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In this research thesis, we analyze two Ramanujan’s equations of the “Ramanujan’s 

first letter to Hardy”. We describe new possible mathematical connections with 

various sectors of String Theory  (Supersymmetry Breaking). 
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 From: 

Collected Papers of Srinivasa Ramanujan -  2000 of  Srinivasa 

Ramanujan (Author), G. H. Hardy, P. V. Seshu Aiyar, B. M. Wilson , Bruce Berndt 
 

 

We analyze the following equation: 

 

 

 

Integrate((((((1+x^2/((b+1)^2)))) / (((1+(x^2)/(a^2)))))))*((((((1+x^2/((b+2)^2)))) / 

((((((1+x^2/((a+1)^2)))) 

 

sqrt(Pi)/2 * gamma(a+1/2) gamma(b+1) gamma(b-a+1) / gamma(a) gamma(b+1/2) 

gamma(b-a+1/2) 

 

We have: 

Integrate((((((1+x^2/((b+1)^2)))) / (((1+(x^2)/(a^2)))))))*((((((1+x^2/((b+2)^2))))))) / 

((((((1+x^2/((a+1)^2)))))))x 

Indefinite integral 

 

 

 

https://www.amazon.it/s/ref=dp_byline_sr_book_1?ie=UTF8&field-author=Srinivasa+Ramanujan&search-alias=stripbooks
https://www.amazon.it/s/ref=dp_byline_sr_book_1?ie=UTF8&field-author=Srinivasa+Ramanujan&search-alias=stripbooks
https://www.amazon.it/s/ref=dp_byline_sr_book_1?ie=UTF8&field-author=Srinivasa+Ramanujan&search-alias=stripbooks
https://www.amazon.it/G-H-Hardy/e/B000AP984E/ref=dp_byline_cont_book_2
https://www.amazon.it/s/ref=dp_byline_sr_book_3?ie=UTF8&field-author=P.+V.+Seshu+Aiyar&search-alias=stripbooks
https://www.amazon.it/s/ref=dp_byline_sr_book_4?ie=UTF8&field-author=B.+M.+Wilson&search-alias=stripbooks
https://www.amazon.it/s/ref=dp_byline_sr_book_5?ie=UTF8&field-author=Bruce+Berndt&search-alias=stripbooks
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Alternate forms of the integral 
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Expanded form of the integral 
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Series expansion of the integral at x=0 

 

 

Series expansion of the integral at x=∞ 

 

 

 

sqrt(Pi)/2 * (((gamma(a+1/2) gamma(b+1) gamma(b-a+1)))) / (((gamma(a) 

gamma(b+1/2) gamma(b-a+1/2)))) 

Input 

 

 

 
 

Exact result 
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3D plot                     (figure that can be related to a D-brane) 

 

 

 
 

 

Contour plot 

 

 
 

 

Roots 

 
 

 

Series expansion at a=∞ 
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Derivative 

 

 
 

 

 

From: 

 

 

For a = 2 , b = 3, we obtain : 

 

(sqrt(π) Γ(2 + 1/2) Γ(3 + 1) Γ(-2 + 3 + 1))/(2 Γ(2) Γ(3 + 1/2) Γ(-2 + 3 + 1/2)) 

Input 

 

 

 
 

Exact result 

 

 
 

Decimal form 

 
2.4 
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The study of this function provides the following representations: 

 

 

Alternative representations 

 

 

 

 

 

 

 

Series representations 
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Integral representations 
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From: 

 

 

 
 

 

 

For: 

 

 

If  we consider x = 1, we obtain: 

 

(a^2 (a+1)^2 ((a-b-1)(a+b+2)((a-b-2) (a+b+1) log(a^2+1)-(a-b) (a+b+3) 

log((a+1)^2+1)) + (2a+1)))/(2 (2a+1) (b+1)^2 (b+2)^2) = 2.4 

 

Input 
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Implicit plot 
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The study of this function provides the following representations: 

 

 

Solutions for the variable b 
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For b = 5, we obtain : 

 

(a^2 (a+1)^2 ((a-5-1)(a+5+2)((a-5-2) (a+5+1) log(a^2+1)-(a-5) (a+5+3) 

log((a+1)^2+1)) + (2a+1)))/(2 (2a+1) (5+1)^2 (5+2)^2) = 2.4 

Input 

 

 

 
 

Result 

 

 
 

 

Plot 

 

 
 

 

Solutions 
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Numerical solutions 

 

 

 

 

 

 

 

 

 

For a = 5.9597053, we obtain : 

 

(5.9597053^2(5.9597053+1)^2 ((5.9597053-6)(5.9597053+7)((5.9597053-

7)(5.9597053+6) log(5.9597053^2+1)-(5.9597053-5)(5.9597053+8) 

ln((5.9597053+1)^2+1))+(2*5.9597053+1)))/(2(2*5.9597053+1)36*49) 

Input interpretation 

 

 

 
 

Result 

 
2.4 
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The study of this function provides the following representations: 

 

 

Alternative representations 
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Series representations 
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Integral representation 
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Thence, we obtain, in conclusion: 

 

 

 

 

 

 
 

 =  

 

 =  

 

is equal to : 

 

 

 
 

 

From: 

 

 
 

for b = 5, we obtain : 

(a^2 (a+1)^2 ((a-5-1)(a+5+2)((a-5-2) (a+5+1) log(a^2+1)-(a-5) (a+5+3) 

log((a+1)^2+1)) + (2a+1)))/(2 (2a+1) (5+1)^2 (5+2)^2) = 2.4 
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and for a = 5.9597053, we obtain : 

 

 

 
 

=  

 

 

Now, for a = 8  and  b = 64 ,  

 

 

we obtain: 

 

(sqrt(π) Γ(8 + 1/2) Γ(64 + 1) Γ(-8 + 64 + 1))/(2 Γ(8) Γ(64 + 1/2) Γ(-8 + 64 + 1/2)) 

Input 

 

 

 
 

 

Exact result 
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Decimal approximation 

 
148.35770212…. 

 

 

 

The study of this function provides the following representations: 

 

 

Alternative representations 

 

 

 

 

 

 

 

Series representations 
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Integral representations 
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We obtain also: 

(sqrt(π) Γ(8 + 1/2) Γ(64 + 1) Γ(-8 + 64 + 1))/(2 Γ(8) Γ(64 + 1/2) Γ(-8 + 64 + 1/2)) – 

29 – Φ 

Input 

 

 

 

 
Exact result 

 

 
 

Exact form 

 

 

 
Decimal approximation 
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118.73966813…. result very near to the value of the following soliton mass, deriving 

from:  

 

 

 

(2*sqrt2*125.35^3)/(3*125.35^2) 

Input interpretation 

 

 
 

 

Result 

 
118.18111336….. 

 

 

The study of this function provides the following representations: 

 

 

Alternate form 
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From: 

 

 

 

(a^2 (a + 1)^2 ((a - b - 1) (a + b + 2) ((a - b - 2) (a + b + 1) log(a^2 + 1) - (a - b) (a + b 

+ 3) log((a + 1)^2 + 1)) + (2 a + 1)))/(2 (2 a + 1) (b + 1)^2 (b + 2)^2) = 148.357702 

 

Input interpretation 

 

 

 
 

Implicit plot 

 

 
 

 

 

 

Solutions for the variable b: 
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29 
 

 



30 
 

 

 



31 
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for b = 10, we obtain : 

 

(a^2 (a+1)^2 ((a-10-1)(a+10+2)((a-10-2) (a+10+1) log(a^2+1)-(a-5) (a+5+3) 

log((a+1)^2+1)) + (2a+1)))/(2 (2a+1) (5+1)^2 (5+2)^2) = 148.357702 

 

Input interpretation 

 

 

 
 

Result 

 

 
 

 

Plot 

 

 
 

 

Solutions 
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Numerical solution 

 

 

 

For a = 2.93925, we obtain : 

 

(2.93925^2 (2.93925+1)^2 ((2.93925-10-1)(2.93925+10+2)((2.93925-10-2) 

(2.93925+10+1) log(2.93925^2+1)-(2.93925-5) (2.93925+5+3) 

log((2.93925+1)^2+1)) + (2*2.93925+1)))/(2 (2*2.93925+1)36*49) 

Input interpretation 

 

 

 
 

Result 

 
148.358…. 
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The study of this function provides the following representations: 

 

 

 

Alternative representations 
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Series representations 
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Integral representation 

 

 

 

 

 

 



37 
 

Now, for a = 64  and  b = 128 ,  

 

 

we obtain: 

 

(sqrt(π) Γ(64 + 1/2) Γ(128 + 1) Γ(-64 + 128 + 1))/(2 Γ(64) Γ(128 + 1/2) Γ(-64 + 128 

+ 1/2)) 

Input 

 

 

 
 

Exact result 

 

 
 

 

 

Decimal approximation 

 
642.32379986…. 

 

 

The study of this function provides the following representations: 

 

 

Alternative representations 
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Series representations 

 

 

 

 

 



39 
 

 

 

Integral representations 

 

 

 

 

 

 

 

 

From: 

 

 



40 
 

 

 

We consider: 

(a^2 (a + 1)^2 ((a - b - 1) (a + b + 2) ((a - b - 2) (a + b + 1) log(a^2 + 1) - (a - b) (a + b 

+ 3) log((a + 1)^2 + 1)) + (2 a + 1)))/(2 (2 a + 1) (b + 1)^2 (b + 2)^2) = 642.323799 

Input interpretation 

 

 

 
 

Implicit plot 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Solutions for the variable b 
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42 
 

 

 



43 
 

 

 



44 
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for b = 40, we obtain : 

(a^2 (a + 1)^2 ((a - 40 - 1) (a + 40 + 2) ((a - 40 - 2) (a + 40 + 1) log(a^2 + 1) - (a - 40) 

(a + 40 + 3) log((a + 1)^2 + 1)) + (2 a + 1)))/(2 (2 a + 1) (40 + 1)^2 (40 + 2)^2) = 

642.323799 

Input interpretation 

 

 

 
 

Result 

 

 
 

 

Plot 

 

 
 

 

Solutions 
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For a = 39.8018, we obtain : 

 

(39.8018^2 (39.8018+1)^2 ((39.8018-40-1)(39.8018+40+2)((39.8018-40-2) 

(39.8018+40+1) log(39.8018^2+1)-(39.8018-40) (39.8018+40 + 3) 

log((39.8018+1)^2+1))+(2*39.8018+1)))/(2 (2*39.8018+1)(41)^2 (42)^2) 

Input interpretation 

 

 

 
 

Result 

 
642.346671089816….. 

 

 

The study of this function provides the following representations: 

 

Alternative representations 

 

 



47 
 

 

 

 

 

 

Series representations 
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Integral representation 

 

 

 

For a = 8  and  b = 64 ,  

 

from 

 

we obtain: 

 

(sqrt(π) Γ(8 + 1/2) Γ(64 + 1) Γ(-8 + 64 + 1))/(2 Γ(8) Γ(64 + 1/2) Γ(-8 + 64 + 1/2)) 

Input 

 

 

 
 

Exact result 
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Decimal approximation 

 
148.357702123…. 

 

 

 

From: 

 

 

 

 

(a^2 (a + 1)^2 ((a - b - 1) (a + b + 2) ((a - b - 2) (a + b + 1) log(a^2 + 1) - (a - b) (a + b 

+ 3) log((a + 1)^2 + 1)) + (2 a + 1)))/(2 (2 a + 1) (b + 1)^2 (b + 2)^2) = 148.357702 

 

For b = 10  and  a = 2.93925, we obtain : 

(2.93925^2 (2.93925+1)^2 ((2.93925-10-1)(2.93925+10+2)((2.93925-10-2) 

(2.93925+10+1) log(2.93925^2+1)-(2.93925-5) (2.93925+5+3) 

log((2.93925+1)^2+1)) + (2*2.93925+1)))/(2 (2*2.93925+1)36*49) 

Input interpretation 
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Result 

 
148.358…. 

 

 

The study of this function provides the following representations: 

 

Alternative representations 
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Series representations 
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Integral representation 

 

 

 

We obtain also: 
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233/(((2.93925^2 (2.93925+1)^2 ((2.93925-10-1)(2.93925+10+2)((2.93925-10-2) 

(2.93925+10+1) log(2.93925^2+1)-(2.93925-5) (2.93925+5+3) 

log((2.93925+1)^2+1)) + (2*2.93925+1)))/(2 (2*2.93925+1)36*49))-4) 

Input interpretation 

 

 

 
 

 

Result 

 
1.6140453479…. result that is a very good approximation to the value of the golden 

ratio 1.618033988749... 

 

 

 

The study of this function provides the following representations: 

 

 

Alternative representations 
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Series representations 
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57 
 

 

Integral representation 

 

 

We obtain also: 

 

(236+3/2)/(((2.93925^2 (2.93925+1)^2 ((2.93925-11)(2.93925+12)((2.93925-10-2) 

(2.93925+11) log(2.93925^2+1)-(2.93925-5) (2.93925+5+3) log((2.93925+1)^2+1)) 

+ (2*2.93925+1)))/(2 (2*2.93925+1)36*49))-4) 

Input interpretation 

 

 

 
 

 

Result 

 

1.64521789755….≈ ζ(2) = 
𝜋2

6
= 1.644934… 

 

 

The study of this function provides the following representations: 
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Alternative representations 
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Series representations 
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Integral representation 

 

 

We obtain also: 
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((236+3/2)/(((2.9392^2 (2.9392+1)^2 ((2.9392-11)(2.9392+12)((2.9392-12) 

(2.9392+11) log(2.9392^2+1)-(2.9392-5) (2.9392+8) 

log((2.9392+1)^2+1))+(2*2.9392+1)))/(2 (2*2.9392+1)36*49))-4))^15-21-e 

Input interpretation 

 

 

 
 

 

Result 

 
1729.16….  

This result is very near to the mass of candidate glueball f0(1710) scalar meson. 

Furthermore, 1728 occurs in the algebraic formula for the j-invariant of an elliptic 

curve. (1728 = 8
2 

* 3
3
) The number 1728 is one less than the Hardy–Ramanujan 

number 1729  (taxicab number) 

 

The study of this function provides the following representations: 

 

 

Alternative representations 

 

 

 

https://en.wikipedia.org/wiki/J-invariant
https://en.wikipedia.org/wiki/Elliptic_curve
https://en.wikipedia.org/wiki/Elliptic_curve
https://en.wikipedia.org/wiki/Elliptic_curve
https://en.wikipedia.org/wiki/1729_(number)
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Series representations 

 

 

 



64 
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We obtain also: 

(1/27(((236+3/2)/(((2.9392^2(3.9392)^2((2.9392-11)(2.9392+12)((2.9392-

12)(13.9392)log(2.9392^2+1)-(2.9392-

5)(10.9392)log((2.9392+1)^2+1))+(2*2.9392+1)))/(2(2*2.9392+1)36*49))-4))^15-

21-π))^2-4+1/2 

Input interpretation 
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Result 

 
4096.02….≈ 4096 = 64

2
 

 

 

 

The study of this function provides the following representations: 

 

 

Alternative representations 
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Series representations 
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70 
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Now, we analyze the following equation: 

 

 

 

We obtain: 

(2sqrt2)/9801 sum ((4k)!(1103+26390k)) / ((k!)^4 396^(4k)), k=0..infinity 

Input interpretation 

 

 

 
 

Result 

 

 
 

0.31831 

 

From the following expression: 

                                
























 










 


4

2710

4

21110
log

142
24


.     

 

we have: 
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(Pi*sqrt(142))/ln[sqrt(1/4*(10+11sqrt2))+sqrt(1/4*(10+7sqrt2))] 

 

Input 

 

 

 
 

Exact result 

 

 
 

 

Decimal approximation 

 
≈ 24 

 

 

The study of this function provides the following representations: 

 

 

Alternate forms 
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Alternative representations 
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Series representations 

 

 

 

 

 

 

Integral representations 
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Thence, inverting the previous expression 

 

 

 

we obtain: 

 

(((1/((2sqrt2)/9801 sum ((4k)!(1103+26390k)) / ((k!)^4 396^(4k)), 

k=0..infinity)))*sqrt(142))/ln[sqrt(1/4*(10+11sqrt2))+sqrt(1/4*(10+7sqrt2))] 

Input interpretation 
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Result 

 

 
 

24 

 

 

The study of this function provides the following representations: 

 

 

Alternate forms 

 

 

 

 

 

 

 

From which, we obtain: 

 

72*(((1/((2sqrt2)/9801 sum ((4k)!(1103+26390k)) / ((k!)^4 396^(4k)), 

k=0..infinity)))*sqrt(142))/ln[sqrt(1/4*(10+11sqrt2))+sqrt(1/4*(10+7sqrt2))]+1 
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Input interpretation 

 

 

 

 
Result 

 

 
 

1729 

 

This result is very near to the mass of candidate glueball f0(1710) scalar meson. 

Furthermore, 1728 occurs in the algebraic formula for the j-invariant of an elliptic 

curve. (1728 = 8
2 

* 3
3
) The number 1728 is one less than the Hardy–Ramanujan 

number 1729  (taxicab number) 

 

The study of this function provides the following representations: 

 

 

 

Alternate forms 

 

 

 

 

 

https://en.wikipedia.org/wiki/J-invariant
https://en.wikipedia.org/wiki/Elliptic_curve
https://en.wikipedia.org/wiki/Elliptic_curve
https://en.wikipedia.org/wiki/Elliptic_curve
https://en.wikipedia.org/wiki/1729_(number)
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(1/27((72*(((1/((2sqrt2)/9801 sum ((4k)!(1103+26390k)) / ((k!)^4 396^(4k)), 

k=0..infinity)))*sqrt(142))/ln[sqrt(1/4*(10+11sqrt2))+sqrt(1/4*(10+7sqrt2))])))^2 

Input interpretation 

 

 

 

 
 

Result 

 

 
 

4096 = 64
2
 

 

 

 

The study of this function provides the following representations: 

 

 

Alternate forms 
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And also: 

 

(72*(((1/((2sqrt2)/9801 sum ((4k)!(1103+26390k)) / ((k!)^4 396^(4k)), 

k=0..infinity)))*sqrt(142))/ln[sqrt(1/4*(10+11sqrt2))+sqrt(1/4*(10+7sqrt2))]+1)^1/15 

Input interpretation 

 

 

 

 
Result 

 

 
 

1.64382 ≈ ζ(2) = 
𝜋2

6
= 1.644934… 
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Alternate forms 

 

 

 

 

 

 

 

 

And we have also: 

 

(36*(((1/((2sqrt2)/9801 sum ((4k)!(1103+26390k)) / ((k!)^4 396^(4k)), 

k=0..infinity)))))+5 

Input interpretation 

 

 

 
 

Result 

 
118.097  

result very near to the value of the following soliton mass: 
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From:  

 

 

(2*sqrt2*125.35^3)/(3*125.35^2) 

Input interpretation 

 

 
 

 

Result 

 
118.18111336….. 
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Observations  

 

 

We note that, from the number 8, we obtain as follows: 
 

 
 

 
 

 
 

 
 

 
 

 

 
 

 
 

 

 
 

 
 

 

 
 

 

We notice how from the numbers 8 and 2 we get 64, 1024, 4096 and 8192, and that 8 

is the fundamental number. In fact 8
2
 = 64, 8

3
 = 512, 8

4
 = 4096. We define it 

"fundamental number", since 8 is a Fibonacci number, which by rule, divided by the 

previous one, which is 5, gives 1.6 , a value that tends to the golden ratio, as for all 

numbers in the Fibonacci sequence 
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“Golden” Range  

 

 

 

Finally we note how 8
2
 = 64, multiplied by 27, to which we add 1, is equal to 1729, 

the so-called "Hardy-Ramanujan number". Then taking the 15th root of 1729, we 

obtain a value close to ζ(2) that 1.6438 ..., which, in turn, is included in the range of 

what we call "golden numbers" 

 

Furthermore for all the results very near to 1728 or 1729, adding 64 = 8
2
, one obtain 

values about equal to 1792 or 1793. These are values almost equal to the Planck 

multipole spectrum frequency 1792.35 and to the hypothetical Gluino mass 
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Appendix 

 

 

 

From:  A. Sagnotti – AstronomiAmo, 23.04.2020 

 

 

 

In the above figure, it is said that: “why a given shape of the extra dimensions? 

Crucial, it determines the predictions for α”.  

We propose that whatever shape the compactified dimensions are, their geometry 

must be based on the values of the golden ratio and ζ(2), (the latter connected to 1728 

or 1729, whose fifteenth root provides an excellent approximation to the above 

mentioned value) which are recurrent as solutions of the equations that we are going 

to develop. It is important to specify that the initial conditions are always values 
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belonging to a fundamental chapter of the work of S. Ramanujan "Modular equations 

and Appoximations to Pi" (see references). These values are some multiples of 8 (64 

and 4096), 276, which added to 4096, is equal to 4372, and finally e
π√22 

 

 

 

We have, in certain cases, the following connections: 

 

 

Fig. 1 
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 Fig. 2 

 

Fig. 3 

Stringscape - a small part of the string-theory landscape showing the new de Sitter solution as a local 

minimum of the energy (vertical axis). The global minimum occurs at the infinite size of the extra 

dimensions on the extreme right of the figure. 
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  Fig. 4 

With regard the Fig. 4 the points of arrival and departure on the right-hand side of the 

picture are equally spaced and given by the following equation: 

 

                                 

 

we obtain: 

2Pi/(ln(2)) 

Input: 

 

 

Exact result: 

 

 

 

Decimal approximation: 

 

9.06472028365…. 

 

Alternative representations: 
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Series representations: 

 

 

 

 

 

 

 

Integral representations: 
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From which: 

(2Pi/(ln(2)))*(1/12 π log(2)) 

 

Input: 

 

 

 

Exact result: 

 

 

 

Decimal approximation: 

 

1.6449340668…. = ζ(2) = 
𝜋2

6
= 1.644934… 
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From: 

Modular equations and approximations to 𝝅 - Srinivasa Ramanujan 

Quarterly Journal of Mathematics, XLV, 1914, 350 – 372 

We have that: 
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We note that, with regard 4372, we can to obtain the following results: 

27((4372)^1/2-2-1/2(((√(10-2√5) -2))⁄((√5-1))))+φ 
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Input 

 

 

 
 

Result 

 

 
 

 

Decimal approximation 

 
1729.0526944…. 

 

This result is very near to the mass of candidate glueball f0(1710) scalar meson. 

Furthermore, 1728 occurs in the algebraic formula for the j-invariant of an elliptic 

curve. (1728 = 8
2 

* 3
3
) The number 1728 is one less than the Hardy–Ramanujan 

number 1729  (taxicab number) 

 

 

Alternate forms 

 

 

 

 

 

 

 

https://en.wikipedia.org/wiki/J-invariant
https://en.wikipedia.org/wiki/Elliptic_curve
https://en.wikipedia.org/wiki/Elliptic_curve
https://en.wikipedia.org/wiki/Elliptic_curve
https://en.wikipedia.org/wiki/1729_(number)
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Minimal polynomial 

 

 

Expanded forms 

 

 

 

 

Series representations 
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Or: 

 

27((4096+276)^1/2-2-1/2(((√(10-2√5) -2))⁄((√5-1))))+φ 
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Input 

 

 

 

 

Result 

 

 

 

Decimal approximation 

 

1729.0526944…. as above 

 

Alternate forms 
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Minimal polynomial 

 

 

Expanded forms 

 

 

 

 

Series representations 
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From which: 

(27((4372)^1/2-2-1/2(((√(10-2√5) -2))⁄((√5-1))))+φ)^1/15 

Input 

 

 

 

 

Exact result 

 

 

 

Decimal approximation 

 

1.64381856858…. ≈ ζ(2) = 
𝜋2

6
= 1.644934… 

 

Alternate forms 
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Minimal polynomial 

 

 

Expanded forms 

 

 

 

 

All 15th roots of ϕ + 27 (-2 + 2 sqrt(1093) - (sqrt(10 - 2 sqrt(5)) - 2)/(2 (sqrt(5) - 

1))) 
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Series representations 
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Integral representation 
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From: 

An Update on Brane Supersymmetry Breaking 

J. Mourad and A. Sagnotti - arXiv:1711.11494v1 [hep-th] 30 Nov 2017 

 

 

From the following vacuum equations: 

 

            
 

       
  

 

              
 

 

we have obtained, from the results almost equals of the equations, putting 

 

  instead of  

                                         
a new possible mathematical connection between the two exponentials. Thence, also 

the values concerning p, C, βE and 𝜙 correspond to the exponents of e (i.e. of exp). 

Thence we obtain for p = 5 and βE = 1/2: 

 

𝑒−6𝐶+𝜙 = 4096𝑒−𝜋 18  
 

Therefore, with respect to the exponentials of the vacuum equations, the Ramanujan’s 

exponential has a coefficient of 4096 which is equal to 64
2
, while -6C+𝜙 is equal to -

𝜋 18. From this it follows that it is possible to establish mathematically, the dilaton 

value. 
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For 

 

exp((-Pi*sqrt(18))   we obtain: 

 

Input: 

 

Exact result: 

 

Decimal approximation: 

 

1.6272016… * 10
-6

 

 

Property: 

 

Series representations: 
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Now, we have the following calculations: 

 

 

                                             𝑒−6𝐶+𝜙 = 4096𝑒−𝜋 18   

 

 

                                         𝑒−𝜋 18  = 1.6272016… * 10^-6 

 

from which: 

                            

                                     
1

4096
𝑒−6𝐶+𝜙  = 1.6272016… * 10^-6 

 

 

                  0.000244140625  𝑒−6𝐶+𝜙  = 𝑒−𝜋 18  = 1.6272016… * 10^-6 

 

 

 

Now: 

 

                       ln 𝑒−𝜋 18 = −13.328648814475 = −𝜋 18  

 

 

 

 

And: 

 

(1.6272016* 10^-6) *1/ (0.000244140625) 

 

 

 

 

Input interpretation: 

 

 

 

Result: 

 

 

0.006665017... 
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Thence: 

 

                                   0.000244140625  𝑒−6𝐶+𝜙  = 𝑒−𝜋 18   

 

 

Dividing both sides by 0.000244140625, we obtain: 

 

 

                          
0.000244140625

0.000244140625
𝑒−6𝐶+𝜙  = 

1

0.000244140625
𝑒−𝜋 18   

 

                                      

                            𝑒−6𝐶+𝜙  = 0.0066650177536 

 

 

((((exp((-Pi*sqrt(18)))))))*1/0.000244140625 

 

Input interpretation: 

 

 

Result: 

 

0.00666501785… 

 

Series representations: 

 

 



106 
 

 

 

 

 

 

Now: 

 

 

                                          𝑒−6𝐶+𝜙  = 0.0066650177536 

 

                                          = 

 

                                            
 

                                            = 0.00666501785… 

 

From: 

ln(0.00666501784619) 

Input interpretation: 

 

 

Result: 

 

-5.010882647757… 
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Alternative representations: 

 

 

 

 

Series representations: 

 

 

 

 

Integral representation: 

 

 

In conclusion: 

                                   −6𝐶 + 𝜙 = −5.010882647757…  

 

and for C = 1, we obtain: 
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𝜙 = −5.010882647757 + 6 = 𝟎.𝟗𝟖𝟗𝟏𝟏𝟕𝟑𝟓𝟐𝟐𝟒𝟑 = 𝝓 

 

Note that the values of ns (spectral index) 0.965, of the average of the Omega mesons 

Regge slope 0.987428571 and of the dilaton 0.989117352243, are also connected to 

the following two Rogers-Ramanujan continued fractions: 

  

 

 

 

(http://www.bitman.name/math/article/102/109/) 

 

Also performing the 512
th
 root of the inverse value of the Pion meson rest mass 

139.57, we obtain: 

((1/(139.57)))^1/512 

Input interpretation: 

 

 

http://www.bitman.name/math/article/102/109/
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Result: 

 

0.99040073.... result very near to the dilaton value 𝟎.𝟗𝟖𝟗𝟏𝟏𝟕𝟑𝟓𝟐𝟐𝟒𝟑 = 𝝓 and to 

the value of the following Rogers-Ramanujan continued fraction: 

 

 

 

From 

Properties of Nilpotent Supergravity 

E. Dudas, S. Ferrara, A. Kehagias and A. Sagnotti - arXiv:1507.07842v2 [hep-th] 14 

Sep 2015 

We have that: 

 

We analyzing the following equation: 
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We have: 

 

(M^2)/3*[1-(b/euler number * k/sqrt6) * (φ- sqrt6/k) * exp(-(k/sqrt6)(φ- sqrt6/k))]^2 

i.e. 

V = (M^2)/3*[1-(b/euler number * k/sqrt6) * (φ- sqrt6/k) * exp(-(k/sqrt6)(φ- 

sqrt6/k))]^2 

For k = 2  and  φ = 0.9991104684, that is the value of the scalar field that is equal to 

the value of the following Rogers-Ramanujan continued fraction: 

 

we obtain: 

V = (M^2)/3*[1-(b/euler number * 2/sqrt6) * (0.9991104684- sqrt6/2) * exp(-

(2/sqrt6)(0.9991104684- sqrt6/2))]^2 

Input interpretation: 
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Result: 

 

 

Solutions: 

 

 

Alternate forms: 

 

 

 

 

 

 

 

Expanded form: 

 

Alternate form assuming b, M, and V are positive: 

 

Alternate form assuming b, M, and V are real: 
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Derivative: 

 

 

Implicit derivatives 
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Global minimum: 

 

Global minima: 

 

 

 

 

From: 

 

we obtain 

(225.913 (-0.054323 M^2 + 6.58545×10^-10 sqrt(M^4)))/M^2 

Input interpretation: 

 

 

Result: 
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Plots: 

 

 

 

Alternate form assuming M is real: 

 

-12.2723  result very near to the black hole entropy value 12.1904 = ln(196884) 

 

 

Alternate forms: 
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Expanded form: 

 

 

Property as a function: 

Parity 

 

Series expansion at M = 0: 

 

Series expansion at M = ∞: 

 

 

Derivative: 

 

 

 

 

Indefinite integral: 
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Global maximum: 

 

 

Global minimum: 

 

Limit: 

 

 

 

Definite integral after subtraction of diverging parts: 
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From  b that is equal to 

 

 

 

From: 

 

 

we obtain: 

 

1/3 (0.0814845 ((225.913 (-0.054323 M^2 + 6.58545×10^-10 sqrt(M^4)))/M^2 ) + 

1)^2 M^2 

Input interpretation: 

 

 

 

Result: 
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Plots:    (possible mathematical connection with an open string) 

 

M = -0.5;  M = 0.2 

 

 

 

 

(possible mathematical connection with an open string) 

M = 2 ;  M = 3 

 

Root: 

 

Property as a function: 

Parity 
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Series expansion at M = 0: 

 

 

Series expansion at M = ∞: 

 

 

 

 

 

Definite integral after subtraction of diverging parts: 

 

 

 

For M = - 0.5 ,  we obtain: 

 

 

 



120 
 

1/3 (0.0814845 ((225.913 (-0.054323 (-0.5)^2 + 6.58545×10^-10 sqrt((-0.5)^4)))/(-

0.5)^2 ) + 1)^2 * (-0.5^2) 

 

 

Input interpretation: 

 

 

 

Result: 

 

-4.38851344947*10
-16

 

 

 

For M = 0.2: 

 

 

1/3 (0.0814845 ((225.913 (-0.054323 0.2^2 + 6.58545×10^-10 sqrt(0.2^4)))/0.2^2 ) + 

1)^2 0.2^2 

Input interpretation: 
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Result: 

 

7.021621519159*10
-17

 

 

 

For M = 3: 

 

 

1/3 (0.0814845 ((225.913 (-0.054323 3^2 + 6.58545×10^-10 sqrt(3^4)))/3^2 ) + 1)^2 

3^2 

Input interpretation: 

 

 

Result: 

 

1.57986484181*10
-14
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For M = 2: 

 

1/3 (0.0814845 ((225.913 (-0.054323 2^2 + 6.58545×10^-10 sqrt(2^4)))/2^2 ) + 1)^2 

2^2 

 

Input interpretation: 

 

 

 

 

 

Result: 

 

 

7.021621519*10
-15

  

 

From the four results 

7.021621519*10^-15 ;  1.57986484181*10^-14 ;  7.021621519159*10^-17 ; 

-4.38851344947*10^-16 
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we obtain, after some calculations: 

 

sqrt[1/(2Pi)(7.021621519*10^-15 + 1.57986484181*10^-14 +7.021621519*10^-17 -

4.38851344947*10^-16)] 

 

Input interpretation: 

 

 

 

Result: 

 

5.9776991059*10
-8

  result very near to the Planck's electric flow 5.975498 × 10
−8

 that 

is equal to the following formula: 

 

 

We note that: 

1/55*(([(((1/[(7.021621519*10^-15 + 1.57986484181*10^-14 +7.021621519*10^-17 

-4.38851344947*10^-16)])))^1/7]-((log^(5/8)(2))/(2 2^(1/8) 3^(1/4) e log^(3/2)(3))))) 

Input interpretation: 
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Result: 

 
1.6181818182… result that is a very good approximation to the value of the golden 

ratio 1.618033988749... 

 

 

 

 

 

 

From the Planck units: 

Planck Length 

 

5.729475 * 10
-35

  Lorentz-Heaviside value 

 

 

Planck’s Electric field strength 

 

1.820306 * 10
61

 V*m  Lorentz-Heaviside value 

 

Planck’s Electric flux 
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5.975498*10
-8

 V*m  Lorentz-Heaviside value 

 

Planck’s Electric potential 

 

1.042940*10
27

 V  Lorentz-Heaviside valu 

 

 

Relationship between Planck’s Electric Flux and  Planck’s Electric Potential 

 

EP * lP  = (1.820306 * 10
61

) * 5.729475 * 10
-35

 

Input interpretation: 

 

 
 

Result: 

 
 

Scientific notation: 

 
 

1.042939771935*10
27

 ≈ 1.042940*10
27

 

Or:   

EP * lP
2
 / lP  = (5.975498*10

-8
)*1/(5.729475 * 10

-35
) 

Input interpretation: 
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Result: 

 
1.042939885417*10

27
 ≈ 1.042940*10

27
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