On the study of two Ramanujan's equations of the "Ramanujan's first letter to Hardy". Mathematical connections with various sectors of String Theory (Supersymmetry Breaking).

Michele Nardelli¹, Antonio Nardelli²

Abstract

In this research thesis, we analyze two Ramanujan's equations of the "Ramanujan's first letter to Hardy". We describe new possible mathematical connections with various sectors of String Theory (Supersymmetry Breaking).

¹ M.Nardelli studied at Dipartimento di Scienze della Terra Università degli Studi di Napoli Federico II, Largo S. Marcellino, 10 - 80138 Napoli, Dipartimento di Matematica ed Applicazioni "R. Caccioppoli" -Università degli Studi di Napoli "Federico II" – Polo delle Scienze e delle Tecnologie Monte S. Angelo, Via Cintia (Fuorigrotta), 80126 Napoli, Italy

² A. Nardelli studies at the Università degli Studi di Napoli Federico II - Dipartimento di Studi Umanistici – **Sezione Filosofia - scholar of Theoretical Philosophy**

From:

Collected Papers of Srinivasa Ramanujan - 2000 of Srinivasa

Ramanujan (Author), G. H. Hardy, P. V. Seshu Aiyar, B. M. Wilson , Bruce Berndt

We analyze the following equation:

$$\int_{0}^{\infty} \frac{1 + \frac{x^2}{(b+1)^2}}{1 + \frac{x^2}{a^2}} \times \frac{1 + \frac{x^2}{(b+2)^2}}{1 + \frac{x^2}{(a+1)^2}} \times \cdots dx = \frac{\sqrt{\pi}}{2} \times \frac{\Gamma\left(a + \frac{1}{2}\right)\Gamma(b+1)\Gamma(b-a+1)}{\Gamma(a)\Gamma\left(b + \frac{1}{2}\right)\Gamma\left(b-a + \frac{1}{2}\right)}.$$

sqrt(Pi)/2 * gamma(a+1/2) gamma(b+1) gamma(b-a+1) / gamma(a) gamma(b+1/2) gamma(b-a+1/2)

We have:

Indefinite integral

log(x) is the natural logarithm

Alternate forms of the integral

$$\left(a^{2} (a + 1)^{2} \left((a - b - 1) (a + b + 2) \left((a - b - 2) (a + b + 1) \log(a^{2} + x^{2}) - (a - b) (a + b + 3) \log((a + 1)^{2} + x^{2})\right) + (2 a + 1) x^{2}\right)\right) / \left(2 (2 a + 1) (b + 1)^{2} (b + 2)^{2}\right) + \text{constant}$$

$$\frac{\frac{a^2 (a+1)^2 x^2}{2 (b+1)^2 (b+2)^2}}{\frac{a^2 (a+1)^2 (a-b-2) (a-b-1) (a+b+1) (a+b+2) \log (a^2+x^2)}{2 (2 a+1) (b+1)^2 (b+2)^2}} - \frac{a^2 (a+1)^2 (a-b-1) (a-b) (a+b+2) (a+b+3) \log (a^2+2 a+x^2+1)}{2 (2 a+1) (b+1)^2 (b+2)^2} + \text{constant}$$

$$\begin{array}{l} \left(a^{2} \left(a+1\right)^{2} \left(2 \, a \left(\left(2 \, b^{2}+6 \, b+3\right) \log \left(a^{2}+2 \, a+x^{2}+1\right)+x^{2}\right)+\left(a^{4}+a^{2} \left(-2 \, b^{2}-6 \, b-5\right)+b^{4}+6 \, b^{3}+13 \, b^{2}+12 \, b+4\right) \log \left(a^{2}+x^{2}\right)+\left(-a^{4}-4 \, a^{3}+a^{2} \left(2 \, b^{2}+6 \, b-1\right)-b^{4}-6 \, b^{3}-11 \, b^{2}-6 \, b\right) \log \left(a^{2}+2 \, a+x^{2}+1\right)+x^{2}\right) \right) / \left(2 \left(2 \, a+1\right) \left(b^{2}+3 \, b+2\right)^{2}\right)+constant \end{aligned}$$

Expanded form of the integral

$\log(a^2 + x^2)a^8$	$\log(a^2 + 2a + x^2 + 1)a^8$	$\log(a^2 + x^2)a^7$
$\overline{2(2a+1)(b^2+3b+2)^2}$	$-\frac{1}{2(2a+1)(b^2+3b+2)^2}$	$+\frac{(2a+1)(b^2+3b+2)^2}{(2a+1)(b^2+3b+2)^2}$
$3\log(a^2 + 2a + x^2 + 1)a^7$	$b^2 \log(a^2 + x^2) a^6$	$3 b \log(a^2 + x^2) a^6$
$(2a+1)(b^2+3b+2)^2$	$-\frac{1}{(2a+1)(b^2+3b+2)^2}$	$\frac{1}{(2a+1)(b^2+3b+2)^2}$
$2\log(a^2 + x^2)a^6$	$b^2 \log(a^2 + 2a + x^2 + 1)a^6$	
$\frac{1}{(2a+1)(b^2+3b+2)^2}$ +	$(2a+1)(b^2+3b+2)^2$	+
$3b\log(a^2+2a+x^2+1)c$	a^{6} 5 log $(a^{2} + 2a + x^{2} + 1)$	a ⁶
$(2a+1)(b^2+3b+2)^2$	$-\frac{1}{(2a+1)(b^2+3b+2)}$)2 +
$x^{2}a^{5}$	$2b^2\log(a^2+x^2)a^5$	$6 b \log(a^2 + x^2) a^5$
$\frac{(2a+1)(b^2+3b+2)^2}{(2a+1)(b^2+3b+2)^2}$	$\frac{(2a+1)(b^2+3b+2)^2}{(2a+1)(b^2+3b+2)^2} = \frac{1}{(2a+1)(b^2+3b+2)^2}$	$\frac{2(a+1)(b^2+3b+2)^2}{(a+1)(b^2+3b+2)^2}$
$5\log(a^2 + x^2)a^5$	$4 b^2 \log(a^2 + 2a + x^2 + 1)a$	5
$\frac{b(1)}{(2a+1)(b^2+3b+2)^2}$ +	$(2a+1)(b^2+3b+2)^2$	- +
$12b \log(a^2 + 2a + x^2 + 1)$	$a^5 5x^2a^4$	
$(2a+1)(b^2+3b+2)^2$	$+\frac{1}{2(2a+1)(b^2+3b+1)($	$\frac{1}{2}^{2}$ +
$b^4 \log(a^2 + x^2) a^4$	$3b^3\log(a^2+x^2)a^4$	$11 b^2 \log(a^2 + x^2) a^4$
$\frac{3(1-2)^2}{2(2a+1)(b^2+3b+2)^2}$	$+\frac{b(1)}{(2a+1)(b^2+3b+2)^2}+$	$\frac{b(1)}{2(2a+1)(b^2+3b+2)^2}$ +
$3b\log(a^2 + x^2)a^4$	$\log(a^2 + x^2)a^4$	$b^4 \log(a^2 + 2a + x^2 + 1)a^4$
$\frac{b(1)}{(2a+1)(b^2+3b+2)^2}$ -	$\frac{b(1)}{2(2a+1)(b^2+3b+2)^2}$ -	$\frac{8(1)}{2(2a+1)(b^2+3b+2)^2}$ -
(2a+1)(b+3b+2) $3b^3\log(a^2+2a+x^2+1)$	$a^4 b^2 \log(a^2 + 2a + x^2 + x^2)$	$1)a^4$
$(2a+1)(b^2+3b+2)^2$	$\frac{1}{2(2a+1)(b^2+3b+1)}$	$\frac{(-)^{2}}{(-2)^{2}}$ +
(2a+1)(b+3b+2) 12b log($a^2 + 2a + x^2 + 1$)	$a^4 = 11 \log(a^2 + 2a + x^2 + a^2)$	$(1)a^4$
$\frac{(2a+1)(b^2+2b+2)^2}{(2a+1)(b^2+2b+2)^2}$	$\frac{1}{2} + \frac{1}{2(2a+1)(b^2+2b+1)(b$	$\frac{(2)^{(2)}}{(2)^2}$ +
(2u+1)(v+3v+2)	$b^4 \log(a^2 + x^2) a^3$	$6h^3 \log(a^2 + x^2)a^3$
$\frac{2x}{(2a+1)(b^2+2b+2)^2}$ +	$\frac{b}{(2a+1)(b^2+2b+2)^2} + \frac{b}{(2a+1)(b^2+2b+2)^2}$	$\frac{(b^2 + b)(b^2 + 2b + 2)^2}{(b^2 + 2b + 2)^2}$ +
$(2a + 1)(b^{2} + 3b + 2)$ $(2a + 1)(b^{2} + 3b + 2)a^{3}$	(2a+1)(b+3b+2) (1 12 b log($a^2 + x^2$) a^3	$4 \log(a^2 + x^2) a^3$
$\frac{100 \log(a + x) a}{(2a + 1)(b^2 + 2b + 2)^2} +$	$\frac{120108(a^2 + a^2)a}{(2a+1)(b^2 + 2b+2)^2} + \frac{1}{(a^2+a^2)^2}$	$\frac{1000(a^{2}+a^{2})a^{2}}{(a^{2}+a^{2})a^{2}}$
$(2u + 1)(v^{-} + 3v + 2)$ $h^{4} \log(a^{2} + 2a + x^{2} + 1)a$	$(2u+1)(v^2+3v+2)$ (2 $(2u+1)(v^2+3v+2)$ (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	$(b^{-} + 3b + 2)$
$\frac{b^{2} \log(u^{2} + 2u + u^{2} + 1)u}{(2u + u^{2} + 1)(b^{2} + 2b + 2)^{2}}$	$-\frac{66 \log(u+2u+u+1)}{(2u+1)(b^2+2b+1)}$	$\frac{1}{2}$ -
$(2a + 1)(b^{-} + 3b + 2)$ 9 $b^{2} \log(a^{2} + 2a + x^{2} + 1)$	$(2u+1)(v^2+3v+2)$ $(a^3-3\log(a^2+2a+x^2+1))$	a^3
5000000000000000000000000000000000000	$\frac{1}{1} + \frac{3105(u + 2u + x + 1)}{(2u + 1)(b^2 + 2b + 1)}$	$\frac{(1)^{2}}{(1)^{2}}$ +
$(2u+1)(v^2+3v+2)$	$(2a+1)(b^{-}+3b+2)$ $b^{4}\log(a^{2}+x^{2})a^{2}$	$3h^3\log(a^2 + r^2)a^2$
$\frac{x \ u}{2(2 - 1)(k^2 + 2k + 2)^2}$	$+\frac{b^{2}\log(u^{2}+x^{2})u^{2}}{2(2-x^{2})(b^{2}+2)(b^{2}+2)(b^{2}+2)^{2}}$	$+\frac{55 \log(u + x)u}{(2 - x)(h^2 + 2h + 2h^2)^2} +$
$2(2a+1)(b^2+3b+2)^{-1}$ $12b^2\log(a^2+x^2)a^2$	$2(2a+1)(b^2+3b+2)^2$ 6 h log(a^2+x^2) a^2	$(2a + 1)(b^2 + 3b + 2)^2$ $2\log(a^2 + x^2)a^2$
$\frac{130 \log(u + x)u}{2(2 - x)(x^2 - x)^2}$	$+\frac{0000g(u + x)u}{(2 - 0)^2} +$	$\frac{2\log(u + x)u}{(2 - \omega t)(t^2 - \omega t - \omega)^2} =$
$2(2a+1)(b^2+3b+2)^2$ $b^4 \log(a^2+2a+x^2+1)a$	$(2a+1)(b^2+3b+2)^2$	$(2a+1)(b^2+3b+2)^2$
$\frac{b^{-1}\log(a^{-}+2a+x^{-}+1)a}{a^{-}a^{-}a^{-}a^{-}a^{-}a^{-}a^{-}a^$	$= -\frac{30^{10} \log(u^2 + 2u + x^2 + u^2)}{(2u + x^2)^{12}}$	$\frac{1}{\sqrt{2}}$ -
$2(2a+1)(b^2+3b+2)^2$ 11 b ² log(a ² + 2 a + x ² + 1	$(2a+1)(b^2+3b+2)(b^2+3b+2)(a^2-2b)(a$	() ⁻
$\frac{110^{10}\log(u + 2u + x + 1)u}{2(2u + x)^{12}} - \frac{30\log(u + 2u + x + 1)u}{(2u + x)^{12}} + \text{constant}$		
$2(2a+1)(b^2+3b+2)$	$(2a+1)(b^2+3b)$	+ 2)2

Series expansion of the integral at x=0

$$\begin{array}{l} \left(a^{2} \left(a+1\right)^{2} \left(a^{2}+a-b^{2}-3 \, b-2\right) \\ \left(\left(a^{2}-a-b^{2}-3 \, b-2\right) \log (a^{2})+\left(-a^{2}-3 \, a+b \, (b+3)\right) \log ((a+1)^{2})\right)\right) \right/ \\ \left(2 \left(2 \, a+1\right) \left(b^{2}+3 \, b+2\right)^{2}\right)+\frac{x^{2}}{2}+O(x^{4}) \\ \text{(Taylor series)} \end{array}$$

Series expansion of the integral at $x=\infty$

$$\frac{a^2 (a+1)^2 x^2}{2 (b^2+3 b+2)^2} - \frac{2 (a^2 (a+1)^2 (a^2+a-b^2-3 b-2) \log(x))}{(b^2+3 b+2)^2} - \frac{1}{2 (b^2+3 b+2)^2 x^2} a^2 (a+1)^2 (3 a^4+6 a^3-a^2 (4 b^2+12 b+3) - 2 a (2 b^2+6 b+3) + b (b^3+6 b^2+11 b+6)) + O((\frac{1}{x})^4)$$

(Puiseux series)

sqrt(Pi)/2 * (((gamma(a+1/2) gamma(b+1) gamma(b-a+1)))) / (((gamma(a) gamma(b+1/2) gamma(b-a+1/2))))

Input

$$\frac{\sqrt{\pi}}{2} \times \frac{\Gamma\left(a+\frac{1}{2}\right)\Gamma(b+1)\Gamma(b-a+1)}{\Gamma(a)\Gamma\left(b+\frac{1}{2}\right)\Gamma\left(b-a+\frac{1}{2}\right)}$$

 $\Gamma(x)$ is the gamma function

Exact result

$$\frac{\sqrt{\pi} \Gamma\left(a+\frac{1}{2}\right) \Gamma(b+1) \Gamma(-a+b+1)}{2 \Gamma(a) \Gamma\left(b+\frac{1}{2}\right) \Gamma\left(-a+b+\frac{1}{2}\right)}$$

Contour plot

(no roots exist)

Series expansion at $a=\infty$

$$\left(\frac{\sqrt{\pi} \Gamma(b+1) a}{2 \Gamma(b+\frac{1}{2})} - \frac{(2 b+1) \sqrt{\pi} \Gamma(b+1)}{8 \Gamma(b+\frac{1}{2})} - \frac{(4 b^2 - 1) \sqrt{\pi} \Gamma(b+1)}{64 \Gamma(b+\frac{1}{2}) a} + O\left(\left(\frac{1}{a}\right)^2\right) \right)$$

Derivative

$$\begin{split} &\frac{\partial}{\partial a} \bigg(\frac{\sqrt{\pi} \, \left(\Gamma \left(a + \frac{1}{2} \right) \Gamma (b+1) \, \Gamma (b-a+1) \right)}{2 \left(\Gamma (a) \, \Gamma \left(b + \frac{1}{2} \right) \Gamma \left(b - a + \frac{1}{2} \right) \right)} \bigg) = \\ & \left(\sqrt{\pi} \, \Gamma \left(a + \frac{1}{2} \right) \Gamma (b+1) \, \Gamma (-a+b+1) \left(\psi^{(0)} \left(-a+b + \frac{1}{2} \right) - \psi^{(0)} (-a+b+1) - \right. \\ & \left. \psi^{(0)} (a) + \psi^{(0)} \left(a + \frac{1}{2} \right) \right) \bigg) \Big/ \left(2 \, \Gamma (a) \, \Gamma \left(b + \frac{1}{2} \right) \Gamma \left(-a+b + \frac{1}{2} \right) \right) \end{split}$$

From:

$$\frac{\sqrt{\pi} \Gamma\left(a+\frac{1}{2}\right) \Gamma(b+1) \Gamma(-a+b+1)}{2 \Gamma(a) \Gamma\left(b+\frac{1}{2}\right) \Gamma\left(-a+b+\frac{1}{2}\right)}$$

For a = 2, b = 3, we obtain :

 $(\operatorname{sqrt}(\pi) \Gamma(2 + 1/2) \Gamma(3 + 1) \Gamma(-2 + 3 + 1))/(2 \Gamma(2) \Gamma(3 + 1/2) \Gamma(-2 + 3 + 1/2))$

Input

$$\frac{\sqrt{\pi} \ \Gamma\left(2+\frac{1}{2}\right) \Gamma(3+1) \ \Gamma(-2+3+1)}{2 \ \Gamma(2) \ \Gamma\left(3+\frac{1}{2}\right) \Gamma\left(-2+3+\frac{1}{2}\right)}$$

 $\Gamma(x)$ is the gamma function

Exact result

 $\frac{12}{5}$

Decimal form

2.4 2.4 The study of this function provides the following representations:

Alternative representations

$$\frac{\sqrt{\pi} \left(\Gamma \left(2 + \frac{1}{2} \right) \Gamma (3+1) \Gamma (-2+3+1) \right)}{2 \Gamma (2) \Gamma \left(3 + \frac{1}{2} \right) \Gamma \left(-2+3+\frac{1}{2} \right)} = \frac{1! \times \frac{3}{2}! \times 3! \sqrt{\pi}}{2 \times \frac{1}{2}! \times 1! \times \frac{5}{2}!}$$

$$\frac{\sqrt{\pi} \left(\Gamma\left(2+\frac{1}{2}\right) \Gamma(3+1) \Gamma(-2+3+1)\right)}{2 \Gamma(2) \Gamma\left(3+\frac{1}{2}\right) \Gamma\left(-2+3+\frac{1}{2}\right)} = \frac{e^{0} e^{-\log(2) + \log(12)} e^{-\log G(5/2) + \log G(7/2)} \sqrt{\pi}}{2 e^{0} e^{-\log G(3/2) + \log G(5/2)} e^{-\log G(7/2) + \log G(9/2)}}$$

$$\frac{\sqrt{\pi} \left(\Gamma\left(2+\frac{1}{2}\right) \Gamma(3+1) \Gamma(-2+3+1) \right)}{2 \Gamma(2) \Gamma\left(3+\frac{1}{2}\right) \Gamma\left(-2+3+\frac{1}{2}\right)} = \frac{\Gamma(2,0) \Gamma\left(\frac{5}{2},0\right) \Gamma(4,0) \sqrt{\pi}}{2 \Gamma\left(\frac{3}{2},0\right) \Gamma(2,0) \Gamma\left(\frac{7}{2},0\right)}$$

Series representations

$$\frac{\sqrt{\pi} \left(\Gamma\left(2+\frac{1}{2}\right)\Gamma(3+1)\Gamma(-2+3+1)\right)}{2 \Gamma(2) \Gamma\left(3+\frac{1}{2}\right)\Gamma\left(-2+3+\frac{1}{2}\right)} = \frac{\exp\left(i \pi \left\lfloor \frac{\arg(\pi-x)}{2\pi} \right\rfloor\right)\Gamma\left(\frac{5}{2}\right)\Gamma(4) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k} (\pi-x)^{k} x^{-k} \left(-\frac{1}{2}\right)_{k}}{k!}}{2 \Gamma\left(\frac{3}{2}\right)\Gamma\left(\frac{7}{2}\right)} \quad \text{for } (x \in \mathbb{R} \text{ and } x < 0)$$

$$\begin{split} \frac{\sqrt{\pi} \, \left(\Gamma \left(2 + \frac{1}{2} \right) \Gamma (3+1) \, \Gamma (-2+3+1) \right)}{2 \, \Gamma (2) \, \Gamma \left(3 + \frac{1}{2} \right) \Gamma \left(-2 + 3 + \frac{1}{2} \right)} = \\ \frac{\Gamma \left(\frac{5}{2} \right) \Gamma (4) \left(\frac{1}{z_0} \right)^{1/2 \lfloor \arg(\pi - z_0)/(2\pi) \rfloor} \, z_0^{1/2 \, (1+\lfloor \arg(\pi - z_0)/(2\pi) \rfloor)} \, \sum_{k=0}^{\infty} \frac{(-1)^k \left(-\frac{1}{2} \right)_k \left(\pi - z_0 \right)^k \, z_0^{-k}}{k!} }{2 \, \Gamma \left(\frac{3}{2} \right) \Gamma \left(\frac{7}{2} \right)} \end{split}$$

$$\begin{split} \frac{\sqrt{\pi} \left(\Gamma \left(2 + \frac{1}{2}\right) \Gamma (3+1) \Gamma (-2+3+1) \right)}{2 \, \Gamma (2) \, \Gamma \left(3 + \frac{1}{2}\right) \Gamma \left(-2+3+\frac{1}{2}\right)} &= \\ \frac{\sqrt{-1+\pi} \, \sum_{k_1=0}^{\infty} \sum_{k_2=0}^{\infty} \sum_{k_3=0}^{\infty} \frac{\left(-1+\pi\right)^{-k_1} \left(\frac{1}{2}\right) \left(\frac{5}{2} - z_0\right)^{k_2} (4-z_0)^{k_3} \, \Gamma^{(k_2)}(z_0) \, \Gamma^{(k_3)}(z_0)}{k_2! \, k_3!}}{2 \left(\sum_{k=0}^{\infty} \frac{\left(\frac{3}{2} - z_0\right)^k \Gamma^{(k)}(z_0)}{k!}\right) \sum_{k=0}^{\infty} \frac{\left(\frac{7}{2} - z_0\right)^k \Gamma^{(k)}(z_0)}{k!}}{k!} \\ \text{for } (z_0 \notin \mathbb{Z} \text{ or } z_0 > 0) \end{split}$$

Integral representations

$$\frac{\sqrt{\pi} \left(\Gamma\left(2+\frac{1}{2}\right) \Gamma(3+1) \Gamma(-2+3+1)\right)}{2 \Gamma(2) \Gamma\left(3+\frac{1}{2}\right) \Gamma\left(-2+3+\frac{1}{2}\right)} = \int_{0}^{1} \int_{0}^{1} \log^{3/2} \left(\frac{1}{t_{1}}\right) \log^{3} \left(\frac{1}{t_{2}}\right) dt_{2} dt_{1}$$

$$\frac{\sqrt{\pi} \left(\Gamma\left(2+\frac{1}{2}\right)\Gamma(3+1)\Gamma(-2+3+1)\right)}{2 \Gamma(2) \Gamma\left(3+\frac{1}{2}\right)\Gamma\left(-2+3+\frac{1}{2}\right)} = \frac{1}{2} \exp\left(\int_{0}^{1} \frac{-3-3\sqrt{x}+2x^{3/2}+2x^{2}+2x^{7/2}}{2\left(1+\sqrt{x}\right)\log(x)} dx\right)\sqrt{\pi}$$

$$\frac{\sqrt{\pi} \left(\Gamma\left(2+\frac{1}{2}\right)\Gamma(3+1)\Gamma(-2+3+1)\right)}{2 \Gamma(2) \Gamma\left(3+\frac{1}{2}\right)\Gamma\left(-2+3+\frac{1}{2}\right)} = \frac{1}{2} \exp\left(\frac{1}{2} \left(\frac{3 \gamma}{2} + \int_{0}^{1} \frac{x^{3/2} - x^{5/2} + x^{7/2} - x^{4} - \log(x^{3/2}) + \log(x^{5/2}) - \log(x^{7/2}) + \log(x^{4})}{\log(x) - x \log(x)}\right)}{\log(x) - x \log(x)}$$

 γ is the Euler-Mascheroni constant

From:

log(x) is the natural logarithm

For:

$$\left(a^{2} (a + 1)^{2} \left((a - b - 1) (a + b + 2) \left((a - b - 2) (a + b + 1) \log(a^{2} + x^{2}) - (a - b) (a + b + 3) \log((a + 1)^{2} + x^{2})\right) + (2 a + 1) x^{2}\right)\right) / \left(2 (2 a + 1) (b + 1)^{2} (b + 2)^{2}\right) + \text{constant}$$

If we consider x = 1, we obtain:

 $(a^2 (a+1)^2 ((a-b-1)(a+b+2)((a-b-2) (a+b+1) \log(a^2+1)-(a-b) (a+b+3) \log((a+1)^2+1)) + (2a+1)))/(2 (2a+1) (b+1)^2 (b+2)^2) = 2.4$

Input

$$(a^{2} (a + 1)^{2} ((a - b - 1) (a + b + 2) ((a - b - 2) (a + b + 1) \log(a^{2} + 1) - (a - b) (a + b + 3) \log((a + 1)^{2} + 1)) + (2 a + 1))) / (2 (2 a + 1) (b + 1)^{2} (b + 2)^{2}) = 2.4$$

log(x) is the natural logarithm

Implicit plot

The study of this function provides the following representations:

Solutions for the variable b

$$\begin{split} b \approx 0.5 \\ \left(-\sqrt{\left(9 - \left(2\left(10\,a^{6}\log((a+1)^{2}+1\right)+40\,a^{5}\log((a+1)^{2}+1\right)+40\,a^{4}\log((a+1)^{2}+1\right)-10\,a^{6}\log(a^{2}+1)-20\,a^{5}\log(a^{2}+1)+10\,a^{4}\log(a^{2}+1)-20\,a^{5}\log(a^{2}+1)+10\,a^{6}\log(a^{2}+1)+10\,a^{7}\log(a^{2}+1)+10\,a^{7}\log(a^{2}+1)+10\,a^{7}\log(a^{2}+1)+10\,a^{7}\log(a^{2}+1)+10\,a^{7}\log(a^{2}+1)-10\,a^{7}\log(a^{2}+1)-10\,a^{7}\log(a^{2}+1)-10\,a^{7}\log(a^{2}+1)-10\,a^{7}\log(a^{2}+1)+10\,a^{7}\log(a^{2}+1)+10\,a^{7}\log(a^{2}+1)-10\,a^{7}\log(a^{2}+1)-10\,a^{7}\log(a^{2}+1)+10\,a^{7}\log(a^{2}+1)-10\,a^{7}\log(a^{2}+1)-10\,a^{7}\log(a^{2}+1)-10\,a^{7}\log(a^{2}+1)-10\,a^{7}\log(a^{2}+1)-10\,a^{7}\log(a^{2}+1)+10\,a^{7}\log(a^{2}+1)-10\,a^{7}\log(a^{2}+1)+10\,a^{7}\log(a^{2}+1)+10\,a^{7}\log(a^{2}+1)-10\,a^{7}\log(a^{2}+1)+10\,a^{7}\log(a^{2}+1)-10\,a^{$$

$$\begin{split} b \approx & 0.5 \left(\sqrt{\left(9 - \left(2 \left(10 \ a^6 \log((a+1)^2+1\right) + 40 \ a^5 \log((a+1)^2+1\right) + 40 \ a^4 \log((a+1)^2+1\right) - 10 \ a^2 \log((a+1)^2+1\right) - 10 \ a^6 \log(a^2+1) - 20 \ a^5 \log(a^2+1) + 10 \ a^4 \log(a^2+1) + 40 \ a^3 \log(a^2+1) - \sqrt{\left((-10 \ a^6 \log((a+1)^2+1) - 40 \ a^5 \log((a+1)^2+1) - 40 \ a^4 \log((a+1)^2+1) - 20 \ a^2 \log(a^2+1) + 10 \ a^2 \log((a+1)^2+1) + 10 \ a^6 \log(a^2+1) + 10 \ a^2 \log((a+1)^2+1) + 10 \ a^6 \log(a^2+1) - 40 \ a^3 \log(a^2+1) - 10 \ a^4 \log((a+1)^2+1) - 40 \ a^3 \log(a^2+1) - 10 \ a^3 \log((a+1)^2+1) + 5 \ a^2 \log(a^2+1) - 5 \ a^2 \log((a+1)^2+1) + 10 \ a^5 + 25 \ a^4 + 55 \ a^4 \log((a+1)^2+1) + 10 \ a^5 + 25 \ a^4 + 55 \ a^4 \log((a+1)^2+1) + 5 \ a^2 + 20 \ a^2 \log(a^2+1) - 5 \ a^8 \log((a+1)^2+1) + 5 \ a^2 \log(a^2+1) - 50 \ a^6 \log((a+1)^2+1) + 5 \ a^2 \log(a^2+1) - 50 \ a^6 \log((a+1)^2+1) + 5 \ a^2 \log(a^2+1) - 50 \ a^6 \log((a+1)^2+1) + 5 \ a^2 \log(a^2+1) - 50 \ a^6 \log((a+1)^2+1) + 5 \ a^2 \log(a^2+1) - 50 \ a^6 \log((a+1)^2+1) + 5 \ a^4 \log(a^2+1) - 50 \ a^6 \log((a+1)^2+1) + 5 \ a^4 \log((a^2+1) - 10 \ a^3 \log((a+1)^2+1) + 5 \ a^4 \log((a+1)^2+1) + 10 \ a^3 \log((a^2+1) - 5 \ a^4 \log((a+1)^2+1) + 10 \ a^3 \log((a^2+1) - 5 \ a^4 \log((a^2+1)^2+1) + 5 \ a^4 \log$$

$$\begin{split} b \approx 0.5 \\ & \left(-\sqrt{\left(9 - \left(2\left(10\,a^6\log((a+1)^2+1\right)+40\,a^5\log((a+1)^2+1\right)+40\,a^4\log((a+1)^2+1\right)-10\,a^6\log(a^2+1)-20\,a^5\log(a^2+1)+10\,a^6\log(a^2+1)-20\,a^5\log(a^2+1)+10\,a^4\log(a^2+1)+10\,a^4\log(a+1)^2+1\right)-40\,a^5\log((a+1)^2+1)-40\,a^6\log((a+1)^2+1)-40\,a^6\log((a+1)^2+1)+10\,a^2\log(a+1)^2+1)+10\,a^2\log(a^2+1)+10\,a^6\log(a^2+1)-40\,a^3\log(a^2+1)+10\,a^3\log(a^2+1)-40\,a^3\log(a^2+1)-10\,a^3\log((a+1)^2+1)+5\,a^4\log((a+1)^2+1)-5\,a^2\log((a+1)^2+1)-5\,a^2\log((a+1)^2+1)-5\,a^2\log((a+1)^2+1)-5\,a^6\log((a+1)^2+1)-10\,a^3\log((a+1)^2+1)+5\,a^4\log((a+1)^2+1)+10\,a^5+25\,a^4+55\,a^4\log((a+1)^2+1)-10\,a^3\log((a+1)^2+1)+5\,a^2+25\,a^4+55\,a^4\log((a+1)^2+1)+5\,a^2+25\,a^4+55\,a^4\log((a+1)^2+1)+5\,a^2+20\,a^2\log(a^2+1)-5\,a^4\log(a^2+1)-5\,a^4\log(a^2+1)-5\,a^4\log(a^2+1)-5\,a^4\log(a^2+1)-5\,a^4\log(a^2+1)-5\,a^4\log(a^2+1)-5\,a^4\log(a^2+1)-5\,a^4\log(a^2+1)-5\,a^4\log(a^2+1)-5\,a^4\log(a^2+1)-5\,a^4\log(a^2+1)-5\,a^4\log(a^2+1)+10\,a^3\log((a+1)^2+1)+5\,5\,a^2\log(a^2+1)-5\,a^4\log(a^2+1)-5\,a^4\log(a^2+1)+10,a^3\log((a+1)^2+1)+5\,5\,a^2\log(a^2+1)-5\,a^4\log(a^2+1)+10,a^3\log((a+1)^2+1)+5\,5\,a^4\log(a^2+1)+10,a^3\log((a+1)^2+1)+5\,5\,a^4\log(a^2+1)+10,a^3\log(a^2+1)-5\,3a^4\log(a^2+1)+10,a^3\log((a+1)^2+1)+5\,5\,a^4\log(a^2+1)-5\,3a^4\log(a^2+1)+10,a^3\log((a+1)^2+1)+5\,5\,a^4\log(a^2+1)-5\,3a^4\log(a^2+1)-10,a^3\log((a+1)^2+1)+1,a^3\log(a^2+1)-4\,3a(a^2+1)+10,a^3\log(a^2+1)-3,a^3\log(a^2+1)-2,a^3$$

$$\begin{split} b \approx & 0.5 \left(\sqrt{\left(9 - \left(2 \left(10 \ a^6 \log((a+1)^2+1\right) + 40 \ a^5 \log((a+1)^2+1\right) + 40 \ a^4 \log((a+1)^2+1\right) + 10 \ a^2 \log((a+1)^2+1\right) - 10 \ a^6 \log(a^2+1) - 20 \ a^5 \log(a^2+1) + 10 \ a^4 \log(a^2+1) + 40 \ a^3 \log(a^2+1) + \sqrt{\left((-10 \ a^6 \log((a+1)^2+1) - 40 \ a^5 \log((a+1)^2+1) - 40 \ a^4 \log((a+1)^2+1) - 20 \ a^2 \log((a^2+1) + 10 \ a^2 \log((a+1)^2+1) + 10 \ a^6 \log((a^2+1) + 10 \ a^6 \log((a+1)^2+1) + 10 \ a^6 \log((a+1)^2+1) + 10 \ a^6 \log((a+1)^2+1) - 40 \ a^3 \log((a^2+1) - 10 \ a^3 \log((a+1)^2+1) + 5 \ a^4 \log((a+1)^2+1) - 10 \ a^3 \log((a+1)^2+1) + 5 \ a^4 \log((a+1)^2+1) - 30 \ a^7 \log((a+1)^2+1) - 50 \ a^6 \log((a+1)^2+1) + 10 \ a^5 + 25 \ a^4 + 55 \ a^4 \log((a+1)^2+1) + 5 \ a^2 + 20 \ a^2 \log(a^2+1) - 5 \ a^4 \log((a+1)^2+1) + 5 \ a^2 + 20 \ a^2 \log(a^2+1) - 5 \ a^4 \log((a^2+1) - 10 \ a^3 \log((a^2+1) - 10 \ a^3 \log((a^2+1) - 50 \ a^6 \log((a^2+1) - 10 \ a^6 \log((a^2+1) - 10 \ a^3 \log((a^2+1) - 50 \ a^6 \log((a^2+1) - 10 \ a^6 \log((a^2+1) - 50 \ a^6 \log((a^2+1) - 10 \ a^6 \log((a^2+1) - 50 \ a^6 \log((a^2+1) - 10 \ a^6 \log((a^2+1) - 50 \ a^6 \log((a^2+1) - 50 \ a^6 \log((a^2+1) - 10 \ a^6 \log((a^2+1) - 50 \ a^6 \log((a^2+1) - 10 \ a^3 \log((a^2+1) - 10 \ a^3 \log((a^2+1) + 10 \ a^3 \log((a^2+1) - 50 \ a^6 \log((a^2+1) + 10 \ a^7 \log((a^2+1) - 10 \ a^3 \log((a^2+1)^2 + 1) + 50 \ a^4 \log((a^2+1) - 10 \ a^3 \log((a^2+1)^2 + 1) + 50 \ a^4 \log((a^2+1) - 10 \ a^3 \log((a^2+1)^2 + 1) + 50 \ a^4 \log((a^2+1) - 10 \ a^3 \log((a^2+1)^2 + 1) + 10 \ a^3 \log((a^2+1) - 48 \ a^2+1) - 3) \end{matrix}\right)$$

For b = 5, we obtain :

$$(a^2 (a+1)^2 ((a-5-1)(a+5+2)((a-5-2) (a+5+1) \log(a^2+1)-(a-5) (a+5+3) \log((a+1)^2+1)) + (2a+1)))/(2 (2a+1) (5+1)^2 (5+2)^2) = 2.4$$

Input

$$(a^{2} (a + 1)^{2} ((a - 5 - 1) (a + 5 + 2) ((a - 5 - 2) (a + 5 + 1) \log(a^{2} + 1) - (a - 5) (a + 5 + 3) \log((a + 1)^{2} + 1)) + (2 a + 1))) / (2 (2 a + 1) (5 + 1)^{2} (5 + 2)^{2}) = 2.4$$

 $\log(x)$ is the natural logarithm

Result

Plot

Solutions

a = -6.95971

a = -3.80038

a = 5.95971

Numerical solutions

 $a \approx -6.95970536173634...$

 $a \approx -3.80038113094299...$

 $a \approx 2.80038113094299...$

 $a \approx 5.95970536173634...$

For a = 5.9597053, we obtain :

 $(5.9597053^{2}(5.9597053+1)^{2} ((5.9597053-6)(5.9597053+7)((5.9597053-7)(5.9597053+6) \log(5.9597053^{2}+1)-(5.9597053-5)(5.9597053+8) \ln((5.9597053+1)^{2}+1))+(2*5.9597053+1)))/(2(2*5.9597053+1)36*49)$

Input interpretation

$$\begin{split} & \left(5.9597053^2 \left(5.9597053 + 1 \right)^2 \left((5.9597053 - 6) \left(5.9597053 + 7 \right) \right. \\ & \left. \left((5.9597053 - 7) \left(5.9597053 + 6 \right) \log \! \left(5.9597053^2 + 1 \right) - \right. \\ & \left. \left((5.9597053 - 5) \left(5.9597053 + 8 \right) \right) \log \! \left((5.9597053 + 1)^2 + 1 \right) \right) + \left. \left(2 \times 5.9597053 + 1 \right) \right) \right) \! \left/ \left(2 \left(2 \times 5.9597053 + 1 \right) \left(36 \times 49 \right) \right) \end{split}$$

log(x) is the natural logarithm

Result

2.40000... 2.4 The study of this function provides the following representations:

Alternative representations

$$\begin{array}{l} \left(5.95971^2 \left((5.95971+1)^2 \left((5.95971-6) (5.95971+7) \\ \left((5.95971-7) (5.95971+6) \log (5.95971^2+1)- \\ \left((5.95971-5) (5.95971+8)\right) \log ((5.95971+1)^2+1)\right) + \\ \left(2 \times 5.95971+1\right) \right) \right) / (2 (2 \times 5.95971+1) (36 \times 49)) = \\ \frac{1}{45579.7} \left(12.9194-0.522207 \left(-12.4416 \log (a) \log _a (1+5.95971^2)- \\ 13.3972 \log (a) \log _a (1+6.95971^2)\right)\right) 5.95971^2 \times 6.95971^2 \end{array}$$

$$\begin{split} \left(5.95971^2 \left((5.95971+1)^2 \left((5.95971-6) (5.95971+7) \left((5.95971-7) (5.95971+6\right) \\ & \log (5.95971^2+1) - ((5.95971-5) (5.95971+8)) \\ & \log ((5.95971+1)^2+1) \right) + (2 \times 5.95971+1) \right) \right) \right) \\ (2 \left(2 \times 5.95971+1\right) (36 \times 49)) &= \frac{1}{45579.7} \left(12.9194-0.522207 \left(-12.4416 \log_e (1+5.95971^2)-13.3972 \log_e (1+6.95971^2) \right) \right) \\ 5.95971^2 \times 6.95971^2 \end{split}$$

$$\begin{split} & \left(5.95971^2 \left((5.95971 + 1)^2 \left((5.95971 - 6) (5.95971 + 7) \right. \\ & \left. \left((5.95971 - 7) (5.95971 + 6) \log \! \left(5.95971^2 + 1 \right) - \right. \\ & \left. \left((5.95971 - 5) (5.95971 + 8) \right) \log \! \left((5.95971 + 1)^2 + 1 \right) \right) + \right. \\ & \left. \left(2 \times 5.95971 + 1 \right) \right) \right) \right) / \left(2 \left(2 \times 5.95971 + 1 \right) \left(36 \times 49 \right) \right) = \frac{1}{45579.7} \\ & \left. \left(12.9194 - 0.522207 \left(12.4416 \operatorname{Li}_1 \left(-5.95971^2 \right) + 13.3972 \operatorname{Li}_1 \left(-6.95971^2 \right) \right) \right) \right. \\ & \left. 5.95971^2 \times \\ & 6.95971^2 \end{split}$$

Series representations

```
 \begin{split} & \left(5.95971^2 \left((5.95971+1)^2 \left((5.95971-6) (5.95971+7) \left((5.95971-7) (5.95971+6\right) \\ & \log (5.95971^2+1) - ((5.95971-5) (5.95971+8)) \\ & \log ((5.95971+1)^2+1) + (2 \times 5.95971+1)) \right) \right) \right) \\ & \left(2 \left(2 \times 5.95971+1\right) (36 \times 49)\right) = 0.487644 + 0.245234 \\ & \log (\\ & 35.5181) + \\ & 0.264069 \log (48.4375) + \\ & \sum_{k=1}^{\infty} \frac{(-1)^k \left(-0.264069 \ e^{-3.88027 \ k} - 0.245234 \ e^{-3.57004 \ k}\right)}{k} \end{split}
```

$$\begin{array}{l} \left(5.95971^{2} \left(\left(5.95971+1\right)^{2} \left(\left(5.95971-6\right) \left(5.95971+7\right) \left(\left(5.95971-7\right) \left(5.95971+6\right) \right) \\ & \log \left(5.95971^{2}+1\right) - \left(\left(5.95971-5\right) \left(5.95971+8\right) \right) \\ & \log \left(\left(5.95971+1\right)^{2}+1\right) \right) + \left(2 \times 5.95971+1\right) \right) \right) \right) \right) \\ \left(2 \left(2 \times 5.95971+1 \right) \left(36 \times 49 \right) \right) = 0.487644 + \\ 0.490467 \\ i \\ \left[\frac{\pi}{2\pi} \left[\frac{\arg (36.5181-x)}{2\pi} \right] + \\ 0.528138 \, i \, \pi \left[\frac{\arg (49.4375-x)}{2\pi} \right] + \\ 0.509302 \log (x) + \\ \sum_{k=1}^{\infty} \frac{\left(-1 \right)^{k} \left(-0.245234 \left(36.5181-x \right)^{k} - 0.264069 \left(49.4375-x \right)^{k} \right) x^{-k}}{k} \\ \end{array} \right] \text{ for } x < 0$$

$$(5.95971^{2} ((5.95971 + 1)^{2} ((5.95971 - 6) (5.95971 + 7) ((5.95971 - 7) (5.95971 + 6) \log((5.95971^{2} + 1) - ((5.95971 - 5) (5.95971 + 8)) \log((5.95971 + 1)^{2} + 1)) + (2 \times 5.95971 + 1))))/ (2 (2 \times 5.95971 + 1) (36 \times 49)) = 0.487644 + 0.245234 \left\lfloor \frac{\arg(36.5181 - z_{0})}{2\pi} \right\rfloor \log\left(\frac{1}{z_{0}}\right) + (0.264069) \left\lfloor \frac{\arg(49.4375 - z_{0})}{2\pi} \right\rfloor \log(z_{0}) + (0.245234) \left\lfloor \frac{\arg(36.5181 - z_{0})}{2\pi} \right\rfloor \log(z_{0}) + (0.264069) \left\lfloor \frac{\arg(49.4375 - z_{0})}{2\pi} \right\rfloor \log(z_{0}) + (0.264069) \\ \left\lfloor \frac{\arg(49.4375 - z_{0})}{2\pi} \right\rfloor \log(z_{0}) + (0.264069) (49.4375 - z_{0})^{k} \right) z_{0}^{-k}$$

Integral representation

$$\begin{array}{l} \left(5.95971^2 \left(\left(5.95971+1\right)^2 \left(\left(5.95971-6\right) \left(5.95971+7\right) \left(\left(5.95971-7\right) \left(5.95971+6\right) \right. \\ \left. \log \! \left(5.95971^2+1 \right) - \left(\left(5.95971-5\right) \left(5.95971+8 \right) \right) \right. \\ \left. \log \! \left(\left(5.95971+1 \right)^2+1 \right) \right) + \left(2 \times 5.95971+1 \right) \right) \right) \right) \right) \\ \left(2 \left(2 \times 5.95971+1 \right) \left(36 \times 49 \right) \right) = 0.487644 + \\ \int_{-i \, \infty + \gamma}^{i \, \infty + \gamma} \frac{0.132034 \, e^{-7.45032 \, s} \left(e^{3.57004 \, s} + 0.928673 \, e^{3.88027 \, s} \right) \Gamma (-s)^2 \, \Gamma (1+s) }{i \, \pi \, \Gamma (1-s)} \, ds \\ for \, -1 < \\ \gamma < \\ 0 \end{array} \right)$$

Thence, we obtain, in conclusion:

$$\frac{\sqrt{\pi} \Gamma\left(2+\frac{1}{2}\right) \Gamma(3+1) \Gamma(-2+3+1)}{2 \Gamma(2) \Gamma\left(3+\frac{1}{2}\right) \Gamma\left(-2+3+\frac{1}{2}\right)}$$

$$\Gamma(x) \text{ is the gamma function}$$

$$=\frac{12}{5}$$

is equal to :

From:

$$\left(a^{2} \left(a+1\right)^{2} \left(\left(a-b-1\right) \left(a+b+2\right) \left(\left(a-b-2\right) \left(a+b+1\right) \log \left(a^{2}+x^{2}\right)-\left(a-b\right) \left(a+b+3\right) \log \left(\left(a+1\right)^{2}+x^{2}\right)\right)+\left(2 \left(a+1\right) x^{2}\right)\right) \right) \left(2 \left(2 \left(a+1\right) \left(b+1\right)^{2} \left(b+2\right)^{2}\right)+\text{constant} \right) \right) = 0$$

for b = 5, we obtain :

 $(a^2 (a+1)^2 ((a-5-1)(a+5+2)((a-5-2) (a+5+1) \log(a^2+1)-(a-5) (a+5+3) \log((a+1)^2+1)) + (2a+1)))/(2 (2a+1) (5+1)^2 (5+2)^2) = 2.4$

$$\left(a^{2} (a + 1)^{2} \left((a - 5 - 1) (a + 5 + 2) \left((a - 5 - 2) (a + 5 + 1) \log(a^{2} + 1) - (a - 5) (a + 5 + 3) \log((a + 1)^{2} + 1)\right) + (2 a + 1)\right)\right) / (2 (2 a + 1) (5 + 1)^{2} (5 + 2)^{2}) = 2.4$$

and for a = 5.9597053, we obtain :

$$\begin{split} & \left(5.9597053^2 \left(5.9597053+1\right)^2 \left((5.9597053-6) \left(5.9597053+7\right) \\ & \left((5.9597053-7) \left(5.9597053+6\right) \log \!\left(5.9597053^2+1\right)- \\ & \left((5.9597053-5) \left(5.9597053+8\right)\right) \log \!\left((5.9597053+1)^2+1\right)\!\right) + \\ & \left(2 \times 5.9597053+1\right)\!\left)\right) \Big/ \left(2 \left(2 \times 5.9597053+1\right) \left(36 \times 49\right)\right) \end{split}$$

log(x) is the natural logarithm

_ 2.40000...

Now, for a = 8 and b = 64,

$$\frac{\sqrt{\pi}}{2} \times \frac{\Gamma\left(a+\frac{1}{2}\right)\Gamma(b+1)\Gamma(b-a+1)}{\Gamma(a)\Gamma\left(b+\frac{1}{2}\right)\Gamma\left(b-a+\frac{1}{2}\right)}$$

we obtain:

 $(\operatorname{sqrt}(\pi) \Gamma(8 + 1/2) \Gamma(64 + 1) \Gamma(-8 + 64 + 1))/(2 \Gamma(8) \Gamma(64 + 1/2) \Gamma(-8 + 64 + 1/2))$

Input

$$\frac{\sqrt{\pi} \, \Gamma \! \left(8+\frac{1}{2}\right) \Gamma (64+1) \, \Gamma (-8+64+1)}{2 \, \Gamma (8) \, \Gamma \! \left(64+\frac{1}{2}\right) \Gamma \! \left(-8+64+\frac{1}{2}\right)}$$

 $\Gamma(x)$ is the gamma function

Exact result

13 479 973 333 575 319 897 333 507 543 509 815 336 818 572 211 270 286 240 551 [.]. 805 124 608 / 90 861 297 665 263 806 397 852 504 259 184 867 012 180 701 150 408 708 366 012 [.]. 722 575

Decimal approximation

148.35770212347189226490825070847834610348244898384466234402961177

148.35770212....

...

The study of this function provides the following representations:

Alternative representations

$$\frac{\sqrt{\pi} \left(\Gamma \left(8 + \frac{1}{2} \right) \Gamma (64+1) \Gamma (-8+64+1) \right)}{2 \Gamma (8) \Gamma \left(64 + \frac{1}{2} \right) \Gamma \left(-8+64+\frac{1}{2} \right)} = \frac{\frac{15}{2}! \times 56! \times 64! \sqrt{\pi}}{2 \times 7! \times \frac{111}{2}! \times \frac{127}{2}!}$$

$$\frac{\sqrt{\pi} \left(\Gamma\left(8+\frac{1}{2}\right) \Gamma(64+1) \Gamma(-8+64+1) \right)}{2 \, \Gamma(8) \, \Gamma\left(64+\frac{1}{2}\right) \Gamma\left(-8+64+\frac{1}{2}\right)} = \frac{\Gamma\left(\frac{17}{2}, \, 0\right) \Gamma(57, \, 0) \, \Gamma(65, \, 0) \, \sqrt{\pi}}{2 \, \Gamma(8, \, 0) \, \Gamma\left(\frac{113}{2}, \, 0\right) \Gamma\left(\frac{129}{2}, \, 0\right)}$$

$$\frac{\sqrt{\pi} \left(\Gamma\left(8+\frac{1}{2}\right) \Gamma(64+1) \Gamma(-8+64+1)\right)}{2 \Gamma(8) \Gamma\left(64+\frac{1}{2}\right) \Gamma\left(-8+64+\frac{1}{2}\right)} = \frac{(1) \frac{15}{2} (1) \frac{15}{2} (1) \frac{10}{64} \sqrt{\pi}}{2 (1) \frac{111}{2} (1) \frac{127}{2}}$$

Series representations

$$\frac{\sqrt{\pi} \left(\Gamma\left(8+\frac{1}{2}\right) \Gamma(64+1) \Gamma(-8+64+1)\right)}{2 \Gamma(8) \Gamma\left(64+\frac{1}{2}\right) \Gamma\left(-8+64+\frac{1}{2}\right)} = \frac{\exp\left(i \pi \left\lfloor \frac{\arg(\pi-x)}{2\pi} \right\rfloor\right) \Gamma\left(\frac{17}{2}\right) \Gamma(57) \Gamma(65) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k} (\pi-x)^{k} x^{-k} \left(-\frac{1}{2}\right)_{k}}{k!}}{2 \Gamma(8) \Gamma\left(\frac{113}{2}\right) \Gamma\left(\frac{129}{2}\right)}$$
for $(x \in \mathbb{R} \text{ and } x < 0)$

$$\frac{\sqrt{\pi} \left(\Gamma\left(8+\frac{1}{2}\right) \Gamma(64+1) \Gamma(-8+64+1)\right)}{2 \Gamma(8) \Gamma\left(64+\frac{1}{2}\right) \Gamma\left(-8+64+\frac{1}{2}\right)} = \frac{1}{2 \Gamma(8) \Gamma\left(\frac{113}{2}\right) \Gamma\left(\frac{129}{2}\right)} \Gamma\left(\frac{17}{2}\right) \Gamma(57) \Gamma(65)$$
$$\left(\frac{1}{z_0}\right)^{1/2 \lfloor \arg(\pi-z_0)/(2\pi) \rfloor} z_0^{1/2 (1+\lfloor \arg(\pi-z_0)/(2\pi) \rfloor)} \sum_{k=0}^{\infty} \frac{(-1)^k \left(-\frac{1}{2}\right)_k (\pi-z_0)^k z_0^{-k}}{k!}$$

$$\begin{split} \frac{\sqrt{\pi} \left(\Gamma\left(8+\frac{1}{2}\right) \Gamma(64+1) \Gamma(-8+64+1)\right)}{2 \,\Gamma(8) \,\Gamma\left(64+\frac{1}{2}\right) \Gamma\left(-8+64+\frac{1}{2}\right)} &= \\ \left(\sqrt{-1+\pi} \,\sum_{k_1=0}^{\infty} \sum_{k_2=0}^{\infty} \sum_{k_3=0}^{\infty} \sum_{k_4=0}^{\infty} \frac{1}{k_2! \,k_3! \,k_4!} \,(-1+\pi)^{-k_1} \left(\frac{1}{2} \atop k_1\right) \left(\frac{17}{2} - z_0\right)^{k_2} \right. \\ \left. \left(57 - z_0\right)^{k_3} \,(65 - z_0)^{k_4} \,\Gamma^{(k_2)}(z_0) \,\Gamma^{(k_3)}(z_0) \,\Gamma^{(k_4)}(z_0)\right) \right| \\ \left. \left(2 \left(\sum_{k=0}^{\infty} \frac{(8-z_0)^k \,\Gamma^{(k)}(z_0)}{k!}\right) \left(\sum_{k=0}^{\infty} \frac{\left(\frac{113}{2} - z_0\right)^k \,\Gamma^{(k)}(z_0)}{k!}\right) \sum_{k=0}^{\infty} \frac{\left(\frac{129}{2} - z_0\right)^k \,\Gamma^{(k)}(z_0)}{k!}\right) \right) \\ \text{for } (z_0 \notin \mathbb{Z} \text{ or } z_0 > 0) \end{split}$$

Integral representations

$$\frac{\sqrt{\pi} \left(\Gamma \left(8 + \frac{1}{2} \right) \Gamma (64+1) \Gamma (-8+64+1) \right)}{2 \Gamma (8) \Gamma \left(64 + \frac{1}{2} \right) \Gamma \left(-8+64+\frac{1}{2} \right)} = \\ \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \log^{15/2} \left(\frac{1}{t_{1}} \right) \log^{56} \left(\frac{1}{t_{2}} \right) \log^{64} \left(\frac{1}{t_{3}} \right) dt_{3} dt_{2} dt_{1}$$

$$\frac{\sqrt{\pi} \left(\Gamma\left(8+\frac{1}{2}\right) \Gamma(64+1) \Gamma(-8+64+1)\right)}{2 \Gamma(8) \Gamma\left(64+\frac{1}{2}\right) \Gamma\left(-8+64+\frac{1}{2}\right)} = \frac{1}{2} \exp\left(\int_{0}^{1} \frac{-3-3 \sqrt{x} + 2 x^{8} + 2 x^{113/2} + 2 x^{129/2}}{2 \left(1+\sqrt{x}\right) \log(x)} dx\right) \sqrt{\pi}$$

$$\begin{aligned} \frac{\sqrt{\pi} \left(\Gamma\left(8+\frac{1}{2}\right) \Gamma(64+1) \Gamma(-8+64+1)\right)}{2 \,\Gamma(8) \,\Gamma\left(64+\frac{1}{2}\right) \Gamma\left(-8+64+\frac{1}{2}\right)} &= \frac{1}{2} \exp\left(-\frac{3 \,\gamma}{2} + \int_{0}^{1} \frac{1}{\log(x) - x \log(x)} \left(x^{8} - x^{17/2} + x^{113/2} - x^{57} + x^{129/2} - x^{65} - \log(x^{8}) + \log(x^{17/2}) - \log(x^{113/2}) + \log(x^{57}) - \log(x^{129/2}) + \log(x^{65})\right) dx\right) \sqrt{\pi} \end{aligned}$$

log(x) is the natural logarithm

 γ is the Euler-Mascheroni constant

We obtain also:

 $(\operatorname{sqrt}(\pi) \Gamma(8 + 1/2) \Gamma(64 + 1) \Gamma(-8 + 64 + 1))/(2 \Gamma(8) \Gamma(64 + 1/2) \Gamma(-8 + 64 + 1/2)) - 29 - \Phi$

Input

$$\frac{\sqrt{\pi} \ \Gamma \Big(8+\frac{1}{2}\Big) \, \Gamma (64+1) \, \Gamma (-8+64+1)}{2 \, \Gamma (8) \, \Gamma \Big(64+\frac{1}{2}\Big) \, \Gamma \Big(-8+64+\frac{1}{2}\Big)} - 29 - \Phi$$

 $\Gamma({\mathfrak X}) \text{ is the gamma function} \\ \Phi \text{ is the golden ratio conjugate}$

Exact result

 $\begin{array}{l}10\,844\,995\,701\,282\,669\,511\,795\,784\,919\,993\,454\,193\,465\,331\,877\,908\,433\,697\,937\,\overset{}{\cdot}.\\ 436\,169\,933\,/\\ 90\,861\,297\,665\,263\,806\,397\,852\,504\,259\,184\,867\,012\,180\,701\,150\,408\,708\,366\,\overset{}{\cdot}.\\ 012\,722\,575\,-\,\Phi\end{array}$

Exact form

 $\begin{array}{l}10\,935\,856\,998\,947\,933\,318\,193\,637\,424\,252\,639\,060\,477\,512\,579\,058\,842\,406\,303\,\%\\ 448\,892\,508\,/\\ 90\,861\,297\,665\,263\,806\,397\,852\,504\,259\,184\,867\,012\,180\,701\,150\,408\,708\,366\,\%\\ 012\,722\,575\,-\phi\end{array}$

 ϕ is the golden ratio

Decimal approximation

118.73966813472199741670366387411270798576213980403889948189416314

•••

118.73966813.... result very near to the value of the following soliton mass, deriving from:

The total energy or the soliton mass for a single soliton becomes.

$$E = \int dx 2U(\phi) = \int dx \left(\frac{\lambda}{2}(\phi^2 - v^2)^2\right) = \mp \frac{2\lambda v}{\sqrt{2}m} \int_0^{\pm v} d\phi \left(\phi^2 - v^2\right)$$
$$= \mp \frac{2\lambda v}{\sqrt{2}m} \left(\mp \frac{2v^3}{3}\right) = \frac{2\sqrt{2}m^3}{3\lambda}$$

(2*sqrt2*125.35^3)/(3*125.35^2)

Input interpretation

 $\frac{2\sqrt{2} \times 125.35^3}{3 \times 125.35^2}$

Result

118.18111336231164291152778771979043609913891305233362731513120343 ... 118.18111336.....

The study of this function provides the following representations:

Alternate form

 $\begin{array}{l}(10\,844\,995\,701\,282\,669\,511\,795\,784\,919\,993\,454\,193\,465\,331\,877\,908\,433\,697\,937\,\overset{}{\cdot}\\436\,169\,933-\\90\,861\,297\,665\,263\,806\,397\,852\,504\,259\,184\,867\,012\,180\,701\,150\,408\,708\,366\,\overset{}{\cdot}\\012\,722\,575\,\Phi)/\\90\,861\,297\,665\,263\,806\,397\,852\,504\,259\,184\,867\,012\,180\,701\,150\,408\,708\,366\,012\,\overset{}{\cdot}\\722\,575\end{array}$

From:

$$\left(a^{2} (a + 1)^{2} \left((a - b - 1) (a + b + 2) \left((a - b - 2) (a + b + 1) \log(a^{2} + x^{2}) - (a - b) (a + b + 3) \log((a + 1)^{2} + x^{2})\right) + (2 a + 1) x^{2}\right)\right) / \left(2 (2 a + 1) (b + 1)^{2} (b + 2)^{2}\right) + \text{constant}$$

 $(a^{2} (a + 1)^{2} ((a - b - 1) (a + b + 2) ((a - b - 2) (a + b + 1) \log(a^{2} + 1) - (a - b) (a + b + 3) \log((a + 1)^{2} + 1)) + (2 a + 1)))/(2 (2 a + 1) (b + 1)^{2} (b + 2)^{2}) = 148.357702$

Input interpretation

$$\left(a^{2} (a + 1)^{2} \left((a - b - 1) (a + b + 2) \left((a - b - 2) (a + b + 1) \log(a^{2} + 1) - (a - b) (a + b + 3) \log((a + 1)^{2} + 1)\right) + (2 a + 1)\right)\right) / (2 (2 a + 1) (b + 1)^{2} (b + 2)^{2}) = 148.357702$$

log(x) is the natural logarithm

Implicit plot

Solutions for the variable b:

```
b \approx 0.5 \left( \sqrt{9 - (2(500\,000\,a^6\log((a+1)^2 + 1) + 2\,000\,000\,a^5\log((a+1)^2 + 1) + 2\,000\,000\,a^6\log((a+1)^2 + 1) + 1)} \right)
                             2000000a^4 \log((a+1)^2+1) +
                             1000000a^{2}\log(a^{2}+1) - 500000a^{2}\log((a+1)^{2}+1) -
                             500\,000\,a^6\log(a^2+1) - 1\,000\,000\,a^5\log(a^2+1) +
                             500\,000\,a^4\log(a^2+1)+2\,000\,000\,a^3\log(a^2+1)-
                             \sqrt{((-500\,000\,a^6\log((a+1)^2+1)-2\,000\,000\,a^5))}
                                              \log((a+1)^2+1) - 2000000a^4\log(a+1))
                                                (a + 1)^{2} + 1) - 1000000a^{2}\log(a^{2} + 1) +
                                           500\,000\,a^2\log((a+1)^2+1)+500\,000
                                              a^{6} \log(a^{2} + 1) + 1000000 a^{5} \log(a^{2} + 1) -
                                           500\,000\,a^4\log(a^2+1) - 2\,000\,000\,a^3\log(a^2+1)
                                                a^{2} + 1 + 593 430 808 a + 296 715 404 )^{2} -
                                    4(-250\,000\,a^4\log((a+1)^2+1)-500\,000
                                             a^{3} \log((a + 1)^{2} + 1) + 250\,000\,a^{2} \log(a^{2} + 1) -
                                            250\,000\,a^2\log((a+1)^2+1)+
                                           250\,000\,a^4\log(a^2+1)+500\,000\,a^3
                                              log(a^{2} + 1) - 148357702a - 74178851)
                                       (-250\,000\,a^8\log((a+1)^2+1)) -
                                           1500000a^7 \log((a+1)^2+1) -
                                           2500\,000\,a^6\log((a+1)^2+1)+500\,000\,a^5+
                                           1250000a^{4} + 2750000a^{4}\log((a+1)^{2}+1) +
                                           1000000a^{3} + 1500000a^{3}\log((a+1)^{2} + 1) +
                                           250\,000\,a^2 + 1\,000\,000\,a^2\log(a^2 + 1) +
                                           250\,000\,a^8\log(a^2+1)+500\,000\,a^7
                                              \log(a^2 + 1) - 1\,000\,000\,a^6\log(a^2 + 1) -
                                           2500\,000\,a^5\log(a^2+1) - 250\,000\,a^4
                                              log(a^{2} + 1) + 2000000a^{3}log(a^{2} + 1) -
                                           593 430 808 a - 296 715 404)) -
                             593430808a - 296715404))/
                   (-250\,000\,a^4\log((a+1)^2+1)-
                        500 000
                          a^3
                          log((a + 1)^2 + 1) +
                        250\,000\,a^2\log(a^2+1) -
                        250\,000\,a^2
                          log((a + 1)^2 + 1) +
                        250\,000\,a^4\log(a^2+1)+
                        500\,000\,a^3\log(a^2+1) -
                        148 357 702 a –
                        74178851)) - 3)
```

```
2000000a^4 \log((a+1)^2+1) +
                         1000000a^{2}\log(a^{2}+1) - 500000a^{2}\log((a+1)^{2}+1) -
                         500\,000\,a^6\log(a^2+1) - 1\,000\,000\,a^5\log(a^2+1) +
                         500\,000\,a^4\log(a^2+1)+2\,000\,000\,a^3\log(a^2+1)+
                          \sqrt{((-500\,000\,a^6\log((a+1)^2+1)-2\,000\,000\,a^5))}
                                        \log((a+1)^2+1) - 2\,000\,000\,a^4\log(a+1)^2)
                                           (a + 1)^{2} + 1) - 1000000a^{2}\log(a^{2} + 1) +
                                      500\,000\,a^2\log((a+1)^2+1)+500\,000
                                        a^{6} \log(a^{2} + 1) + 1000000 a^{5} \log(a^{2} + 1) -
                                      500\,000\,a^4\log(a^2+1) - 2\,000\,000\,a^3\log(a^2+1)
                                          a^{2} + 1 + 593 430 808 a + 296 715 404 )^{2} -
                                4(-250\,000\,a^4\log((a+1)^2+1)-500\,000
                                        a^{3} \log((a+1)^{2}+1) + 250\,000\,a^{2} \log(a^{2}+1) -
                                      250\,000\,a^2\log((a+1)^2+1)+
                                      250\,000\,a^4\log(a^2+1)+500\,000\,a^3
                                        log(a^2 + 1) - 148357702a - 74178851)
                                  (-250\,000\,a^8\log((a+1)^2+1)-
                                      1500000a^7 \log((a+1)^2+1) -
                                      2500000a^{6}\log((a+1)^{2}+1)+500000a^{5}+
                                      1250000a^{4} + 2750000a^{4}\log((a+1)^{2}+1) +
                                      1000000a^{3} + 1500000a^{3}\log((a+1)^{2} + 1) +
                                      250\,000\,a^2 + 1\,000\,000\,a^2\log(a^2 + 1) +
                                      250\,000\,a^8\log(a^2+1)+500\,000\,a^7
                                        \log(a^2 + 1) - 1000000a^6\log(a^2 + 1) -
                                      2500\,000\,a^5\log(a^2+1) - 250\,000\,a^4
                                         \log(a^2 + 1) + 2000000a^3\log(a^2 + 1) -
                                      593430808a - 296715404)) -
                         593430808a - 296715404))/
                 (-250\,000\,a^4\log((a+1)^2+1)-
                     500 000
                       a^3
                       \log((a+1)^2+1)+
                     250\,000\,a^2\log(a^2+1) -
                     250\,000\,a^2
                       \log((a+1)^2+1)+
                     250\,000\,a^4\log(a^2+1)+
                     500\,000\,a^3\log(a^2+1) -
                     148 357 702 a –
                     74178851)) - 3)
```

for b = 10, we obtain :

 $(a^2 (a+1)^2 ((a-10-1)(a+10+2)((a-10-2) (a+10+1) \log(a^2+1)-(a-5) (a+5+3) \log((a+1)^2+1)) + (2a+1)))/(2 (2a+1) (5+1)^2 (5+2)^2) = 148.357702$

Input interpretation

$$\left(a^{2} (a + 1)^{2} \left((a - 10 - 1) (a + 10 + 2) \left((a - 10 - 2) (a + 10 + 1) \log(a^{2} + 1) - (a - 5) (a + 5 + 3) \log((a + 1)^{2} + 1)\right) + (2 a + 1)\right)\right) / (2 (2 a + 1) (5 + 1)^{2} (5 + 2)^{2}) = 148.357702$$

log(x) is the natural logarithm

Result

$$\frac{1}{3528(2a+1)}a^{2}(a+1)^{2} ((a-11)(a+12)(a-12)(a+11)\log(a^{2}+1) - (a-5)(a+8)\log((a+1)^{2}+1)) + 2a+1) = 148.358$$

Plot

Solutions

a = -21.5994

a = -12.1356

a = -0.499842

a = 2.93925

a = 10.9561

Numerical solution

 $a \approx 2.93924957302642...$

For a = 2.93925, we obtain :

 $\begin{array}{l}(2.93925^{2} (2.93925+1)^{2} ((2.93925-10-1)(2.93925+10+2)((2.93925-10-2)\\(2.93925+10+1) \log (2.93925^{2}+1)-(2.93925-5) (2.93925+5+3)\\\log ((2.93925+1)^{2}+1)) + (2^{*}2.93925+1)))/(2 \ (2^{*}2.93925+1)36^{*}49)\end{array}$

Input interpretation

 $\begin{array}{l} \left(2.93925^2 \left(2.93925+1\right)^2 \left(\left(2.93925-10-1\right) \left(2.93925+10+2\right)\right. \\ \left. \left(\left(2.93925-10-2\right) \left(2.93925+10+1\right) \log \left(2.93925^2+1\right)-\left(2.93925-5\right) \left(2.93925+5+3\right) \log \left(\left(2.93925+1\right)^2+1\right)\right) + \left(2\times 2.93925+1\right)\right)\right) / \left(2 \left(2\times 2.93925+1\right) \times 36 \times 49\right) \end{array}$

log(x) is the natural logarithm

Result

148.358... 148.358.... The study of this function provides the following representations:

Alternative representations

$$\begin{array}{l} \left(2.93925^{2} \left(\left(2.93925+1\right)^{2} \left(\left(2.93925-10-1\right) \left(2.93925+10+2\right)\right. \\ \left. \left(\left(2.93925-10-2\right) \left(2.93925+10+1\right) \log \left(2.93925^{2}+1\right)-2\right. \\ \left. \left(2.93925-5\right) \left(2.93925+5+3\right) \log \left(\left(2.93925+1\right)^{2}+1\right)\right) + \left(2\times2.93925+1\right)\right) \right) \right) \right) \left(2 \left(2\times2.93925+1\right) 36 \times 49\right) = \\ \frac{1}{24267.3} \left(6.8785-120.422 \left(-126.3 \log (a) \log _{a} \left(1+2.93925^{2}\right)+22.5431 \log (a) \log _{a} \left(1+3.93925^{2}\right)\right)\right) 2.93925^{2} \times 3.93925^{2} \end{array} \right)$$

$$\begin{array}{l} \left(2.93925^2 \left(\left(2.93925+1\right)^2 \left(\left(2.93925-10-1\right) \left(2.93925+10+2\right)\right. \\ \left. \left(\left(2.93925-10-2\right) \left(2.93925+10+1\right) \log \left(2.93925^2+1\right)-2\right. \\ \left. \left(2.93925-5\right) \left(2.93925+5+3\right) \log \left(\left(2.93925+1\right)^2+1\right)\right) + \left(2\times2.93925+1\right)\right) \right) \right) \right) \left(2 \left(2\times2.93925+1\right) 36\times49\right) = \frac{1}{24267.3} \\ \left(6.8785-120.422 \left(-126.3 \log \left(1+2.93925^2\right)+22.5431 \log \left(1+3.93925^2\right)\right)\right) \\ \left. 2.93925^2 \times \\ \left. 3.93925^2 \right) \end{array}$$

$$\begin{array}{l} \left(2.93925^2 \left(\left(2.93925+1\right)^2 \left(\left(2.93925-10-1\right) \left(2.93925+10+2\right)\right. \\ \left. \left(\left(2.93925-10-2\right) \left(2.93925+10+1\right) \log \left(2.93925^2+1\right)-2 \left(2.93925-5\right) \left(2.93925+5+3\right) \log \left(\left(2.93925+1\right)^2+1\right)\right)+2 \left(2\times2.93925+1\right)\right) \right) \right) \right) \left(2 \left(2\times2.93925+1\right) 36 \times 49\right) = \\ \frac{1}{24267.3} \left(6.8785-120.422 \left(126.3 \operatorname{Li}_1 \left(-2.93925^2\right)-22.5431 \operatorname{Li}_1 \left(-3.93925^2\right)\right)\right) \\ \left. 2.93925^2 \times 3.93925^2 \right) \end{array}$$

Series representations

$$\begin{split} & \left(2.93925^2 \left((2.93925+1)^2 \left((2.93925-10-1) (2.93925+10+2)\right) \\ & \left((2.93925-10-2) (2.93925+10+1) \log (2.93925^2+1) - \\ & \left(2.93925-5\right) (2.93925+5+3) \log ((2.93925+1)^2+1)\right) + \\ & \left(2\times 2.93925+1\right) \right) \right) / (2 (2\times 2.93925+1) 36 \times 49) = \\ & 0.0379989+84.0206 \log (8.63919)-14.9967 \\ & \log (15.5177) + \\ & \sum_{k=1}^{\infty} \frac{(-1)^k \left(14.9967 \ e^{-2.74198 \ k} - 84.0206 \ e^{-2.15631 \ k}\right)}{k} \end{split}$$

$$\begin{array}{l} \left(2.93925^{2} \left((2.93925+1)^{2} \left((2.93925-10-1) (2.93925+10+2)\right) \\ \left((2.93925-10-2) (2.93925+10+1) \log (2.93925^{2}+1)-(2.93925-5) (2.93925+5+3) \log ((2.93925+1)^{2}+1)\right) + \\ (2.93925-5) (2.93925+5+3) \log ((2.93925+1)^{2}+1)\right) + \\ (2\times 2.93925+1) \left(2(2\times 2.93925+1) 36\times 49\right) = 0.0379989 + \\ 168.041 \\ i \\ \frac{\pi}{\left\lfloor \frac{\arg (9.63919-x)}{2\pi} \right\rfloor - \\ 29.9933 i \pi \left\lfloor \frac{\arg (16.5177-x)}{2\pi} \right\rfloor + 69.0239 \\ \log(x) + \\ \sum_{k=1}^{\infty} \frac{(-1)^{k} \left(-84.0206 (9.63919-x)^{k}+14.9967 (16.5177-x)^{k}\right) x^{-k}}{k} \\ \end{array} \right] \text{ for } x < 0$$

$$\begin{split} & \left(2.93925^{2} \left((2.93925+1)^{2} \left((2.93925-10-1) (2.93925+10+2)\right) \\ & \left((2.93925-10-2) (2.93925+10+1) \log (2.93925^{2}+1)-(2.93925-5) (2.93925+5+3) \log ((2.93925+1)^{2}+1)\right) + \\ & (2.93925-5) (2.93925+5+3) \log ((2.93925+1)^{2}+1)\right) + \\ & (2\times 2.93925+1) \right) \right) / (2 (2\times 2.93925+1) 36 \times 49) = \\ & 0.0379989+84.0206 \left\lfloor \frac{\arg(9.63919-z_{0})}{2\pi} \right\rfloor \\ & \log \left(\frac{1}{z_{0}}\right) - \\ & 14.9967 \left\lfloor \frac{\arg(9.63919-z_{0})}{2\pi} \right\rfloor \\ & \log \left(\frac{1}{z_{0}}\right) + 69.0239 \\ & \log (z_{0}) + \\ & 84.0206 \left\lfloor \frac{\arg(9.63919-z_{0})}{2\pi} \right\rfloor \\ & \log (z_{0}) - \\ & 14.9967 \left\lfloor \frac{\arg(16.5177-z_{0})}{2\pi} \right\rfloor \\ & \log (z_{0}) - \\ & 14.9967 \left\lfloor \frac{\arg(16.5177-z_{0})}{2\pi} \right\rfloor \\ & \log (z_{0}) + \\ & \sum_{k=1}^{\infty} \frac{(-1)^{k} \left(-84.0206 \left(9.63919-z_{0}\right)^{k} + 14.9967 \left(16.5177-z_{0}\right)^{k}\right) z_{0}^{-k}}{k} \end{split}$$

Integral representation

$$\begin{split} & \left(2.93925^2 \left((2.93925+1)^2 \left((2.93925-10-1) \left(2.93925+10+2\right)\right. \\ & \left((2.93925-10-2) \left(2.93925+10+1\right) \log \left(2.93925^2+1\right)- \right. \\ & \left(2.93925-5\right) \left(2.93925+5+3\right) \log \left((2.93925+1)^2+1\right)\right) + \\ & \left(2\times2.93925+1\right) \left(2\left(2\times2.93925+1\right) 36\times49\right) = 0.0379989 + \right. \\ & \left. \int_{-i\,\infty+\gamma}^{i\,\infty+\gamma} - \frac{7.49834\,e^{-4.89829\,s} \left(e^{2.15631\,s}-5.60261\,e^{2.74198\,s}\right) \Gamma(-s)^2\,\Gamma(1+s)}{i\,\pi\,\Gamma(1-s)} \\ & ds \;\; \text{for}\; -1<\gamma<0 \end{split}$$
Now, for a = 64 and b = 128,

$$\frac{\sqrt{\pi}}{2} \times \frac{\Gamma\left(a + \frac{1}{2}\right)\Gamma(b+1)\Gamma(b-a+1)}{\Gamma(a)\Gamma\left(b + \frac{1}{2}\right)\Gamma\left(b-a + \frac{1}{2}\right)}$$

we obtain:

 $(\operatorname{sqrt}(\pi) \Gamma(64 + 1/2) \Gamma(128 + 1) \Gamma(-64 + 128 + 1))/(2 \Gamma(64) \Gamma(128 + 1/2) \Gamma(-64 + 128 + 1/2))$

Input

$$\frac{\sqrt{\pi} \Gamma\left(64 + \frac{1}{2}\right) \Gamma(128 + 1) \Gamma(-64 + 128 + 1)}{2 \Gamma(64) \Gamma\left(128 + \frac{1}{2}\right) \Gamma\left(-64 + 128 + \frac{1}{2}\right)}$$

 $\Gamma(x)$ is the gamma function

Exact result

1 852 673 427 797 059 126 777 135 760 139 006 525 652 319 754 650 249 024 631 321 ·. 344 126 610 074 238 976 / 2 884 329 411 724 603 169 044 874 178 931 143 443 870 105 850 987 581 016 304 ·. 218 283 632 259 375 395

Decimal approximation

642.32379986352025789577314705862646447370857549025692089819461318

642.32379986....

The study of this function provides the following representations:

$$\frac{\sqrt{\pi} \left(\Gamma \left(64 + \frac{1}{2} \right) \Gamma (128+1) \Gamma (-64+128+1) \right)}{2 \Gamma (64) \Gamma \left(128 + \frac{1}{2} \right) \Gamma \left(-64+128 + \frac{1}{2} \right)} = \frac{\frac{127}{2}! \times 64! \times 128! \sqrt{\pi}}{2 \times 63! \times \frac{127}{2}! \times \frac{255}{2}!}$$

$$\frac{\sqrt{\pi} \left(\Gamma \left(64 + \frac{1}{2} \right) \Gamma (128+1) \Gamma (-64+128+1) \right)}{2 \Gamma (64) \Gamma \left(128 + \frac{1}{2} \right) \Gamma \left(-64+128 + \frac{1}{2} \right)} = \frac{\Gamma \left(\frac{129}{2}, 0 \right) \Gamma (65, 0) \Gamma (129, 0) \sqrt{\pi}}{2 \Gamma (64, 0) \Gamma \left(\frac{129}{2}, 0 \right) \Gamma \left(\frac{257}{2}, 0 \right)}$$

$$\frac{\sqrt{\pi} \left(\Gamma\left(64+\frac{1}{2}\right) \Gamma(128+1) \Gamma(-64+128+1)\right)}{2 \Gamma(64) \Gamma\left(128+\frac{1}{2}\right) \Gamma\left(-64+128+\frac{1}{2}\right)} = \frac{(1) \frac{127}{2} (1)_{64} (1)_{128} \sqrt{\pi}}{2 (1)_{63} (1) \frac{127}{2} (1) \frac{255}{2}}$$

$$\frac{\sqrt{\pi} \left(\Gamma\left(64+\frac{1}{2}\right) \Gamma(128+1) \Gamma(-64+128+1)\right)}{2 \Gamma(64) \Gamma\left(128+\frac{1}{2}\right) \Gamma\left(-64+128+\frac{1}{2}\right)} = \frac{\exp\left(i \pi \left\lfloor \frac{\arg(\pi-x)}{2\pi} \right\rfloor\right) \Gamma(65) \Gamma(129) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^k (\pi-x)^k x^{-k} \left(-\frac{1}{2}\right)_k}{k!}}{2 \Gamma(64) \Gamma\left(\frac{257}{2}\right)}$$
for $(x \in \mathbb{R} \text{ and } x < 0)$

$$\begin{split} \frac{\sqrt{\pi} \left(\Gamma \left(64 + \frac{1}{2} \right) \Gamma (128+1) \Gamma (-64+128+1) \right)}{2 \, \Gamma (64) \, \Gamma \left(128 + \frac{1}{2} \right) \Gamma \left(-64+128 + \frac{1}{2} \right)} = \\ \frac{\Gamma (65) \, \Gamma (129) \left(\frac{1}{z_0} \right)^{1/2 \, \lfloor \arg(\pi-z_0)/(2\pi) \rfloor} \, z_0^{1/2 \, (1+\lfloor \arg(\pi-z_0)/(2\pi) \rfloor)} \, \sum_{k=0}^{\infty} \frac{(-1)^k \left(-\frac{1}{2} \right)_k (\pi-z_0)^k \, z_0^{-k}}{k!}}{2 \, \Gamma (64) \, \Gamma \left(\frac{257}{2} \right)} \end{split}$$

$$\begin{split} \frac{\sqrt{\pi} \left(\Gamma\left(64+\frac{1}{2}\right)\Gamma(128+1) \Gamma(-64+128+1)\right)}{2 \,\Gamma(64) \,\Gamma\left(128+\frac{1}{2}\right) \Gamma\left(-64+128+\frac{1}{2}\right)} = \\ \frac{\sqrt{-1+\pi} \sum_{k_1=0}^{\infty} \sum_{k_2=0}^{\infty} \sum_{k_3=0}^{\infty} \frac{\left(-1+\pi\right)^{-k_1} \left(\frac{1}{2}\right) (65-z_0)^{k_2} (129-z_0)^{k_3} \Gamma^{(k_2)}(z_0) \Gamma^{(k_3)}(z_0)}{k_2! \,k_3!}}{2 \left(\sum_{k=0}^{\infty} \frac{(64-z_0)^k \Gamma^{(k)}(z_0)}{k!}\right) \sum_{k=0}^{\infty} \frac{\left(\frac{257}{2}-z_0\right)^k \Gamma^{(k)}(z_0)}{k!}}{k!} \end{split}$$
for $(z_0 \notin \mathbb{Z} \text{ or } z_0 > 0)$

Integral representations

$$\frac{\sqrt{\pi} \left(\Gamma\left(64+\frac{1}{2}\right) \Gamma(128+1) \Gamma(-64+128+1)\right)}{2 \Gamma(64) \Gamma\left(128+\frac{1}{2}\right) \Gamma\left(-64+128+\frac{1}{2}\right)} = \int_{0}^{1} \int_{0}^{1} \log^{64}\left(\frac{1}{t_{1}}\right) \log^{128}\left(\frac{1}{t_{2}}\right) dt_{2} dt_{1}$$

$$\frac{\sqrt{\pi} \left(\Gamma\left(64+\frac{1}{2}\right) \Gamma(128+1) \Gamma(-64+128+1)\right)}{2 \Gamma(64) \Gamma\left(128+\frac{1}{2}\right) \Gamma\left(-64+128+\frac{1}{2}\right)} = \frac{1}{2} \exp\left(\int_{0}^{1} \frac{-3-3 \sqrt{x}+2 x^{64}+2 x^{129/2}+2 x^{257/2}}{2 \left(1+\sqrt{x}\right) \log(x)} dx\right) \sqrt{\pi}$$

$$\frac{\sqrt{\pi} \left(\Gamma\left(64+\frac{1}{2}\right)\Gamma(128+1)\Gamma(-64+128+1)\right)}{2\,\Gamma(64)\,\Gamma\left(128+\frac{1}{2}\right)\Gamma\left(-64+128+\frac{1}{2}\right)} = \frac{1}{2}\exp\left(-\frac{3\,\gamma}{2} + \int_{0}^{1}\frac{x^{64}-x^{65}+x^{257/2}-x^{129}-\log(x^{64})+\log(x^{65})-\log(x^{257/2})+\log(x^{129})}{\log(x)-x\log(x)} - \frac{1}{2}\exp\left(-\frac{3\,\gamma}{2}\right) + \frac{1}{2}\exp\left(-\frac{3\,\gamma}{2}\right)$$

log(x) is the natural logarithm

 γ is the Euler-Mascheroni constant

From:

$$\left(a^{2} (a + 1)^{2} \left((a - b - 1) (a + b + 2) \left((a - b - 2) (a + b + 1) \log(a^{2} + x^{2}) - (a - b) (a + b + 3) \log((a + 1)^{2} + x^{2})\right) + (2 a + 1) x^{2}\right)\right) / \left(2 (2 a + 1) (b + 1)^{2} (b + 2)^{2}\right) + \text{constant}$$

We consider:

 $(a^{2} (a + 1)^{2} ((a - b - 1) (a + b + 2) ((a - b - 2) (a + b + 1) \log(a^{2} + 1) - (a - b) (a + b + 3) \log((a + 1)^{2} + 1)) + (2 a + 1)))/(2 (2 a + 1) (b + 1)^{2} (b + 2)^{2}) = 642.323799$

Input interpretation

$$\left(a^{2} (a + 1)^{2} \left((a - b - 1) (a + b + 2) \left((a - b - 2) (a + b + 1) \log(a^{2} + 1) - (a - b) (a + b + 3) \log((a + 1)^{2} + 1)\right) + (2 a + 1)\right)\right) / (2 (2 a + 1) (b + 1)^{2} (b + 2)^{2}) = 642.323799$$

log(x) is the natural logarithm

Implicit plot

Solutions for the variable b

```
4000000a^4 \log((a+1)^2+1) +
                           2000000a^{2}\log(a^{2}+1) - 1000000a^{2}\log((a+1)^{2}+1) -
                            1000000a^{6}\log(a^{2}+1) - 2000000a^{5}\log(a^{2}+1) +
                            1000000a^4 \log(a^2 + 1) + 4000000a^3 \log(a^2 + 1) -
                            \sqrt{((-1000000 a^6 \log((a+1)^2 + 1) - 4000000 a^5 \log((a+1)^2)))}
                                          (a + 1)^{2} + 1) - 4000000 a^{4} \log((a + 1)^{2} +
                                           1) - 2000000 a^2 \log(a^2 + 1) + 1000000 a^2
                                           log((a + 1)^{2} + 1) + 1000000 a^{6} log(a^{2} +
                                           1) + 2000000 a^5 \log(a^2 + 1) - 1000000 a^4
                                           \log(a^2 + 1) - 4000000a^3\log(a^2 + 1) +
                                        5138590392a + 2569295196)^2 -
                                  4(-500\,000\,a^4\log((a+1)^2+1)-1\,000\,000\,a^3
                                          log((a + 1)^{2} + 1) + 500\,000\,a^{2}\,log(a^{2} + 1) -
                                        500\,000\,a^2\log((a+1)^2+1)+500\,000
                                           a^4 \log(a^2 + 1) + 1\,000\,000\,a^3 \log(a^2 + 1) -
                                        1 284 647 598 a - 642 323 799)
                                    (-500\,000\,a^8\log((a+1)^2+1)-
                                        3000000a^7 \log((a+1)^2 + 1) -
                                        5000000a^{6}\log((a+1)^{2}+1)+1000000a^{5}+
                                        2500000a^4 + 5500000a^4 \log((a+1)^2 + 1) +
                                        2000000a^{3} + 3000000a^{3}\log((a+1)^{2}+1) +
                                        500\,000\,a^2 + 2\,000\,000\,a^2\log(a^2 + 1) +
                                        500\,000\,a^8\log(a^2+1)+1\,000\,000\,a^7
                                           log(a^{2} + 1) - 2000000a^{6}log(a^{2} + 1) -
                                        5000000a^5 \log(a^2 + 1) - 500000a^4
                                           \log(a^2 + 1) + 4000000 a^3 \log(a^2 + 1) -
                                        5138590392a - 2569295196)) -
                           5138590392a - 2569295196))/
                   (-500\,000\,a^4\log((a+1)^2+1)-1\,000\,000\,a^3
                          log((a + 1)^2 + 1) +
                       500\,000\,a^2\log(a^2+1) -
                       500\,000\,a^2\log((a+1)^2+1)+
                       500\,000\,a^4\log(a^2+1)+
                       1000000a^{3}\log(a^{2}+1) -
                       1 284 647 598 a –
                       642323799)) - 3)
```

```
b \approx 0.5 \left( \sqrt{\left(9 - \left(2 \left(1\,000\,000\,a^6\log((a+1)^2 + 1\right) + 4\,000\,000\,a^5\log((a+1)^2 + 1\right) + 4\,000\,000\,a^5\log((a+1)^2 + 1) + 1\right)} \right) \right)
                             4000000a^4 \log((a+1)^2+1) +
                             2000000a^{2}\log(a^{2}+1) - 1000000a^{2}\log((a+1)^{2}+1) -
                             1000000a^{6}\log(a^{2}+1) - 2000000a^{5}\log(a^{2}+1) +
                             1\,000\,000\,a^4\log(a^2+1)+4\,000\,000\,a^3\log(a^2+1)-
                             \sqrt{((-1000000a^6 \log((a+1)^2+1)-4000000a^5 \log((a+1)^2))))}
                                                (a + 1)^{2} + 1) - 4000000 a^{4} \log((a + 1)^{2} +
                                                1) - 2000000 a^2 \log(a^2 + 1) + 1000000 a^2
                                             log((a + 1)^{2} + 1) + 1000000 a^{6} log(a^{2} +
                                                1) + 2000000 a^5 \log(a^2 + 1) - 1000000 a^4
                                             \log(a^2 + 1) - 4000000a^3\log(a^2 + 1) +
                                           5138590392a + 2569295196)^2 - 4
                                      (-500\,000\,a^4\log((a+1)^2+1)-1\,000\,000
                                             a^{3} \log((a+1)^{2}+1) + 500\,000\,a^{2} \log(a^{2}+1) -
                                           500\,000\,a^2\log((a+1)^2+1)+500\,000
                                             a^4 \log(a^2 + 1) + 1\,000\,000\,a^3 \log(a^2 + 1) -
                                           1 284 647 598 a - 642 323 799)
                                      (-500\,000\,a^8\log((a+1)^2+1)-
                                           3000000a^7 \log((a+1)^2+1) -
                                           5000000a^{6}\log((a+1)^{2}+1)+1000000a^{5}+
                                           2500000a^4 + 5500000a^4 \log((a+1)^2 + 1) +
                                           2000000a^{3} + 3000000a^{3}\log((a+1)^{2} + 1) +
                                           500\,000\,a^2 + 2\,000\,000\,a^2\log(a^2 + 1) +
                                           500\,000\,a^8\log(a^2+1)+1\,000\,000\,a^7
                                             log(a^{2} + 1) - 2000000a^{6}log(a^{2} + 1) -
                                           5000000a^5 \log(a^2 + 1) - 500000a^4
                                             \log(a^2 + 1) + 4000000 a^3 \log(a^2 + 1) -
                                           5138590392a - 2569295196)) -
                             5138590392a - 2569295196))/
                   (-500\,000\,a^4\log((a+1)^2+1)-
                        1000000
                          a^3
                          \log((a+1)^2+1) +
                        500\,000\,a^2\log(a^2+1) –
                        500\,000\,a^2
                          \log((a+1)^2+1) +
                        500\,000\,a^4\log(a^2+1)+
                        1000000a^{3}\log(a^{2}+1) -
                        1 284 647 598 a –
                        642323799)) - 3)
```

```
4000000a^4 \log((a+1)^2+1) +
                           2000000a^{2}\log(a^{2}+1) - 1000000a^{2}\log((a+1)^{2}+1) -
                           1\,000\,000\,a^6\log(a^2+1) - 2\,000\,000\,a^5\log(a^2+1) +
                            1000000a^4 \log(a^2 + 1) + 4000000a^3 \log(a^2 + 1) +
                            \sqrt{((-1000000 a^6 \log((a+1)^2 + 1) - 4000000 a^5 \log((a+1)^2)))}
                                           (a + 1)^{2} + 1) - 4000000 a^{4} \log((a + 1)^{2} +
                                           1) - 2000000 a^2 \log(a^2 + 1) + 1000000 a^2
                                           log((a + 1)^{2} + 1) + 1000000 a^{6} log(a^{2} +
                                           1) + 2000000 a^5 \log(a^2 + 1) - 1000000 a^4
                                           \log(a^2 + 1) - 4000000a^3\log(a^2 + 1) +
                                        5\,138\,590\,392\,a + 2\,569\,295\,196)^2 -
                                  4(-500\,000\,a^4\log((a+1)^2+1)-1\,000\,000\,a^3
                                           \log((a + 1)^{2} + 1) + 500\,000\,a^{2}\log(a^{2} + 1) -
                                        500\,000\,a^2\log((a+1)^2+1)+500\,000
                                           a^4 \log(a^2 + 1) + 1\,000\,000\,a^3 \log(a^2 + 1) -
                                        1284647598a - 642323799
                                    (-500\,000\,a^8\log((a+1)^2+1)-
                                        3000000a^7 \log((a+1)^2+1) -
                                        5000000a^{6}\log((a+1)^{2}+1)+1000000a^{5}+
                                        2500000a^4 + 5500000a^4 \log((a+1)^2 + 1) +
                                        2000000a^{3} + 3000000a^{3}\log((a+1)^{2} + 1) +
                                        500\,000\,a^2 + 2\,000\,000\,a^2\log(a^2 + 1) +
                                        500\,000\,a^8\log(a^2+1)+1\,000\,000\,a^7
                                           \log(a^2 + 1) - 2000000a^6\log(a^2 + 1) -
                                        5000000a^5 \log(a^2 + 1) - 500000a^4
                                           \log(a^2 + 1) + 4000000 a^3 \log(a^2 + 1) -
                                        5138590392a - 2569295196)) -
                           5138590392a - 2569295196))/
                   (-500\,000\,a^4\log((a+1)^2+1)-1\,000\,000\,a^3)
                         \log((a+1)^2+1)+
                       500\,000\,a^2\log(a^2+1) -
                       500\,000\,a^2\log((a+1)^2+1)+
                       500\,000\,a^4\log(a^2+1)+
                        1000000a^3 \log(a^2 + 1) -
                        1 284 647 598 a –
                       642323799)) - 3)
```

```
b \approx 0.5 \left( \sqrt{\left(9 - \left(2 \left(1\,000\,000\,a^6\log((a+1)^2 + 1\right) + 4\,000\,000\,a^5\log((a+1)^2 + 1\right) + 4\,000\,000\,a^5\log((a+1)^2 + 1) + 1\right)} \right) \right)
                             4000000a^4 \log((a+1)^2+1) +
                             2000000a^{2}\log(a^{2}+1) - 1000000a^{2}\log((a+1)^{2}+1) -
                             1\,000\,000\,a^6\log(a^2+1) - 2\,000\,000\,a^5\log(a^2+1) +
                             1\,000\,000\,a^4\log(a^2+1) + 4\,000\,000\,a^3\log(a^2+1) +
                             \sqrt{((-1\,000\,000\,a^6\log((a+1)^2+1)-4\,000\,000\,a^5\log(a+1)^2))}
                                                (a + 1)^{2} + 1) - 4000000 a^{4} \log((a + 1)^{2} +
                                                1) - 2000000 a^2 \log(a^2 + 1) + 1000000 a^2
                                              log((a + 1)^{2} + 1) + 1000000 a^{6} log(a^{2} +
                                                1) + 2000000 a^5 \log(a^2 + 1) - 1000000 a^4
                                              \log(a^2 + 1) - 4000000a^3\log(a^2 + 1) +
                                           5138590392a + 2569295196)^2 - 4
                                      (-500\,000\,a^4\log((a+1)^2+1)-1\,000\,000
                                              a^{3} \log((a+1)^{2}+1) + 500\,000\,a^{2} \log(a^{2}+1) -
                                           500\,000\,a^2\log((a+1)^2+1)+500\,000
                                              a^4 \log(a^2 + 1) + 1\,000\,000\,a^3 \log(a^2 + 1) -
                                           1284647598a - 642323799
                                      (-500\,000\,a^8\log((a+1)^2+1)-
                                           3000000a^7 \log((a+1)^2 + 1) -
                                           5000000a^{6}\log((a+1)^{2}+1)+1000000a^{5}+
                                           2500000a^4 + 5500000a^4 \log((a+1)^2 + 1) +
                                           2000000a^{3} + 3000000a^{3}\log((a+1)^{2}+1) +
                                           500\,000\,a^2 + 2\,000\,000\,a^2\log(a^2 + 1) +
                                           500\,000\,a^8\log(a^2+1)+1\,000\,000\,a^7
                                              \log(a^2 + 1) - 2000000a^6\log(a^2 + 1) -
                                           5\,000\,000\,a^5\log(a^2+1) - 500\,000\,a^4
                                              \log(a^2 + 1) + 4000000 a^3 \log(a^2 + 1) -
                                           5138590392a - 2569295196)) -
                             5138590392a - 2569295196))/
                   (-500\,000\,a^4\log((a+1)^2+1)-
                        1000000
                          a^3
                          log((a + 1)^2 + 1) +
                        500\,000\,a^2\log(a^2+1) –
                        500\,000\,a^2
                          \log((a+1)^2+1) +
                        500\,000\,a^4\log(a^2+1)+
                        1000000a^{3}\log(a^{2}+1) -
                        1 284 647 598 a –
                        642323799)) - 3)
```

for b = 40, we obtain :

 $(a^{2} (a + 1)^{2} ((a - 40 - 1) (a + 40 + 2) ((a - 40 - 2) (a + 40 + 1) \log(a^{2} + 1) - (a - 40) (a + 40 + 3) \log((a + 1)^{2} + 1)) + (2 a + 1)))/(2 (2 a + 1) (40 + 1)^{2} (40 + 2)^{2}) = 642.323799$

Input interpretation

$$\left(a^{2} (a + 1)^{2} \left((a - 40 - 1) (a + 40 + 2) \left((a - 40 - 2) (a + 40 + 1) \log(a^{2} + 1) - (a - 40) (a + 40 + 3) \log((a + 1)^{2} + 1)\right) + (2 a + 1)\right)\right) / (2 (2 a + 1) (40 + 1)^{2} (40 + 2)^{2}) = 642.323799$$

log(x) is the natural logarithm

Result

 $\frac{1}{5930568(2a+1)}$ $a^{2}(a+1)^{2}((a-41)(a+42)((a-42)(a+41)\log(a^{2}+1) - (a-40)(a+43)\log((a+1)^{2}+1)) + 2a+1) = 642.324$

Plot

Solutions

a = -40.8018

a = -24.0923

a = 23.0923

a = 39.8018

For a = 39.8018, we obtain :

 $(39.8018^{2} (39.8018+1)^{2} ((39.8018-40-1)(39.8018+40+2)((39.8018-40-2) (39.8018+40+1) \log(39.8018^{+}2+1)-(39.8018-40) (39.8018+40+3) \log((39.8018+1)^{+}2+1)) + (2*39.8018+1)))/(2 (2*39.8018+1)(41)^{2} (42)^{2})$

Input interpretation

 $\begin{array}{l} \left(39.8018^2 \left(39.8018 + 1\right)^2 \left((39.8018 - 40 - 1) \left(39.8018 + 40 + 2\right) \right. \\ \left. \left((39.8018 - 40 - 2) \left(39.8018 + 40 + 1\right) \log \left(39.8018^2 + 1\right) - \left. \left(39.8018 - 40\right) \left(39.8018 + 40 + 3\right) \log \left((39.8018 + 1)^2 + 1\right)\right) + \left. \left(2 \times 39.8018 + 1\right)\right) \right) \right/ \left(2 \left((2 \times 39.8018 + 1) \times 41^2\right) \times 42^2\right) \end{array}$

log(x) is the natural logarithm

Result

642.34667108981606306639984939820214379434090687069925960491078853 ... 642.346671089816.....

The study of this function provides the following representations:

$$\begin{array}{l} \left(39.8018^2 \left((39.8018 + 1)^2 \left((39.8018 - 40 - 1) \left(39.8018 + 40 + 2 \right) \right. \\ \left. \left((39.8018 - 40 - 2) \left(39.8018 + 40 + 1 \right) \log \left(39.8018^2 + 1 \right) - \right. \\ \left. \left(39.8018 - 40 \right) \left(39.8018 + 40 + 3 \right) \log \left((39.8018 + 1)^2 + 1 \right) \right) + \left. \left(2 \times 39.8018 + 1 \right) \right) \right) \right) \right) \right) \left(2 \left((2 \times 39.8018 + 1) 41^2 \right) 42^2 \right) = \\ \frac{1}{161.207 \times 41^2 \times 42^2} \left(80.6036 - 98.0149 \left(-177.619 \log (a) \log_a \left(1 + 39.8018^2 \right) + 16.4113 \log (a) \log_a \left(1 + 40.8018^2 \right) \right) \right) 39.8018^2 \times 40.8018^2 \end{array} \right)$$

$$\begin{array}{l} \left(39.8018^2 \left((39.8018+1)^2 \left((39.8018-40-1) \left(39.8018+40+2\right) \right. \\ \left. \left((39.8018-40-2) \left(39.8018+40+1\right) \log \! \left(39.8018^2+1\right) - \right. \\ \left. \left(39.8018-40\right) \left(39.8018+40+3\right) \right. \\ \left. \log \! \left((39.8018+1)^2+1\right) \right) + \left(2 \times 39.8018+1\right) \right) \right) \right) \right/ \\ \left(2 \left((2 \times 39.8018+1) 41^2\right) 42^2 \right) = \frac{1}{161.207 \times 41^2 \times 42^2} \\ \left(80.6036-98.0149 \left(-177.619 \log_e \left(1+39.8018^2\right)+16.4113 \log_e \left(1+40.8018^2\right) \right) \right) \\ \left(39.8018^2 \times 40.8018^2 \right) = \frac{1}{161.207 \times 41^2 \times 42^2} \\ \left(80.6036-98.0149 \left(-177.619 \log_e \left(1+39.8018^2\right)+16.4113 \log_e \left(1+40.8018^2\right) \right) \right) \\ \left(39.8018^2 \times 40.8018^2 \right) = \frac{1}{161.207 \times 41^2 \times 42^2} \\ \left(80.6036-98.0149 \left(-177.619 \log_e \left(1+39.8018^2\right)+16.4113 \log_e \left(1+40.8018^2\right) \right) \right) \\ \left(39.8018^2 \times 40.8018^2 \right) = \frac{1}{161.207 \times 41^2 \times 42^2} \\ \left(80.6036-98.0149 \left(-177.619 \log_e \left(1+39.8018^2\right)+16.4113 \log_e \left(1+40.8018^2\right) \right) \right) \\ \left(39.8018^2 \times 40.8018^2 \right) = \frac{1}{161.207 \times 41^2 \times 42^2} \\ \left(80.6036-98.0149 \left(-177.619 \log_e \left(1+39.8018^2\right)+16.4113 \log_e \left(1+40.8018^2\right) \right) \right) \\ \left(39.8018^2 \times 40.8018^2 \right) = \frac{1}{161.207 \times 41^2 \times 42^2} \\ \left(80.6036-98.0149 \left(-177.619 \log_e \left(1+39.8018^2\right)+16.4113 \log_e \left(1+40.8018^2\right) \right) \right) \\ \left(39.8018^2 \times 40.8018^2 \right) = \frac{1}{161.207 \times 41^2 \times 42^2} \\ \left(80.6036-98.0149 \left(-177.619 \log_e \left(1+39.8018^2\right)+16.4113 \log_e \left(1+40.8018^2\right) \right) \right) \\ \left(39.8018^2 \times 40.8018^2 \right) = \frac{1}{161.207 \times 41^2 \times 42^2} \\ \left(80.6036-98.0149 \left(-177.619 \log_e \left(1+39.8018^2\right)+16.4113 \log_e \left(1+40.8018^2\right) \right) \right) \\ \left(80.6036-98.0149 \left(-177.619 \log_e \left(1+39.8018^2\right)+16.4113 \log_e \left(1+40.8018^2\right) \right) \right) \right) \\ \left(80.6036-98.0149 \left(-177.619 \log_e \left(1+39.8018^2\right)+16.4113 \log_e \left(1+39.8018^2\right) \right) \right) \\ \left(80.6036-98.0149 \left(-177.619 \log_e \left(1+39.8018^2\right)+16.4113 \log_e \left(1+39.8018^2\right) \right) \right) \right) \\ \left(80.6036-98.0149 \left(-177.619 \log_e \left(1+39.8018^2\right)+16.4113 \log_e \left(1+39.8018^2\right) \right) \right) \\ \left(80.6036-98.0149 \left(-176.8018^2\right) \right) \\ \left(80.6036-98.0149 \left(-176.8018^2\right) +16.8018^2 \right) \\ \left(80.6036-98.0149 \left(-176.8018^2\right) +16.8018^2 \right) \right) \\ \left(80.6036-98.0149 \left(-176.8018^2\right) +16.8018^2 \right) \\ \left(80.6036-98.0149 \left(-176.8018^2\right) +16.8018^2 \right) \\ \left(80.6036-98.018^2\right) +16.8018^2 \right) \\ \left(80.6036-98.018$$

$$\begin{array}{l} \left(39.8018^2 \left((39.8018 + 1)^2 \left((39.8018 - 40 - 1) \left(39.8018 + 40 + 2 \right) \right. \\ \left. \left((39.8018 - 40 - 2) \left(39.8018 + 40 + 1 \right) \log (39.8018^2 + 1) - \left. \left(39.8018 - 40 \right) \left(39.8018 + 40 + 3 \right) \right. \\ \left. \log \left((39.8018 + 1)^2 + 1 \right) \right) + \left(2 \times 39.8018 + 1 \right) \right) \right) \right) \right/ \\ \left(2 \left((2 \times 39.8018 + 1) 41^2 \right) 42^2 \right) = \frac{1}{161.207 \times 41^2 \times 42^2} \\ \left(80.6036 - 98.0149 \left(177.619 \operatorname{Li}_1 \left(-39.8018^2 \right) - 16.4113 \operatorname{Li}_1 \left(-40.8018^2 \right) \right) \right) \\ \left. 39.8018^2 \times 40.8018^2 \right) \end{array}$$

$$\begin{array}{l} \left(39.8018^2 \left((39.8018 + 1)^2 \left((39.8018 - 40 - 1) (39.8018 + 40 + 2) \right. \\ \left. \left. \left((39.8018 - 40 - 2) (39.8018 + 40 + 1) \log (39.8018^2 + 1) - \right. \\ \left. (39.8018 - 40) (39.8018 + 40 + 3) \log ((39.8018 + 1)^2 + 1) \right) + \right. \\ \left. (2 \times 39.8018 + 1) \right) \right) \right) / \left(2 \left((2 \times 39.8018 + 1) 41^2 \right) 42^2 \right) = \\ \left. 0.444701 + 96.0492 \log (1584.18) - 8.8746 \right. \\ \left. \log (1664.79) + \right. \\ \left. \sum_{k=1}^{\infty} \frac{(-1)^k \left(8.8746 \, e^{-7.41745 \, k} - 96.0492 \, e^{-7.36782 \, k} \right)}{k} \right) \right.$$

$$\begin{array}{l} (39.8018^{2} \left((39.8018 + 1)^{2} \left((39.8018 - 40 - 1) (39.8018 + 40 + 2) \right) \\ \left((39.8018 - 40 - 2) (39.8018 + 40 + 1) \log(39.8018^{2} + 1) - (39.8018 - 40) (39.8018 + 40 + 3) \\ \log((39.8018 + 1)^{2} + 1) + (2 \times 39.8018 + 1)))) \right) / \\ (2 \left((2 \times 39.8018 + 1) 41^{2} \right) 42^{2} \right) = 0.444701 + 192.098 \\ i \\ \left[\frac{\arg(1585.18 - x)}{2\pi} \right] - 17.7492 \\ i \\ \left[\frac{\arg(1665.79 - x)}{2\pi} \right] + 87.1746 \\ \log(x) + \\ \sum_{k=1}^{\infty} \frac{(-1)^{k} \left(-96.0492 (1585.18 - x)^{k} + 8.8746 (1665.79 - x)^{k} \right) x^{-k}}{k} \\ \int_{k=1}^{\infty} \frac{(-1)^{k} \left(-96.0492 (1585.18 - x)^{k} + 8.8746 (1665.79 - x)^{k} \right) x^{-k}}{k} \\ \int_{k=1}^{\infty} \frac{(x - x)^{2}}{2} + \frac{1}{2} + \frac{1}{2}$$

$$\begin{array}{l} \left(39.8018^{2} \left((39.8018+1)^{2} \left((39.8018-40-1) (39.8018+40+2)\right) \\ \left((39.8018-40-2) (39.8018+40+1) \log (39.8018^{2}+1)- \\ (39.8018-40) (39.8018+40+3) \log ((39.8018+1)^{2}+1)\right) + \\ (2 \times 39.8018+1) \right) \right) / \left(2 \left((2 \times 39.8018+1) 41^{2}\right) 42^{2}\right) = \\ 0.444701+96.0492 \left\lfloor \frac{\arg (1585.18-z_{0})}{2\pi} \right\rfloor \\ \log \left(\frac{1}{z_{0}} \right) - \\ 8.8746 \left\lfloor \frac{\arg (1665.79-z_{0})}{2\pi} \right\rfloor \\ \log \left(\frac{1}{z_{0}} \right) + 87.1746 \\ \log (z_{0}) + \\ 96.0492 \left\lfloor \frac{\arg (1585.18-z_{0})}{2\pi} \right\rfloor \\ \log (z_{0}) - \\ 8.8746 \left\lfloor \frac{\arg (1665.79-z_{0})}{2\pi} \right\rfloor \\ \log (z_{0}) - \\ 8.8746 \left\lfloor \frac{\arg (1665.79-z_{0})}{2\pi} \right\rfloor \\ \log (z_{0}) + \\ \sum_{k=1}^{\infty} \frac{(-1)^{k} \left(-96.0492 (1585.18-z_{0})^{k} + 8.8746 (1665.79-z_{0})^{k}\right) z_{0}^{-k}}{k} \end{array}$$

Integral representation

$$\begin{array}{l} \left(39.8018^2 \left((39.8018 + 1)^2 \left((39.8018 - 40 - 1) \left(39.8018 + 40 + 2 \right) \right. \\ \left. \left((39.8018 - 40 - 2) \left(39.8018 + 40 + 1 \right) \log (39.8018^2 + 1) - \right. \\ \left. \left(39.8018 - 40 \right) \left(39.8018 + 40 + 3 \right) \right. \\ \left. \log \left((39.8018 + 1)^2 + 1 \right) \right) + \left(2 \times 39.8018 + 1 \right) \right) \right) \right) \right) \right) \\ \left(2 \left(\left(2 \times 39.8018 + 1 \right) 41^2 \right) 42^2 \right) = 0.444701 + \\ \left. \int_{-i \, \infty + \gamma}^{i \, \infty + \gamma} - \frac{4.4373 \, e^{-14.7853 \, s} \left(e^{7.36782 \, s} - 10.8229 \, e^{7.41745 \, s} \right) \Gamma(-s)^2 \, \Gamma(1+s)}{i \, \pi \, \Gamma(1-s)} \right) \\ ds \quad \text{for} \, -1 < \gamma < 0 \end{array} \right)$$

For a = 8 and b = 64,

from

$$\frac{\sqrt{\pi}}{2} \times \frac{\Gamma\left(a+\frac{1}{2}\right)\Gamma(b+1)\Gamma(b-a+1)}{\Gamma(a)\Gamma\left(b+\frac{1}{2}\right)\Gamma\left(b-a+\frac{1}{2}\right)}$$

we obtain:

$$(\operatorname{sqrt}(\pi) \Gamma(8+1/2) \Gamma(64+1) \Gamma(-8+64+1))/(2 \Gamma(8) \Gamma(64+1/2) \Gamma(-8+64+1/2))$$

Input

$$\frac{\sqrt{\pi} \, \Gamma \! \left(8+\frac{1}{2}\right) \Gamma (64+1) \, \Gamma (-8+64+1)}{2 \, \Gamma (8) \, \Gamma \! \left(64+\frac{1}{2}\right) \Gamma \! \left(-8+64+\frac{1}{2}\right)}$$

 $\Gamma(x)$ is the gamma function

Exact result

```
13 479 973 333 575 319 897 333 507 543 509 815 336 818 572 211 270 286 240 551 \%
805 124 608 /
90 861 297 665 263 806 397 852 504 259 184 867 012 180 701 150 408 708 366 012 \%
722 575
```

Decimal approximation

148.35770212347189226490825070847834610348244898384466234402961177

148.357702123....

From:

. . .

$$\begin{split} &\int \frac{\left(1 + \frac{x^2}{(b+1)^2}\right) \left(1 + \frac{x^2}{(b+2)^2}\right) x}{\left(1 + \frac{x^2}{a^2}\right) \left(1 + \frac{x^2}{(a+1)^2}\right)} \, dx = \\ &\left(a^2 \left(a + 1\right)^2 \left(\left(a^4 - a^2 \left(2 \, b^2 + 6 \, b + 5\right) + \left(b^2 + 3 \, b + 2\right)^2\right) \log(a^2 + x^2) - \right. \\ &\left. \left(a^4 + 4 \, a^3 + a^2 \left(-2 \, b^2 - 6 \, b + 1\right) - 2 \, a \left(2 \, b^2 + 6 \, b + 3\right) + \right. \\ &\left. b \left(b^3 + 6 \, b^2 + 11 \, b + 6\right)\right) \log(a^2 + 2 \, a + x^2 + 1) + (2 \, a + 1) \, x^2)\right) \right) \\ &\left(2 \left(2 \, a + 1\right) \left(b^2 + 3 \, b + 2\right)^2\right) + \text{constant} \end{split}$$

$$\left(a^{2} (a + 1)^{2} \left((a - b - 1) (a + b + 2) \left((a - b - 2) (a + b + 1) \log(a^{2} + x^{2}) - (a - b) (a + b + 3) \log((a + 1)^{2} + x^{2})\right) + (2 a + 1) x^{2}\right)\right) / \left(2 (2 a + 1) (b + 1)^{2} (b + 2)^{2}\right) + \text{constant}$$

 $(a^{2} (a + 1)^{2} ((a - b - 1) (a + b + 2) ((a - b - 2) (a + b + 1) \log(a^{2} + 1) - (a - b) (a + b + 3) \log((a + 1)^{2} + 1)) + (2 a + 1)))/(2 (2 a + 1) (b + 1)^{2} (b + 2)^{2}) = 148.357702$

For b = 10 and a = 2.93925, we obtain :

 $\begin{array}{l}(2.93925^{2} (2.93925+1)^{2} ((2.93925-10-1)(2.93925+10+2)((2.93925-10-2)\\(2.93925+10+1) \log (2.93925^{2}+1)-(2.93925-5) (2.93925+5+3)\\\log ((2.93925+1)^{2}+1)) + (2^{*}2.93925+1)))/(2 (2^{*}2.93925+1)36^{*}49)\end{array}$

Input interpretation

$$\begin{array}{l} \left(2.93925^2 \left(2.93925+1\right)^2 \left((2.93925-10-1) \left(2.93925+10+2\right) \\ \left((2.93925-10-2) \left(2.93925+10+1\right) \log \left(2.93925^2+1\right)-(2.93925-5) \left(2.93925+5+3\right) \log \left((2.93925+1)^2+1\right)\right) + \\ \left(2\times 2.93925+1\right)\right) \right) / \left(2 \left(2\times 2.93925+1\right) \times 36 \times 49\right) \end{array}$$

log(x) is the natural logarithm

Result

148.358... 148.358....

The study of this function provides the following representations:

$$\begin{split} & \left(2.93925^2 \left((2.93925+1)^2 \left((2.93925-10-1) \left(2.93925+10+2\right)\right. \\ & \left((2.93925-10-2) \left(2.93925+10+1\right) \log \left(2.93925^2+1\right)- \right. \\ & \left(2.93925-5\right) \left(2.93925+5+3\right) \log \left((2.93925+1)^2+1\right)\right) + \\ & \left(2\times 2.93925+1\right)\right) \right) / \left(2 \left(2\times 2.93925+1\right) \left(36\times 49\right) = \\ & \frac{1}{24267.3} \left(6.8785-120.422 \left(-126.3 \log (a) \log _a \left(1+2.93925^2\right)+ \right. \\ & \left(2.5431 \log (a) \log _a \left(1+3.93925^2\right)\right)\right) 2.93925^2 \times 3.93925^2 \end{split}$$

$$\begin{array}{l} \left(2.93925^2 \left((2.93925+1)^2 \left((2.93925-10-1) \left(2.93925+10+2\right)\right. \\ \left. \left((2.93925-10-2) \left(2.93925+10+1\right) \log \left(2.93925^2+1\right)- \right. \\ \left. \left(2.93925-5\right) \left(2.93925+5+3\right) \log \left((2.93925+1)^2+1\right)\right) + \left. \left(2\times 2.93925+1\right)\right) \right) \right) \right) \right) \left(2 \left(2\times 2.93925+1\right) 36 \times 49\right) = \frac{1}{24267.3} \\ \left. \left(6.8785-120.422 \left(-126.3 \log_e \left(1+2.93925^2\right)+22.5431 \log_e \left(1+3.93925^2\right)\right)\right) \right) \\ \left. 2.93925^2 \times \\ \left. 3.93925^2 \right) \end{array}$$

$$\begin{array}{l} \left(2.93925^2 \left(\left(2.93925+1\right)^2 \left(\left(2.93925-10-1\right) \left(2.93925+10+2\right)\right. \\ \left. \left(\left(2.93925-10-2\right) \left(2.93925+10+1\right) \log \left(2.93925^2+1\right)-2\right. \\ \left. \left(2.93925-5\right) \left(2.93925+5+3\right) \log \left(\left(2.93925+1\right)^2+1\right)\right) + \left(2\times 2.93925+1\right)\right) \right) \right) \right) \left(2 \left(2\times 2.93925+1\right) 36 \times 49\right) = \\ \frac{1}{24267.3} \left(6.8785-120.422 \left(126.3 \operatorname{Li}_1 \left(-2.93925^2\right)-22.5431 \operatorname{Li}_1 \left(-3.93925^2\right)\right)\right) \\ \left. 2.93925^2 \times \\ \left. 3.93925^2 \right) \end{array}$$

$$\begin{split} & \left(2.93925^2 \left((2.93925+1)^2 \left((2.93925-10-1) \left(2.93925+10+2\right)\right. \\ & \left((2.93925-10-2) \left(2.93925+10+1\right) \log \left(2.93925^2+1\right)- \right. \\ & \left(2.93925-5\right) \left(2.93925+5+3\right) \log \left((2.93925+1)^2+1\right)\right) + \\ & \left(2\times2.93925+1\right)\right) \right) / \left(2 \left(2\times2.93925+1\right) 36\times49\right) = \\ & 0.0379989+84.0206 \log (8.63919)-14.9967 \\ & \log (15.5177) + \\ & \sum_{k=1}^{\infty} \frac{\left(-1\right)^k \left(14.9967 \ e^{-2.74198 \, k}-84.0206 \ e^{-2.15631 \, k}\right)}{k} \end{split}$$

$$\begin{pmatrix} 2.93925^2 \left((2.93925 + 1)^2 \left((2.93925 - 10 - 1) (2.93925 + 10 + 2) \right) \\ \left((2.93925 - 10 - 2) (2.93925 + 10 + 1) \log(2.93925^2 + 1) - (2.93925 - 5) (2.93925 + 5 + 3) \log((2.93925 + 1)^2 + 1) \right) + (2 \times 2.93925 + 1) 36 \times 49) = 0.0379989 + 168.041 \\ i \\ \pi \\ \left\lfloor \frac{\arg(9.63919 - x)}{2\pi} \right\rfloor - 29.9933 i \pi \left\lfloor \frac{\arg(16.5177 - x)}{2\pi} \right\rfloor + 69.0239 \\ \log(x) + \\ \sum_{k=1}^{\infty} \frac{(-1)^k \left(-84.0206 (9.63919 - x)^k + 14.9967 (16.5177 - x)^k\right) x^{-k}}{k} \\ 0 \end{array} \right]$$
for $x < 0$

$$\begin{array}{l} \left(2.93925^{2} \left((2.93925+1)^{2} \left((2.93925-10-1) (2.93925+10+2)\right) \\ \left((2.93925-10-2) (2.93925+10+1) \log (2.93925^{2}+1)-(2.93925-5) (2.93925+5+3) \log ((2.93925+1)^{2}+1)\right)+(2\times 2.93925+1))\right) / (2 (2\times 2.93925+1) 36 \times 49) = \\ 0.0379989+84.0206 \left\lfloor \frac{\arg(9.63919-z_{0})}{2\pi} \right\rfloor \\ \log \left(\frac{1}{z_{0}}\right) - \\ 14.9967 \left\lfloor \frac{\arg(16.5177-z_{0})}{2\pi} \right\rfloor \\ \log \left(\frac{1}{z_{0}}\right) + 69.0239 \\ \log (z_{0}) + \\ 84.0206 \left\lfloor \frac{\arg(9.63919-z_{0})}{2\pi} \right\rfloor \\ \log (z_{0}) - \\ 14.9967 \left\lfloor \frac{\arg(16.5177-z_{0})}{2\pi} \right\rfloor \\ \log (z_{0}) - \\ 14.9967 \left\lfloor \frac{\arg(16.5177-z_{0})}{2\pi} \right\rfloor \\ \log (z_{0}) - \\ 14.9967 \left\lfloor \frac{\arg(16.5177-z_{0})}{2\pi} \right\rfloor \\ \log (z_{0}) - \\ 14.9967 \left\lfloor \frac{\arg(16.5177-z_{0})}{2\pi} \right\rfloor \\ \log (z_{0}) + \\ \sum_{k=1}^{\infty} \frac{(-1)^{k} \left(-84.0206 \left(9.63919-z_{0}\right)^{k} + 14.9967 \left(16.5177-z_{0}\right)^{k}\right) z_{0}^{-k}}{k} \end{array}$$

Integral representation

$$\begin{split} & \left(2.93925^2 \left((2.93925+1)^2 \left((2.93925-10-1) \left(2.93925+10+2\right)\right. \\ & \left((2.93925-10-2) \left(2.93925+10+1\right) \log \!\left(2.93925^2+1\right)- \right. \\ & \left(2.93925-5\right) \left(2.93925+5+3\right) \log \!\left((2.93925+1)^2+1\right)\!\right) + \\ & \left(2\times 2.93925+1\right) \left(2 \left(2\times 2.93925+1\right) 36\times 49\right) = 0.0379989 + \right. \\ & \left. \int_{-i\,\infty+\gamma}^{i\,\infty+\gamma} - \frac{7.49834\,e^{-4.89829\,s} \left(e^{2.15631\,s}-5.60261\,e^{2.74198\,s}\right) \Gamma(-s)^2\,\Gamma(1+s)}{i\,\pi\,\Gamma(1-s)} \\ & ds \;\; \text{for}\; -1 < \gamma < 0 \end{split}$$

We obtain also:

 $233/(((2.93925^{2} (2.93925+1)^{2} ((2.93925-10-1)(2.93925+10+2)((2.93925-10-2) (2.93925+10+1) \log(2.93925^{2}+1)-(2.93925-5) (2.93925+5+3) \log((2.93925+1)^{2}+1)) + (2*2.93925+1)))/(2 (2*2.93925+1)36*49))-4)$

Input interpretation

$$\begin{array}{l} 233 \left/ \left(\left(2.93925^2 \left(2.93925 + 1 \right)^2 \left((2.93925 - 10 - 1) \left(2.93925 + 10 + 2 \right) \right. \right. \\ \left. \left((2.93925 - 10 - 2) \left(2.93925 + 10 + 1 \right) \log \left(2.93925^2 + 1 \right) - \left. \left(2.93925 - 5 \right) \left(2.93925 + 5 + 3 \right) \log \left((2.93925 + 1)^2 + 1 \right) \right) + \left. \left(2 \times 2.93925 + 1 \right) \right) \right/ \left(2 \left(2 \times 2.93925 + 1 \right) \times 36 \times 49 \right) - 4 \right) \end{array}$$

log(x) is the natural logarithm

Result

```
1.6140453479199832516747061971083704720064123039513612854760866757
...
1.6140453479.... result that is a very good approximation to the value of the golden ratio 1.618033988749...
```

The study of this function provides the following representations:

```
\begin{split} & 233 \big/ \big( \big( 2.93925^2 \left( (2.93925 + 1)^2 \\ & \big( (2.93925 - 10 - 1) \left( 2.93925 + 10 + 2 \right) \left( (2.93925 - 10 - 2) \\ & (2.93925 + 10 + 1) \log \big( 2.93925^2 + 1 \big) - (2.93925 - 5) \\ & (2.93925 + 5 + 3) \log \big( (2.93925 + 1)^2 + 1 \big) \big) + \\ & (2 \times 2.93925 + 1) \big) \big) \big/ \big( 2 \left( 2 \times 2.93925 + 1 \right) 36 \times 49 \big) - 4 \big) = \\ & 233 \\ \hline & -4 + \frac{\big( 6.8785 - 120.422 \big( -126.3 \log_e(1 + 2.93925^2) + 22.5431 \log_e(1 + 3.93925^2) \big) \big) 2.93925^2 \times 3.93925^2}{24267.3} \end{split}
```

$$\begin{split} & 233 \left/ \left(\left(2.93925^2 \left((2.93925 + 1)^2 \left((2.93925 - 10 - 1) (2.93925 + 10 + 2) \right) \left((2.93925 - 10 - 2) (2.93925 + 10 + 1) \log(2.93925^2 + 1) - (2.93925 - 5) (2.93925 + 5 + 3) \log((2.93925 - 5) (2.93925 + 5 + 3) \log((2.93925 + 1)^2 + 1)) + (2 \times 2.93925 + 1)) \right) \right) \right/ \\ & (2 (2 \times 2.93925 + 1) 36 \times 49) - 4 \right) = 233 \left/ \left(-4 + \frac{1}{24267.3} \left(6.8785 - 120.422 \left(-126.3 \log(a) \log_a(1 + 2.93925^2) + 22.5431 \log(a) \log_a(1 + 3.93925^2) \right) \right) 2.93925^2 \times 3.93925^2 \right) \end{split}$$

$$\begin{split} & 233 \big/ \big(\big(2.93925^2 \left((2.93925 + 1)^2 \\ & \big((2.93925 - 10 - 1) \left(2.93925 + 10 + 2 \right) \left((2.93925 - 10 - 2) \\ & (2.93925 + 10 + 1) \log \big(2.93925^2 + 1 \big) - (2.93925 - 5) \\ & (2.93925 + 5 + 3) \log \big((2.93925 + 1)^2 + 1 \big) \big) + \\ & (2 \times 2.93925 + 1) \big) \big) \big/ \big(2 \left(2 \times 2.93925 + 1 \right) 36 \times 49 \big) - 4 \big) = \\ & \frac{233}{-4 + \frac{(6.8785 - 120.422 (126.3 \text{ Li}_1 (-2.93925^2) - 22.5431 \text{ Li}_1 (-3.93925^2)) (2.93925^2 \times 3.93925^2)}{24267.3} \end{split}$$

$$\begin{array}{c} 233 \left/ \left(\left(2.93925^2 \left((2.93925 + 1)^2 \left((2.93925 - 10 - 1) \left(2.93925 + 10 + 2 \right) \right. \\ \left. \left((2.93925 - 10 - 2) \left(2.93925 + 10 + 1 \right) \log (2.93925^2 + 1 \right) - \right. \\ \left. \left(2.93925 - 5 \right) \left(2.93925 + 5 + 3 \right) \log (\\ \left. \left(2.93925 + 1 \right)^2 + 1 \right) \right) + \left(2 \times 2.93925 + 1 \right) \right) \right) \right) \right/ \\ \left(2 \left(2 \times 2.93925 + 1 \right) 36 \times 49 \right) - 4 \right) = 2.77313 \left/ \right. \\ \left(-0.0471551 + \log(8.63919) - 0.178488 \\ \left. \frac{\log(15.5177) + }{k} \right) \\ \left. \sum_{k=1}^{\infty} \frac{\left(-1 \right)^k \left(0.178488 \, e^{-2.74198 \, k} - e^{-2.15631 \, k} \right) }{k} \right) \right) \end{array}$$

$$\begin{split} 233 \big/ \big(\big(2.93925^2 \big((2.93925 + 1)^2 \big((2.93925 - 10 - 1) (2.93925 + 10 + 2) \\ & ((2.93925 - 10 - 2) (2.93925 + 10 + 1) \log (\\ & 2.93925^2 + 1 \big) - (2.93925 - 5) (2.93925 + 5 + 3) \\ & \log ((2.93925 + 1)^2 + 1) \big) + (2 \times 2.93925 + 1) \big) \big) \big) \big/ \\ (2 (2 \times 2.93925 + 1) 36 \times 49) - 4 \big) &= 1.38657 \Big/ \\ & \bigg(-0.0235776 + i \pi \bigg[\frac{\arg(9.63919 - x)}{2\pi} \bigg] - \\ & 0.178488 \\ & i \pi \bigg[\frac{\arg(16.5177 - x)}{2\pi} \bigg] + \\ & 0.410756 \log(x) + \\ & \sum_{k=1}^{\infty} \frac{(-1)^k \big(-0.5 (9.63919 - x)^k + 0.0892441 (16.5177 - x)^k \big) x^{-k}}{k} \bigg) \\ & \text{for } x < 0 \end{split}$$

$$233 / ((2.93925^{2} ((2.93925 + 1)^{2} ((2.93925 - 10 - 1) (2.93925 + 10 + 2) ((2.93925 - 10 - 2) (2.93925 + 10 + 1) \log(2.93925^{2} + 1) - (2.93925 - 5) (2.93925 + 5 + 3) \log((2.93925 + 1)^{2} + 1)) + (2 \times 2.93925 + 1))))) / (2 (2 \times 2.93925 + 1) 36 \times 49) - 4) = 2.77313 / (-0.0471551 + \left\lfloor \frac{\arg(16.5177 - z_{0})}{2\pi} \right\rfloor \right] (-0.178488 \log(\frac{1}{z_{0}}) - 0.178488 \log(z_{0})) + \left\lfloor \frac{\arg(9.63919 - z_{0})}{2\pi} \right\rfloor \right] (\log(\frac{1}{z_{0}}) + \log(z_{0})) + \sum_{k=1}^{\infty} \frac{(-1)^{k} (-(9.63919 - z_{0})^{k} + 0.178488 (16.5177 - z_{0})^{k}) z_{0}^{-k}}{k} \right)$$

Integral representation

$$233 / ((2.93925^{2} ((2.93925 + 1)^{2} ((2.93925 - 10 - 1) (2.93925 + 10 + 2) ((2.93925 - 10 - 2) (2.93925 + 10 + 1) \log(2.93925^{2} + 1) - (2.93925 - 5) (2.93925 + 5 + 3) \log((2.93925 + 1)^{2} + 1)) + (2 \times 2.93925 + 5 + 3) \log((2.93925 + 1)^{2} + 1)) + (2 \times 2.93925 + 1)))) / (2 (2 \times 2.93925 + 1) 36 \times 49) - 4) = \frac{58.8087 i \pi}{i \pi + \int_{-i \, \infty + \gamma}^{i \, \infty + \gamma} \frac{1.89256 e^{-4.89829 \, s} (e^{2.15631 \, s} - 5.60261 e^{2.74198 \, s}) \Gamma(-s)^{2} \Gamma(1+s)}{\Gamma(1-s)} \, ds}$$

for -1 < $\gamma < 0$

We obtain also:

 $\begin{array}{l} (236+3/2)/(((2.93925^2 (2.93925+1)^2 ((2.93925-11)(2.93925+12)((2.93925-10-2) (2.93925+11) \log (2.93925^2+1)-(2.93925-5) (2.93925+5+3) \log ((2.93925+1)^2+1)) \\ + (2*2.93925+1)))/(2 \ (2*2.93925+1)36*49))-4) \end{array}$

Input interpretation

 $\frac{\left(236 + \frac{3}{2}\right)}{\left(\left(2.93925^{2} \left(2.93925 + 1\right)^{2} \left(\left(2.93925 - 11\right) \left(2.93925 + 12\right) \left(\left(2.93925 - 10 - 2\right)\right)\right)\right)}{\left(2.93925 + 11\right) \log\left(2.93925^{2} + 1\right) - \left(2.93925 - 5\right) \left(2.93925 + 5 + 3\right) \log\left(\left(2.93925 + 1\right)^{2} + 1\right)\right) + \left(2 \times 2.93925 + 1\right)\right)} / \left(2 \left(2 \times 2.93925 + 1\right) \times 36 \times 49\right) - 4\right)$

log(x) is the natural logarithm

Result

1.6452178975579228423722863597134677558005275630405506665260540149... $1.64521789755...\approx \zeta(2) = \frac{\pi^2}{6} = 1.644934...$

The study of this function provides the following representations:

$$\begin{split} & \left(236 + \frac{3}{2}\right) \middle/ \\ & \left(\left(2.93925^2 \left((2.93925 + 1)^2 \left((2.93925 - 11) \left(2.93925 + 12\right) \left((2.93925 - 10 - 2\right) \right. \\ & \left. \left. \left(2.93925 + 11\right) \log \left(2.93925^2 + 1\right) - \left(2.93925 - 5\right) \right. \\ & \left. \left(2.93925 + 5 + 3\right) \log \left((2.93925 + 1)^2 + 1\right)\right) + \right. \\ & \left. \left(2 \times 2.93925 + 1\right) \right) \right) \right) \middle/ \left(2 \left(2 \times 2.93925 + 1\right) 36 \times 49\right) - 4\right) = \\ & \frac{475}{2 \left(-4 + \frac{\left(6.8785 - 120.422 \left(-126.3 \log_e (1 + 2.93925^2) + 22.5431 \log_e (1 + 3.93925^2)\right)\right) 2.93925^2 \times 3.93925^2}{24267.3}\right)} \end{split}$$

$$\begin{split} \left(236 + \frac{3}{2}\right) \middle/ \\ & \left(\left(2.93925^{2} \left((2.93925 + 1)^{2} \left((2.93925 - 11) \left(2.93925 + 12\right) \left((2.93925 - 10 - 2\right) \right. \\ & \left. \left(2.93925 + 11\right) \log \left(2.93925^{2} + 1\right) - \left(2.93925 - 5\right) \right. \\ & \left(2.93925 + 5 + 3\right) \log \left((2.93925 + 1)^{2} + 1\right)\right) + \\ & \left(2 \times 2.93925 + 1\right) \right) \right) \Big/ \left(2 \left(2 \times 2.93925 + 1\right) 36 \times 49\right) - 4\right) = \\ & 475 \Big/ \left(2 \left(-4 + \frac{1}{24267.3} \left(6.8785 - 120.422 \left(-126.3 \log(a) \log_{a}(1 + 2.93925^{2}) + 22.5431 \log(a) \log_{a}(1 + 3.93925^{2})\right)\right) 2.93925^{2} \times 3.93925^{2}\right) \right) \end{split}$$

$$\begin{split} & \left(236 + \frac{3}{2} \right) \middle/ \\ & \left(\left(2.93925^2 \left((2.93925 + 1)^2 \left((2.93925 - 11) \left(2.93925 + 12 \right) \left((2.93925 - 10 - 2 \right) \right) \right) \\ & (2.93925 + 11) \log \left(2.93925^2 + 1 \right) - (2.93925 - 5) \\ & (2.93925 + 5 + 3) \log \left((2.93925 + 1)^2 + 1 \right) \right) + \\ & \left(2 \times 2.93925 + 1 \right) \right) \Big) \Big) \Big/ (2 \left(2 \times 2.93925 + 1 \right) 36 \times 49 \right) - 4 \Big) = \\ & \frac{475}{2 \left(-4 + \frac{\left(6.8785 - 120.422 \left(126.3 \operatorname{Li}_1 \left(-2.93925^2 \right) - 22.5431 \operatorname{Li}_1 \left(-3.93925^2 \right) \right) 2.93925^2 \times 3.93925^2 }{24267.3} \right) \end{split}$$

$$\begin{split} \left(236 + \frac{3}{2}\right) \middle/ \\ & \left(\left(2.93925^2 \left((2.93925 + 1)^2 \left((2.93925 - 11) \left(2.93925 + 12\right) \left((2.93925 - 10 - 2\right) \right. \\ & \left. \left. \left(2.93925 + 11\right) \log \left(2.93925^2 + 1\right) - \left(2.93925 - 5\right) \right. \\ & \left(2.93925 + 5 + 3\right) \log \left((2.93925 + 1)^2 + 1\right)\right) + \\ & \left(2 \times 2.93925 + 1\right) \right) \right) \Big/ \left(2 \left(2 \times 2.93925 + 1\right) 36 \times 49\right) - 4\right) = \\ & 2.82669 \Big/ \left(-0.0471551 + \log(8.63919) - 0.178488 \\ & \log(15.5177) + \\ & \sum_{k=1}^{\infty} \frac{\left(-1\right)^k \left(0.178488 \ e^{-2.74198k} - e^{-2.15631k}\right)}{k} \right) \end{split}$$

$$\begin{split} & \left(236 + \frac{3}{2}\right) \Big/ \\ & \left(\left(2.93925^2 \left((2.93925 + 1)^2 \left((2.93925 - 11) \left(2.93925 + 12\right) \left((2.93925 - 10 - 2\right) \right) \right) \\ & (2.93925 + 11) \log (2.93925^2 + 1) - (2.93925 - 5) \\ & (2.93925 + 5 + 3) \log ((2.93925 + 1)^2 + 1)\right) + \\ & (2 \times 2.93925 + 1) \right) \Big) \Big/ (2 (2 \times 2.93925 + 1) 36 \times 49) - 4 \Big) = \\ & 1.41334 \left/ \left(-0.0235776 + i \pi \left\lfloor \frac{\arg(9.63919 - x)}{2\pi} \right\rfloor - \\ & 0.178488 i \pi \left\lfloor \frac{\arg(16.5177 - x)}{2\pi} \right\rfloor + \\ & 0.410756 \log(x) + \\ & \sum_{k=1}^{\infty} \frac{(-1)^k \left(-0.5 \left(9.63919 - x \right)^k + 0.0892441 \left(16.5177 - x \right)^k \right) x^{-k}}{k} \right) \\ & \text{for } x < 0 \end{split}$$

$$\begin{split} & \left(236 + \frac{3}{2}\right) \Big/ \\ & \left(\left(2.93925^2 \left((2.93925 + 1)^2 \left((2.93925 - 11) \left(2.93925 + 12\right) \left((2.93925 - 10 - 2\right) \right) \right) \left(2.93925^2 + 1\right) - (2.93925 - 5) \right) \\ & \left(2.93925 + 11\right) \log\left(2.93925^2 + 1\right) - (2.93925 - 5) \right) \\ & \left(2.93925 + 5 + 3\right) \log\left((2.93925 + 1)^2 + 1\right)\right) + \\ & \left(2 \times 2.93925 + 1\right) \right) \Big) \Big/ \left(2 \left(2 \times 2.93925 + 1\right) 36 \times 49\right) - 4\right) = \\ & 2.82669 \Big/ \left(-0.0471551 + \left\lfloor \frac{\arg(16.5177 - z_0)}{2\pi} \right\rfloor \right) \\ & \left(-0.178488 \log\left(\frac{1}{z_0}\right) - 0.178488 \log(z_0)\right) + \\ & \left\lfloor \frac{\arg(9.63919 - z_0)}{2\pi} \right\rfloor \\ & \left(\log\left(\frac{1}{z_0}\right) + \log(z_0)\right) + \\ & \sum_{k=1}^{\infty} \frac{\left(-1\right)^k \left(-(9.63919 - z_0)^k + 0.178488 \left(16.5177 - z_0\right)^k\right) z_0^{-k}}{k} \right) \end{split}$$

Integral representation

$$\begin{array}{l} \left(236 + \frac{3}{2}\right) \\ & \left(\left(2.93925^{2}\left((2.93925 + 1)^{2}\left((2.93925 - 11)\left(2.93925 + 12\right)\left((2.93925 - 10 - 2\right)\right)\right) \\ & (2.93925 + 11)\log(2.93925^{2} + 1) - (2.93925 - 5)\right) \\ & (2.93925 + 5 + 3)\log((2.93925 + 1)^{2} + 1)\right) + \\ & \left(2 \times 2.93925 + 1\right) \left(2\left(2 \times 2.93925 + 1\right) 36 \times 49\right) - 4\right) = \\ & -\frac{59.9445 i \pi}{i \pi + \int_{-i \infty + \gamma}^{i \infty + \gamma} \frac{1.89256 e^{-4.89829 s} (e^{2.15631 s} - 5.60261 e^{2.74198 s}) \Gamma(-s)^{2} \Gamma(1+s)}{\Gamma(1-s)} ds \end{array}$$

We obtain also:

 $\begin{array}{l} ((236+3/2)/(((2.9392^2(2.9392+1)^2((2.9392-11)(2.9392+12)((2.9392-12)(2.9392+11)\log(2.9392^2+1)-(2.9392-5)(2.9392+8)\\ \log((2.9392+1)^2+1))+(2*2.9392+1)))/(2\ (2*2.9392+1)36*49))-4))^{15-21-e} \end{array}$

Input interpretation

$$\begin{split} \left(\left(236 + \frac{3}{2} \right) \middle/ \left(\left(2.9392^2 \left(2.9392 + 1 \right)^2 \right. \\ \left. \left(\left(2.9392 - 11 \right) \left(2.9392 + 12 \right) \left(\left(2.9392 - 12 \right) \left(2.9392 + 11 \right) \right. \\ \left. \log \left(2.9392^2 + 1 \right) - \left(2.9392 - 5 \right) \left(2.9392 + 8 \right) \right. \\ \left. \log \left(\left(2.9392 + 1 \right)^2 + 1 \right) \right) + \left(2 \times 2.9392 + 1 \right) \right) \right) \right/ \\ \left(2 \left(2 \times 2.9392 + 1 \right) \times 36 \times 49 \right) - 4 \right) \Big)^{15} - 21 - e \end{split}$$

log(x) is the natural logarithm

Result

1729.16... 1729.16....

This result is very near to the mass of candidate glueball $f_0(1710)$ scalar meson. Furthermore, 1728 occurs in the algebraic formula for the j-invariant of an elliptic curve. (1728 = $8^2 * 3^3$) The number 1728 is one less than the Hardy–Ramanujan number 1729 (taxicab number)

The study of this function provides the following representations:

$$\begin{split} \left(\left(236 + \frac{3}{2}\right) \middle/ \left(\left(2.9392^2 \left((2.9392 + 1\right)^2 \right) \\ & \left((2.9392 - 11) \left(2.9392 + 12\right) \left((2.9392 - 12) \left(2.9392 + 11\right) \right) \\ & \log(2.9392^2 + 1) - (2.9392 - 5) \left(2.9392 + 8\right) \\ & \log((2.9392 + 1)^2 + 1) + (2 \times 2.9392 + 1)) \right) \right) \right/ \\ & \left(2 \left(2 \times 2.9392 + 1\right) 36 \times 49\right) - 4\right) \right)^{15} - 21 - e = -21 - e + \\ & \left(\frac{475}{2 \left(-4 + \frac{1}{24267.} \left(6.8784 - 120.422 \left(-126.3 \log_e \left(1 + 2.9392^2\right) + 22.5435 \log_e \left(1 + 3.9392^2\right) \right) 2.9392^2 \times 3.9392^2 \right)} \right) \right)^{15} \end{split}$$

$$\begin{split} \left(\left(236 + \frac{3}{2} \right) \middle/ \left(\left(2.9392^2 \left((2.9392 + 1)^2 \right) (2.9392 - 12) \left(2.9392 - 12 \right) (2.9392 + 11) \right) \\ & \left((2.9392 - 11) \left(2.9392^2 + 1 \right) - (2.9392 - 5) \left(2.9392 + 8 \right) \right) \\ & \left(\log \left(2.9392 + 1 \right)^2 + 1 \right) \right) + \left(2 \times 2.9392 + 1 \right) \right) \right) \middle/ \\ & \left(2 \left(2 \times 2.9392 + 1 \right) 36 \times 49 \right) - 4 \right) \right)^{15} - 21 - e = \\ & -21 - e + \left(475 \middle/ \left(2 \left(-4 + \frac{1}{24267.} \left(6.8784 - 120.422 \right) \\ \left(-126.3 \log(a) \log_a \left(1 + 2.9392^2 \right) + 22.5435 \log(a) \right) \\ & \left(\log_a \left(1 + 3.9392^2 \right) \right) 2.9392^2 \times 3.9392^2 \right) \right) \right)^{15} \end{split}$$

$$\begin{split} \left(\left(236 + \frac{3}{2} \right) \middle/ \left(\left(2.9392^2 \left((2.9392 + 1)^2 \right) (2.9392 - 12) \left(2.9392^2 + 12 \right) \left((2.9392 - 12) \left(2.9392 + 11 \right) \right) \right) \\ & \left(2.9392^2 + 1 \right) - (2.9392 - 5) \left(2.9392 + 8 \right) \\ & \left(2.9392^2 + 1 \right) - (2.9392 - 5) \left(2.9392 + 8 \right) \\ & \left(2 \left(2 \times 2.9392 + 1 \right) 36 \times 49 \right) - 4 \right) \right)^{15} - 21 - e = -21 - e + \\ & \left(\frac{475}{2 \left(-4 + \frac{(6.8784 - 120.422 \left(126.3 \operatorname{Li}_1 \left(-2.9392^2 \right) - 22.5435 \operatorname{Li}_1 \left(-3.9392^2 \right) \right) 2.9392^2 \times 3.9392^2}{24267.} \right) \right)^{15} \end{split}$$

$$\begin{split} \left(\left(236 + \frac{3}{2} \right) \middle/ \left(\left(2.9392^2 \left((2.9392 + 1)^2 \right) \left((2.9392 - 11) \left(2.9392 + 12 \right) \left((2.9392 - 12) \left(2.9392 + 11 \right) \right) \right) \left(2.9392^2 + 1 \right) - (2.9392 - 5) \left(2.9392 + 8 \right) \\ \log \left((2.9392 + 1)^2 + 1 \right) \right) + \left(2 \times 2.9392 + 1 \right) \right) \right) \right) \right) \\ \left(2 \left(2 \times 2.9392 + 1 \right) 36 \times 49 \right) - 4 \right) \right)^{15} - 21 - e = \\ -21 - e + 14138526311027629579417407512664794921875 \right) \\ \left(32768 \\ \left(-4 + 0.00552406 \\ \left(6.8784 - 120.422 \left(-126.3 \left(\log(8.6389) - \sum_{k=1}^{\infty} \frac{\left(-0.115756 \right)^k}{k} \right) + \right. \\ \left. 22.5435 \left(\log(15.5173) - \sum_{k=1}^{\infty} \frac{\left(-0.0644442 \right)^k}{k} \right) \right) \right) \right)^{15} \right) \end{split}$$

$$\left(\left(236 + \frac{3}{2} \right) \right/ \left(\left(2.9392^2 \left((2.9392 + 1)^2 \left((2.9392 - 11) \left(2.9392 + 12 \right) \right) \left((2.9392 - 12) \left(2.9392 + 11 \right) \log \left(2.9392^2 + 1 \right) - (2.9392 - 5) \left(2.9392 + 8 \right) \log \left((2.9392 + 1)^2 + 1 \right) \right) + (2 \times 2.9392 + 1) \right) \right) \right) \right)$$

$$(2 \left(2 \times 2.9392 + 1 \right) \left(36 \times 49 \right) - 4 \right) \right)^{15} - 21 - e =$$

 $-21-e+14\,138\,526\,311\,027\,629\,579\,417\,407\,512\,664\,794\,921\,875\,\Big/$

$$\begin{cases} 32768 \\ \left(-4 + 0.00552406 \\ \left(6.8784 - 120.422 \left(-126.3 \left(2 i \pi \left\lfloor \frac{\arg(9.6389 - x)}{2 \pi} \right\rfloor \right) + \log(x) - \sum_{k=1}^{\infty} \frac{(-1)^k (9.6389 - x)^k x^{-k}}{k} \right) + 22.5435 \left(2 i \pi \left\lfloor \frac{\arg(16.5173 - x)}{2 \pi} \right\rfloor + \log(x) - \sum_{k=1}^{\infty} \frac{(-1)^k (16.5173 - x)^k x^{-k}}{k} \right) \right) \end{cases}$$

for x < 0

$$\frac{\left(\left(236 + \frac{3}{2}\right)\right) / \left(\left(2.9392^2 \left((2.9392 + 1\right)^2 \right) \\ \left((2.9392 - 11) \left(2.9392 + 12\right) \left((2.9392 - 12) \left(2.9392 + 11\right) \right) \\ \log\left(2.9392^2 + 1\right) - (2.9392 - 5) \left(2.9392 + 8\right) \\ \log\left((2.9392 + 1)^2 + 1\right) + (2 \times 2.9392 + 1)\right) \right) \right) / \\ \left(2 \left(2 \times 2.9392 + 1\right) 36 \times 49 \right) - 4 \right)^{15} - 21 - e =$$

-21 - e + 14138526311027629579417407512664794921875

$$\left(32768 \right) \left(-4 + 0.00552406 \left(6.8784 - 120.422 \left(-126.3 \left(\log(z_0) + \left\lfloor \frac{\arg(9.6389 - z_0)}{2\pi} \right\rfloor \left(\log\left(\frac{1}{z_0}\right) + \log(z_0) \right) - \sum_{k=1}^{\infty} \frac{(-1)^k (9.6389 - z_0)^k z_0^{-k}}{k} \right) + 22.5435 \right) \left(\log(z_0) + \left\lfloor \frac{\arg(16.5173 - z_0)}{2\pi} \right\rfloor \left(\log\left(\frac{1}{z_0}\right) + \log(z_0) + \log(z_0) \right) - \sum_{k=1}^{\infty} \frac{(-1)^k (16.5173 - z_0)^k z_0^{-k}}{k} \right) \right) \right) \right)^{15}$$

We obtain also:

ſ

 $\begin{array}{l} (1/27(((236+3/2)/(((2.9392^2(3.9392)^2((2.9392-11)(2.9392+12)((2.9392-12)(13.9392)\log(2.9392^2+1)-(2.9392-5)(10.9392)\log((2.9392+1)^2+1))+(2*2.9392+1)))/(2(2*2.9392+1)36*49))-4))^{15-21-\pi})^{2}-4+1/2 \end{array}$

Input interpretation

$$\begin{split} \Big(\frac{1}{27}\left(\!\left(\!\left(236+\frac{3}{2}\right)\right)\!\left/\left(\!\left(2.9392^2\times3.9392^2\left((2.9392-11\right)(2.9392+12)\left((2.9392-12\right)\times13.9392\log\!\left(2.9392^2+1\right)+(2.9392-5\right)\log\!\left((2.9392+1)^2+1\right)\times(-10.9392)\right)+(2\times2.9392+1)\right)\!\right)\!\right/(2\left(2\times2.9392+1\right)\right)\\ & \left(2\times2.9392+1\right)\!\right)\!\right)\!\left/\left(2\left(2\times2.9392+1\right)\left(36\times49\right)\right)-4\right)\!\right)^{15}-21-\pi\right)\!\right)^2-4+\frac{1}{2} \end{split}$$

log(x) is the natural logarithm

Result 4096.02... $4096.02...\approx 4096 = 64^2$

The study of this function provides the following representations:

$$\frac{1}{27} \left(\left(\left(236 + \frac{3}{2} \right) \right/ \left(\left(2.9392^2 \times 3.9392^2 \left((2.9392 - 11) \left(2.9392 + 12 \right) \left((2.9392 - 12 \right) \right) \right) \right) \right) \right) \right) \right) \left(2.9392^2 + 1 \right) - (2.9392 - 12) \right) \\ \left(13.9392 \log \left(2.9392^2 + 1 \right) - (2.9392 - 5) \right) \right) \left(10.9392 \log \left((2.9392 + 1)^2 + 1 \right) \right) + \left(2 \times 2.9392 + 1 \right) \right) \right) \left(2 \left(2 \times 2.9392 + 1 \right) \right) \right) \left(2 \left(2 \times 2.9392 + 1 \right) \right) \right) \left(36 \times 49 \right) \right) - 4 \right) \right)^{15} - 21 - \pi \right) \right)^2 - 4 + \frac{1}{2} = -\frac{7}{2} + \left(\frac{1}{27} \left(-21 - \pi + \left(\frac{475}{2} \right) \left(2 \left(-4 + \frac{1}{24267}, \left(6.8784 - 120.422 \right) \right) \left(-126.3 \log_e \left(1 + 2.9392^2 \right) + 22.5435 \log_e \left(1 + 3.9392^2 \right) \right) \right) \right)^{15} \right) \right)^2$$

$$\left(\frac{1}{27}\left(\left(\left(236+\frac{3}{2}\right)\right)\left(\left(2.9392^2\times 3.9392^2\left((2.9392-11\right)\left(2.9392+12\right)\left((2.9392-12\right)\right)\right)\right)\right) + \left(2.9392^2\times 3.9392^2\left((2.9392^2+1)-(2.9392-5\right)\right) + \left(2.9392\log\left((2.9392+1\right)^2+1\right)\right) + \left(2\times 2.9392+1\right)\right) + \left(2\times 2.9392+1\right)\right) + \left(2\times 2.9392+1\right) + \left(36\times 49\right) - 4\right)^{15} - 21 - \pi\right)^2 - 4 + \frac{1}{2} = -\frac{7}{2} + \left(\frac{1}{27}\left(-21 - \pi + \left(475\right)\left(2\left(-4 + \frac{1}{24267}, \left(6.8784 - 120.422\left(-126.3\log(a\right)\right)\right) + \left(\log_a\left(1+2.9392^2\right) + 22.5435\log(a)\log_a\left(1+3.9392^2\right)\right)\right)^{15}\right)\right)^2 \right)$$

$$\begin{split} \Big(\frac{1}{27}\left(\!\left(\!\left(\!\left(236+\frac{3}{2}\right)\right)\!\left/\left(\!\left(2.9392^2\times3.9392^2\left((2.9392-11\right)\left(2.9392+12\right)\left((2.9392-12\right)\right.\right.\right.\right.\right.\right.\\ & \left.13.9392\log\!\left(2.9392^2+1\right)-\left(2.9392-5\right)\right.\\ & \left.10.9392\log\!\left((2.9392+1)^2+1\right)\right)+\left(2\times2.9392+1\right)\right.\\ & \left(2\times2.9392+1\right)\right)\!\right)/\left(2\left(2\times2.9392+1\right)\right.\\ & \left(36\times49\right)\right)-4\right)^{15}-21-\pi\right)\!\right)^2-4+\frac{1}{2}=\\ & -\frac{7}{2}+\left(\frac{1}{27}\left(-21-\pi+\left(475\right)\!\left(2\left(-4+\frac{1}{24267.}\left(6.8784-120.422\left(126.3\right.\right.\right.\\ & \left.Li_1\left(-2.9392^2\right)-22.5435\,Li_1\left(-3.9392^2\right)\right)\right)\right)\\ & \left.2.9392^2\times3.9392^2\right)\!\right)^{15}\right)\!\right)^2 \end{split}$$

$$\begin{split} & \left(\frac{1}{27}\left(\left(\left(236+\frac{3}{2}\right)\right)/\left(\left(2.9392^2\times 3.9392^2\left((2.9392-11\right)\left(2.9392+12\right)\right.\\ & \left((2.9392-5\right)10.9392\log\left(2.9392^2+1\right)-\\ & \left(2.9392-5\right)10.9392\log\left(2.9392^2+1\right)\right)\right)/\\ & \left(2\left(2\times2.9392+1\right)\left(36\times49\right)\right)-4\right)\right)^{15}-\\ & \left(21-\pi\right)\right)^2-4+\frac{1}{2}=-\frac{469}{162}+\frac{14\pi}{243}+\frac{\pi^2}{729}+\\ & 199\,897\,926\,247\,620\,551\,792\,110\,523\,732\,099\,320\,281\,564\,713\,841\,504\,499\,214\,^{\circ}.\\ & 352\,108\,538\,150\,787\,353\,515\,625\,^{/}\\ & \left(782\,757\,789\,696\left(-4+0.00552406\left(6.8784-\right.\\ & 120.422\left(-126.3\left(\log\left(8.6389\right)-\sum_{k=1}^{\infty}\frac{\left(-0.115756\right)^k}{k}\right)+\\ & 22.5435\left(\log\left(15.5173\right)-\sum_{k=1}^{\infty}\frac{\left(-0.0644442\right)^k}{k}\right)\right)\right)\right)^{30}\right)-\\ & 98\,969\,684\,177\,193\,407\,055\,921\,852\,588\,653\,564\,453\,125\,^{/}\\ & \left(3\,981\,312\left(-4+0.00552406\right.\\ & \left(6.8784-120.422\left(-126.3\left(\log\left(8.6389\right)-\sum_{k=1}^{\infty}\frac{\left(-0.015756\right)^k}{k}\right)+\\ & 22.5435\left(\log\left(15.5173\right)-\sum_{k=1}^{\infty}\frac{\left(-0.0644442\right)^k}{k}\right)\right)\right)\right)^{15}\right)-\\ & \left(14\,138\,526\,311\,027\,629\,579\,417\,407\,512\,664\,794\,921\,875\,\pi\right)\,^{/}\\ & \left(11\,943\,936\left(-4+0.00552406\right.\\ & \left(6.8784-120.422\left(-126.3\left(\log\left(8.6389\right)-\sum_{k=1}^{\infty}\frac{\left(-0.115756\right)^k}{k}\right)+\\ & 22.5435\left(\log\left(15.5173\right)-\sum_{k=1}^{\infty}\frac{\left(-0.0644442\right)^k}{k}\right)\right)\right)\right)^{15}\right)-\\ \end{array}$$

$$\begin{aligned} \left(\frac{1}{27}\left(\left|\left(236+\frac{3}{2}\right)\right/\left(\left(2.9392^{2} \times 3.9392^{2}\left((2.9392-11\right)\left(2.9392+12\right)\right)\right.\\ &\left(\left(2.9392-12\right)\left(3.9392\log\left(2.9392^{2}+1\right)-\right.\\ &\left(2.9392-12\right)^{2}\left(3.9392\log\left(2.9392^{2}+1\right)-\right.\\ &\left(2.9392+1\right)^{2}+1\right)+\left(2\times2.9392+1\right)\right)\right)\right|^{15}-\\ &\left(21-\pi\right)\right)^{2}-4+\frac{1}{2}=-\frac{469}{162}+\frac{14\pi}{243}+\frac{\pi^{2}}{729}+\\ &199\,897\,926\,247\,620\,551\,792\,110\,523\,732\,099\,320\,281\,564\,713\,841\,504\,499\,214^{\circ}.\\ &352\,108\,538\,150\,787\,333\,515\,625\right/\\ &\left(782\,757\,789\,696\left(-4+0.00552406\left(6.8784-\right.\\ &120.422\left(-126.3\left(2\,i\pi\left\lfloor\frac{\arg\left(9.6389-x\right)}{2\pi}\right\rfloor+\log(x)-\right.\right)\right)\right)\\ &\left(\frac{5}{22.5435}\left(2\,i\pi\left\lfloor\frac{\arg\left(16.5173-x\right)}{2\pi}\right\rfloor+\log(x)-\right.\right)\\ &\left(\frac{5}{289}\,668\,4\,177\,193\,407\,055\,921\,852\,588\,653\,564\,453\,125\right/\\ &\left(3\,981\,312\right)\\ &\left(-4+0.00552406\left(6.8784-120.422\left(-126.3\left(2\,i\pi\left\lfloor\frac{\arg\left(9.6389-x\right)}{2\pi}\right\rfloor+\right)+\right)\\ &\left(22.5435\left\{2\,i\pi\left\lfloor\frac{\arg\left(9.6389-x\right)}{2\pi}\right\rfloor+\log(x)-\right.\right)\\ &\left(\frac{5}{281}\left(2\,i\pi\left\lfloor\frac{\arg\left(9.6389-x\right)}{2\pi}\right\rfloor+\log(x)-\right.\right)\\ &\left(\frac{5}{22.5435}\left\{2\,i\pi\left\lfloor\frac{\arg\left(9.6389-x\right)}{2\pi}\right\rfloor+\log(x)-\right.\right)\\ &\left(\frac{5}{2.5435}\left\{2\,i\pi\left\lfloor\frac{\arg\left(9.6389-x\right)}{2\pi}\right\rfloor+\log(x)-\right.\right)\\ &\left(\frac{5}{2.5435}\left\{2\,i\pi\left\lfloor\frac{\arg\left(9.6389-x\right)}{2\pi}\right\rfloor+\log(x)-\right.\right)\\ &\left(\frac{5}{2.5435}\left\{2\,i\pi\left\lfloor\frac{\arg\left(9.6389-x\right)}{2\pi}\right\rfloor+\log(x)-1\right)\\ &\left(\frac{5}{2.5435}\left\{2\,i\pi\left\lfloor\frac{\arg\left(9.6389-x\right)}{2\pi}\right\rfloor+\log(x)-1\right)\\ &\left(\frac{5}{2.5435}\left[2\,i\pi\left\lfloor\frac{\arg\left(9.6389-x\right)}{2\pi}\right]+1\right)\\ &\left(\frac{5}{2.5435}\left[2\,i\pi\left\lfloor\frac{\arg\left(9.6389-x\right)}{2\pi}\right]+1\right)\\ &\left(\frac{5}{2.5435}\left[2\,i\pi\left\lfloor\frac{\arg\left(9.6389-x\right)}{2\pi}\right]+1\right)\\ &\left(\frac{5}{2.5435}\left[2\,i\pi\left\lfloor\frac{\arg\left(9.6389-x\right)}{2\pi}\right]+1\right)\\ &\left(\frac{5}{2.5435}\left[2\,i\pi\left\lfloor\frac{\arg\left(9.6389-x\right)}{2\pi}\right]+1\right)\\ &\left(\frac{5}{2.5435}\left[2\,i\pi\left\lfloor\frac{\arg\left(9.6389-x\right)}{2\pi}\right]+1\right)\\ &\left(\frac{5}{2.5435}\left[2$$

$$\log(x) - \sum_{k=1}^{\infty} \frac{(-1)^{k} (5655^{-k})^{-k}}{k} + \log(x) - \frac{1}{2\pi} \sum_{k=1}^{\infty} \frac{(-1)^{k} (16.5173 - x)^{k} x^{-k}}{k})$$

for x < 0

$$\begin{pmatrix} 11\,943\,936 \left(-4 + 0.00552406 \left(6.8784 - 120.422 \left(-126.3 \left(\log(z_0) + \left(\frac{\arg(9.6389 - z_0)}{2\pi} \right) \right) \left(\log\left(\frac{1}{z_0}\right) + \log(z_0) \right) - \right) \right) \\ \sum_{k=1}^{\infty} \frac{(-1)^k (9.6389 - z_0)^k z_0^{-k}}{k} + 22.5435 \\ \left(\log(z_0) + \left(\frac{\arg(16.5173 - z_0)}{2\pi} \right) \left(\log\left(\frac{1}{z_0}\right) + \log(z_0) - \frac{2}{k=1} \frac{(-1)^k (16.5173 - z_0)^k z_0^{-k}}{k} \right) \right) \right) \right)^{15}$$

 $(14\,138\,526\,311\,027\,629\,579\,417\,407\,512\,664\,794\,921\,875$

π) /

$$\left(3981312 \\ \left(-4 + 0.00552406 \left(6.8784 - 120.422 \left(-126.3 \left(\log(z_0) + \left\lfloor \frac{\arg(9.6389 - z_0)}{2\pi} \right\rfloor \left(\log\left(\frac{1}{z_0}\right) + \log(z_0) \right) - \sum_{k=1}^{\infty} \frac{(-1)^k (9.6389 - z_0)^k z_0^{-k}}{k} \right) + 22.5435 \left(\log(z_0) + \left\lfloor \frac{\arg(16.5173 - z_0)}{2\pi} \right\rfloor \\ \left(\log\left(\frac{1}{z_0}\right) + \log(z_0) \right) - \sum_{k=1}^{\infty} \frac{(-1)^k (16.5173 - z_0)^k z_0^{-k}}{k} \right) \right) \right)^{15} \right) - 24.12852621102762057041407512664774021875$$

98 969 564 453 125/

 $\left(\frac{1}{27}\left(\!\left(\!\left(\!236+\frac{3}{2}\right)\!\right)\!\right/\left(\!\left(\!2.9392^2\times3.9392^2\left((2.9392-11)\left(2.9392+12\right)\right)\right)\right)$

$$(2.9392 - 5) 10.9392 \log((2.9392 + 1)^{2} + 1)) + (2 \times 2.9392 + 1)))/((2(2 \times 2.9392 + 1)(36 \times 49)) - 4))^{15} - (21 - \pi))^{2} - 4 + \frac{1}{2} = -\frac{469}{162} + \frac{14 \pi}{243} + \frac{\pi^{2}}{729} + (199 897926247620551792110523732099320281564713841504499214)))/(52757789696) = (-4 + 0.00552406) = (6.8784 - (120.422) = (-126.3) \left[\log(z_{0}) + \left[\frac{\arg(9.6389 - z_{0})}{2\pi} \right] \left(\log\left(\frac{1}{z_{0}}\right) + \log(z_{0}) \right) - \sum_{k=1}^{\infty} \frac{(-1)^{k} (9.6389 - z_{0})^{k} z_{0}^{-k}}{k} \right) + (22.5435) \left[\log(z_{0}) + \left[\frac{\arg(16.5173 - z_{0})}{2\pi} \right] \right] \left(\log\left(\frac{1}{z_{0}}\right) + \log(z_{0}) \right) - \sum_{k=1}^{\infty} \frac{(-1)^{k} (16.5173 - z_{0})^{k} z_{0}^{-k}}{k} \right) \right) = (108) \left(\frac{1}{z_{0}} + \log(z_{0}) \right) - \sum_{k=1}^{\infty} \frac{(-1)^{k} (16.5173 - z_{0})^{k} z_{0}^{-k}}{k} \right) = (108) \left(\frac{1}{z_{0}} + \log(z_{0}) \right) - \sum_{k=1}^{\infty} \frac{(-1)^{k} (16.5173 - z_{0})^{k} z_{0}^{-k}}{k} \right) = (108) \left(\frac{1}{z_{0}} + \log(z_{0}) \right) - \sum_{k=1}^{\infty} \frac{(-1)^{k} (16.5173 - z_{0})^{k} z_{0}^{-k}}{k} \right) = (108) \left(\frac{1}{z_{0}} + \log(z_{0}) \right) - \frac{2}{z_{k=1}^{\infty}} \frac{(-1)^{k} (16.5173 - z_{0})^{k} z_{0}^{-k}}{k} \right) = (108) \left(\frac{1}{z_{0}} + \log(z_{0}) \right) - \frac{2}{z_{k=1}^{\infty}} \frac{(-1)^{k} (16.5173 - z_{0})^{k} z_{0}^{-k}}{k} \right) = (108) \left(\frac{1}{z_{0}} + \log(z_{0}) \right) - \frac{2}{z_{k=1}^{\infty}} \frac{(-1)^{k} (16.5173 - z_{0})^{k} z_{0}^{-k}}{k} \right) = (108) \left(\frac{1}{z_{0}} + \log(z_{0}) \right) - \frac{2}{z_{k=1}^{\infty}} \frac{(-1)^{k} (16.5173 - z_{0})^{k} z_{0}^{-k}}{k} \right) = (108) \left(\frac{1}{z_{0}} + \log(z_{0}) \right) - \frac{2}{z_{k=1}^{\infty}} \frac{(-1)^{k} (16.5173 - z_{0})^{k} z_{0}^{-k}}{k} \right) = (108) \left(\frac{1}{z_{0}} + \log(z_{0}) \right) - \frac{2}{z_{k=1}^{\infty}} \frac{(-1)^{k} (16.5173 - z_{0})^{k} z_{0}^{-k}}{k} \right) = (108) \left(\frac{1}{z_{0}} + \log(z_{0}) \right) - \frac{2}{z_{k=1}^{\infty}} \frac{(-1)^{k} (16.5173 - z_{0})^{k} z_{0}^{-k}}{k} \right) = (108) \left(\frac{1}{z_{0}} + \frac{1}{z_{0}} + \frac{1}{z_{0}} \right) = (108) \left(\frac{1}{z_{0}} + \frac{1}{z_{0}} + \frac{1}{z_{0}} \right) = (108) \left(\frac{1}{z_{0}} + \frac{1}{z_{0}} + \frac{1}{z_{0}} + \frac{1}{z_{0}} \right) = (108) \left(\frac{1}{z_{0}} + \frac{1}{z_{0}} + \frac{1}{z_{0}} \right) = (108) \left(\frac{1}{z_{0}} + \frac{1}{z_{0}} + \frac{1}{z_{0}} + \frac{1}{z_{0}} + \frac{1}{z_{0}} \right) = (108) \left(\frac{1}{z_{0}} + \frac{1}{z_{0}} + \frac{1}{z_{0$$

 $\left((2.9392-12)\,13.9392\,\text{log}\!\left(2.9392^2+1\right)-\right.$

70

Now, we analyze the following equation:

$$\frac{1}{\pi} = \frac{2\sqrt{2}}{9801} \sum_{k=0}^{\infty} \frac{(4k)!(1103 + 26390k)}{(k!)^{4}396^{4k}}.$$

We obtain:

(2sqrt2)/9801 sum ((4k)!(1103+26390k)) / ((k!)^4 396^(4k)), k=0..infinity

Input interpretation

 $\frac{2\sqrt{2}}{9801} \sum_{k=0}^{\infty} \frac{(4\,k)!\,(1103+26\,390\,k)}{(k\,!)^4 \times 396^{4\,k}}$

n! is the factorial function

Result

 $\frac{1}{\pi}\approx 0.31831$

0.31831

From the following expression:

$$24 = \frac{\pi\sqrt{142}}{\log\left[\sqrt{\left(\frac{10+11\sqrt{2}}{4}\right)} + \sqrt{\left(\frac{10+7\sqrt{2}}{4}\right)}\right]}.$$

we have:

(Pi*sqrt(142))/ln[sqrt(1/4*(10+11sqrt2))+sqrt(1/4*(10+7sqrt2))]

Input

$$\frac{\pi \sqrt{142}}{\log \left(\sqrt{\frac{1}{4} \left(10 + 11 \sqrt{2}\right)} + \sqrt{\frac{1}{4} \left(10 + 7 \sqrt{2}\right)}\right)}$$

 $\log(x)$ is the natural logarithm

Exact result

$$\frac{\sqrt{142} \pi}{\log\left(\frac{1}{2}\sqrt{10+7\sqrt{2}} + \frac{1}{2}\sqrt{10+11\sqrt{2}}\right)}$$

Decimal approximation

24.0000000000000848609271479359429436295501181641940224711161612

 ≈ 24

The study of this function provides the following representations:

Alternate forms

$$\frac{2\sqrt{142} \pi}{\log\left(5 + \frac{9}{\sqrt{2}} + \sqrt{\frac{127}{2} + 45\sqrt{2}}\right)}$$

$$\frac{2\sqrt{142} \pi}{\log \left(5 + \frac{9}{\sqrt{2}} + \sqrt{\frac{1}{2}\left(127 + 90\sqrt{2}\right)}\right)}$$
$$\frac{\sqrt{142} \pi}{\log\left(\frac{1}{2}\left(\sqrt{10+7\sqrt{2}} + \sqrt{10+11\sqrt{2}}\right)\right)}$$

Alternative representations

$$\frac{\pi\sqrt{142}}{\log\left(\sqrt{\frac{1}{4}\left(10+11\sqrt{2}\right)} + \sqrt{\frac{1}{4}\left(10+7\sqrt{2}\right)}\right)} = \frac{\pi\sqrt{142}}{\pi\sqrt{142}}$$
$$\frac{\pi\sqrt{142}}{\log_{e}\left(\sqrt{\frac{1}{4}\left(10+7\sqrt{2}\right)} + \sqrt{\frac{1}{4}\left(10+11\sqrt{2}\right)}\right)}$$

$$\frac{\pi\sqrt{142}}{\log\left(\sqrt{\frac{1}{4}\left(10+11\sqrt{2}\right)}+\sqrt{\frac{1}{4}\left(10+7\sqrt{2}\right)}\right)} = \frac{\pi\sqrt{142}}{\pi\sqrt{142}}$$

$$\frac{\pi\sqrt{142}}{\log(a)\log_a\left(\sqrt{\frac{1}{4}\left(10+7\sqrt{2}\right)}+\sqrt{\frac{1}{4}\left(10+11\sqrt{2}\right)}\right)}$$

$$\frac{\pi\sqrt{142}}{\log\left(\sqrt{\frac{1}{4}\left(10+11\sqrt{2}\right)} + \sqrt{\frac{1}{4}\left(10+7\sqrt{2}\right)}\right)} = \frac{\pi\sqrt{142}}{\pi\sqrt{142}}$$
$$-\frac{\pi\sqrt{142}}{\text{Li}_1\left(1-\sqrt{\frac{1}{4}\left(10+7\sqrt{2}\right)} - \sqrt{\frac{1}{4}\left(10+11\sqrt{2}\right)}\right)}$$

Series representations

$$\begin{aligned} \frac{\pi\sqrt{142}}{\log\left(\sqrt{\frac{1}{4}\left(10+11\sqrt{2}\right)} + \sqrt{\frac{1}{4}\left(10+7\sqrt{2}\right)}\right)} &= \\ \frac{\sqrt{142}\pi}{\log\left(\frac{1}{2}\left(-2+\sqrt{10+7\sqrt{2}} + \sqrt{10+11\sqrt{2}}\right)\right) - \sum_{k=1}^{\infty} \frac{\left(-\frac{2}{-2+\sqrt{10+7\sqrt{2}} + \sqrt{10+11\sqrt{2}}}\right)^{k}}{k}} \end{aligned}$$

$$\frac{\pi\sqrt{142}}{\log\left(\sqrt{\frac{1}{4}\left(10+11\sqrt{2}\right)}+\sqrt{\frac{1}{4}\left(10+7\sqrt{2}\right)}\right)} = \frac{1}{\sqrt{142}\pi}$$

$$\log\left(-1+\frac{1}{2}\sqrt{10+7\sqrt{2}}+\frac{1}{2}\sqrt{10+11\sqrt{2}}\right) - \sum_{k=1}^{\infty}\frac{\left(-\frac{2}{-2+\sqrt{10+7\sqrt{2}}+\sqrt{10+11\sqrt{2}}}\right)^{k}}{k}$$

$$\begin{aligned} \frac{\pi \sqrt{142}}{\log\left(\sqrt{\frac{1}{4}\left(10+11\sqrt{2}\right)} + \sqrt{\frac{1}{4}\left(10+7\sqrt{2}\right)}\right)} &= \\ -\left(\left(i\sqrt{142} \pi\right) / \left(2\pi \left|\frac{\arg\left(\sqrt{10+7\sqrt{2}} + \sqrt{10+11\sqrt{2}} - 2x\right)\right|}{2\pi}\right| - \\ i\left(\log(x) - \sum_{k=1}^{\infty} \frac{\left(-\frac{1}{2}\right)^k \left(\sqrt{10+7\sqrt{2}} + \sqrt{10+11\sqrt{2}} - 2x\right)^k x^{-k}}{k}\right)\right) \\ & \text{for } x < 0 \end{aligned}$$

Integral representations

$$\frac{\pi\sqrt{142}}{\log\left(\sqrt{\frac{1}{4}\left(10+11\sqrt{2}\right)}+\sqrt{\frac{1}{4}\left(10+7\sqrt{2}\right)}\right)} = \frac{\sqrt{142}\pi}{\int_{1}^{\frac{1}{2}\left(\sqrt{10+7\sqrt{2}}+\sqrt{10+11\sqrt{2}}\right)}_{t}dt}$$

$$\frac{\pi \sqrt{142}}{\log\left(\sqrt{\frac{1}{4}\left(10+11\sqrt{2}\right)} + \sqrt{\frac{1}{4}\left(10+7\sqrt{2}\right)}\right)} = \frac{2i\sqrt{142}\pi^2}{\frac{2i\sqrt{142}\pi^2}{\int_{-i\infty+\gamma}^{i\infty+\gamma} \frac{\left(\frac{2}{-2+\sqrt{10+7\sqrt{2}}+\sqrt{10+11\sqrt{2}}}\right)^s \Gamma(-s)^2 \Gamma(1+s)}{\Gamma(1-s)}} \text{ for } -1 < \gamma < 0$$

Thence, inverting the previous expression

$$\frac{1}{\pi} = \frac{2\sqrt{2}}{9801} \sum_{k=0}^{\infty} \frac{(4k)!(1103 + 26390k)}{(k!)^{4}396^{4k}}.$$

we obtain:

 $(((1/((2sqrt2)/9801 sum ((4k)!(1103+26390k)) / ((k!)^4 396^{(4k)}), k=0..infinity)))^* sqrt(142))/ln[sqrt(1/4*(10+11sqrt2))+sqrt(1/4*(10+7sqrt2))]$

Input interpretation

$$\frac{\frac{1}{\frac{2\sqrt{2}}{9801}\sum\limits_{k=0}^{\infty}\frac{(4k)!(1103+26\,390\,k)}{(k!)^4\times396^{4\,k}}}\sqrt{142}}{\log\left(\sqrt{\frac{1}{4}\left(10+11\,\sqrt{2}\right)}+\sqrt{\frac{1}{4}\left(10+7\,\sqrt{2}\right)}\right)}$$

n! is the factorial function log(x) is the natural logarithm

Result

$$\frac{\sqrt{142} \pi}{\log\left(\frac{1}{2}\sqrt{10+7\sqrt{2}} + \frac{1}{2}\sqrt{10+11\sqrt{2}}\right)} \approx 24$$
24

The study of this function provides the following representations:

Alternate forms

$$\frac{2\sqrt{142} \pi}{\log\left(5 + \frac{9}{\sqrt{2}} + \sqrt{\frac{127}{2} + 45\sqrt{2}}\right)}$$

$$\frac{2\sqrt{142} \pi}{\log \left(5 + \frac{9}{\sqrt{2}} + \sqrt{\frac{1}{2}\left(127 + 90\sqrt{2}\right)}\right)}$$

$$\frac{\sqrt{142} \pi}{\log\left(\frac{1}{2}\left(\sqrt{10+7\sqrt{2}} + \sqrt{10+11\sqrt{2}}\right)\right)}$$

From which, we obtain:

$\begin{aligned} &72*(((1/((2sqrt2)/9801 sum ((4k)!(1103+26390k)) / ((k!)^4 396^{(4k)}), \\ &k=0..infinity)))*sqrt(142))/ln[sqrt(1/4*(10+11sqrt2))+sqrt(1/4*(10+7sqrt2))]+1 \end{aligned}$

Input interpretation

$$72 \times \frac{\frac{1}{\frac{2\sqrt{2}}{9801} \sum\limits_{k=0}^{\infty} \frac{(4k)! (1103 + 26390k)}{(k!)^4 \times 396^{4k}}}{\log\left(\sqrt{\frac{1}{4}\left(10 + 11\sqrt{2}\right)} + \sqrt{\frac{1}{4}\left(10 + 7\sqrt{2}\right)}\right)} + 1$$

n! is the factorial function log(x) is the natural logarithm

Result

$$1 + \frac{72\sqrt{142} \pi}{\log\left(\frac{1}{2}\sqrt{10+7\sqrt{2}} + \frac{1}{2}\sqrt{10+11\sqrt{2}}\right)} \approx 1729.$$

1729

This result is very near to the mass of candidate glueball $f_0(1710)$ scalar meson. Furthermore, 1728 occurs in the algebraic formula for the j-invariant of an elliptic curve. (1728 = $8^2 * 3^3$) The number 1728 is one less than the Hardy–Ramanujan number 1729 (taxicab number)

The study of this function provides the following representations:

Alternate forms

$$1 + \frac{144\sqrt{142} \pi}{\log\left(5 + \frac{9}{\sqrt{2}} + \sqrt{\frac{127}{2} + 45\sqrt{2}}\right)}$$

$$1 + \frac{144\sqrt{142} \pi}{\log\left(5 + \frac{9}{\sqrt{2}} + \sqrt{\frac{1}{2}\left(127 + 90\sqrt{2}\right)}\right)}$$

$$1 + \frac{72\sqrt{142} \pi}{\log\left(\frac{1}{2}\left(\sqrt{10+7\sqrt{2}} + \sqrt{10+11\sqrt{2}}\right)\right)}$$

 $\begin{array}{l} (1/27((72*(((1/((2sqrt2)/9801 sum ((4k)!(1103+26390k)) / ((k!)^4 396^{(4k)}), \\ k=0..infinity)))*sqrt(142))/ln[sqrt(1/4*(10+11sqrt2))+sqrt(1/4*(10+7sqrt2))])))^2 \end{array}$

Input interpretation

$$\left(\frac{1}{27} \left(72 \times \frac{\frac{1}{\frac{2\sqrt{2}}{9801} \sum\limits_{k=0}^{\infty} \frac{(4k)! (1103 + 26390k)}{(k!)^4 \times 396^{4k}}}{\log\left(\sqrt{\frac{1}{4} \left(10 + 11\sqrt{2}\right)} + \sqrt{\frac{1}{4} \left(10 + 7\sqrt{2}\right)}\right)}\right)\right)^2$$

n! is the factorial function $\log(x)$ is the natural logarithm

Result

$$\frac{9088 \pi^2}{9 \log^2 \left(\frac{1}{2} \sqrt{10 + 7 \sqrt{2}} + \frac{1}{2} \sqrt{10 + 11 \sqrt{2}}\right)} \approx 4096$$
$$4096 = 64^2$$

The study of this function provides the following representations:

Alternate forms

$$\frac{36352\,\pi^2}{9\log^2\left(5+\frac{9}{\sqrt{2}}+\sqrt{\frac{127}{2}+45\,\sqrt{2}}\right)}$$

$$\frac{36352\pi^2}{9\log^2\left(5+\frac{9}{\sqrt{2}}+\sqrt{\frac{1}{2}\left(127+90\sqrt{2}\right)}\right)}$$

$$(36352\pi^2) / \left(9 \left(-5 \log(2) + 2 \log\left(\sqrt{2 \left(10 - 7 \sqrt{2}\right)} + 2 \sqrt{10 - \sqrt{2}} + 2^{3/4} \sqrt{7 + 5 \sqrt{2}} + 2 \sqrt{10 - i \sqrt{142}} + 2 \sqrt{10 + i \sqrt{142}}\right)\right)^2 \right)$$

And also:

 $(72*(((1/((2sqrt2)/9801 sum ((4k)!(1103+26390k)) / ((k!)^4 396^{(4k)}), k=0..infinity)))*sqrt(142))/ln[sqrt(1/4*(10+11sqrt2))+sqrt(1/4*(10+7sqrt2))]+1)^{1/15}$

Input interpretation

$$\sqrt{72 \times \frac{\frac{2\sqrt{2}}{9801} \sum_{k=0}^{\infty} \frac{(4k)! (1103 + 26390k)}{(k!)^4 \times 396^{4k}}}{\log\left(\sqrt{\frac{1}{4} \left(10 + 11\sqrt{2}\right)} + \sqrt{\frac{1}{4} \left(10 + 7\sqrt{2}\right)}\right)} + 1}$$

n! is the factorial function log(x) is the natural logarithm

Result

$$\sqrt[15]{1 + \frac{72\sqrt{142} \pi}{\log\left(\frac{1}{2}\sqrt{10 + 7\sqrt{2}} + \frac{1}{2}\sqrt{10 + 11\sqrt{2}}\right)} \approx 1.64382$$

 $1.64382 \approx \zeta(2) = \frac{\pi^2}{6} = 1.644934 \dots$

Alternate forms

r

$$\sqrt[15]{1 + \frac{144\sqrt{142} \pi}{\log\left(5 + \frac{9}{\sqrt{2}} + \sqrt{\frac{127}{2} + 45\sqrt{2}}\right)}}$$

$$\sqrt[15]{1 + \frac{144\sqrt{142} \pi}{\log\left(5 + \frac{9}{\sqrt{2}} + \sqrt{\frac{1}{2}\left(127 + 90\sqrt{2}\right)}\right)}}$$

$$\sqrt[15]{1 + \frac{72\sqrt{142} \pi}{\log\left(\frac{1}{2}\left(\sqrt{10 + 7\sqrt{2}} + \sqrt{10 + 11\sqrt{2}}\right)\right)}}$$

And we have also:

(36*(((1/((2sqrt2)/9801 sum ((4k)!(1103+26390k)) / ((k!)^4 396^(4k)), k=0..infinity)))))+5

Input interpretation

$$36 \times \frac{1}{\frac{2\sqrt{2}}{9801} \sum_{k=0}^{\infty} \frac{(4 \ k)! \ (1103 + 26390 \ k)}{(k!)^4 \times 396^{4 \ k}}} + 5$$

n! is the factorial function

Result

 $\begin{array}{l} 5+36\,\pi\approx\,118.097\\ 118.097 \end{array}$

result very near to the value of the following soliton mass:

From:

The total energy or the soliton mass for a single soliton becomes.

$$\begin{split} E &= \int dx 2U(\phi) = \int dx \left(\frac{\lambda}{2}(\phi^2 - v^2)^2\right) = \mp \frac{2\lambda v}{\sqrt{2}m} \int_0^{\pm v} d\phi \left(\phi^2 - v^2\right) \\ &= \mp \frac{2\lambda v}{\sqrt{2}m} \left(\mp \frac{2v^3}{3}\right) = \frac{2\sqrt{2}m^3}{3\lambda} \end{split}$$

(2*sqrt2*125.35^3)/(3*125.35^2)

Input interpretation

 $\frac{2\sqrt{2}\times125.35^3}{3\times125.35^2}$

Result

118.18111336231164291152778771979043609913891305233362731513120343

118.18111336.....

Observations

We note that, from the number 8, we obtain as follows:

 8^{2} 64 $8^{2} \times 2 \times 8$ 1024 $8^{4} = 8^{2} \times 2^{6}$ True $8^{4} = 4096$ $8^{2} \times 2^{6} = 4096$ $2^{13} = 2 \times 8^{4}$ True $2^{13} = 8192$ $2 \times 8^{4} = 8192$

We notice how from the numbers 8 and 2 we get 64, 1024, 4096 and 8192, and that 8 is the fundamental number. In fact $8^2 = 64$, $8^3 = 512$, $8^4 = 4096$. We define it "fundamental number", since 8 is a Fibonacci number, which by rule, divided by the previous one, which is 5, gives 1.6, a value that tends to the golden ratio, as for all numbers in the Fibonacci sequence

Finally we note how $8^2 = 64$, multiplied by 27, to which we add 1, is equal to 1729, the so-called "Hardy-Ramanujan number". Then taking the 15th root of 1729, we obtain a value close to $\zeta(2)$ that 1.6438 ..., which, in turn, is included in the range of what we call "golden numbers"

Furthermore for all the results very near to 1728 or 1729, adding $64 = 8^2$, one obtain values about equal to 1792 or 1793. These are values almost equal to the Planck multipole spectrum frequency 1792.35 and to the hypothetical Gluino mass

Appendix

From: A. Sagnotti – AstronomiAmo, 23.04.2020

In the above figure, it is said that: "why a given shape of the extra dimensions? Crucial, it determines the predictions for α ".

We propose that whatever shape the compactified dimensions are, their geometry must be based on the values of the golden ratio and $\zeta(2)$, (the latter connected to 1728 or 1729, whose fifteenth root provides an excellent approximation to the above mentioned value) which are recurrent as solutions of the equations that we are going to develop. It is important to specify that the initial conditions are **always** values

belonging to a fundamental chapter of the work of S. Ramanujan "Modular equations and Appoximations to Pi" (see references). These values are some multiples of 8 (64 and 4096), 276, which added to 4096, is equal to 4372, and finally $e^{\pi\sqrt{22}}$

We have, in certain cases, the following connections:

Fig. 1

- Each Universe could be realized in a separate post-inflation "bubble"

Fig. 2

Stringscape - a small part of the string-theory landscape showing the new de Sitter solution as a local minimum of the energy (vertical axis). The global minimum occurs at the infinite size of the extra dimensions on the extreme right of the figure.

Figure 2. Lines in the complex plane where the Riemann zeta function ζ is real (green) depicted on a relief representing the positive absolute value of ζ for arguments $s \equiv \sigma + i\tau$ where the real part of ζ is positive, and the negative absolute value of ζ where the real part of ζ is negative. This representation brings out most clearly that the lines of constant phase corresponding to phases of integer multiples of 2π run down the hills on the left-hand side, turn around on the right and terminate in the non-trivial zeros. This pattern repeats itself infinitely many times. The points of arrival and departure on the right-hand side of the picture are equally spaced and given by equation (11).

Fig. 4

With regard the Fig. 4 the points of arrival and departure on the right-hand side of the picture are equally spaced and given by the following equation:

$$\tau'_k \equiv k \frac{\pi}{\ln 2},$$

with $k = ..., -2, -1, 0, 1, 2,$

we obtain:

2Pi/(ln(2))

Input: π

 $2 \times \frac{1}{\log(2)}$

Exact result:

 2π log(2)

Decimal approximation:

9.0647202836543876192553658914333336203437229354475911683720330958 ...

9.06472028365....

Alternative representations:

 $\frac{2\pi}{\log(2)} = \frac{2\pi}{\log_e(2)}$

 $\frac{2\pi}{\log(2)} = \frac{2\pi}{\log(a)\log_a(2)}$

$$\frac{2\pi}{\log(2)} = \frac{2\pi}{2\coth^{-1}(3)}$$

Series representations:

$$\frac{2\pi}{\log(2)} = \frac{2\pi}{2i\pi \lfloor \frac{\arg(2-x)}{2\pi} \rfloor + \log(x) - \sum_{k=1}^{\infty} \frac{(-1)^k (2-x)^k x^{-k}}{k}} \text{ for } x < 0$$

$$\frac{2\pi}{\log(2)} = \frac{2\pi}{\log(z_0) + \left\lfloor \frac{\arg(2-z_0)}{2\pi} \right\rfloor \left(\log\left(\frac{1}{z_0}\right) + \log(z_0) \right) - \sum_{k=1}^{\infty} \frac{(-1)^k (2-z_0)^k z_0^{-k}}{k}}{k}}$$

$$\frac{2\pi}{\log(2)} = \frac{2\pi}{2i\pi \left\lfloor \frac{\pi - \arg\left(\frac{1}{z_0}\right) - \arg(z_0)}{2\pi} \right\rfloor + \log(z_0) - \sum_{k=1}^{\infty} \frac{(-1)^k (2-z_0)^k z_0^{-k}}{k}}{k}$$

Integral representations:

$$\frac{2\pi}{\log(2)} = \frac{2\pi}{\int_{1}^{2} \frac{1}{t} dt}$$

$$\frac{2\pi}{\log(2)} = \frac{4i\pi^2}{\int_{-i\,\infty+\gamma}^{i\,\infty+\gamma}\frac{\Gamma(-s)^2\,\Gamma(1+s)}{\Gamma(1-s)}\,ds} \quad \text{for } -1 < \gamma < 0$$

From which:

 $(2\text{Pi}/(\ln(2)))^*(1/12 \pi \log(2))$

Input:

$$\left(2 \times \frac{\pi}{\log(2)}\right) \left(\frac{1}{12} \pi \log(2)\right)$$

log(x) is the natural logarithm

Exact result:

 $\frac{\pi^2}{6}$

Decimal approximation:

 $1.64493406\overline{68}482264364724151666460251892189499012067984377355582293$

•••

$$1.6449340668.... = \zeta(2) = \frac{\pi^2}{6} = 1.644934...$$

From:

Modular equations and approximations to π - Srinivasa Ramanujan Quarterly Journal of Mathematics, XLV, 1914, 350 – 372

We have that:

Hence

$$64g_{22}^{24} = e^{\pi\sqrt{22}} - 24 + 276e^{-\pi\sqrt{22}} - \cdots,$$

$$64g_{22}^{-24} = 4096e^{-\pi\sqrt{22}} + \cdots,$$

so that

$$64(g_{22}^{24} + g_{22}^{-24}) = e^{\pi\sqrt{22}} - 24 + 4372e^{-\pi\sqrt{22}} + \dots = 64\{(1+\sqrt{2})^{12} + (1-\sqrt{2})^{12}\}.$$

Hence

$$e^{\pi\sqrt{22}} = 2508951.9982\ldots$$

Again

$$G_{37} = (6 + \sqrt{37})^{\frac{1}{4}},$$

$$\begin{array}{rcl} 64G_{37}^{24} & = & e^{\pi\sqrt{37}} + 24 + 276e^{-\pi\sqrt{37}} + \cdots, \\ 64G_{37}^{-24} & = & 4096e^{-\pi\sqrt{37}} - \cdots, \end{array}$$

so that

$$64(G_{37}^{24}+G_{37}^{-24})=e^{\pi\sqrt{37}}+24+4372e^{-\pi\sqrt{37}}-\dots=64\{(6+\sqrt{37})^6+(6-\sqrt{37})^6\}.$$

Hence

$$e^{\pi\sqrt{37}} = 199148647.999978\dots$$

Similarly, from

$$g_{58} = \sqrt{\left(\frac{5+\sqrt{29}}{2}\right)},$$

we obtain

$$64(g_{58}^{24} + g_{58}^{-24}) = e^{\pi\sqrt{58}} - 24 + 4372e^{-\pi\sqrt{58}} + \dots = 64\left\{\left(\frac{5+\sqrt{29}}{2}\right)^{12} + \left(\frac{5-\sqrt{29}}{2}\right)^{12}\right\}.$$

Hence

$$e^{\pi\sqrt{58}} = 24591257751.99999982\dots$$

We note that, with regard 4372, we can to obtain the following results:

$$27((4372)^{1/2}-2-1/2(((\sqrt{(10-2\sqrt{5})-2)})((\sqrt{5-1}))))+\varphi$$

Input

$$27\left(\sqrt{4372} - 2 - \frac{1}{2} \times \frac{\sqrt{10 - 2\sqrt{5}} - 2}{\sqrt{5} - 1}\right) + \phi$$

 ϕ is the golden ratio

Result

...

$$\phi + 27 \left(-2 + 2\sqrt{1093} - \frac{\sqrt{10 - 2\sqrt{5}} - 2}{2(\sqrt{5} - 1)} \right)$$

Decimal approximation

1729.0526944170905625170637208637148763684189306538457854815447023

1729.0526944....

This result is very near to the mass of candidate glueball $f_0(1710)$ scalar meson. Furthermore, 1728 occurs in the algebraic formula for the j-invariant of an elliptic curve. (1728 = $8^2 * 3^3$) The number 1728 is one less than the Hardy–Ramanujan number 1729 (taxicab number)

Alternate forms

$$\frac{1}{8} \left(-27 \sqrt{5 \left(10-2 \sqrt{5}\right)} +58 \sqrt{5} +432 \sqrt{1093} -27 \sqrt{2 \left(5-\sqrt{5}\right)} -374 \right)$$

$$\phi - 54 + 54\sqrt{1093} + \frac{27}{4}\left(1 + \sqrt{5} - \sqrt{2(5 + \sqrt{5})}\right)$$

$$\phi - 54 + 54\sqrt{1093} - \frac{27\left(\sqrt{10 - 2\sqrt{5}} - 2\right)}{2\left(\sqrt{5} - 1\right)}$$

Minimal polynomial

256
$$x^8$$
 + 95 744 x^7 – 3 248 750 080 x^6 –
914 210 725 504 x^5 + 15 498 355 554 921 184 x^4 +
2 911 478 392 539 914 656 x^3 – 32 941 144 911 224 677 091 680 x^2 –
3 092 528 914 069 760 354 714 456 x + 26 320 050 609 744 039 027 169 013 041

Expanded forms

$$-\frac{187}{4} + \frac{29\sqrt{5}}{4} + 54\sqrt{1093} - \frac{27}{8}\sqrt{10 - 2\sqrt{5}} - \frac{27}{8}\sqrt{5(10 - 2\sqrt{5})}$$

$$-\frac{107}{2} + \frac{\sqrt{5}}{2} + 54\sqrt{1093} + \frac{27}{\sqrt{5}-1} - \frac{27\sqrt{10-2\sqrt{5}}}{2(\sqrt{5}-1)}$$

Series representations

$$27 \left(\sqrt{4372} - 2 - \frac{\sqrt{10 - 2\sqrt{5}}}{(\sqrt{5} - 1)2} \right) + \phi = \left(162 - 108\sqrt{1093} - 2\phi - 108\sqrt{4}\sum_{k=0}^{\infty} 4^{-k} \left(\frac{1}{2}\atop k\right) + 108\sqrt{1093}\sqrt{4}\sum_{k=0}^{\infty} 4^{-k} \left(\frac{1}{2}\atop k\right) + 2\phi\sqrt{4}\sum_{k=0}^{\infty} 4^{-k} \left(\frac{1}{2}\atop k\right) - 27\sqrt{9 - 2\sqrt{5}}\sum_{k=0}^{\infty} \left(\frac{1}{2}\atop k\right) (9 - 2\sqrt{5})^{-k} \right) / \left(2 \left(-1 + \sqrt{4}\sum_{k=0}^{\infty} 4^{-k} \left(\frac{1}{2}\atop k\right) \right) \right)$$

$$27\left(\sqrt{4372} - 2 - \frac{\sqrt{10 - 2\sqrt{5}} - 2}{(\sqrt{5} - 1)2}\right) + \phi = \left(162 - 108\sqrt{1093} - 2\phi - 108\sqrt{4}\sum_{k=0}^{\infty} \frac{\left(-\frac{1}{4}\right)^k \left(-\frac{1}{2}\right)_k}{k!} + 108\sqrt{1093}\sqrt{4}\sum_{k=0}^{\infty} \frac{\left(-\frac{1}{4}\right)^k \left(-\frac{1}{2}\right)_k}{k!} + 2\phi\sqrt{4}\sum_{k=0}^{\infty} \frac{\left(-\frac{1}{4}\right)^k \left(-\frac{1}{2}\right)_k}{k!} - 27\sqrt{9 - 2\sqrt{5}}\sum_{k=0}^{\infty} \frac{(-1)^k \left(-\frac{1}{2}\right)_k \left(9 - 2\sqrt{5}\right)^{-k}}{k!}\right)\right)$$
$$\left(2\left(-1 + \sqrt{4}\sum_{k=0}^{\infty} \frac{\left(-\frac{1}{4}\right)^k \left(-\frac{1}{2}\right)_k}{k!}\right)\right)$$

$$27 \left(\sqrt{4372} - 2 - \frac{\sqrt{10 - 2\sqrt{5}} - 2}{(\sqrt{5} - 1)2} \right) + \phi = \left(162 - 108\sqrt{1093} - 2\phi - 108\sqrt{z_0} \sum_{k=0}^{\infty} \frac{(-1)^k \left(-\frac{1}{2}\right)_k (5 - z_0)^k z_0^{-k}}{k!} + 108\sqrt{1093}\sqrt{z_0} \sum_{k=0}^{\infty} \frac{(-1)^k \left(-\frac{1}{2}\right)_k (5 - z_0)^k z_0^{-k}}{k!} + 2\phi\sqrt{z_0} \sum_{k=0}^{\infty} \frac{(-1)^k \left(-\frac{1}{2}\right)_k (5 - z_0)^k z_0^{-k}}{k!} - 27\sqrt{z_0} \sum_{k=0}^{\infty} \frac{(-1)^k \left(-\frac{1}{2}\right)_k (10 - 2\sqrt{5} - z_0)^k z_0^{-k}}{k!} \right) \right) \left(2 \left(-1 + \sqrt{z_0} \sum_{k=0}^{\infty} \frac{(-1)^k \left(-\frac{1}{2}\right)_k (5 - z_0)^k z_0^{-k}}{k!} \right) \right)$$
for (not ($z_0 \in \mathbb{R}$ and $-\infty < z_0 \le 0$))

Or:

$$27((4096+276)^{1/2}-2-1/2(((\sqrt{(10-2\sqrt{5})-2)})((\sqrt{5-1}))))+\varphi$$

Input

$$27\left(\sqrt{4096+276} - 2 - \frac{1}{2} \times \frac{\sqrt{10-2\sqrt{5}} - 2}{\sqrt{5} - 1}\right) + \phi$$

 ϕ is the golden ratio

Result

$$\phi + 27 \left(-2 + 2\sqrt{1093} - \frac{\sqrt{10 - 2\sqrt{5}} - 2}{2\left(\sqrt{5} - 1\right)} \right)$$

Decimal approximation

1729.0526944170905625170637208637148763684189306538457854815447023

1729.0526944.... as above

Alternate forms

$$\frac{1}{8} \left(-27 \sqrt{5 \left(10-2 \sqrt{5}\right)} +58 \sqrt{5}+432 \sqrt{1093}-27 \sqrt{2 \left(5-\sqrt{5}\right)} -374 \right)$$

$$\phi - 54 + 54\sqrt{1093} + \frac{27}{4}\left(1 + \sqrt{5} - \sqrt{2(5 + \sqrt{5})}\right)$$

$$\phi - 54 + 54\sqrt{1093} - \frac{27\left(\sqrt{10 - 2\sqrt{5}} - 2\right)}{2\left(\sqrt{5} - 1\right)}$$

Minimal polynomial

$$256 x^{8} + 95744 x^{7} - 3248750080 x^{6} -$$

$$914210725504 x^{5} + 15498355554921184 x^{4} +$$

$$2911478392539914656 x^{3} - 32941144911224677091680 x^{2} -$$

$$3092528914069760354714456 x + 26320050609744039027169013041$$

Expanded forms

$$-\frac{187}{4} + \frac{29\sqrt{5}}{4} + 54\sqrt{1093} - \frac{27}{8}\sqrt{10 - 2\sqrt{5}} - \frac{27}{8}\sqrt{5(10 - 2\sqrt{5})}$$

$$-\frac{107}{2} + \frac{\sqrt{5}}{2} + 54\sqrt{1093} + \frac{27}{\sqrt{5}-1} - \frac{27\sqrt{10-2\sqrt{5}}}{2\left(\sqrt{5}-1\right)}$$

Series representations

$$27 \left(\sqrt{4096 + 276} - 2 - \frac{\sqrt{10 - 2\sqrt{5}} - 2}{(\sqrt{5} - 1)2} \right) + \phi = \left(162 - 108\sqrt{1093} - 2\phi - 108\sqrt{4}\sum_{k=0}^{\infty} 4^{-k} \left(\frac{1}{2} \atop k\right) + 108\sqrt{1093}\sqrt{4}\sum_{k=0}^{\infty} 4^{-k} \left(\frac{1}{2} \atop k\right) + 2\phi\sqrt{4}\sum_{k=0}^{\infty} 4^{-k} \left(\frac{1}{2} \atop k\right) - 27\sqrt{9 - 2\sqrt{5}}\sum_{k=0}^{\infty} \left(\frac{1}{2} \atop k\right) (9 - 2\sqrt{5})^{-k} \right) / \left(2 \left(-1 + \sqrt{4}\sum_{k=0}^{\infty} 4^{-k} \left(\frac{1}{2} \atop k\right) \right) \right)$$

$$27 \left(\sqrt{4096 + 276} - 2 - \frac{\sqrt{10 - 2\sqrt{5}}}{(\sqrt{5} - 1)2} \right) + \phi = \left(162 - 108\sqrt{1093} - 2\phi - 108\sqrt{4} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{4}\right)^k \left(-\frac{1}{2}\right)_k}{k!} + 108\sqrt{1093}\sqrt{4} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{4}\right)^k \left(-\frac{1}{2}\right)_k}{k!} + 2\phi\sqrt{4} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{4}\right)^k \left(-\frac{1}{2}\right)_k}{k!} - 27\sqrt{9 - 2\sqrt{5}} \sum_{k=0}^{\infty} \frac{\left(-1\right)^k \left(-\frac{1}{2}\right)_k \left(9 - 2\sqrt{5}\right)^{-k}}{k!} \right) \right) \right)$$

$$27 \left(\sqrt{4096 + 276} - 2 - \frac{\sqrt{10 - 2\sqrt{5}} - 2}{(\sqrt{5} - 1)2} \right) + \phi = \left(162 - 108\sqrt{1093} - 2\phi - 108\sqrt{z_0} \sum_{k=0}^{\infty} \frac{(-1)^k \left(-\frac{1}{2}\right)_k (5 - z_0)^k z_0^{-k}}{k!} + 108\sqrt{1093}\sqrt{z_0} \sum_{k=0}^{\infty} \frac{(-1)^k \left(-\frac{1}{2}\right)_k (5 - z_0)^k z_0^{-k}}{k!} + 2\phi\sqrt{z_0} \sum_{k=0}^{\infty} \frac{(-1)^k \left(-\frac{1}{2}\right)_k (5 - z_0)^k z_0^{-k}}{k!} - 27\sqrt{z_0} \sum_{k=0}^{\infty} \frac{(-1)^k \left(-\frac{1}{2}\right)_k (10 - 2\sqrt{5} - z_0)^k z_0^{-k}}{k!} \right) \right) \left(2 \left(-1 + \sqrt{z_0} \sum_{k=0}^{\infty} \frac{(-1)^k \left(-\frac{1}{2}\right)_k (5 - z_0)^k z_0^{-k}}{k!} \right) \right) \right)$$

for (not $(z_0 \in \mathbb{R} \text{ and } -\infty < z_0 \le 0)$)

From which:

 $(27((4372)^{1/2}-2-1/2(((\sqrt{(10-2\sqrt{5})}-2))/((\sqrt{5}-1))))+\varphi)^{1/15}$

Input

$$\sqrt[15]{27\left(\sqrt{4372} - 2 - \frac{1}{2} \times \frac{\sqrt{10 - 2\sqrt{5}} - 2}{\sqrt{5} - 1}\right)} + \phi$$

 ϕ is the golden ratio

Exact result

$$\sqrt[15]{\psi + 27\left(-2 + 2\sqrt{1093} - \frac{\sqrt{10 - 2\sqrt{5}} - 2}{2(\sqrt{5} - 1)}\right)}$$

Decimal approximation

1.6438185685849862799902301317036810054185756873505184804834183124 ...

$$1.64381856858\ldots \approx \zeta(2) = \frac{\pi^2}{6} = 1.644934\ldots$$

Alternate forms

r.

$$\sqrt[15]{\phi - 54 + 54\sqrt{1093}} - \frac{27\left(\sqrt{10 - 2\sqrt{5}} - 2\right)}{2\left(\sqrt{5} - 1\right)}$$

$$\frac{1}{\sqrt[15]{\frac{2(\sqrt{5}-1)}{166-108\sqrt{5}-108\sqrt{1093}+108\sqrt{5465}-27\sqrt{2(5-\sqrt{5}\,)}}}}$$

root of $256 x^8 + 95744 x^7 - 3248750080 x^6 - 914210725504 x^5 + 15498355554921184 x^4 + 2911478392539914656 x^3 - 32941144911224677091680 x^2 - 3092528914069760354714456 x + 26320050609744039027169013041 near <math>x = 1729.05$

Minimal polynomial

15

```
\begin{array}{l} 256\,x^{120}+95\,744\,x^{105}-3\,248\,750\,080\,x^{90}-\\ 914\,210\,725\,504\,x^{75}+15\,498\,355\,554\,921\,184\,x^{60}+\\ 2\,911\,478\,392\,539\,914\,656\,x^{45}-32\,941\,144\,911\,224\,677\,091\,680\,x^{30}-\\ 3\,092\,528\,914\,069\,760\,354\,714\,456\,x^{15}+26\,320\,050\,609\,744\,039\,027\,169\,013\,041 \end{array}
```

Expanded forms

$$\sqrt[15]{\frac{1}{2}(1+\sqrt{5})+27\left(-2+2\sqrt{1093}-\frac{\sqrt{10-2\sqrt{5}}-2}{2(\sqrt{5}-1)}\right)}$$

$$\sqrt[15]{\sqrt{-\frac{187}{4} + \frac{29\sqrt{5}}{4} + 54\sqrt{1093} - \frac{27}{8}\sqrt{10 - 2\sqrt{5}}}} - \frac{27}{8}\sqrt{5(10 - 2\sqrt{5})}$$

All 15th roots of ϕ + 27 (-2 + 2 sqrt(1093) - (sqrt(10 - 2 sqrt(5)) - 2)/(2 (sqrt(5) - 1)))

$$e^{0} \sqrt{15} \phi + 27 \left(-2 + 2\sqrt{1093} - \frac{\sqrt{10 - 2\sqrt{5}} - 2}{2(\sqrt{5} - 1)} \right) \approx 1.64382$$
 (real, principal root)

$$e^{(2\,i\,\pi)/15} \sqrt[15]{\phi + 27\left(-2 + 2\,\sqrt{1093} - \frac{\sqrt{10 - 2\,\sqrt{5}} - 2}{2\left(\sqrt{5} - 1\right)}\right)} \approx 1.50170 + 0.6686\,i$$

$$e^{(4i\pi)/15} \sqrt[15]{\psi} \phi + 27 \left(-2 + 2\sqrt{1093} - \frac{\sqrt{10 - 2\sqrt{5}} - 2}{2(\sqrt{5} - 1)} \right) \approx 1.0999 + 1.2216 i$$

$$e^{(2\,i\,\pi)/5} \sqrt[15]{\phi + 27\left(-2 + 2\,\sqrt{1093} - \frac{\sqrt{10 - 2\,\sqrt{5}} - 2}{2\left(\sqrt{5} - 1\right)}\right)} \approx 0.5080 + 1.5634\,i$$

$$e^{(8\,i\,\pi)/15} \sqrt[15]{\phi + 27\left(-2 + 2\,\sqrt{1093} - \frac{\sqrt{10 - 2\,\sqrt{5}} - 2}{2\left(\sqrt{5} - 1\right)}\right)} \approx -0.17183 + 1.63481\,i$$

Series representations

$$\frac{15}{\sqrt{27}} \left\{ \sqrt{4372} - 2 - \frac{\sqrt{10 - 2\sqrt{5}} - 2}{(\sqrt{5} - 1)2} \right\} + \phi = \frac{1}{\sqrt{5}} \left\{ \left(\left(\left(162 - 108\sqrt{1093} - 2\phi - 108\sqrt{4}\sum_{k=0}^{\infty} 4^{-k} \left(\frac{1}{2}\atop k\right) + 108\sqrt{1093}\sqrt{4} \right) \right) \right\} - 2\phi - 108\sqrt{4}\sum_{k=0}^{\infty} 4^{-k} \left(\frac{1}{2}\atop k\right) + 108\sqrt{1093}\sqrt{4} \right) \\ = \sum_{k=0}^{\infty} 4^{-k} \left(\frac{1}{2}\atop k\right) + 2\phi\sqrt{4}\sum_{k=0}^{\infty} 4^{-k} \left(\frac{1}{2}\atop k\right) - 27\sqrt{9 - 2\sqrt{5}} \\ = \sum_{k=0}^{\infty} \left(\frac{1}{2}\atop k\right) (9 - 2\sqrt{5})^{-k} \right) \right\} - \left(-1 + \sqrt{4}\sum_{k=0}^{\infty} 4^{-k} \left(\frac{1}{2}\atop k\right) \right) \right\}$$
(1/15)

$$\begin{split} \sqrt{\frac{15}{27}\left[\sqrt{4372} - 2 - \frac{\sqrt{10 - 2\sqrt{5}} - 2}{(\sqrt{5} - 1)2}\right] + \phi} &= \\ \frac{1}{\sqrt{5}} \left[\left(\left(162 - 108\sqrt{1093} - 2\phi - 108\sqrt{4}\sum_{k=0}^{\infty} \frac{\left(-\frac{1}{4}\right)^k \left(-\frac{1}{2}\right)_k}{k!} + \frac{108\sqrt{1093}\sqrt{4}\sum_{k=0}^{\infty} \frac{\left(-\frac{1}{4}\right)^k \left(-\frac{1}{2}\right)_k}{k!} + 2\phi\sqrt{4}\sum_{k=0}^{\infty} \frac{\left(-\frac{1}{4}\right)^k \left(-\frac{1}{2}\right)_k}{k!} - \frac{27\sqrt{9 - 2\sqrt{5}}\sum_{k=0}^{\infty} \frac{\left(-1\right)^k \left(-\frac{1}{2}\right)_k \left(9 - 2\sqrt{5}\right)^{-k}}{k!} \right)}{k!} \right] \right] \\ \left(-1 + \sqrt{4}\sum_{k=0}^{\infty} \frac{\left(-\frac{1}{4}\right)^k \left(-\frac{1}{2}\right)_k}{k!} \right) \right] \land (1/15) \end{split}$$

$$\begin{split} \sqrt{\frac{15}{27}\left(\sqrt{4372} - 2 - \frac{\sqrt{10 - 2\sqrt{5}} - 2}{(\sqrt{5} - 1)2}\right) + \phi} &= \\ \frac{1}{\frac{15}{\sqrt{2}}}\left(\left\|\left(162 - 108\sqrt{1093} - 2\phi - 108\sqrt{z_0}\sum_{k=0}^{\infty}\frac{(-1)^k \left(-\frac{1}{2}\right)_k (5 - z_0)^k z_0^{-k}}{k!} + \right. \\ \left. 108\sqrt{1093}\sqrt{z_0}\sum_{k=0}^{\infty}\frac{(-1)^k \left(-\frac{1}{2}\right)_k (5 - z_0)^k z_0^{-k}}{k!} + \right. \\ \left. 2\phi\sqrt{z_0}\sum_{k=0}^{\infty}\frac{(-1)^k \left(-\frac{1}{2}\right)_k (5 - z_0)^k z_0^{-k}}{k!} - \right. \\ \left. 27\sqrt{z_0}\sum_{k=0}^{\infty}\frac{(-1)^k \left(-\frac{1}{2}\right)_k (10 - 2\sqrt{5} - z_0)^k z_0^{-k}}{k!} \right)}{k!} \right) \\ \left. \left(-1 + \sqrt{z_0}\sum_{k=0}^{\infty}\frac{(-1)^k \left(-\frac{1}{2}\right)_k (5 - z_0)^k z_0^{-k}}{k!} \right)}{k!} \right) \right) \land (1/15) \end{split}$$

Integral representation

$$(1+z)^{a} = \frac{\int_{-i\,\infty+\gamma}^{i\,\infty+\gamma} \frac{\Gamma(s)\,\Gamma(-a-s)}{z^{s}}\,ds}{(2\,\pi\,i)\,\Gamma(-a)} \quad \text{for } (0 < \gamma < -\operatorname{Re}(a) \text{ and } |\arg(z)| < \pi)$$

From:

An Update on Brane Supersymmetry Breaking

J. Mourad and A. Sagnotti - arXiv:1711.11494v1 [hep-th] 30 Nov 2017

From the following vacuum equations:

$$T e^{\gamma_E \phi} = -\frac{\beta_E^{(p)} h^2}{\gamma_E} e^{-2(8-p)C + 2\beta_E^{(p)} \phi}$$
$$16 k' e^{-2C} = \frac{h^2 \left(p + 1 - \frac{2\beta_E^{(p)}}{\gamma_E}\right) e^{-2(8-p)C + 2\beta_E^{(p)} \phi}}{(7-p)}$$

$$(A')^2 = k e^{-2A} + \frac{h^2}{16(p+1)} \left(7 - p + \frac{2\beta_E^{(p)}}{\gamma_E}\right) e^{-2(8-p)C + 2\beta_E^{(p)}\phi}$$

we have obtained, from the results almost equals of the equations, putting

4096 $e^{-\pi\sqrt{18}}$ instead of

$$_{e} - 2(8-p)C + 2\beta_{E}^{(p)}\phi$$

a new possible mathematical connection between the two exponentials. Thence, also the values concerning p, C, β_E and ϕ correspond to the exponents of e (i.e. of exp). Thence we obtain for p = 5 and $\beta_E = 1/2$:

$$e^{-6C+\phi} = 4096e^{-\pi\sqrt{18}}$$

Therefore, with respect to the exponentials of the vacuum equations, the Ramanujan's exponential has a coefficient of 4096 which is equal to 64^2 , while $-6C+\phi$ is equal to $-\pi\sqrt{18}$. From this it follows that it is possible to establish mathematically, the dilaton value.

For

exp((-Pi*sqrt(18)) we obtain:

Input:

 $\exp\!\!\left(-\pi\,\sqrt{\,18\,}\right)$

Exact result:

 $e^{-3\sqrt{2}\pi}$

Decimal approximation:

 $1.6272016226072509292942156739117979541838581136954016\ldots \times 10^{-6}$

1.6272016... * 10⁻⁶

Property:

 $e^{-3\sqrt{2}\ \pi}$ is a transcendental number

Series representations:

$$e^{-\pi\sqrt{18}} = e^{-\pi\sqrt{17}\sum_{k=0}^{\infty}17^{-k}\binom{1/2}{k}}$$
$$e^{-\pi\sqrt{18}} = \exp\left(-\pi\sqrt{17}\sum_{k=0}^{\infty}\frac{\left(-\frac{1}{17}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)$$
$$e^{-\pi\sqrt{18}} = \exp\left(-\frac{\pi\sum_{j=0}^{\infty}\operatorname{Res}_{s=-\frac{1}{2}+j}17^{-s}\Gamma\left(-\frac{1}{2}-s\right)\Gamma(s)}{2\sqrt{\pi}}\right)$$

Now, we have the following calculations:

$$e^{-6C+\phi} = 4096e^{-\pi\sqrt{18}}$$

$$e^{-\pi\sqrt{18}} = 1.6272016...*10^{-6}$$

from which:

$$\frac{1}{4096}e^{-6C+\phi} = 1.6272016\dots * 10^{-6}$$

$$0.000244140625 \ e^{-6C+\phi} = e^{-\pi\sqrt{18}} = 1.6272016... \ * \ 10^{-6}$$

Now:

$$\ln\left(e^{-\pi\sqrt{18}}\right) = -13.328648814475 = -\pi\sqrt{18}$$

And:

(1.6272016* 10^-6) *1/ (0.000244140625)

Input interpretation:

 $\frac{1.6272016}{10^6}\times\frac{1}{0.000244140625}$

Result:

0.0066650177536 0.006665017... Thence:

$$0.000244140625 \ e^{-6C+\phi} = e^{-\pi\sqrt{18}}$$

Dividing both sides by 0.000244140625, we obtain:

$$\frac{0.000244140625}{0.000244140625} e^{-6C+\phi} = \frac{1}{0.000244140625} e^{-\pi\sqrt{18}}$$

$$e^{-6C+\phi} = 0.0066650177536$$

Input interpretation:

 $\exp\left(-\pi\sqrt{18}\right) \times \frac{1}{0.000244140625}$

Result:

0.00666501785...

0.00666501785...

Series representations:

$$\frac{\exp(-\pi\sqrt{18})}{0.000244141} = 4096 \exp\left(-\pi\sqrt{17} \sum_{k=0}^{\infty} 17^{-k} {\binom{1}{2}}{k}\right)$$
$$\frac{\exp(-\pi\sqrt{18})}{0.000244141} = 4096 \exp\left(-\pi\sqrt{17} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{17}\right)^k \left(-\frac{1}{2}\right)_k}{k!}\right)$$

$$\frac{\exp(-\pi\sqrt{18})}{0.000244141} = 4096 \exp\left(-\frac{\pi\sum_{j=0}^{\infty} \operatorname{Res}_{s=-\frac{1}{2}+j} 17^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)}{2\sqrt{\pi}}\right)$$

Now:

$$e^{-6C+\phi} = 0.0066650177536$$
$$\exp(-\pi\sqrt{18}) \times \frac{1}{0.000244140625} =$$
$$e^{-\pi\sqrt{18}} \times \frac{1}{0.000244140625}$$
$$= 0.00666501785...$$

From:

ln(0.00666501784619)

Input interpretation:

log(0.00666501784619)

Result:

-5.010882647757...

-5.010882647757...

Alternative representations:

 $\log(0.006665017846190000) = \log_e(0.006665017846190000)$

 $\log(0.006665017846190000) = \log(a) \log_a(0.006665017846190000)$

 $log(0.006665017846190000) = -Li_1(0.993334982153810000)$

Series representations:

$$\log(0.006665017846190000) = -\sum_{k=1}^{\infty} \frac{(-1)^k \left(-0.993334982153810000\right)^k}{k}$$

$$\log(0.006665017846190000) = 2 i \pi \left[\frac{\arg(0.006665017846190000 - x)}{2 \pi} \right] + \log(x) - \sum_{k=1}^{\infty} \frac{(-1)^k (0.006665017846190000 - x)^k x^{-k}}{k} \quad \text{for } x < 0$$

$$\log(0.006665017846190000) = \left\lfloor \frac{\arg(0.006665017846190000 - z_0)}{2\pi} \right\rfloor \log\left(\frac{1}{z_0}\right) + \log(z_0) + \left\lfloor \frac{\arg(0.006665017846190000 - z_0)}{2\pi} \right\rfloor \log(z_0) - \sum_{k=1}^{\infty} \frac{(-1)^k \left(0.006665017846190000 - z_0\right)^k z_0^{-k}}{k}$$

Integral representation:

$$\log(0.006665017846190000) = \int_{1}^{0.006665017846190000} \frac{1}{t} dt$$

In conclusion:

$$-6C + \phi = -5.010882647757 \dots$$

and for C = 1, we obtain:

$\phi = -5.010882647757 + 6 = 0.989117352243 = \phi$

Note that the values of n_s (spectral index) 0.965, of the average of the Omega mesons Regge slope 0.987428571 and of the dilaton 0.989117352243, are also connected to the following two Rogers-Ramanujan continued fractions:

$$\frac{e^{-\frac{\pi}{5}}}{\sqrt{(\varphi-1)\sqrt{5}} - \varphi + 1} = 1 - \frac{e^{-\pi}}{1 + \frac{e^{-2\pi}}{1 + \frac{e^{-3\pi}}{1 + \frac{e^{-4\pi}}{1 + \frac{e^{-4\pi}}{1 + \dots}}}} \approx 0.9568666373$$

$$\frac{e^{-\frac{\pi}{\sqrt{5}}}}{\sqrt{5}} = 1 - \frac{e^{-\pi\sqrt{5}}}{1 + \frac{e^{-2\pi\sqrt{5}}}{1 + \frac{e^{-2\pi\sqrt{5}}}{1 + \frac{e^{-3\pi\sqrt{5}}}{1 + \frac{e^{-3\pi\sqrt{5}}}{1 + \frac{e^{-4\pi\sqrt{5}}}{1 + \dots}}}}}$$

(http://www.bitman.name/math/article/102/109/)

Also performing the 512th root of the inverse value of the Pion meson rest mass 139.57, we obtain:

((1/(139.57)))^1/512

Input interpretation:

0.990400732708644027550973755713301415460732796178555551684...

0.99040073.... result very near to the dilaton value **0**. **989117352243** = ϕ and to the value of the following Rogers-Ramanujan continued fraction:

$$\frac{e^{-\frac{\pi}{\sqrt{5}}}}{\sqrt{5}} = 1 - \frac{e^{-\pi\sqrt{5}}}{1 + \frac{e^{-2\pi\sqrt{5}}}{\sqrt{9^{5}\sqrt{5^{3}}} - 1}} \approx 0.9991104684$$

$$\frac{e^{-2\pi\sqrt{5}}}{1 + \frac{e^{-3\pi\sqrt{5}}}{1 + \frac{e^{-4\pi\sqrt{5}}}{1 + \frac{e^{-4\pi\sqrt{5}}}{1 + \dots}}}$$

From

Properties of Nilpotent Supergravity

E. Dudas, S. Ferrara, A. Kehagias and A. Sagnotti - arXiv:1507.07842v2 [hep-th] 14 Sep 2015

We have that:

Cosmological inflation with a tiny tensor–to–scalar ratio r, consistently with PLANCK data, may also be described within the present framework, for instance choosing

$$\alpha(\Phi) = i M \left(\Phi + b \Phi e^{ik\Phi} \right) . \tag{4.35}$$

This potential bears some similarities with the Kähler moduli inflation of [32] and with the polyinstanton inflation of [33]. One can verify that $\chi = 0$ solves the field equations, and that the potential along the $\chi = 0$ trajectory is now

$$V = \frac{M^2}{3} \left(1 - a \phi e^{-\gamma \phi} \right)^2 .$$
 (4.36)

We analyzing the following equation:

$$V = \frac{M^2}{3} \left(1 - a \phi e^{-\gamma \phi} \right)^2 \,.$$

$$\phi = \varphi - \frac{\sqrt{6}}{k},$$

 $a = \frac{b\gamma}{e} < 0, \qquad \gamma = \frac{k}{\sqrt{6}} < 0.$

We have:

$$(M^2)/3*[1-(b/euler number * k/sqrt6) * (\phi - sqrt6/k) * exp(-(k/sqrt6)(\phi - sqrt6/k))]^2$$

i.e.

 $V = (M^2)/3*[1-(b/euler number * k/sqrt6) * (\varphi - sqrt6/k) * exp(-(k/sqrt6)(\varphi - sqrt6/k))]^2$

For k = 2 and $\phi = 0.9991104684$, that is the value of the scalar field that is equal to the value of the following Rogers-Ramanujan continued fraction:

$$\frac{e^{-\frac{\pi}{\sqrt{5}}}}{\sqrt{5}} = 1 - \frac{e^{-\pi\sqrt{5}}}{1 + \frac{e^{-2\pi\sqrt{5}}}{\sqrt{9^{5}\sqrt{5^{3}}} - 1}} \approx 0.9991104684$$

$$\frac{e^{-2\pi\sqrt{5}}}{1 + \frac{e^{-3\pi\sqrt{5}}}{1 + \frac{e^{-4\pi\sqrt{5}}}{1 + \frac{e^{-4\pi\sqrt{5}}}{1 + \dots}}}$$

we obtain:

 $V = (M^2)/3*[1-(b/euler number * 2/sqrt6) * (0.9991104684- sqrt6/2) * exp(-(2/sqrt6)(0.9991104684- sqrt6/2))]^2$

Input interpretation:

$$V = \frac{M^2}{3} \left(1 - \left(\frac{b}{e} \times \frac{2}{\sqrt{6}} \right) \left(0.9991104684 - \frac{\sqrt{6}}{2} \right) \exp \left(-\frac{2}{\sqrt{6}} \left(0.9991104684 - \frac{\sqrt{6}}{2} \right) \right) \right)^2$$

$$V = \frac{1}{3} \left(0.0814845 \, b + 1 \right)^2 M^2$$

Solutions:

$$b = \frac{225.913 \left(-0.054323 \, M^2 \pm 6.58545 \times 10^{-10} \, \sqrt{M^4}\right)}{M^2} \quad (M \neq 0)$$

Alternate forms:

$$V = 0.00221324 \left(b + 12.2723\right)^2 M^2$$

 $V = 0.00221324 \left(b^2 M^2 + 24.5445 b M^2 + 150.609 M^2 \right)$

$$-0.00221324 b^2 M^2 - 0.054323 b M^2 - \frac{M^2}{3} + V = 0$$

Expanded form:

$$V = 0.00221324 b^2 M^2 + 0.054323 b M^2 + \frac{M^2}{3}$$

Alternate form assuming b, M, and V are positive:

 $V = 0.00221324 \left(b + 12.2723\right)^2 M^2$

Alternate form assuming b, M, and V are real:

$$V = 0.00221324 b^2 M^2 + 0.054323 b M^2 + 0.333333 M^2 + 0$$

Derivative:

$$\frac{\partial}{\partial b} \left(\frac{1}{3} \left(0.0814845 \, b + 1 \right)^2 M^2 \right) = 0.054323 \left(0.0814845 \, b + 1 \right) M^2$$

Implicit derivatives

 $\frac{\partial b(M,V)}{\partial V} = \frac{154317775011120075}{36961748(226802245 + 18480874b)M^2}$

$\partial b(M, V)$	= -	226 802 245	+ b
		18 480 874	
∂M		M	

$\partial M(b, V)$		154317775011120075
∂V	_	$2(226802245 + 18480874 b)^2 M$

- $\frac{\partial M(b, V)}{\partial b} = -\frac{18\,480\,874\,M}{226\,802\,245+18\,480\,874\,b}$
- $\frac{\partial V(b, M)}{\partial M} = \frac{2(226802245 + 18480874b)^2 M}{154317775011120075}$
- $\frac{\partial V(b, M)}{\partial b} = \frac{36961748 \left(226802245 + 18480874 b\right) M^2}{154317775011120075}$

Global minimum:

$$\min\left\{\frac{1}{3}\left(0.0814845\,b+1\right)^2\,M^2\right\} = 0 \text{ at } (b,\,M) = (-16,\,0)$$

Global minima:

$$\min\left\{\frac{1}{3}M^{2}\left(1-\frac{(b\ 2)\left(0.9991104684-\frac{\sqrt{6}}{2}\right)\exp\left(-\frac{2\left(0.9991104684-\frac{\sqrt{6}}{2}\right)}{\sqrt{6}}\right)\right)}{e\ \sqrt{6}}\right)\right\}=0$$

for $b=-\frac{226\ 802\ 245}{18\ 480\ 874}$

$$\min\left\{\frac{1}{3} M^2 \left(1 - \frac{(b\ 2)\left(0.9991104684 - \frac{\sqrt{6}}{2}\right)\exp\left(-\frac{2\left(0.9991104684 - \frac{\sqrt{6}}{2}\right)}{\sqrt{6}}\right)}{e\sqrt{6}}\right)\right\} = 0$$
 for $M = 0$

From:

$$b = \frac{225.913 \left(-0.054323 \, M^2 \pm 6.58545 \times 10^{-10} \, \sqrt{M^4}\right)}{M^2} \quad (M \neq 0)$$

we obtain

 $(225.913 \ (-0.054323 \ M^2 + 6.58545 \times 10^{\text{--}10} \ sqrt(M^4)))/M^2$

Input interpretation:

$$\frac{225.913 \left(-0.054323 \, M^2+6.58545 \times 10^{-10} \, \sqrt{M^4}\right)}{M^2}$$

Result:

$$\frac{225.913 \left(6.58545 \times 10^{-10} \sqrt{M^4} - 0.054323 M^2\right)}{M^2}$$

Plots:

Alternate form assuming M is real:

-12.2723

-12.2723 result very near to the black hole entropy value $12.1904 = \ln(196884)$

Alternate forms:

$$-\frac{12.2723\left(M^2-1.21228\times10^{-8}\sqrt{M^4}\right)}{M^2}$$

$$\frac{1.48774 \times 10^{-7} \sqrt{M^4} - 12.2723 M^2}{M^2}$$

Expanded form:

$$\frac{1.48774 \times 10^{-7} \sqrt{M^4}}{M^2} - 12.2723$$

Property as a function:

Parity

even

Series expansion at M = 0:

$$\left(\frac{1.48774 \times 10^{-7} \sqrt{M^4}}{M^2} - 12.2723\right) + O(M^6)$$

(generalized Puiseux series)

Series expansion at $M = \infty$:

-12.2723

Derivative:

$$\frac{d}{dM} \left(\frac{225.913 \left(6.58545 \times 10^{-10} \sqrt{M^4} - 0.054323 M^2 \right)}{M^2} \right) = \frac{3.55271 \times 10^{-15}}{M}$$

Indefinite integral:

$$\int \frac{225.913 \left(-0.054323 \, M^2 + 6.58545 \times 10^{-10} \, \sqrt{M^4}\right)}{M^2} \, dM = \frac{1.48774 \times 10^{-7} \, \sqrt{M^4}}{M} - 12.2723 \, M + \text{constant}$$

Global maximum:

$$\max \left\{ \frac{225.913 \left(6.58545 \times 10^{-10} \sqrt{M^4} - 0.054323 M^2 \right)}{M^2} \right\} = -\frac{M^2}{1140119826723990341497649} \text{ at } M = -1$$

Global minimum:

$$\min \left\{ \frac{225.913 \left(6.58545 \times 10^{-10} \sqrt{M^4} - 0.054323 M^2 \right)}{\frac{M^2}{140\,119\,826\,723\,990\,341\,497\,649}} \right\} = \frac{M^2}{11\,417\,594\,849\,251\,000\,000\,000} \text{ at } M = -1$$

Limit:

$$\lim_{M \to \pm \infty} \frac{225.913 \left(-0.054323 \, M^2 + 6.58545 \times 10^{-10} \, \sqrt{M^4}\right)}{M^2} = -12.2723$$

Definite integral after subtraction of diverging parts:

$$\int_0^\infty \left(\frac{225.913 \left(-0.054323 \, M^2 + 6.58545 \times 10^{-10} \, \sqrt{M^4} \right)}{M^2} - 12.2723 \right) dM = 0$$

From b that is equal to

$$\frac{225.913 \left(-0.054323 \, M^2+6.58545 \times 10^{-10} \, \sqrt{M^4}\right)}{M^2}$$

From:

$$V = \frac{1}{3} \left(0.0814845 \, b + 1 \right)^2 M^2$$

we obtain:

1/3 (0.0814845 ((225.913 (-0.054323 M^2 + 6.58545 $\times 10^{-10} \text{ sqrt}(\text{M}^4)))/\text{M}^2$) + 1)^2 M^2

Input interpretation:

$$\frac{1}{3} \left(0.0814845 \times \frac{225.913 \left(-0.054323 \, M^2 + 6.58545 \times 10^{-10} \, \sqrt{M^4} \right)}{M^2} + 1 \right)^2 M^2$$

Result:

0

Plots: (possible mathematical connection with an open string)

(possible mathematical connection with an open string)

Root:

M = 0

Property as a function:

Parity

even

Series expansion at M = 0:

 $O(M^{62194})$ (Taylor series)

Series expansion at $M = \infty$:

$$1.75541 \times 10^{-15} M^2 + O\left(\left(\frac{1}{M}\right)^{62\,194}\right)$$

(Taylor series)

Definite integral after subtraction of diverging parts:

$$\int_{0}^{\infty} \left(\frac{1}{3} M^{2} \left(1 + \frac{18.4084 \left(-0.054323 M^{2} + 6.58545 \times 10^{-10} \sqrt{M^{4}} \right)}{M^{2}} \right)^{2} - 1.75541 \times 10^{-15} M^{2} \right) dM = 0$$

For M = -0.5, we obtain:

$$\frac{1}{3} \left(0.0814845 \times \frac{225.913 \left(-0.054323 \, M^2 + 6.58545 \times 10^{-10} \, \sqrt{M^4} \right)}{M^2} + 1 \right)^2 M^2$$

1/3 (0.0814845 ((225.913 (-0.054323 (-0.5)² + 6.58545×10⁻¹⁰ sqrt((-0.5)⁴)))/(-0.5)²) + 1)² * (-0.5²)

Input interpretation:

$$\frac{1}{3} \left(\begin{array}{c} 0.0814845 \times \frac{225.913 \left(-0.054323 \left(-0.5 \right)^2 + 6.58545 \times 10^{-10} \sqrt{\left(-0.5 \right)^4} \right)}{\left(-0.5 \right)^2} + 1 \right)^2 \left(-0.5^2 \right)$$

Result:

-4.38851344947*10⁻¹⁶

For M = 0.2:

$$\frac{1}{3} \left(0.0814845 \times \frac{225.913 \left(-0.054323 \, M^2 + 6.58545 \times 10^{-10} \, \sqrt{M^4} \right)}{M^2} + 1 \right)^2 M^2$$

1/3 (0.0814845 ((225.913 (-0.054323 0.2^2 + 6.58545×10^-10 sqrt(0.2^4)))/0.2^2) + 1)^2 0.2^2

Input interpretation:

$$\frac{1}{3} \left(0.0814845 \times \frac{225.913 \left(-0.054323 \times 0.2^2 + 6.58545 \times 10^{-10} \sqrt{0.2^4} \right)}{0.2^2} + 1 \right)^2 \times 0.2^2$$

7.021621519159*10⁻¹⁷

For M = 3:

$$\frac{1}{3} \left(0.0814845 \times \frac{225.913 \left(-0.054323 \, M^2 + 6.58545 \times 10^{-10} \, \sqrt{M^4} \right)}{M^2} + 1 \right)^2 M^2$$

1/3 (0.0814845 ((225.913 (-0.054323 3^2 + 6.58545×10^-10 sqrt(3^4)))/3^2) + 1)^2 3^2

Input interpretation:

$$\frac{1}{3} \left(0.0814845 \times \frac{225.913 \left(-0.054323 \times 3^2 + 6.58545 \times 10^{-10} \sqrt{3^4} \right)}{3^2} + 1 \right)^2 \times 3^2$$

Result:

 $1.579864841810872363256294820161116875 \times 10^{-14}$

1.57986484181*10⁻¹⁴

For M = 2:

$$\frac{1}{3} \left(0.0814845 \times \frac{225.913 \left(-0.054323 \, M^2 + 6.58545 \times 10^{-10} \, \sqrt{M^4} \right)}{M^2} + 1 \right)^2 M^2$$

1/3 (0.0814845 ((225.913 (-0.054323 2^2 + 6.58545×10^-10 sqrt(2^4)))/2^2) + 1)^2 2^2

Input interpretation:

$$\frac{1}{3} \left(0.0814845 \times \frac{225.913 \left(-0.054323 \times 2^2 + 6.58545 \times 10^{-10} \sqrt{2^4} \right)}{2^2} + 1 \right)^2 \times 2^2$$

Result:

7.021621519*10⁻¹⁵

From the four results

7.021621519*10^-15; 1.57986484181*10^-14; 7.021621519159*10^-17;

-4.38851344947*10^-16

we obtain, after some calculations:

sqrt[1/(2Pi)(7.021621519*10^-15 + 1.57986484181*10^-14 +7.021621519*10^-17 - 4.38851344947*10^-16)]

Input interpretation:

$$\sqrt{\left(\frac{1}{2\pi} \left(7.021621519 \times 10^{-15} + 1.57986484181 \times 10^{-14} + 7.021621519 \times 10^{-17} - 4.38851344947 \times 10^{-16}\right)} \right)$$

Result:

 $5.9776991059... \times 10^{-8}$

 $5.9776991059*10^{-8}$ result very near to the Planck's electric flow 5.975498×10^{-8} that is equal to the following formula:

$$\phi_{\mathrm{P}}^{E} = \mathbf{E}_{\mathrm{P}} l_{\mathrm{P}}^{2} = \phi_{\mathrm{P}} l_{\mathrm{P}} = \sqrt{rac{\hbar c}{arepsilon_{0}}}$$

We note that:

 $\frac{1}{55*}(([(((1/[(7.021621519*10^{-15} + 1.57986484181*10^{-14} + 7.021621519*10^{-17} - 4.38851344947*10^{-16})]))^{1/7}] - ((\log^{(5/8)}(2))/(2 2^{(1/8)} 3^{(1/4)} e \log^{(3/2)}(3)))))$

Input interpretation:

$$\frac{1}{55} \left(\left(1 / \left(7.021621519 \times 10^{-15} + 1.57986484181 \times 10^{-14} + 7.021621519 \times 10^{-17} + 4.38851344947 \times 10^{-16} \right) \right) \land (1/7) - \frac{\log^{5/8}(2)}{2\sqrt[8]{2} \sqrt[4]{3} e \log^{3/2}(3)} \right)$$

log(x) is the natural logarithm

1.6181818182...

1.61818182... result that is a very good approximation to the value of the golden ratio 1.618033988749...

From the Planck units:

Planck Length

$$l_{
m P}=\sqrt{rac{4\pi\hbar G}{c^3}}$$

5.729475 * 10⁻³⁵ Lorentz-Heaviside value

Planck's Electric field strength

$${f E}_{
m P}=rac{F_{
m P}}{q_{
m P}}=\sqrt{rac{c^7}{16\pi^2arepsilon_0\,\hbar\,G^2}}$$

1.820306 * 10⁶¹ V*m Lorentz-Heaviside value

Planck's Electric flux

$$\phi_{
m P}^E = {f E}_{
m P} \, l_{
m P}^2 = \phi_{
m P} \, l_{
m P} = \sqrt{rac{\hbar c}{arepsilon_0}}$$

5.975498*10⁻⁸ V*m Lorentz-Heaviside value

Planck's Electric potential

$$\phi_P = V_P = rac{E_P}{q_P} = \sqrt{rac{c^4}{4\piarepsilon_0 G}}$$

1.042940*10²⁷ V Lorentz-Heaviside valu

Relationship between Planck's Electric Flux and Planck's Electric Potential

 $\mathbf{E}_{\mathbf{P}} * \mathbf{l}_{\mathbf{P}} = (1.820306 * 10^{61}) * 5.729475 * 10^{-35}$

Input interpretation:

 $\frac{\left(1.820306 \times 10^{61}\right) \times 5.729475}{10^{35}}$

Result: 1042 939 771 935 000 000 000 000 000

Scientific notation: $1.042939771935 \times 10^{27}$

 $1.042939771935^{*}10^{27} \approx 1.042940^{*}10^{27}$

Or:

 $\mathbf{E_P} * \mathbf{l_P}^2 / \mathbf{l_P} = (5.975498 * 10^{-8}) * 1 / (5.729475 * 10^{-35})$

Input interpretation:

 $5.975498\!\times\!10^{-8}\!\times\!\frac{1}{\frac{5.729475}{10^{35}}}$

Result: 1.04293988541707573556041347592929544155441816222254220500133... × 10^{27} 1.042939885417* $10^{27} \approx 1.042940*10^{27}$

Acknowledgments

We would like to thank Professor **Augusto Sagnotti** theoretical physicist at Scuola Normale Superiore (Pisa – Italy) for his very useful explanations and his availability

References

Collected Papers of Srinivasa Ramanujan - 2000 *of Srinivasa Ramanujan* (Author), G. H. Hardy, P. V. Seshu Aiyar, B. M. Wilson , Bruce Berndt

Modular equations and approximations to π - *Srinivasa Ramanujan* Quarterly Journal of Mathematics, XLV, 1914, 350 – 372

An Update on Brane Supersymmetry Breaking

J. Mourad and A. Sagnotti - arXiv:1711.11494v1 [hep-th] 30 Nov 2017

Properties of Nilpotent Supergravity

E. Dudas, S. Ferrara, A. Kehagias and A. Sagnotti - arXiv:1507.07842v2 [hep-th] 14 Sep 2015