /\left(-0.0471551+\left\lfloor\frac{\arg \left(16.5177-z_{0}\right)}{2 \pi}\right\rfloor\right.
\end{array} \\
\left(-0.178488 \log \left(\frac{1}{z_{0}}\right)-0.178488 \log \left(z_{0}\right)\right)+ \\
0.821512 \log \left(z_{0}\right)+
\end{array}\right] \begin{aligned}
& \left.\frac{\arg \left(9.63919-z_{0}\right)}{2 \pi}\right\rfloor \\
& \left(\log \left(\frac{1}{z_{0}}\right)+\log \left(z_{0}\right)\right)+ \\
& \left.\sum_{k=1}^{\infty} \frac{\left.(-1)^{k}\left(-\left(9.63919-z_{0}\right)^{k}+0.178488\left(16.5177-z_{0}\right)^{k}\right) z_{0}^{-k}\right)}{k}\right)
\end{aligned}
$$

Integral representation

$$
\begin{aligned}
& \left(236+\frac{3}{2}\right) / \\
& \left(\left(2.93925^{2}\right)(2.93925+1)^{2}((2.93925-11)(2.93925+12)((2.93925-10-2)\right. \\
& (2.93925+11) \log \left(2.93925^{2}+1\right)-(2.93925-5) \\
& \left.(2.93925+5+3) \log \left((2.93925+1)^{2}+1\right)\right)+ \\
& (2 \times 2.93925+1)))) /(2(2 \times 2.93925+1) 36 \times 49)-4)= \\
& -\frac{59.9445 i \pi}{i \pi+\int_{-i \infty 0+\gamma}^{i \infty+\gamma} \frac{1.89256 e^{-4.89829 s}\left(e^{2.15631 s}-5.60261 e^{2.74198 s}\right) \Gamma(-s)^{2} \Gamma(1+s)}{\Gamma(1-s)} d s} \\
& \text { for } \\
& -1< \\
& \gamma< \\
& 0
\end{aligned}
$$

We obtain also:
$\left((236+3 / 2) /\left(\left(\left(2.9392^{\wedge} 2(2.9392+1)^{\wedge} 2((2.9392-11)(2.9392+12)((2.9392-12)\right.\right.\right.\right.$
$(2.9392+11) \log \left(2.9392^{\wedge} 2+1\right)-(2.9392-5)(2.9392+8)$
$\left.\left.\left.\left.\left.\left.\log \left((2.9392+1)^{\wedge} 2+1\right)\right)+(2 * 2.9392+1)\right)\right) /(2(2 * 2.9392+1) 36 * 49)\right)-4\right)\right)^{\wedge} 15-21-\mathrm{e}$

Input interpretation

$$
\begin{gathered}
\left(\left(236+\frac{3}{2}\right) /\left(\left(2.9392^{2}(2.9392+1)^{2}\right.\right.\right. \\
((2.9392-11)(2.9392+12)((2.9392-12)(2.9392+11) \\
\log \left(2.9392^{2}+1\right)-(2.9392-5)(2.9392+8) \\
\left.\left.\left.\log \left((2.9392+1)^{2}+1\right)\right)+(2 \times 2.9392+1)\right)\right) / \\
(2(2 \times 2.9392+1) \times 36 \times 49)-4))^{15}-21-e
\end{gathered}
$$

Result

1729.16...
1729.16....

This result is very near to the mass of candidate glueball $\mathbf{f}_{\mathbf{0}}(\mathbf{1 7 1 0})$ scalar meson. Furthermore, 1728 occurs in the algebraic formula for the j-invariant of an elliptic curve. (1728 = $8^{2} * 3^{3}$) The number 1728 is one less than the Hardy-Ramanujan number 1729 (taxicab number)

The study of this function provides the following representations:

Alternative representations

$$
\begin{array}{r}
\left(\left(236+\frac{3}{2}\right) /\left(\left(2 . 9 3 9 2 ^ { 2 } \left((2.9392+1)^{2}\right.\right.\right.\right. \\
((2.9392-11)(2.9392+12)((2.9392-12)(2.9392+11) \\
\log \left(2.9392^{2}+1\right)-(2.9392-5)(2.9392+8) \\
\left.\left.\left.\left.\log \left((2.9392+1)^{2}+1\right)\right)+(2 \times 2.9392+1)\right)\right)\right) / \\
(2(2 \times 2.9392+1) 36 \times 49)-4))^{15}-21-e=-21-e+ \\
\left(475 /\left(2 \left(-4+\frac{1}{24267 .}\left(6.8784-120.422\left(-126.3 \log _{e}\left(1+2.9392^{2}\right)+\right.\right.\right.\right.\right. \\
\left.\left.\left.\left.\left.\left.22.5435 \log _{e}\left(1+3.9392^{2}\right)\right)\right) 2.9392^{2} \times 3.9392^{2}\right)\right)\right)\right)^{15}
\end{array}
$$

$$
\begin{gathered}
\left(\left(236+\frac{3}{2}\right) /\left(\left(2 . 9 3 9 2 ^ { 2 } \left((2.9392+1)^{2}\right.\right.\right.\right. \\
((2.9392-11)(2.9392+12)((2.9392-12)(2.9392+11) \\
\log \left(2.9392^{2}+1\right)-(2.9392-5)(2.9392+8) \\
\left.\left.\left.\left.\log \left((2.9392+1)^{2}+1\right)\right)+(2 \times 2.9392+1)\right)\right)\right) / \\
(2(2 \times 2.9392+1) 36 \times 49)-4))^{15}-21-e= \\
-21-e+\left(475 /\left(2 \left(-4+\frac{1}{24267 .}(6.8784-120.422\right.\right.\right. \\
\left(-126.3 \log (a) \log _{a}\left(1+2.9392^{2}\right)+22.5435 \log (a)\right. \\
\left.\left.\left.\left.\left.\log _{a}\left(1+3.9392^{2}\right)\right)\right) 2.9392^{2} \times 3.9392^{2}\right)\right)\right)^{15}
\end{gathered}
$$

$$
\left(\left(236+\frac{3}{2}\right) /\left(\left(2 . 9 3 9 2 ^ { 2 } \left((2.9392+1)^{2}\right.\right.\right.\right.
$$

$$
((2.9392-11)(2.9392+12)((2.9392-12)(2.9392+11)
$$

$$
\log \left(2.9392^{2}+1\right)-(2.9392-5)(2.9392+8)
$$

$$
\left.\left.\left.\left.\log \left((2.9392+1)^{2}+1\right)\right)+(2 \times 2.9392+1)\right)\right)\right) /
$$

$$
(2(2 \times 2.9392+1) 36 \times 49)-4))^{15}-21-e=-21-e+
$$

$$
\left(\frac{475}{2\left(-4+\frac{\left(6.8784-120.422\left(126.3 \mathrm{Li}_{1}\left(-2.9392^{2}\right)-22.5435 \mathrm{Li}_{1}\left(-3.9392^{2}\right)\right)\right) 2.9392^{2} \times 3.9392^{2}}{24267 .}\right)}\right)^{15}
$$

Series representations

$$
\begin{aligned}
& \left(\left(236+\frac{3}{2}\right) /\left(\left(2 . 9 3 9 2 ^ { 2 } \left((2.9392+1)^{2}\right.\right.\right.\right. \\
& ((2.9392-11)(2.9392+12)((2.9392-12)(2.9392+11) \\
& \log \left(2.9392^{2}+1\right)-(2.9392-5)(2.9392+8) \\
& \left.\left.\left.\log \left((2.9392+1)^{2}+1\right)\right)+(2 \times 2.9392+1)\right)\right) / \\
& (2(2 \times 2.9392+1) 36 \times 49)-4))^{15}-21-e= \\
& -21-e+14138526311027629579417407512664794921875 / \\
& (32768
\end{aligned} \quad \begin{array}{r}
(-4+0.00552406 \\
\left(6.8784-120.422\left(-126.3\left(\log (8.6389)-\sum_{k=1}^{\infty} \frac{(-0.115756)^{k}}{k}\right)+\right.\right. \\
\left.\left.\left.\left.22.5435\left(\log (15.5173)-\sum_{k=1}^{\infty} \frac{(-0.0644442)^{k}}{k}\right)\right)\right)\right)^{15}\right)
\end{array}
$$

$$
\begin{aligned}
& \left(\left(236+\frac{3}{2}\right) /\left(\left(2 . 9 3 9 2 ^ { 2 } \left((2.9392+1)^{2}((2.9392-11)(2.9392+12)\right.\right.\right.\right. \\
& \left((2.9392-12)(2.9392+11) \log \left(2.9392^{2}+1\right)-\right. \\
& (2.9392-5)(2.9392+8) \log (\\
& \left.\left.\left.\left.\left.(2.9392+1)^{2}+1\right)\right)+(2 \times 2.9392+1)\right)\right)\right) / \\
& (2(2 \times 2.9392+1) 36 \times 49)-4))^{15}-21-e= \\
& -21-e+14138526311027629579417407512664794921875 / \\
& \text { (32768 } \\
& (-4+0.00552406 \\
& \left(6.8784-120.422\left(-126.3\left(2 i \pi\left\lfloor\frac{\arg (9.6389-x)}{2 \pi}\right\rfloor+\right.\right.\right. \\
& \left.\log (x)-\sum_{k=1}^{\infty} \frac{(-1)^{k}(9.6389-x)^{k} x^{-k}}{k}\right)+ \\
& 22.5435\left(2 i \pi\left\lfloor\frac{\arg (16.5173-x)}{2 \pi}\right\rfloor+\log (x)-\right. \\
& \left.\left.\left.\left.\left.\sum_{k=1}^{\infty} \frac{(-1)^{k}(16.5173-x)^{k} x^{-k}}{k}\right)\right)\right)\right)^{15}\right)
\end{aligned}
$$

for $x<0$

$$
\left.\begin{array}{r}
\left(\left(236+\frac{3}{2}\right) /\left(\left(2 . 9 3 9 2 ^ { 2 } \left((2.9392+1)^{2}\right.\right.\right.\right. \\
((2.9392-11)(2.9392+12)((2.9392-12)(2.9392+11) \\
\log \left(2.9392^{2}+1\right)-(2.9392-5)(2.9392+8) \\
\left.\left.\left.\left.\log \left((2.9392+1)^{2}+1\right)\right)+(2 \times 2.9392+1)\right)\right)\right) / \\
(2(2 \times 2.9392+1) 36 \times 49)-4))^{15}-21-e= \\
-21-e+14138526311027629579417407512664794921875 / \\
\left(32768 \quad\left(\frac{\arg \left(9.6389-z_{0}\right)}{2 \pi}\right]\left(\log \left(\frac{1}{z_{0}}\right)+\log \left(z_{0}\right)\right)-\right. \\
\left(-4+0.00552406\left(6.8784-120.422\left(-126.3\left(\log \left(z_{0}\right)+\right.\right.\right.\right. \\
\left.\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(9.6389-z_{0}\right)^{k} z_{0}^{-k}}{k}\right)+22.5435
\end{array}\right)
$$

We obtain also:
$\left(1 / 27(() 236+3 / 2) /\left(\left(\left(2.9392^{\wedge} 2(3.9392)^{\wedge} 2((2.9392-11)(2.9392+12)((2.9392-\right.\right.\right.\right.$
12) (13.9392) $\log \left(2.9392^{\wedge} 2+1\right)-(2.9392-$
$\left.\left.\left.\left.\left.\left.5)(10.9392) \log \left((2.9392+1)^{\wedge} 2+1\right)\right)+(2 * 2.9392+1)\right)\right) /(2(2 * 2.9392+1) 36 * 49)\right)-4\right)\right)^{\wedge} 15-$
$21-\pi))^{\wedge} 2-4+1 / 2$

Input interpretation

$$
\begin{gathered}
\left(\frac { 1 } { 2 7 } \left(\left(\left(236+\frac{3}{2}\right) /\left(\left(2.9392^{2} \times 3.9392^{2}((2.9392-11)(2.9392+12)((2.9392-12) \times\right.\right.\right.\right.\right. \\
13.9392 \log \left(2.9392^{2}+1\right)+(2.9392-5) \\
\left.\log \left((2.9392+1)^{2}+1\right) \times(-10.9392)\right)+ \\
(2 \times 2.9392+1))) /(2(2 \times 2.9392+1) \\
\left.\left.(36 \times 49))-4))^{15}-21-\pi\right)\right)^{2}-4+\frac{1}{2}
\end{gathered}
$$

Result

4096.02...
$4096.02 \ldots \approx 4096=64^{2}$

The study of this function provides the following representations:

Alternative representations

$$
\begin{gathered}
\left(\frac { 1 } { 2 7 } \left(\left(\left(236+\frac{3}{2}\right) /\left(\left(2.9392^{2} \times 3.9392^{2}((2.9392-11)(2.9392+12)((2.9392-12)\right.\right.\right.\right.\right. \\
13.9392 \log \left(2.9392^{2}+1\right)-(2.9392-5) \\
\left.10.9392 \log \left((2.9392+1)^{2}+1\right)\right)+ \\
(2 \times 2.9392+1))) /(2(2 \times 2.9392+1) \\
\left.\left.(36 \times 49))-4))^{15}-21-\pi\right)\right)^{2}-4+\frac{1}{2}= \\
-\frac{7}{2}+\left(\frac { 1 } { 2 7 } \left(-21-\pi+\left(475 /\left(2 \left(-4+\frac{1}{24267 .}(6.8784-120.422\right.\right.\right.\right.\right. \\
\left(-126.3 \log _{e}\left(1+2.9392^{2}\right)+22.5435 \log _{e}(\right. \\
\left.\left.\left.\left.\left.\left.\left.\left.1+3.9392^{2}\right)\right)\right) 2.9392^{2} \times 3.9392^{2}\right)\right)\right)^{15}\right)\right)^{2}
\end{gathered}
$$

$$
\begin{array}{r}
\left(\frac { 1 } { 2 7 } \left(\left(\left(236+\frac{3}{2}\right) /\left(\left(2.9392^{2} \times 3.9392^{2}((2.9392-11)(2.9392+12)((2.9392-12)\right.\right.\right.\right.\right. \\
13.9392 \log \left(2.9392^{2}+1\right)-(2.9392-5) \\
\left.10.9392 \log \left((2.9392+1)^{2}+1\right)\right)+ \\
(2 \times 2.9392+1))) /(2(2 \times 2.9392+1) \\
\left.\left.(36 \times 49))-4))^{15}-21-\pi\right)\right)^{2}-4+\frac{1}{2}= \\
-\frac{7}{2}+\left(\frac { 1 } { 2 7 } \left(-21-\pi+\left(475 /\left(2 \left(-4+\frac{1}{24267 .}(6.8784-120.422(-126.3 \log (a)\right.\right.\right.\right.\right. \\
\log _{a}\left(1+2.9392^{2}\right)+22.5435 \log _{(a)} \log _{a}(\\
\left.\left.\left.\left.\left.\left.\left.\left.1+3.9392^{2}\right)\right)\right) 2.9392^{2} \times 3.9392^{2}\right)\right)\right)^{15}\right)\right)^{2}
\end{array}
$$

$$
\begin{gathered}
\left(\frac { 1 } { 2 7 } \left(\left(\left(236+\frac{3}{2}\right) /\left(\left(2.9392^{2} \times 3.9392^{2}((2.9392-11)(2.9392+12)((2.9392-12)\right.\right.\right.\right.\right. \\
13.9392 \log \left(2.9392^{2}+1\right)-(2.9392-5) \\
\left.10.9392 \log \left((2.9392+1)^{2}+1\right)\right)+ \\
(2 \times 2.9392+1))) /(2(2 \times 2.9392+1) \\
\left.\left.(36 \times 49))-4))^{15}-21-\pi\right)\right)^{2}-4+\frac{1}{2}= \\
-\frac{7}{2}+\left(\frac { 1 } { 2 7 } \left(-21-\pi+\left(475 /\left(2 \left(-4+\frac{1}{24267 .}(6.8784-120.422(126.3\right.\right.\right.\right.\right. \\
\left.\left.L_{1}\left(-2.9392^{2}\right)-22.5435 \mathrm{Li}_{1}\left(-3.9392^{2}\right)\right)\right) \\
\left.\left.\left.\left.\left.2.9392^{2} \times 3.9392^{2}\right)\right)\right)^{15}\right)\right)^{2}
\end{gathered}
$$

Series representations

$$
\begin{gathered}
\left(\frac { 1 } { 2 7 } \left(\left(\left(236+\frac{3}{2}\right) /\left(\left(2.9392^{2} \times 3.9392^{2}((2.9392-11)(2.9392+12)\right.\right.\right.\right.\right. \\
\left((2.9392-12) 13.9392 \log \left(2.9392^{2}+1\right)-\right. \\
(2.9392-5) 10.9392 \log (\\
\left.\left.\left.\left.(2.9392+1)^{2}+1\right)\right)+(2 \times 2.9392+1)\right)\right) / \\
(2(2 \times 2.9392+1)(36 \times 49))-4))^{15}- \\
21-\pi))^{2}-4+\frac{1}{2}=-\frac{469}{162}+\frac{14 \pi}{243}+\frac{\pi^{2}}{729}+
\end{gathered}
$$

199897926247620551792110523732099320281564713841504499214 :

$$
\begin{aligned}
& 352108538150787353515625 / \\
& (782757789696(-4+0.00552406(6.8784-
\end{aligned}
$$

$$
120.422\left(-126.3\left(\log (8.6389)-\sum_{k=1}^{\infty} \frac{(-0.115756)^{k}}{k}\right)+\right.
$$

$$
\left.\left.\left.\left.22.5435\left(\log (15.5173)-\sum_{k=1}^{\infty} \frac{(-0.0644442)^{k}}{k}\right)\right)\right)\right)^{30}\right)-
$$

98969684177193407055921852588653564453125 /

$$
\begin{array}{r}
3981312(-4+0.00552406 \\
\left(6.8784-120.422\left(-126.3\left(\log (8.6389)-\sum_{k=1}^{\infty} \frac{(-0.115756)^{k}}{k}\right)+\right.\right. \\
\left.\left.\left.\left.22.5435\left(\log (15.5173)-\sum_{k=1}^{\infty} \frac{(-0.0644442)^{k}}{k}\right)\right)\right)\right)^{15}\right)-
\end{array}
$$

(14138526311027629579417407512664794921875 ת) /

$$
\begin{array}{r}
11943936(-4+0.00552406 \\
\left(6.8784-120.422\left(-126.3\left(\log (8.6389)-\sum_{k=1}^{\infty} \frac{(-0.115756)^{k}}{k}\right)+\right.\right. \\
\left.\left.\left.\left.22.5435\left(\log (15.5173)-\sum_{k=1}^{\infty} \frac{(-0.0644442)^{k}}{k}\right)\right)\right)\right)^{15}\right)
\end{array}
$$

$$
\begin{aligned}
&\left(\frac { 1 } { 2 7 } \left(\left(\left(236+\frac{3}{2}\right) /\left(\left(2.9392^{2} \times 3.9392^{2}(\right.\right.\right.\right.\right.(2.9392-11)(2.9392+12) \\
&\left((2.9392-12) 13.9392 \log \left(2.9392^{2}+1\right)-\right. \\
&(2.9392-5) 10.9392 \log (\\
&\left.\left.\left.\left.(2.9392+1)^{2}+1\right)\right)+(2 \times 2.9392+1)\right)\right) / \\
&(2(2 \times2.9392+1)(36 \times 49))-4))^{15}- \\
&21-\pi))^{2}-4+\frac{1}{2}=-\frac{469}{162}+\frac{14 \pi}{243}+\frac{\pi^{2}}{729}+
\end{aligned}
$$

199897926247620551792110523732099320281564713841504499214 :

$$
\begin{aligned}
& 352108538150787353515625 / \\
& (782757789696(-4+0.00552406(6.8784- \\
& 120.422\left(-126.3\left(2 i \pi \left\lvert\, \frac{\arg (9.6389-x)}{2 \pi}\right.\right)+\log (x)-\right. \\
& \left.\sum_{k=1}^{\infty} \frac{(-1)^{k}(9.6389-x)^{k} x^{-k}}{k}\right)+ \\
& 22.5435\left(2 i \pi \left\lvert\, \frac{\arg (16.5173-x)}{2 \pi}\right.\right)+\log (x)- \\
& \left.\left.\left.\left.\left.\sum_{k=1}^{\infty} \frac{(-1)^{k}(16.5173-x)^{k} x^{-k}}{k}\right)\right)\right)\right)^{30}\right)-
\end{aligned}
$$

98969684177193407055921852588653564453125 /

$$
(3981312
$$

$$
(-4+0.00552406
$$

$$
\left(6.8784-120.422\left(-126.3\left(2 i \pi\left\lfloor\frac{\arg (9.6389-x)}{2 \pi}\right\rfloor+\right.\right.\right.
$$

$$
\left.\log (x)-\sum_{k=1}^{\infty} \frac{(-1)^{k}(9.6389-x)^{k} x^{-k}}{k}\right)+
$$

$$
22.5435\left(2 i \pi\left\lfloor\frac{\arg (16.5173-x)}{2 \pi}\right\rfloor+\log (x)-\right.
$$

$$
\left.\left.\left.\left.\left.\sum_{k=1}^{\infty} \frac{(-1)^{k}(16.5173-x)^{k} x^{-k}}{k}\right)\right)\right)\right)^{15}\right)-
$$

(14138526311 027629579417407512664794921875
$\pi) /$

$$
\begin{array}{r}
11943936(-4+0.00552406 \\
\left(6.8784-120.422\left(-126.3\left(2 i \pi\left[\frac{\arg (9.6389-x)}{2 \pi}\right]+\right.\right.\right. \\
\left.\log (x)-\sum_{k=1}^{\infty} \frac{(-1)^{k}(9.6389-x)^{k} x^{-k}}{k}\right)+ \\
22.5435\left(2 i \pi\left|\frac{\arg (16.5173-x)}{2 \pi}\right|+\log (x)-\right. \\
\left.\left.\left.\left.\left.\sum_{k=1}^{\infty} \frac{(-1)^{k}(16.5173-x)^{k} x^{-k}}{k}\right)\right)\right)\right)^{15}\right)
\end{array}
$$

for $x<0$
$\left(\frac{1}{27}\left(\left(\left(236+\frac{3}{2}\right) /\left(\left(2.9392^{2} \times 3.9392^{2}((2.9392-11)(2.9392+12)\right.\right.\right.\right.\right.$
$\left((2.9392-12) 13.9392 \log \left(2.9392^{2}+1\right)-\right.$ $(2.9392-5) 10.9392 \log ($ $\left.\left.\left.\left.(2.9392+1)^{2}+1\right)\right)+(2 \times 2.9392+1)\right)\right) /$

$$
(2(2 \times 2.9392+1)(36 \times 49))-4))^{15}-
$$

$$
21-\pi))^{2}-4+\frac{1}{2}=-\frac{469}{162}+\frac{14 \pi}{243}+\frac{\pi^{2}}{729}+
$$

199897926247620551792110523732099320281564713841504499214 :

$$
\begin{aligned}
& 352108538150787353515625 / \\
& (782757789696(-4+0.00552406(6.8784-
\end{aligned}
$$

$$
120.422\left(-126.3\left(\log \left(z_{0}\right)+\left\lfloor\frac{\arg \left(9.6389-z_{0}\right)}{2 \pi}\right\rfloor\left(\log \left(\frac{1}{z_{0}}\right)+\right.\right.\right.
$$

$$
\left.\left.\log \left(z_{0}\right)\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(9.6389-z_{0}\right)^{k} z_{0}^{-k}}{k}\right)+
$$

$$
22.5435\left(\log \left(z_{0}\right)+\left\lfloor\frac{\arg \left(16.5173-z_{0}\right)}{2 \pi}\right\rfloor\right.
$$

$$
\left(\log \left(\frac{1}{z_{0}}\right)+\log \left(z_{0}\right)\right)-
$$

$$
\left.\left.\left.\left.\left.\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(16.5173-z_{0}\right)^{k} z_{0}^{-k}}{k}\right)\right)\right)\right)^{30}\right)-
$$

98969684177193407055921852588653564453125 /
$(3981312$

$$
\begin{array}{r}
-4+0.00552406(6.8784- \\
120.422\left(-126.3\left(\log \left(z_{0}\right)+\left\lvert\, \frac{\arg \left(9.6389-z_{0}\right)}{2 \pi}\right.\right]\left(\log \left(\frac{1}{z_{0}}\right)+\right.\right. \\
\left.\left.\log \left(z_{0}\right)\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(9.6389-z_{0}\right)^{k} z_{0}^{-k}}{k}\right)+ \\
22.5435\left(\log \left(z_{0}\right)+\left|\frac{\arg \left(16.5173-z_{0}\right)}{2 \pi}\right|\right. \\
\left(\log \left(\frac{1}{z_{0}}\right)+\log \left(z_{0}\right)\right)- \\
\left.\left.\left.\left.\left.\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(16.5173-z_{0}\right)^{k} z_{0}^{-k}}{k}\right)\right)\right)\right)^{15}\right)-
\end{array}
$$

(14138526311027629579417407512664794921875
$\pi) /$

$$
\begin{array}{r}
11943936\left(-4+0.00552406\left(6.8784-120.422\left(-126.3\left(\log \left(z_{0}\right)+\right.\right.\right.\right. \\
\left|\frac{\arg \left(9.6389-z_{0}\right)}{2 \pi}\right|\left(\log \left(\frac{1}{z_{0}}\right)+\log \left(z_{0}\right)\right)- \\
\left.\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(9.6389-z_{0}\right)^{k} z_{0}^{-k}}{k}\right)+22.5435 \\
\left(\log \left(z_{0}\right)+\left\lfloor\frac{\arg \left(16.5173-z_{0}\right)}{2 \pi} \left\lvert\,\left(\log \left(\frac{1}{z_{0}}\right)+\log (\right.\right.\right.\right. \\
\left.\left.\left.\left.\left.\left.\left.z_{0}\right)\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(16.5173-z_{0}\right)^{k} z_{0}^{-k}}{k}\right)\right)\right)\right)^{15}\right)
\end{array}
$$

Now, we analyze the following equation:

$$
\frac{1}{\pi}=\frac{2 \sqrt{2}}{9801} \sum_{k=0}^{\infty} \frac{(4 k)!(1103+26390 k)}{(k!)^{4} 396^{4 k}}
$$

We obtain:
(2sqrt2)/9801 sum $((4 \mathrm{k})!(1103+26390 \mathrm{k})) /\left((\mathrm{k}!)^{\wedge} 4396^{\wedge}(4 \mathrm{k})\right), \mathrm{k}=0 .$. infinity

Input interpretation

$\frac{2 \sqrt{2}}{9801} \sum_{k=0}^{\infty} \frac{(4 k)!(1103+26390 k)}{(k!)^{4} \times 396^{4 k}}$
$n!$ is the factorial function

Result

$\frac{1}{\pi} \approx 0.31831$
0.31831

From the following expression:

$$
24=\frac{\pi \sqrt{142}}{\log \left[\sqrt{\left(\frac{10+11 \sqrt{2}}{4}\right)}+\sqrt{\left(\frac{10+7 \sqrt{2}}{4}\right)}\right]} .
$$

we have:
(Pi*sqrt(142))/ln[sqrt(1/4*(10+11sqrt2))+sqrt(1/4*(10+7sqrt2))]

Input

$$
\frac{\pi \sqrt{142}}{\log \left(\sqrt{\frac{1}{4}(10+11 \sqrt{2})}+\sqrt{\frac{1}{4}(10+7 \sqrt{2})}\right)}
$$

Exact result

$$
\frac{\sqrt{142} \pi}{\log \left(\frac{1}{2} \sqrt{10+7 \sqrt{2}}+\frac{1}{2} \sqrt{10+11 \sqrt{2}}\right)}
$$

Decimal approximation

24.000000000000000848609271479359429436295501181641940224711161612
≈ 24

The study of this function provides the following representations:

Alternate forms

$\frac{2 \sqrt{142} \pi}{\log \left(5+\frac{9}{\sqrt{2}}+\sqrt{\frac{127}{2}+45 \sqrt{2}}\right)}$
$\frac{2 \sqrt{142} \pi}{\log \left(5+\frac{9}{\sqrt{2}}+\sqrt{\frac{1}{2}(127+90 \sqrt{2})}\right)}$

$$
\frac{\sqrt{142} \pi}{\log \left(\frac{1}{2}(\sqrt{10+7 \sqrt{2}}+\sqrt{10+11 \sqrt{2}})\right)}
$$

Alternative representations

$$
\begin{gathered}
\frac{\pi \sqrt{142}}{\log \left(\sqrt{\frac{1}{4}(10+11 \sqrt{2})}+\sqrt{\frac{1}{4}(10+7 \sqrt{2})}\right)}= \\
\frac{\pi \sqrt{142}}{\log _{e}\left(\sqrt{\frac{1}{4}(10+7 \sqrt{2})}+\sqrt{\frac{1}{4}(10+11 \sqrt{2})}\right)}
\end{gathered}
$$

$$
\begin{aligned}
& \frac{\pi \sqrt{142}}{\log \left(\sqrt{\frac{1}{4}(10+11 \sqrt{2})}+\sqrt{\frac{1}{4}(10+7 \sqrt{2})}\right)}= \\
& \frac{\pi \sqrt{142}}{\log (a) \log _{a}\left(\sqrt{\frac{1}{4}(10+7 \sqrt{2})}+\sqrt{\frac{1}{4}(10+11 \sqrt{2})}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\pi \sqrt{142}}{\log \left(\sqrt{\frac{1}{4}(10+11 \sqrt{2})}+\sqrt{\frac{1}{4}(10+7 \sqrt{2})}\right)}= \\
& -\frac{\pi \sqrt{142}}{\operatorname{Li}_{1}\left(1-\sqrt{\frac{1}{4}(10+7 \sqrt{2})}-\sqrt{\frac{1}{4}(10+11 \sqrt{2})}\right)}
\end{aligned}
$$

Series representations

$$
\begin{aligned}
& \frac{\pi \sqrt{142}}{\log \left(\sqrt{\frac{1}{4}(10+11 \sqrt{2})}+\sqrt{\frac{1}{4}(10+7 \sqrt{2})}\right)}= \\
& \frac{\sqrt{142} \pi}{\log \left(\frac{1}{2}(-2+\sqrt{10+7 \sqrt{2}}+\sqrt{10+11 \sqrt{2}})\right)-\sum_{k=1}^{\infty} \frac{\left(-\frac{-2+\sqrt{10+7 \sqrt{2}}+\sqrt{10+11 \sqrt{2}}}{k}\right)^{k}}{k}}= \\
& \log \left(\sqrt{\frac{1}{4}(10+11 \sqrt{2})}+\sqrt{\frac{1}{4}(10+7 \sqrt{2})}\right) \\
& \left.\frac{\pi \sqrt{142}}{\log \left(-1+\frac{1}{2} \sqrt{10+7 \sqrt{2}}+\frac{1}{2} \sqrt{10+11 \sqrt{2}}\right)-\sum_{k=1}^{\infty} \frac{\left(-\frac{-2+\sqrt{10+7 \sqrt{2}}+\sqrt{10+11 \sqrt{2}}}{k}\right.}{k}}\right)^{k}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\pi \sqrt{142}}{\log \left(\sqrt{\frac{1}{4}(10+11 \sqrt{2})}+\sqrt{\frac{1}{4}(10+7 \sqrt{2})}\right)}= \\
& -\left((i \sqrt{142} \pi) /\left(2 \pi \left\lvert\, \frac{\arg (\sqrt{10+7 \sqrt{2}}+\sqrt{10+11 \sqrt{2}}-2 x)}{2 \pi}\right.\right)-\right. \\
& \left.i\left(\log (x)-\sum_{k=1}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}(\sqrt{10+7 \sqrt{2}}+\sqrt{10+11 \sqrt{2}}-2 x)^{k} x^{-k}}{k}\right)\right)
\end{aligned}
$$

for $x<0$

Integral representations

$\frac{\pi \sqrt{142}}{\log \left(\sqrt{\frac{1}{4}(10+11 \sqrt{2})}+\sqrt{\frac{1}{4}(10+7 \sqrt{2})}\right)}=\frac{\sqrt{142} \pi}{\int_{1}^{\frac{1}{2}(\sqrt{10+7 \sqrt{2}}+\sqrt{10+11 \sqrt{2}})_{\frac{1}{t}} d t}}$

$$
\begin{aligned}
& \frac{\pi \sqrt{142}}{\log \left(\sqrt{\frac{1}{4}(10+11 \sqrt{2})}+\sqrt{\frac{1}{4}(10+7 \sqrt{2})}\right)}= \\
& \frac{2 i \sqrt{142} \pi^{2}}{\int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{2}{\left(\frac{2+\sqrt{10+7 \sqrt{2}}+\sqrt{10+11 \sqrt{2}}}{\Gamma(1-s)}\right)^{5} \Gamma(-s)^{2} \Gamma(1+s)}} d s
\end{aligned}
$$

Thence, inverting the previous expression

$$
\frac{1}{\pi}=\frac{2 \sqrt{2}}{9801} \sum_{k=0}^{\infty} \frac{(4 k)!(1103+26390 k)}{(k!)^{4} 396^{4 k}}
$$

we obtain:
$\left(\left(\left(1 /\left((2 \mathrm{sqrt} 2) / 9801 \operatorname{sum}((4 \mathrm{k})!(1103+26390 \mathrm{k})) /\left((\mathrm{k}!)^{\wedge} 4396^{\wedge}(4 \mathrm{k})\right)\right.\right.\right.\right.$, $\left.\mathrm{k}=0 . . \operatorname{infinity})))^{*} \operatorname{sqrt}(142)\right) / \ln \left[\operatorname{sqrt}(1 / 4 *(10+11 \operatorname{sqrt} 2))+\operatorname{sqrt}\left(1 / 4^{*}(10+7 \mathrm{sqrt} 2)\right)\right]$

Input interpretation

$$
\frac{\frac{1}{\frac{2 \sqrt{2}}{9801} \sum_{k=0}^{\infty} \frac{(4 k)!(1103+26390 k)}{(k!)^{4} \times 396^{4 k}}} \sqrt{142}}{\log \left(\sqrt{\frac{1}{4}(10+11 \sqrt{2})}+\sqrt{\frac{1}{4}(10+7 \sqrt{2})}\right)}
$$

Result

$\frac{\sqrt{142} \pi}{\log \left(\frac{1}{2} \sqrt{10+7 \sqrt{2}}+\frac{1}{2} \sqrt{10+11 \sqrt{2}}\right)} \approx 24$
24

The study of this function provides the following representations:

Alternate forms

$\frac{2 \sqrt{142} \pi}{\log \left(5+\frac{9}{\sqrt{2}}+\sqrt{\frac{127}{2}+45 \sqrt{2}}\right)}$
$2 \sqrt{142} \pi$
$\log \left(5+\frac{9}{\sqrt{2}}+\sqrt{\frac{1}{2}(127+90 \sqrt{2})}\right)$
$\frac{\sqrt{142} \pi}{\log \left(\frac{1}{2}(\sqrt{10+7 \sqrt{2}}+\sqrt{10+11 \sqrt{2}})\right)}$

From which, we obtain:
$72 *\left(\left(\left(1 /\left((2 \mathrm{sqrt} 2) / 9801 \operatorname{sum}((4 \mathrm{k})!(1103+26390 \mathrm{k})) /\left((\mathrm{k}!)^{\wedge} 4396^{\wedge}(4 \mathrm{k})\right)\right.\right.\right.\right.$, $\left.\mathrm{k}=0 . . \operatorname{infinity})))^{*} \operatorname{sqrt}(142)\right) / \ln \left[\operatorname{sqrt}(1 / 4 *(10+11 \operatorname{sqrt} 2))+\operatorname{sqrt}\left(1 / 4^{*}(10+7 \mathrm{sqrt} 2)\right)\right]+1$

Input interpretation

$72 \times \frac{\frac{1}{\frac{2 \sqrt{2}}{9801} \sum_{k=0}^{\infty} \frac{(4 k)!(1103+26390 k)}{(k!)^{4} \times 396^{4 k}}} \sqrt{142}}{\log \left(\sqrt{\frac{1}{4}(10+11 \sqrt{2})}+\sqrt{\frac{1}{4}(10+7 \sqrt{2})}\right)}+1$
$n!$ is the factorial function
$\log (x)$ is the natural logarithm

Result

$$
1+\frac{72 \sqrt{142} \pi}{\log \left(\frac{1}{2} \sqrt{10+7 \sqrt{2}}+\frac{1}{2} \sqrt{10+11 \sqrt{2}}\right)} \approx 1729
$$

1729

This result is very near to the mass of candidate glueball $\mathbf{f}_{\mathbf{0}}(\mathbf{1 7 1 0})$ scalar meson. Furthermore, 1728 occurs in the algebraic formula for the j-invariant of an elliptic curve. $\left(1728=8^{2} * 3^{3}\right.$) The number 1728 is one less than the Hardy-Ramanujan number 1729 (taxicab number)

The study of this function provides the following representations:

Alternate forms

$$
1+\frac{144 \sqrt{142} \pi}{\log \left(5+\frac{9}{\sqrt{2}}+\sqrt{\frac{127}{2}+45 \sqrt{2}}\right)}
$$

$$
1+\frac{144 \sqrt{142} \pi}{\log \left(5+\frac{9}{\sqrt{2}}+\sqrt{\frac{1}{2}(127+90 \sqrt{2})}\right)}
$$

$$
1+\frac{72 \sqrt{142} \pi}{\log \left(\frac{1}{2}(\sqrt{10+7 \sqrt{2}}+\sqrt{10+11 \sqrt{2}})\right)}
$$

(1/27((72*(((1/((2sqrt2)/9801 sum ((4k)! (1103+26390k)) / ((k!)^4 396^(4k)), $\left.\left.\left.\left.\mathrm{k}=0 . . \operatorname{infinity})))^{*} \operatorname{sqrt}(142)\right) / \ln [\operatorname{sqrt}(1 / 4 *(10+11 \operatorname{sqrt} 2))+\operatorname{sqrt}(1 / 4 *(10+7 \mathrm{sqrt} 2))]\right)\right)\right)^{\wedge} 2$

Input interpretation

$$
\left(\frac{1}{27}\left(72 \times \frac{\frac{1}{\frac{2 \sqrt{2}}{9801} \sum_{k=0}^{\infty} \frac{(4 k)!(1103+26390 k)}{(k!)^{4} \times 396^{4 k}}} \sqrt{142}}{\log \left(\sqrt{\frac{1}{4}(10+11 \sqrt{2})}+\sqrt{\frac{1}{4}(10+7 \sqrt{2})}\right)}\right)\right)^{2}
$$

n ! is the factorial function $\log (x)$ is the natural logarithm

Result

$\frac{9088 \pi^{2}}{9 \log ^{2}\left(\frac{1}{2} \sqrt{10+7 \sqrt{2}}+\frac{1}{2} \sqrt{10+11 \sqrt{2}}\right)} \approx 4096$
$4096=64^{2}$

The study of this function provides the following representations:

Alternate forms

$\left.\frac{36352 \pi^{2}}{9 \log ^{2}\left(5+\frac{9}{\sqrt{2}}+\sqrt{\frac{127}{2}+45 \sqrt{2}}\right.}\right)$
$9 \log ^{2}\left(5+\frac{9}{\sqrt{2}}+\sqrt{\frac{1}{2}(127+90 \sqrt{2})}\right)$
$\left(36352 \pi^{2}\right) /$

$$
\begin{gathered}
\left(9 \left(-5 \log (2)+2 \log \left(\sqrt{2(10-7 \sqrt{2})}+2 \sqrt{10-\sqrt{2}}+2^{3 / 4} \sqrt{7+5 \sqrt{2}}+\right.\right.\right. \\
\left.2 \sqrt{10-i \sqrt{142}}+2 \sqrt{10+i \sqrt{142}}))^{2}\right)
\end{gathered}
$$

And also:
$\left(72 *\left(\left(\left(1 /\left((2 \mathrm{sqrt} 2) / 9801 \operatorname{sum}((4 \mathrm{k})!(1103+26390 \mathrm{k})) /\left((\mathrm{k}!)^{\wedge} 4396^{\wedge}(4 \mathrm{k})\right)\right.\right.\right.\right.\right.$,
$\mathrm{k}=0 .$. infinity $\left.\left.)))^{*} \operatorname{sqrt}(142)\right) / \ln \left[\operatorname{sqrt}\left(1 / 4^{*}(10+11 \operatorname{sqrt} 2)\right)+\operatorname{sqrt}\left(1 / 4^{*}(10+7 \mathrm{sqrt} 2)\right)\right]+1\right)^{\wedge} 1 / 15$

Input interpretation

$\sqrt[15]{72 \times \frac{\frac{1}{\frac{2 \sqrt{2}}{9801} \sum_{k=0}^{\infty} \frac{(4 k)!(1103+26390 k)}{(k!)^{4} \times 396^{4 k}}} \sqrt{142}}{\log \left(\sqrt{\frac{1}{4}(10+11 \sqrt{2})}+\sqrt{\frac{1}{4}(10+7 \sqrt{2})}\right)}+1}$
$n!$ is the factorial function
$\log (x)$ is the natural logarithm

Result

$\sqrt[15]{1+\frac{72 \sqrt{142} \pi}{\log \left(\frac{1}{2} \sqrt{10+7 \sqrt{2}}+\frac{1}{2} \sqrt{10+11 \sqrt{2}}\right)}} \approx 1.64382$
$1.64382 \approx \zeta(2)=\frac{\pi^{2}}{6}=1.644934 \ldots$

Alternate forms

$$
\sqrt[15]{1+\frac{144 \sqrt{142} \pi}{\log \left(5+\frac{9}{\sqrt{2}}+\sqrt{\frac{127}{2}+45 \sqrt{2}}\right)}}
$$

$$
\sqrt[15]{1+\frac{144 \sqrt{142} \pi}{\log \left(5+\frac{9}{\sqrt{2}}+\sqrt{\frac{1}{2}(127+90 \sqrt{2})}\right)}}
$$

$$
\sqrt[15]{\left.1+\frac{72 \sqrt{142} \pi}{\log \left(\frac{1}{2}(\sqrt{10+7 \sqrt{2}}+\sqrt{10+11 \sqrt{2}})\right.}\right)}
$$

And we have also:
(36* $\left(\left(\left(1 /\left((2 \mathrm{sqrt} 2) / 9801 \operatorname{sum}((4 \mathrm{k})!(1103+26390 \mathrm{k})) /\left((\mathrm{k}!)^{\wedge} 4396^{\wedge}(4 \mathrm{k})\right)\right.\right.\right.\right.$, $\mathrm{k}=0$..infinity) $)$)) $)+5$

Input interpretation

$36 \times \frac{1}{\frac{2 \sqrt{2}}{9801} \sum_{k=0}^{\infty} \frac{(4 k)!(1103+26390 k)}{(k!)^{4} \times 396^{4 k}}}+5$
$n!$ is the factorial function

Result

$5+36 \pi \approx 118.097$
118.097
result very near to the value of the following soliton mass:

From:

The total energy or the soliton mass for a single soliton becomes.

$$
\begin{aligned}
E=\int d x 2 U(\phi)= & \int d x\left(\frac{\lambda}{2}\left(\phi^{2}-v^{2}\right)^{2}\right)=\mp \frac{2 \lambda v}{\sqrt{2} m} \int_{0}^{ \pm v} d \phi\left(\phi^{2}-v^{2}\right) \\
& =\mp \frac{2 \lambda v}{\sqrt{2} m}\left(\mp \frac{2 v^{3}}{3}\right)=\frac{2 \sqrt{2} m^{3}}{3 \lambda}
\end{aligned}
$$

$\left(2 * \mathrm{sqrt} 2 * 125.35^{\wedge} 3\right) /\left(3^{*} 125.35^{\wedge} 2\right)$

Input interpretation

$$
\frac{2 \sqrt{2} \times 125.35^{3}}{3 \times 125.35^{2}}
$$

Result

118.18111336231164291152778771979043609913891305233362731513120343
118.18111336.....

Observations

We note that, from the number 8 , we obtain as follows:
8^{2}
64
$8^{2} \times 2 \times 8$
1024
$8^{4}=8^{2} \times 2^{6}$
True
$8^{4}=4096$
$8^{2} \times 2^{6}=4096$
$2^{13}=2 \times 8^{4}$
True
$2^{13}=8192$
$2 \times 8^{4}=8192$

We notice how from the numbers 8 and 2 we get $64,1024,4096$ and 8192 , and that 8 is the fundamental number. In fact $8^{2}=64,8^{3}=512,8^{4}=4096$. We define it "fundamental number", since 8 is a Fibonacci number, which by rule, divided by the previous one, which is 5 , gives 1.6 , a value that tends to the golden ratio, as for all numbers in the Fibonacci sequence

"Golden" Range

Finally we note how $8^{2}=64$, multiplied by 27 , to which we add 1 , is equal to 1729 , the so-called "Hardy-Ramanujan number". Then taking the 15 th root of 1729 , we obtain a value close to $\zeta(2)$ that $1.6438 \ldots$, which, in turn, is included in the range of what we call "golden numbers"

Furthermore for all the results very near to 1728 or 1729 , adding $64=8^{2}$, one obtain values about equal to 1792 or 1793 . These are values almost equal to the Planck multipole spectrum frequency 1792.35 and to the hypothetical Gluino mass

Appendix

From: A. Sagnotti-AstronomiAmo, 23.04.2020

In the above figure, it is said that: "why a given shape of the extra dimensions? Crucial, it determines the predictions for α ".

We propose that whatever shape the compactified dimensions are, their geometry must be based on the values of the golden ratio and $\zeta(2)$, (the latter connected to 1728 or 1729 , whose fifteenth root provides an excellent approximation to the above mentioned value) which are recurrent as solutions of the equations that we are going to develop. It is important to specify that the initial conditions are always values
belonging to a fundamental chapter of the work of S. Ramanujan "Modular equations and Appoximations to $\mathrm{Pi}^{\prime \prime}$ (see references). These values are some multiples of 8 (64 and 4096), 276, which added to 4096, is equal to 4372, and finally $\mathrm{e}^{\pi \sqrt{ } 22}$

We have, in certain cases, the following connections:

Fig. 1

The String Theory "Landscape"

- Graph axes show only 2 out of hundreds of parameters ("moduli") that determine the exact Calabi-Yau manifolds and how strings wrap around them

Each point on the "Landscape" represents a single Universe with a particular Calabi-Yau manifold and set of string wrapping modes for its compactified dimensions

- Each Universe could be realized in a separate post-inflation "bubble"

Fig. 2

Fig. 3
Stringscape - a small part of the string-theory landscape showing the new de Sitter solution as a local minimum of the energy (vertical axis). The global minimum occurs at the infinite size of the extra dimensions on the extreme right of the figure.

Figure 2. Lines in the complex plane where the Riemann zeta function ζ is real (green) depicted on a relief representing the positive absolute value of ζ for arguments $s \equiv \sigma+\mathrm{i} \tau$ where the real part of ζ is positive, and the negative absolute value of ζ where the real part of ζ is negative. This representation brings out most clearly that the lines of constant phase corresponding to phases of integer multiples of 2π run down the hills on the left-hand side, turn around on the right and terminate in the non-trivial zeros. This pattern repeats itself infinitely many times. The points of arrival and departure on the right-hand side of the picture are equally spaced and given by equation (11).

Fig. 4
With regard the Fig. 4 the points of arrival and departure on the right-hand side of the picture are equally spaced and given by the following equation:

$$
\tau_{k}^{\prime} \equiv k \frac{\pi}{\ln 2}
$$

with $k=\ldots,-2,-1,0,1,2, \ldots \ldots$
we obtain:
$2 \mathrm{Pi} /(\ln (2))$

Input:

$2 \times \frac{\pi}{\log (2)}$

Exact result:

$\frac{2 \pi}{\log (2)}$

Decimal approximation:

9.0647202836543876192553658914333336203437229354475911683720330958
9.06472028365....

Alternative representations:

$$
\frac{2 \pi}{\log ^{2}(2)}=\frac{2 \pi}{\log _{e}(2)}
$$

$\frac{2 \pi}{\log (2)}=\frac{2 \pi}{\log (a) \log _{a}(2)}$

$$
\frac{2 \pi}{\log (2)}=\frac{2 \pi}{2 \operatorname{coth}^{-1}(3)}
$$

Series representations:

$$
\frac{2 \pi}{\log (2)}=\frac{2 \pi}{2 i \pi\left\lfloor\frac{\arg (2-x)}{2 \pi}\right\rfloor+\log (x)-\sum_{k=1}^{\infty} \frac{(-1)^{k}(2-x)^{k} x^{-k}}{k}} \text { for } x<0
$$

$$
\frac{2 \pi}{\log (2)}=\frac{2 \pi}{\log \left(z_{0}\right)+\left\lfloor\frac{\arg \left(2-z_{0}\right)}{2 \pi}\right\rfloor\left(\log \left(\frac{1}{z_{0}}\right)+\log \left(z_{0}\right)\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(2-z_{0}\right)^{k} z_{0}^{-k}}{k}}
$$

$$
\frac{2 \pi}{\log (2)}=\frac{2 \pi}{2 i \pi\left[\frac{\pi-\arg \left(\frac{1}{z_{0}}\right)-\arg \left(z_{0}\right)}{2 \pi}\right]+\log \left(z_{0}\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(2-z_{0}\right)^{k} z_{0}^{-k}}{k}}
$$

Integral representations:

$$
\frac{2 \pi}{\log (2)}=\frac{2 \pi}{\int_{1}^{2} \frac{1}{t} d t}
$$

$$
\frac{2 \pi}{\log (2)}=\frac{4 i \pi^{2}}{\int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{\Gamma(-s)^{2} \Gamma(1+s)}{\Gamma(1-s)} d s} \text { for }-1<\gamma<0
$$

From which:
$(2 \mathrm{Pi} /(\ln (2)))^{*}(1 / 12 \pi \log (2))$

Input:

$\left(2 \times \frac{\pi}{\log (2)}\right)\left(\frac{1}{12} \pi \log (2)\right)$
$\log (x)$ is the natural logarithm

Exact result:

$\frac{\pi^{2}}{6}$

Decimal approximation:

1.6449340668482264364724151666460251892189499012067984377355582293
$1.6449340668 \ldots=\zeta(2)=\frac{\pi^{2}}{6}=1.644934 \ldots$

From:
Modular equations and approximations to $\boldsymbol{\pi}$ - Srinivasa Ramanujan Quarterly Journal of Mathematics, XLV, 1914, 350-372

We have that:

Hence

$$
\begin{array}{rrr}
64 g_{22}^{24} & = & e^{\pi \sqrt{22}}-24+276 e^{-\pi \sqrt{22}}-\cdots \\
64 g_{22}^{-24} & = & 4096 e^{-\pi \sqrt{22}}+\cdots
\end{array}
$$

so that

$$
64\left(g_{22}^{24}+g_{22}^{-24}\right)=e^{\pi \sqrt{22}}-24+4372 e^{-\pi \sqrt{22}}+\cdots=64\left\{(1+\sqrt{2})^{12}+(1-\sqrt{2})^{12}\right\}
$$

Hence

$$
e^{\pi \sqrt{22}}=2508951.9982 \ldots
$$

Again

$$
\begin{array}{cc}
G_{37}=(6+\sqrt{37})^{\frac{1}{4}} \\
64 G_{37}^{24}= & e^{\pi \sqrt{37}}+24+276 e^{-\pi \sqrt{37}}+\cdots, \\
64 G_{37}^{-24}= & 4096 e^{-\pi \sqrt{37}}-\cdots,
\end{array}
$$

so that

$$
64\left(G_{37}^{24}+G_{37}^{-24}\right)=e^{\pi \sqrt{37}}+24+4372 e^{-\pi \sqrt{37}}-\cdots=64\left\{(6+\sqrt{37})^{6}+(6-\sqrt{37})^{6}\right\}
$$

Hence

$$
e^{\pi \sqrt{37}}=199148647.999978 \ldots
$$

Similarly, from

$$
g_{58}=\sqrt{\left(\frac{5+\sqrt{29}}{2}\right)}
$$

we obtain

$$
64\left(g_{58}^{24}+g_{58}^{-24}\right)=e^{\pi \sqrt{58}}-24+4372 e^{-\pi \sqrt{58}}+\cdots=64\left\{\left(\frac{5+\sqrt{29}}{2}\right)^{12}+\left(\frac{5-\sqrt{29}}{2}\right)^{12}\right\}
$$

Hence

$$
e^{\pi \sqrt{58}}=24591257751.99999982 \ldots
$$

We note that, with regard 4372, we can to obtain the following results:

Input

$27\left(\sqrt{4372}-2-\frac{1}{2} \times \frac{\sqrt{10-2 \sqrt{5}}-2}{\sqrt{5}-1}\right)+\phi$

Result

$\phi+27\left(-2+2 \sqrt{1093}-\frac{\sqrt{10-2 \sqrt{5}}-2}{2(\sqrt{5}-1)}\right)$

Decimal approximation

1729.0526944170905625170637208637148763684189306538457854815447023
1729.0526944....

This result is very near to the mass of candidate glueball $\mathbf{f}_{\mathbf{0}}(\mathbf{1 7 1 0})$ scalar meson. Furthermore, 1728 occurs in the algebraic formula for the j-invariant of an elliptic curve. $\left(1728=8^{2} * 3^{3}\right)$ The number 1728 is one less than the Hardy-Ramanujan number 1729 (taxicab number)

Alternate forms

$\frac{1}{8}(-27 \sqrt{5(10-2 \sqrt{5})}+58 \sqrt{5}+432 \sqrt{1093}-27 \sqrt{2(5-\sqrt{5})}-374)$
$\phi-54+54 \sqrt{1093}+\frac{27}{4}(1+\sqrt{5}-\sqrt{2(5+\sqrt{5})})$
$\phi-54+54 \sqrt{1093}-\frac{27(\sqrt{10-2 \sqrt{5}}-2)}{2(\sqrt{5}-1)}$

Minimal polynomial

```
256}\mp@subsup{x}{}{8}+95744\mp@subsup{x}{}{7}-3248750080\mp@subsup{x}{}{6}
    914210725504 x 5}+15498355554921184 \mp@subsup{x}{}{4}
    2911478392539914656 x
    3092528914069760354714456x+26320050609744039027169013041
```


Expanded forms

$$
-\frac{187}{4}+\frac{29 \sqrt{5}}{4}+54 \sqrt{1093}-\frac{27}{8} \sqrt{10-2 \sqrt{5}}-\frac{27}{8} \sqrt{5(10-2 \sqrt{5})}
$$

$$
-\frac{107}{2}+\frac{\sqrt{5}}{2}+54 \sqrt{1093}+\frac{27}{\sqrt{5}-1}-\frac{27 \sqrt{10-2 \sqrt{5}}}{2(\sqrt{5}-1)}
$$

Series representations

$$
\begin{aligned}
& 27\left(\sqrt{4372}-2-\frac{\sqrt{10-2 \sqrt{5}}-2}{(\sqrt{5}-1) 2}\right)+\phi= \\
& \left(162-108 \sqrt{1093}-2 \phi-108 \sqrt{4} \sum_{k=0}^{\infty} 4^{-k}\binom{\frac{1}{2}}{k}+\right. \\
& 108 \sqrt{1093} \sqrt{4} \sum_{k=0}^{\infty} 4^{-k}\binom{\frac{1}{2}}{k}+2 \phi \sqrt{4} \sum_{k=0}^{\infty} 4^{-k}\binom{\frac{1}{2}}{k}- \\
& \left.27 \sqrt{9-2 \sqrt{5}} \sum_{k=0}^{\infty}\binom{\frac{1}{2}}{k}(9-2 \sqrt{5})^{-k}\right) /\left(2\left(-1+\sqrt{4} \sum_{k=0}^{\infty} 4^{-k}\binom{\frac{1}{2}}{k}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& 27\left(\sqrt{4372}-2-\frac{\sqrt{10-2 \sqrt{5}}-2}{(\sqrt{5}-1) 2}\right)+\phi= \\
& \left(162-108 \sqrt{1093}-2 \phi-108 \sqrt{4} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{4}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}+\right. \\
& 108 \sqrt{1093} \sqrt{4} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{4}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}+2 \phi \sqrt{4} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{4}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}- \\
& \left.27 \sqrt{9-2 \sqrt{5}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}(9-2 \sqrt{5})^{-k}}{k!}\right) / \\
& \left(2\left(-1+\sqrt{4} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{4}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& 27\left(\sqrt{4372}-2-\frac{\sqrt{10-2 \sqrt{5}}-2}{(\sqrt{5}-1) 2}\right)+\phi= \\
& \left(162-108 \sqrt{1093}-2 \phi-108 \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(5-z_{0}\right)^{k} z_{0}^{-k}}{k!}+\right. \\
& 108 \sqrt{1093} \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(5-z_{0}\right)^{k} z_{0}^{-k}}{k!}+ \\
& 2 \phi \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(5-z_{0}\right)^{k} z_{0}^{-k}}{k!}- \\
& \left.27 \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(10-2 \sqrt{5}-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right) / \\
& \left(2\left(-1+\sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(5-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right)\right)
\end{aligned}
$$

for ($\operatorname{not}\left(z_{0} \in \mathbb{R}\right.$ and $\left.-\infty<z_{0} \leq 0\right)$)

Or:
$27\left((4096+276)^{\wedge} 1 / 2-2-1 / 2(((\sqrt{ }(10-2 \sqrt{ } 5)-2))((\sqrt{ } 5-1)))\right)+\varphi$

Input

$27\left(\sqrt{4096+276}-2-\frac{1}{2} \times \frac{\sqrt{10-2 \sqrt{5}}-2}{\sqrt{5}-1}\right)+\phi$
ϕ is the golden ratio

Result

$\phi+27\left(-2+2 \sqrt{1093}-\frac{\sqrt{10-2 \sqrt{5}}-2}{2(\sqrt{5}-1)}\right)$

Decimal approximation

1729.0526944170905625170637208637148763684189306538457854815447023
...
1729.0526944.... as above

Alternate forms

$\frac{1}{8}(-27 \sqrt{5(10-2 \sqrt{5})}+58 \sqrt{5}+432 \sqrt{1093}-27 \sqrt{2(5-\sqrt{5})}-374)$
$\phi-54+54 \sqrt{1093}+\frac{27}{4}(1+\sqrt{5}-\sqrt{2(5+\sqrt{5})})$
$\phi-54+54 \sqrt{1093}-\frac{27(\sqrt{10-2 \sqrt{5}}-2)}{2(\sqrt{5}-1)}$

Minimal polynomial

```
256 x
    914210725504 x 5 + 15498355554921184 x +
    2911478 392539914656 x - 32941144911224677091680 x 2 -
    3092528914069760354714456x+26320050609744039027169013041
```


Expanded forms

$$
-\frac{187}{4}+\frac{29 \sqrt{5}}{4}+54 \sqrt{1093}-\frac{27}{8} \sqrt{10-2 \sqrt{5}}-\frac{27}{8} \sqrt{5(10-2 \sqrt{5})}
$$

$$
-\frac{107}{2}+\frac{\sqrt{5}}{2}+54 \sqrt{1093}+\frac{27}{\sqrt{5}-1}-\frac{27 \sqrt{10-2 \sqrt{5}}}{2(\sqrt{5}-1)}
$$

Series representations

$$
\begin{aligned}
& 27\left(\sqrt{4096+276}-2-\frac{\sqrt{10-2 \sqrt{5}}-2}{(\sqrt{5}-1) 2}\right)+\phi= \\
& \left(162-108 \sqrt{1093}-2 \phi-108 \sqrt{4} \sum_{k=0}^{\infty} 4^{-k}\binom{\frac{1}{2}}{k}+\right. \\
& 108 \sqrt{1093} \sqrt{4} \sum_{k=0}^{\infty} 4^{-k}\binom{\frac{1}{2}}{k}+2 \phi \sqrt{4} \sum_{k=0}^{\infty} 4^{-k}\binom{\frac{1}{2}}{k}- \\
& \left.27 \sqrt{9-2 \sqrt{5}} \sum_{k=0}^{\infty}\binom{\frac{1}{2}}{k}(9-2 \sqrt{5})^{-k}\right) /\left(2\left(-1+\sqrt{4} \sum_{k=0}^{\infty} 4^{-k}\binom{\frac{1}{2}}{k}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& 27\left(\sqrt{4096+276}-2-\frac{\sqrt{10-2 \sqrt{5}}-2}{(\sqrt{5}-1) 2}\right)+\phi= \\
& \left(162-108 \sqrt{1093}-2 \phi-108 \sqrt{4} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{4}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}+\right. \\
& 108 \sqrt{1093} \sqrt{4} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{4}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}+2 \phi \sqrt{4} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{4}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}- \\
& \left.27 \sqrt{9-2 \sqrt{5}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}(9-2 \sqrt{5})^{-k}}{k!}\right) / \\
& \left(2\left(-1+\sqrt{4} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{4}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& 27\left(\sqrt{4096+276}-2-\frac{\sqrt{10-2 \sqrt{5}}-2}{(\sqrt{5}-1) 2}\right)+\phi= \\
& \left(162-108 \sqrt{1093}-2 \phi-108 \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(5-z_{0}\right)^{k} z_{0}^{-k}}{k!}+\right. \\
& 108 \sqrt{1093} \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(5-z_{0}\right)^{k} z_{0}^{-k}}{k!}+ \\
& 2 \phi \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(5-z_{0}\right)^{k} z_{0}^{-k}}{k!}- \\
& \left.27 \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(10-2 \sqrt{5}-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right) / \\
& \left(2\left(-1+\sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(5-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right)\right)
\end{aligned}
$$

for ($\operatorname{not}\left(z_{0} \in \mathbb{R}\right.$ and $\left.-\infty<z_{0} \leq 0\right)$)

From which:
$\left(27\left((4372)^{\wedge} 1 / 2-2-1 / 2(((\sqrt{ }(10-2 \sqrt{ } 5)-2))((\sqrt{ } 5-1)))\right)+\varphi\right)^{\wedge} 1 / 15$

Input

$\sqrt[15]{27\left(\sqrt{4372}-2-\frac{1}{2} \times \frac{\sqrt{10-2 \sqrt{5}}-2}{\sqrt{5}-1}\right)+\phi}$

Exact result

$\sqrt[15]{\phi+27\left(-2+2 \sqrt{1093}-\frac{\sqrt{10-2 \sqrt{5}}-2}{2(\sqrt{5}-1)}\right)}$

Decimal approximation

1.6438185685849862799902301317036810054185756873505184804834183124

$$
1.64381856858 \ldots \approx \zeta(2)=\frac{\pi^{2}}{6}=1.644934 \ldots
$$

Alternate forms

$$
\sqrt[15]{\phi-54+54 \sqrt{1093}-\frac{27(\sqrt{10-2 \sqrt{5}}-2)}{2(\sqrt{5}-1)}}
$$

$\sqrt[15]{\frac{2(\sqrt{5}-1)}{166-108 \sqrt{5}-108 \sqrt{1093}+108 \sqrt{5465}-27 \sqrt{2(5-\sqrt{5})}}}$

```
root of 256 \mp@subsup{x}{}{8}+95744\mp@subsup{x}{}{7}-3248750080}\mp@subsup{x}{}{6}-914210725504\mp@subsup{x}{}{5}
    15498355554921184 x 4}+2911478392539914656 \mp@subsup{x}{}{3}
    32941144911224677091680 x - 3092528914069760354714456x+
    26320050609744039027169013041 near }x=1729.0
```


Minimal polynomial

```
256 x 120 +95744 x 105 - 3248750080 x 90 -
    914210725504 x 75 + 15498355554921184 x 每 +
    2911478392539914656 每 - 32941144911224677091680 x 30 -
    3092528914069760354714456 午 +26320050609744039027169013041
```


Expanded forms

$$
\sqrt[15]{\frac{1}{2}(1+\sqrt{5})+27\left(-2+2 \sqrt{1093}-\frac{\sqrt{10-2 \sqrt{5}}-2}{2(\sqrt{5}-1)}\right)}
$$

$$
\sqrt[15]{-\frac{187}{4}+\frac{29 \sqrt{5}}{4}+54 \sqrt{1093}-\frac{27}{8} \sqrt{10-2 \sqrt{5}}-\frac{27}{8} \sqrt{5(10-2 \sqrt{5})}}
$$

All 15th roots of $\phi+27(-2+2 \operatorname{sqrt}(1093)-(\operatorname{sqrt}(10-2 \operatorname{sqrt}(5))-2) /(2(\operatorname{sqrt}(5)-$ 1）））

$$
e^{0} \sqrt[15]{\phi+27\left(-2+2 \sqrt{1093}-\frac{\sqrt{10-2 \sqrt{5}}-2}{2(\sqrt{5}-1)}\right)} \approx 1.64382 \text { (real, principal root) }
$$

$e^{(2 i \pi) / 15} \sqrt[15]{\phi+27\left(-2+2 \sqrt{1093}-\frac{\sqrt{10-2 \sqrt{5}}-2}{2(\sqrt{5}-1)}\right)} \approx 1.50170+0.6686 i$
$e^{(4 i \pi) / 15} \sqrt[15]{\phi+27\left(-2+2 \sqrt{1093}-\frac{\sqrt{10-2 \sqrt{5}}-2}{2(\sqrt{5}-1)}\right)} \approx 1.0999+1.2216 i$
$e^{(2 i \pi) / 5} \sqrt[15]{\phi+27\left(-2+2 \sqrt{1093}-\frac{\sqrt{10-2 \sqrt{5}}-2}{2(\sqrt{5}-1)}\right)} \approx 0.5080+1.5634 i$
$e^{(8 i \pi) / 15} \sqrt[15]{\phi+27\left(-2+2 \sqrt{1093}-\frac{\sqrt{10-2 \sqrt{5}}-2}{2(\sqrt{5}-1)}\right)} \approx-0.17183+1.63481 i$

Series representations

$$
\begin{aligned}
& \sqrt[15]{27\left(\sqrt{4372}-2-\frac{\sqrt{10-2 \sqrt{5}}-2}{(\sqrt{5}-1) 2}\right)+\phi}= \\
& \frac{1}{\sqrt[15]{2}\left(\left(\left(162-108 \sqrt{1093}-2 \phi-108 \sqrt{4} \sum_{k=0}^{\infty} 4^{-k}\binom{\frac{1}{2}}{k}+108 \sqrt{1093} \sqrt{4}\right.\right.\right.} \\
& \sum_{k=0}^{\infty} 4^{-k}\binom{\frac{1}{2}}{k}+2 \phi \sqrt{4} \sum_{k=0}^{\infty} 4^{-k}\binom{\frac{1}{2}}{k}-27 \sqrt{9-2 \sqrt{5}} \\
& \left.\left.\left.\sum_{k=0}^{\infty}\binom{\frac{1}{2}}{k}(9-2 \sqrt{5})^{-k}\right) /\left(-1+\sqrt{4} \sum_{k=0}^{\infty} 4^{-k}\binom{\frac{1}{2}}{k}\right)\right) \wedge(1 / 15)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \sqrt[15]{27\left(\sqrt{4372}-2-\frac{\sqrt{10-2 \sqrt{5}}-2}{(\sqrt{5}-1) 2}\right)+\phi}= \\
& \frac{1}{\sqrt[15]{2}\left(\left(\left(162-108 \sqrt{1093}-2 \phi-108 \sqrt{4} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{4}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}+\right.\right.\right.} \\
& 108 \sqrt{1093} \sqrt{4} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{4}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}+2 \phi \sqrt{4} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{4}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}- \\
& \left.27 \sqrt{9-2 \sqrt{5}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}(9-2 \sqrt{5})^{-k}}{k!}\right) / \\
& \left.\left.\left(-1+\sqrt{4} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{4}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)\right) \wedge(1 / 15)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \sqrt[15]{27\left(\sqrt{4372}-2-\frac{\sqrt{10-2 \sqrt{5}}-2}{(\sqrt{5}-1) 2}\right)+\phi}= \\
& \frac{1}{\sqrt[15]{2}\left(\left(\left(162-108 \sqrt{1093}-2 \phi-108 \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(5-z_{0}\right)^{k} z_{0}^{-k}}{k!}+\right.\right.\right.} \\
& 108 \sqrt{1093} \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(5-z_{0}\right)^{k} z_{0}^{-k}}{k!}+ \\
& 2 \phi \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(5-z_{0}\right)^{k} z_{0}^{-k}}{k!}- \\
& \left.27 \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(10-2 \sqrt{5}-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right) / \\
& \left.\left.\left(-1+\sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(5-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right)\right) \wedge(1 / 15)\right)
\end{aligned}
$$

for ($\operatorname{not}\left(z_{0} \in \mathbb{R}\right.$ and $\left.-\infty<z_{0} \leq 0\right)$)

Integral representation

$(1+z)^{a}=\frac{\int_{-i \infty 0+\gamma}^{i \infty+\gamma} \frac{\Gamma(s) \Gamma(-a-s)}{z^{s}} d s}{(2 \pi i) \Gamma(-a)}$ for $(0<\gamma<-\operatorname{Re}(a)$ and $|\arg (z)|<\pi)$

From:

An Update on Brane Supersymmetry Breaking

J. Mourad and A. Sagnotti - arXiv:1711.11494v1 [hep-th] 30 Nov 2017

From the following vacuum equations:

$$
\begin{aligned}
T e^{\gamma_{E} \phi} & =-\frac{\beta_{E}^{(p)} h^{2}}{\gamma_{E}} e^{-2(8-p) C+2 \beta_{E}^{(p)} \phi} \\
16 k^{\prime} e^{-2 C} & =\frac{h^{2}\left(p+1-\frac{2 \beta_{E}^{(p)}}{\gamma_{E}}\right) e^{-2(8-p) C+2 \beta_{E}^{(p)} \phi}}{(7-p)} \\
\left(A^{\prime}\right)^{2} & =k e^{-2 A}+\frac{h^{2}}{16(p+1)}\left(7-p+\frac{2 \beta_{E}^{(p)}}{\gamma_{E}}\right) e^{-2(8-p) C+2 \beta_{E}^{(p)} \phi}
\end{aligned}
$$

we have obtained, from the results almost equals of the equations, putting
$4096 e^{-\pi \sqrt{18}}$ instead of

$$
e^{-2(8-p) C+2 \beta_{E}^{(p)} \phi}
$$

a new possible mathematical connection between the two exponentials. Thence, also the values concerning p, C, β_{E} and ϕ correspond to the exponents of e (i.e. of exp). Thence we obtain for $\mathrm{p}=5$ and $\beta_{E}=1 / 2$:

$$
e^{-6 C+\phi}=4096 e^{-\pi \sqrt{18}}
$$

Therefore, with respect to the exponentials of the vacuum equations, the Ramanujan's exponential has a coefficient of 4096 which is equal to 64^{2}, while $-6 \mathrm{C}+\phi$ is equal to $\pi \sqrt{18}$. From this it follows that it is possible to establish mathematically, the dilaton value.

For
$\exp ((-\mathrm{Pi} * \mathrm{sqrt}(18))$ we obtain:

Input:

$\exp (-\pi \sqrt{18})$

Exact result:

$e^{-3 \sqrt{2} \pi}$

Decimal approximation:
$1.6272016226072509292942156739117979541838581136954016 \ldots \times 10^{-6}$
$1.6272016 \ldots * 10^{-6}$

Property:

$e^{-3 \sqrt{2} \pi}$ is a transcendental number

Series representations:

$e^{-\pi \sqrt{18}}=e^{-\pi \sqrt{17} \sum_{k=0}^{\infty} 17^{-k}\binom{1 / 2}{k}}$
$e^{-\pi \sqrt{18}}=\exp \left(-\pi \sqrt{17} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{17}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)$
$e^{-\pi \sqrt{18}}=\exp \left(-\frac{\pi \sum_{j=0}^{\infty} \operatorname{Res}_{s=-\frac{1}{2}+j} 17^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)}{2 \sqrt{\pi}}\right)$

Now, we have the following calculations:

$$
\begin{gathered}
e^{-6 C+\phi}=4096 e^{-\pi \sqrt{18}} \\
e^{-\pi \sqrt{18}}=1.6272016 \ldots *^{*} 10^{\wedge}-6
\end{gathered}
$$

from which:

$$
\begin{gathered}
\frac{1}{4096} e^{-6 C+\phi}=1.6272016 \ldots * 10^{\wedge}-6 \\
0.000244140625 e^{-6 C+\phi}=e^{-\pi \sqrt{18}}=1.6272016 \ldots * 10^{\wedge}-6
\end{gathered}
$$

Now:

$$
\ln \left(e^{-\pi \sqrt{18}}\right)=-13.328648814475=-\pi \sqrt{18}
$$

And:
$\left(1.6272016^{*} 10^{\wedge}-6\right) * 1 /(0.000244140625)$

Input interpretation:

$$
\frac{1.6272016}{10^{6}} \times \frac{1}{0.000244140625}
$$

Result:

0.0066650177536
0.006665017...

Thence:

$$
0.000244140625 e^{-6 C+\phi}=e^{-\pi \sqrt{18}}
$$

Dividing both sides by 0.000244140625 , we obtain:

$$
\begin{aligned}
& \frac{0.000244140625}{0.000244140625} e^{-6 C+\phi}=\frac{1}{0.000244140625} e^{-\pi \sqrt{18}} \\
& e^{-6 C+\phi}=0.0066650177536
\end{aligned}
$$

$\left(\left(\left(\left(\exp \left(\left(-\mathrm{Pi}^{*} \text { sqrt(18)))))))}\right)^{*} 1 / 0.000244140625\right.\right.\right.\right.\right.$

Input interpretation:

$\exp (-\pi \sqrt{18}) \times \frac{1}{0.000244140625}$

Result:

0.00666501785...
0.00666501785...

Series representations:

$$
\begin{aligned}
& \frac{\exp (-\pi \sqrt{18})}{0.000244141}=4096 \exp \left(-\pi \sqrt{17} \sum_{k=0}^{\infty} 17^{-k}\binom{\frac{1}{2}}{k}\right) \\
& \frac{\exp (-\pi \sqrt{18})}{0.000244141}=4096 \exp \left(-\pi \sqrt{17} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{17}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)
\end{aligned}
$$

$$
\frac{\exp (-\pi \sqrt{18})}{0.000244141}=4096 \exp \left(-\frac{\pi \sum_{j=0}^{\infty} \operatorname{Res}_{s=-\frac{1}{2}+j} 17^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)}{2 \sqrt{\pi}}\right)
$$

Now:

$$
\begin{aligned}
& e^{-6 C+\phi}=0.0066650177536 \\
& \exp (-\pi \sqrt{18}) \times \frac{1}{0.000244140625}= \\
& e^{-\pi \sqrt{18}} \times \frac{1}{0.000244140625} \\
& =0.00666501785 \ldots
\end{aligned}
$$

From:
$\ln (0.00666501784619)$

Input interpretation:

$\log (0.00666501784619)$

Result:

-5.010882647757...
$-5.010882647757 \ldots$

Alternative representations:

$\log (0.006665017846190000)=\log _{e}(0.006665017846190000)$
$\log (0.006665017846190000)=\log (a) \log _{a}(0.006665017846190000)$
$\log (0.006665017846190000)=-\mathrm{Li}_{1}(0.993334982153810000)$

Series representations:

$$
\log (0.006665017846190000)=-\sum_{k=1}^{\infty} \frac{(-1)^{k}(-0.993334982153810000)^{k}}{k}
$$

$$
\log (0.006665017846190000)=2 i \pi\left\lfloor\frac{\arg (0.006665017846190000-x)}{2 \pi}\right\rfloor+
$$

$$
\log (x)-\sum_{k=1}^{\infty} \frac{(-1)^{k}(0.006665017846190000-x)^{k} x^{-k}}{k} \text { for } x<0
$$

$$
\log (0.006665017846190000)=\left\lfloor\frac{\arg \left(0.006665017846190000-z_{0}\right)}{2 \pi}\right\rfloor \log \left(\frac{1}{z_{0}}\right)+
$$

$$
\log \left(z_{0}\right)+\left\lfloor\frac{\arg \left(0.006665017846190000-z_{0}\right)}{2 \pi}\right\rfloor \log \left(z_{0}\right)-
$$

$$
\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(0.006665017846190000-z_{0}\right)^{k} z_{0}^{-k}}{k}
$$

Integral representation:

$\log (0.006665017846190000)=\int_{1}^{0.006665017846190000} \frac{1}{t} d t$

In conclusion:

$$
-6 C+\phi=-5.010882647757 \ldots
$$

and for $\mathrm{C}=1$, we obtain:

$$
\phi=-5.010882647757+6=\mathbf{0 . 9 8 9 1 1 7 3 5 2 2 4 3}=\phi
$$

Note that the values of n_{s} (spectral index) 0.965 , of the average of the Omega mesons Regge slope 0.987428571 and of the dilaton 0.989117352243 , are also connected to the following two Rogers-Ramanujan continued fractions:

$$
\frac{\mathrm{e}^{-\frac{\pi}{5}}}{\sqrt{(\varphi-1) \sqrt{5}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi}}{1+\frac{\mathrm{e}^{-2 \pi}}{1+\frac{\mathrm{e}^{-3 \pi}}{1+\frac{\mathrm{e}^{-4 \pi}}{1+\ldots}}}} \approx 0.9568666373
$$

(http://www.bitman.name/math/article/102/109/)

Also performing the $512^{\text {th }}$ root of the inverse value of the Pion meson rest mass 139.57, we obtain:
$((1 /(139.57)))^{\wedge} 1 / 512$

Input interpretation:

$\sqrt[512]{\frac{1}{139.57}}$

Result:

$0.990400732708644027550973755713301415460732796178555551684 \ldots$
$0.99040073 \ldots$. result very near to the dilaton value $\mathbf{0 . 9 8 9 1 1 7 3 5 2 2 4 3}=\boldsymbol{\phi}$ and to the value of the following Rogers-Ramanujan continued fraction:
$\frac{\mathrm{e}^{-\frac{\pi}{\sqrt{5}}}}{\frac{\sqrt{5}}{1+\sqrt[5]{\sqrt{\varphi^{54} \sqrt[4]{5^{3}}}-1}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-2 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-3 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-4 \pi \sqrt{5}}}{1+\ldots}}}} \approx 0.9991104684$

From

Properties of Nilpotent Supergravity

E. Dudas, S. Ferrara, A. Kehagias and A. Sagnotti - arXiv:1507.07842v2 [hep-th] 14

Sep 2015
We have that:

Cosmological inflation with a tiny tensor-to-scalar ratio r, consistently with PLANCK data, may also be described within the present framework, for instance choosing

$$
\begin{equation*}
\alpha(\Phi)=i M\left(\Phi+b \Phi e^{i k \Phi}\right) \tag{4.35}
\end{equation*}
$$

This potential bears some similarities with the Kähler moduli inflation of [32] and with the polyinstanton inflation of [33]. One can verify that $\chi=0$ solves the field equations, and that the potential along the $\chi=0$ trajectory is now

$$
\begin{equation*}
V=\frac{M^{2}}{3}\left(1-a \phi e^{-\gamma \phi}\right)^{2} \tag{4.36}
\end{equation*}
$$

We analyzing the following equation:

$$
V=\frac{M^{2}}{3}\left(1-a \phi e^{-\gamma \phi}\right)^{2}
$$

$$
\begin{aligned}
& \phi=\varphi-\frac{\sqrt{6}}{k} \\
& a=\frac{b \gamma}{e}<0, \quad \gamma=\frac{k}{\sqrt{6}}<0 .
\end{aligned}
$$

We have:
$\left(\mathrm{M}^{\wedge} 2\right) / 3^{*}[1-(\mathrm{b} / \mathrm{euler} \text { number } * \mathrm{k} / \mathrm{sqrt6}) *(\varphi-\mathrm{sqrt} 6 / \mathrm{k}) * \exp (-(\mathrm{k} / \mathrm{sqrt6})(\varphi-\mathrm{sqrt6} / \mathrm{k}))]^{\wedge} 2$ i.e.
$\mathrm{V}=\left(\mathrm{M}^{\wedge} 2\right) / 3 *[1-(\mathrm{b} /$ euler number $* \mathrm{k} / \mathrm{sqrt} 6) *(\varphi-\mathrm{sqrt} 6 / \mathrm{k}) * \exp (-(\mathrm{k} / \mathrm{sqrt} 6)(\varphi-$ sqrt6/k)) $]^{\wedge} 2$

For $k=2$ and $\varphi=0.9991104684$, that is the value of the scalar field that is equal to the value of the following Rogers-Ramanujan continued fraction:
$\frac{\mathrm{e}^{-\frac{\pi}{\sqrt{5}}}}{\frac{\sqrt{5}}{1+\sqrt[5]{\sqrt{\varphi^{5} \sqrt[4]{5^{3}}}-1}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-2 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-3 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-4 \pi \sqrt{5}}}{1+\ldots}}}} \approx 0.9991104684$
we obtain:
$\mathrm{V}=\left(\mathrm{M}^{\wedge} 2\right) / 3 *[1-(\mathrm{b} /$ euler number $* 2 / \mathrm{sqrt6}) *(0.9991104684-\mathrm{sqrt6} / 2) * \exp (-$ $(2 /$ sqrt6)(0.9991104684- sqrt6/2) $)]^{\wedge} 2$

Input interpretation:

$$
\begin{aligned}
& V= \\
& \frac{M^{2}}{3}\left(1-\left(\frac{b}{e} \times \frac{2}{\sqrt{6}}\right)\left(0.9991104684-\frac{\sqrt{6}}{2}\right) \exp \left(-\frac{2}{\sqrt{6}}\left(0.9991104684-\frac{\sqrt{6}}{2}\right)\right)\right)^{2}
\end{aligned}
$$

Result:

$$
V=\frac{1}{3}(0.0814845 b+1)^{2} M^{2}
$$

Solutions:

$b=\frac{225.913\left(-0.054323 M^{2} \pm 6.58545 \times 10^{-10} \sqrt{M^{4}}\right)}{M^{2}}(M \neq 0)$

Alternate forms:
$V=0.00221324(b+12.2723)^{2} M^{2}$
$V=0.00221324\left(b^{2} M^{2}+24.5445 b M^{2}+150.609 M^{2}\right)$
$-0.00221324 b^{2} M^{2}-0.054323 b M^{2}-\frac{M^{2}}{3}+V=0$

Expanded form:

$V=0.00221324 b^{2} M^{2}+0.054323 b M^{2}+\frac{M^{2}}{3}$
Alternate form assuming b, M, and V are positive:
$V=0.00221324(b+12.2723)^{2} M^{2}$
Alternate form assuming b, M, and V are real:
$V=0.00221324 b^{2} M^{2}+0.054323 b M^{2}+0.333333 M^{2}+0$

Derivative:

$\frac{\partial}{\partial b}\left(\frac{1}{3}(0.0814845 b+1)^{2} M^{2}\right)=0.054323(0.0814845 b+1) M^{2}$

Implicit derivatives

$$
\frac{\partial b(M, V)}{\partial V}=\frac{154317775011120075}{36961748(226802245+18480874 b) M^{2}}
$$

$$
\frac{\partial b(M, V)}{\partial M}=-\frac{\frac{226802245}{18480874}+b}{M}
$$

$$
\frac{\partial M(b, V)}{\partial V}=\frac{154317775011120075}{2(226802245+18480874 b)^{2} M}
$$

$$
\frac{\partial M(b, V)}{\partial b}=-\frac{18480874 M}{226802245+18480874 b}
$$

$$
\frac{\partial V(b, M)}{\partial M}=\frac{2(226802245+18480874 b)^{2} M}{154317775011120075}
$$

$\frac{\partial V(b, M)}{\partial b}=\frac{36961748(226802245+18480874 b) M^{2}}{154317775011120075}$

Global minimum:

$$
\min \left\{\frac{1}{3}(0.0814845 b+1)^{2} M^{2}\right\}=0 \text { at }(b, M)=(-16,0)
$$

Global minima:

$\min \left\{\frac{1}{3} M^{2}\left(1-\frac{(b 2)\left(0.9991104684-\frac{\sqrt{6}}{2}\right) \exp \left(-\frac{2\left(0.9991104684-\frac{\sqrt{6}}{2}\right)}{\sqrt{6}}\right)}{e \sqrt{6}}\right)\right\}=0$

$$
\text { for } M=0
$$

From:
$b=\frac{225.913\left(-0.054323 M^{2} \pm 6.58545 \times 10^{-10} \sqrt{M^{4}}\right)}{M^{2}} \quad(M \neq 0)$
we obtain
$\left(225.913\left(-0.054323 \mathrm{M}^{\wedge} 2+6.58545 \times 10^{\wedge}-10 \operatorname{sqrt}\left(\mathrm{M}^{\wedge} 4\right)\right)\right) / \mathrm{M}^{\wedge} 2$

Input interpretation:

$$
\frac{225.913\left(-0.054323 M^{2}+6.58545 \times 10^{-10} \sqrt{M^{4}}\right)}{M^{2}}
$$

Result:

$\frac{225.913\left(6.58545 \times 10^{-10} \sqrt{M^{4}}-0.054323 M^{2}\right)}{M^{2}}$

Plots:

Alternate form assuming \mathbf{M} is real:

-12.2723
-12.2723 result very near to the black hole entropy value $12.1904=\ln (196884)$

Alternate forms:

$$
-\frac{12.2723\left(M^{2}-1.21228 \times 10^{-8} \sqrt{M^{4}}\right)}{M^{2}}
$$

$$
\frac{1.48774 \times 10^{-7} \sqrt{M^{4}}-12.2723 M^{2}}{M^{2}}
$$

Expanded form:

$\frac{1.48774 \times 10^{-7} \sqrt{M^{4}}}{M^{2}}-12.2723$

Property as a function:
Parity
even

Series expansion at $\mathbf{M}=0$:
$\left(\frac{1.48774 \times 10^{-7} \sqrt{M^{4}}}{M^{2}}-12.2723\right)+O\left(M^{6}\right)$
(generalized Puiseux series)

Series expansion at $\mathbf{M}=\infty$:
-12.2723

Derivative:
$\frac{d}{d M}\left(\frac{225.913\left(6.58545 \times 10^{-10} \sqrt{M^{4}}-0.054323 M^{2}\right)}{M^{2}}\right)=\frac{3.55271 \times 10^{-15}}{M}$

Indefinite integral:

$$
\begin{aligned}
& \int \frac{225.913\left(-0.054323 M^{2}+6.58545 \times 10^{-10} \sqrt{M^{4}}\right)}{M^{2}} d M= \\
& \frac{1.48774 \times 10^{-7} \sqrt{M^{4}}}{M}-12.2723 M+\text { constant }
\end{aligned}
$$

Global maximum:

$$
\begin{gathered}
\max \left\{\frac{225.913\left(6.58545 \times 10^{-10} \sqrt{M^{4}}-0.054323 M^{2}\right)}{M^{2}}\right\}= \\
-\frac{140119826723990341497649}{11417594849251000000000} \text { at } M=-1
\end{gathered}
$$

Global minimum:

$$
\begin{aligned}
& \min \left\{\frac{225.913\left(6.58545 \times 10^{-10} \sqrt{M^{4}}-0.054323 M^{2}\right)}{M^{2}}\right\}= \\
&-\frac{140119826723990341497649}{11417594849251000000000} \text { at } M=-1
\end{aligned}
$$

Limit:

$$
\lim _{M \rightarrow \pm \infty} \frac{225.913\left(-0.054323 M^{2}+6.58545 \times 10^{-10} \sqrt{M^{4}}\right)}{M^{2}}=-12.2723
$$

Definite integral after subtraction of diverging parts:

$$
\int_{0}^{\infty}\left(\frac{225.913\left(-0.054323 M^{2}+6.58545 \times 10^{-10} \sqrt{M^{4}}\right)}{M^{2}}--12.2723\right) d M=0
$$

From b that is equal to

From:
$V=\frac{1}{3}(0.0814845 b+1)^{2} M^{2}$
we obtain:
$1 / 3\left(0.0814845\left(\left(225.913\left(-0.054323 \mathrm{M}^{\wedge} 2+6.58545 \times 10^{\wedge}-10 \operatorname{sqrt}\left(\mathrm{M}^{\wedge} 4\right)\right)\right) / \mathrm{M}^{\wedge} 2\right)+\right.$ 1) ${ }^{\wedge} \mathrm{M}^{\wedge} 2$

Input interpretation:

$$
\frac{1}{3}\left(0.0814845 \times \frac{225.913\left(-0.054323 M^{2}+6.58545 \times 10^{-10} \sqrt{M^{4}}\right)}{M^{2}}+1\right)^{2} M^{2}
$$

Result:

0

Plots: (possible mathematical connection with an open string)

(M from -1 to 0.2)
$\mathrm{M}=-0.5 ; \quad \mathrm{M}=0.2$
(possible mathematical connection with an open string)

Root:
$M=0$

Property as a function:

Parity

even

Series expansion at $\mathbf{M}=\mathbf{0}$:
$O\left(M^{62194}\right)$
(Taylor series)

Series expansion at $M=\infty$:
$1.75541 \times 10^{-15} M^{2}+O\left(\left(\frac{1}{M}\right)^{62194}\right)$
(Taylor series)

Definite integral after subtraction of diverging parts:

$$
\begin{gathered}
\int_{0}^{\infty}\left(\frac{1}{3} M^{2}\left(1+\frac{18.4084\left(-0.054323 M^{2}+6.58545 \times 10^{-10} \sqrt{M^{4}}\right)}{M^{2}}\right)^{2}-\right. \\
\left.1.75541 \times 10^{-15} M^{2}\right) d M=0
\end{gathered}
$$

For $M=-0.5$, we obtain:

$$
\frac{1}{3}\left(0.0814845 \times \frac{225.913\left(-0.054323 M^{2}+6.58545 \times 10^{-10} \sqrt{M^{4}}\right)}{M^{2}}+1\right)^{2} M^{2}
$$

$1 / 3\left(0.0814845\left(\left(225.913\left(-0.054323(-0.5)^{\wedge} 2+6.58545 \times 10^{\wedge}-10 \operatorname{sqrt}\left((-0.5)^{\wedge} 4\right)\right)\right) /(-\right.\right.$ $\left.\left.0.5)^{\wedge} 2\right)+1\right)^{\wedge} 2 *\left(-0.5^{\wedge} 2\right)$

Input interpretation:

$$
\begin{aligned}
& \frac{1}{3}\left(0.0814845 \times \frac{225.913\left(-0.054323(-0.5)^{2}+6.58545 \times 10^{-10} \sqrt{(-0.5)^{4}}\right)}{(-0.5)^{2}}+1\right)^{2} \\
& \quad\left(-0.5^{2}\right)
\end{aligned}
$$

Result:

$-4.38851344947464545348970783378088020833333333333333333333 \ldots \times$ 10^{-16}

$-4.38851344947 * 10^{-16}$

For $\mathrm{M}=0.2$:
$\frac{1}{3}\left(0.0814845 \times \frac{225.913\left(-0.054323 M^{2}+6.58545 \times 10^{-10} \sqrt{M^{4}}\right)}{M^{2}}+1\right)^{2} M^{2}$
$1 / 3\left(0.0814845\left(\left(225.913\left(-0.0543230 .2^{\wedge} 2+6.58545 \times 10^{\wedge}-10 \operatorname{sqrt}\left(0.2^{\wedge} 4\right)\right)\right) / 0.2^{\wedge} 2\right)+\right.$ 1)^2 $0.2^{\wedge} 2$

Input interpretation:

$$
\frac{1}{3}\left(0.0814845 \times \frac{225.913\left(-0.054323 \times 0.2^{2}+6.58545 \times 10^{-10} \sqrt{0.2^{4}}\right)}{0.2^{2}}+1\right)^{2} \times 0.2^{2}
$$

Result:

$7.0216215191594327255835325340494083333333333333333333333333 \ldots \times$ 10^{-17}

$7.021621519159 * 10^{-17}$

For $\mathrm{M}=3$:
$\frac{1}{3}\left(0.0814845 \times \frac{225.913\left(-0.054323 M^{2}+6.58545 \times 10^{-10} \sqrt{M^{4}}\right)}{M^{2}}+1\right)^{2} M^{2}$
$1 / 3\left(0.0814845\left(\left(225.913\left(-0.0543233^{\wedge} 2+6.58545 \times 10^{\wedge}-10 \operatorname{sqrt}\left(3^{\wedge} 4\right)\right)\right) / 3^{\wedge} 2\right)+1\right)^{\wedge} 2$ $3^{\wedge} 2$

Input interpretation:

$\frac{1}{3}\left(0.0814845 \times \frac{225.913\left(-0.054323 \times 3^{2}+6.58545 \times 10^{-10} \sqrt{3^{4}}\right)}{3^{2}}+1\right)^{2} \times 3^{2}$

Result:

$1.579864841810872363256294820161116875 \times 10^{-14}$
$1.57986484181 * 10^{-14}$

For $\mathrm{M}=2$:

$$
\frac{1}{3}\left(0.0814845 \times \frac{225.913\left(-0.054323 M^{2}+6.58545 \times 10^{-10} \sqrt{M^{4}}\right)}{M^{2}}+1\right)^{2} M^{2}
$$

$1 / 3\left(0.0814845\left(\left(225.913\left(-0.0543232^{\wedge} 2+6.58545 \times 10^{\wedge}-10 \operatorname{sqrt}\left(2^{\wedge} 4\right)\right)\right) / 2^{\wedge} 2\right)+1\right)^{\wedge} 2$ $2^{\wedge} 2$

Input interpretation:

$$
\frac{1}{3}\left(0.0814845 \times \frac{225.913\left(-0.054323 \times 2^{2}+6.58545 \times 10^{-10} \sqrt{2^{4}}\right)}{2^{2}}+1\right)^{2} \times 2^{2}
$$

Result:

$7.0216215191594327255835325340494083333333333333333333333333 \ldots \times$ 10^{-15}

$7.021621519 * 10^{-15}$

From the four results
$7.021621519^{*} 10^{\wedge}-15 ; 1.57986484181^{*} 10^{\wedge}-14 ; 7.021621519159^{*} 10^{\wedge}-17$;
$-4.38851344947 * 10^{\wedge}-16$
we obtain, after some calculations:
$\operatorname{sqrt}\left[1 /(2 \mathrm{Pi})\left(7.021621519^{*} 10^{\wedge}-15+1.57986484181 * 10^{\wedge}-14+7.021621519^{*} 10^{\wedge}-17-\right.\right.$ 4.38851344947*10^-16)]

Input interpretation:

$$
\begin{array}{r}
\sqrt{ }\left(\frac { 1 } { 2 \pi } \left(7.021621519 \times 10^{-15}+1.57986484181 \times 10^{-14}+\right.\right. \\
\left.\left.7.021621519 \times 10^{-17}-4.38851344947 \times 10^{-16}\right)\right)
\end{array}
$$

Result:

$5.9776991059 \ldots \times 10^{-8}$
$5.9776991059 * 10^{-8}$ result very near to the Planck's electric flow 5.975498×10^{-8} that is equal to the following formula:

$$
\phi_{\mathrm{P}}^{E}=\mathbf{E}_{\mathrm{P}} l_{\mathrm{P}}^{2}=\phi_{\mathrm{P}} l_{\mathrm{P}}=\sqrt{\frac{\hbar c}{\varepsilon_{0}}}
$$

We note that:
$1 / 55^{*}\left(\left(\left[\left(\left(\left(1 /\left[\left(7.021621519^{*} 10^{\wedge}-15+1.57986484181 * 10^{\wedge}-14+7.021621519^{*} 10^{\wedge}-17\right.\right.\right.\right.\right.\right.\right.\right.$ $\left.\left.\left.\left.\left.\left.-4.38851344947^{*} 10^{\wedge}-16\right)\right]\right)\right)\right)^{\wedge} 1 / 7\right]-\left((\log \wedge(5 / 8)(2)) /\left(22^{\wedge}(1 / 8) 3^{\wedge}(1 / 4)\right.\right.$ e $\left.\left.\left.\left.\log { }^{\wedge}(3 / 2)(3)\right)\right)\right)\right)$

Input interpretation:

$$
\begin{array}{r}
\frac{1}{55}\left(\left(1 /\left(7.021621519 \times 10^{-15}+1.57986484181 \times 10^{-14}+7.021621519 \times 10^{-17}-\right.\right.\right. \\
\left.\left.\left.4.38851344947 \times 10^{-16}\right)\right)^{\wedge}(1 / 7)-\frac{\log ^{5 / 8}(2)}{2 \sqrt[8]{2} \sqrt[4]{3} e \log ^{3 / 2}(3)}\right)
\end{array}
$$

Result:

1.6181818182...
$1.6181818182 \ldots$ result that is a very good approximation to the value of the golden ratio 1.618033988749...

From the Planck units:
Planck Length

$$
l_{\mathrm{P}}=\sqrt{\frac{4 \pi \hbar G}{c^{3}}}
$$

$5.729475 * 10^{-35}$ Lorentz-Heaviside value

Planck's Electric field strength
$\mathbf{E}_{\mathrm{P}}=\frac{F_{\mathrm{P}}}{q_{\mathrm{P}}}=\sqrt{\frac{c^{7}}{16 \pi^{2} \varepsilon_{0} \hbar G^{2}}}$
$1.820306 * 10^{61} \mathrm{~V} * \mathrm{~m}$ Lorentz-Heaviside value

Planck's Electric flux

$$
\phi_{\mathrm{P}}^{E}=\mathbf{E}_{\mathrm{P}} l_{\mathrm{P}}^{2}=\phi_{\mathrm{P}} l_{\mathrm{P}}=\sqrt{\frac{\hbar_{c}}{\varepsilon_{0}}}
$$

$5.975498 * 10^{-8} \mathrm{~V} * \mathrm{~m}$ Lorentz-Heaviside value

Planck's Electric potential

$$
\phi_{P}=V_{P}=\frac{E_{P}}{q_{P}}=\sqrt{\frac{c^{4}}{4 \pi \varepsilon_{0} G}}
$$

$1.042940 * 10^{27} \mathrm{~V}$ Lorentz-Heaviside valu

Relationship between Planck's Electric Flux and Planck's Electric Potential
$\mathbf{E}_{\mathbf{P}} * \mathbf{l}_{\mathbf{P}}=\left(1.820306 * 10^{61}\right) * 5.729475 * 10^{-35}$

Input interpretation:

$\frac{\left(1.820306 \times 10^{61}\right) \times 5.729475}{10^{35}}$

Result:

1042939771935000000000000000
Scientific notation:
$1.042939771935 \times 10^{27}$
$1.042939771935 * 10^{27} \approx 1.042940 * 10^{27}$
Or:
$\mathbf{E}_{\mathbf{P}} * \mathbf{1}_{\mathbf{P}}{ }^{2} / \mathbf{l}_{\mathbf{P}}=\left(5.975498 * 10^{-8}\right) * 1 /\left(5.729475 * 10^{-35}\right)$
Input interpretation:
$5.975498 \times 10^{-8} \times \frac{1}{\frac{5.729475}{10^{35}}}$

Result:

[^2]
Acknowledgments

We would like to thank Professor Augusto Sagnotti theoretical physicist at Scuola Normale Superiore (Pisa - Italy) for his very useful explanations and his availability

References

Collected Papers of Srinivasa Ramanujan - 2000 of Srinivasa
Ramanujan (Author), G. H. Hardy, P. V. Seshu Aiyar, B. M. Wilson, Bruce Berndt

Modular equations and approximations to $\boldsymbol{\pi}$ - Srinivasa Ramanujan
Quarterly Journal of Mathematics, XLV, 1914, 350-372

An Update on Brane Supersymmetry Breaking
J. Mourad and A. Sagnotti - arXiv:1711.11494v1 [hep-th] 30 Nov 2017

Properties of Nilpotent Supergravity

E. Dudas, S. Ferrara, A. Kehagias and A. Sagnotti - arXiv:1507.07842v2 [hep-th] 14 Sep 2015

[^0]: ${ }^{1}$ M.Nardelli studied at Dipartimento di Scienze della Terra Università degli Studi di Napoli Federico II, Largo S. Marcellino, 10-80138 Napoli, Dipartimento di Matematica ed Applicazioni "R. Caccioppoli" Università degli Studi di Napoli "Federico II" - Polo delle Scienze e delle Tecnologie Monte S. Angelo, Via Cintia (Fuorigrotta), 80126 Napoli, Italy
 ${ }^{2}$ A. Nardelli studies at the Università degli Studi di Napoli Federico II - Dipartimento di Studi Umanistici Sezione Filosofia - scholar of Theoretical Philosophy

[^1]: constant

[^2]: 1.04293988541707573556041347592929544155441816222254220500133... \times 10^{27}
 $1.042939885417 * 10^{27} \approx 1.042940 * 10^{27}$

