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CHAPTER 5

Positive operators. Square root

5.1. Exercises with Solutions

Exercise 5.1.1. Are the matrices

A =

(
1 1
1 1

)
, B =

(
1 1
0 2

)
and C =

(
1 2
2 2

)
.

positive?

Exercise 5.1.2. Let S be the shift operator on `2(N). Is I − SS∗

positive?

Exercise 5.1.3. Let A ∈ B(`2) be the multiplication operator de-
fined by:

A(x1, x2, · · · , xn, · · · ) = (α1x1, α2x2, · · · , αnxn, · · · )
where (αn)n ∈ `∞. Show that

A ≥ 0 ⇐⇒ αn ≥ 0, ∀n ∈ N.

Exercise 5.1.4. Let A ∈ B(H) be self-adjoint. Show that eA is
positive.

Exercise 5.1.5. Let A, B ∈ B(H) be both positive. Does it follow
that AB + BA ≥ 0?

Exercise 5.1.6. Let A and B be two bounded and positive oper-
ators on a complex Hilbert space H. Show that if A + B = 0, then
A = B = 0.

Exercise 5.1.7. Let A be a matrix on a finite dimensional space
such that A ≥ 0 and trA=0. Show that A = 0.

Exercise 5.1.8. Let A, B, T ∈ B(H) where A and B are self-
adjoint.

(1) Show that:
A ≥ 0 =⇒ T ∗AT ≥ 0 and TAT ∗ ≥ 0.

(2) Show that:
A ≥ B =⇒ T ∗AT ≥ T ∗BT and TAT ∗ ≥ TBT ∗.
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Exercise 5.1.9. Let P, Q ∈ B(H) be two orthogonal projections.
Show that P −Q is an orthogonal projection iff P ≥ Q.

Exercise 5.1.10. Let A ∈ B(H) be positive.
(1) Show that

| < Ax, y > |2 ≤< Ax, x >< Ay, y >

for all x, y ∈ H.
(2) Infer that for every x ∈ H,

‖Ax‖2 ≤ ‖A‖ < Ax, x > .

Exercise 5.1.11. Let A ∈ B(H) be self-adjoint.
(1) Show that

−I ≤ A ≤ I ⇐⇒ ‖A‖ ≤ 1.

(2) Let α ≥ 0. Show that

−αI ≤ A ≤ αI ⇐⇒ ‖A‖ ≤ α.

Exercise 5.1.12. Let A, B ∈ B(H) be self-adjoint where A ≥ 0.
Show that

−A ≤ B ≤ A =⇒ ‖B‖ ≤ ‖A‖.

Exercise 5.1.13. Let A, B ∈ B(H) be both positive. Show that

‖A−B‖ ≤ max(‖A‖, ‖B‖).

Exercise 5.1.14. Let A, K ∈ B(H) be such that A is positive and
AK is self-adjoint. Prove that

| < AKx, x > | ≤ ||K|| < Ax, x >

for all x ∈ H.

Exercise 5.1.15. (cf. Exercise 5.1.29) Let A ∈ B(H) be positive
and let K ∈ B(H) be a contraction. Show that if AK∗ = KA, then

K2A = A(K∗)2 = KAK∗ ≤ A.

Exercise 5.1.16. Let A, B ∈ B(H) be commuting and positive.
Using the Reid Inequality, show that AB ≥ 0.

Exercise 5.1.17. Let A ∈ B(H) be positive. Show that An is also
positive for each n ∈ N.

Exercise 5.1.18. (cf. Exercise 5.1.19) Let A, B ∈ B(H) be such
that A ≥ B ≥ 0.

(1) Does it follow that A2 ≥ B2?
(2) Show that A2 ≥ B2 whenever AB = BA.
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Exercise 5.1.19. Let A, B ∈ B(H) be such that 0 ≤ A ≤ B and
AB = BA. Show that 0 ≤ An ≤ Bn for all n ∈ N.

Exercise 5.1.20. Let A be a bounded self-adjoint operator on an
R-Hilbert space H such that

∃c > 0,∀x ∈ H : < Ax, x >≥ c‖x‖2.

(1) Show that A is invertible.
(2) Let p(t) = t2 + at + b be a real polynomial having a strictly

negative discriminant. Show that p(A) is invertible.
(3) Application: Check that A2 + A + I is invertible whenever A

is self-adjoint.
(4) Show that the hypothesis A being self-adjoint cannot be simply

dropped.

Exercise 5.1.21. Let A ∈ B(H) be self-adjoint. Let

U = (A− iI)(A + iI)−1

(U is called the Cayley Transform of A).
(1) Explain why A + iI is invertible (so that (A + iI)−1 makes

sense!).
(2) Show that U is unitary.

Exercise 5.1.22. ([29]) Let U, V ∈ B(H) be both unitary. Show
that the following assertions are equivalent:

(1) ‖U − V ‖ < 2;
(2) U + V is invertible.

Exercise 5.1.23. Let A ∈ B(H). Show that

ReA ≥ 0 ⇐⇒ (A− αI)∗(A− αI) ≥ α2I, ∀α < 0.

Exercise 5.1.24. Find the square root (if it exists) of the following
operators:

(1) A : `2 → `2 defined by

A(x1, x2, · · · ) = (0, 0, x3, x4, · · · ).

(2) S is the shift operator on `2. What about S∗?

Exercise 5.1.25. Let (An) be a sequence of self-adjoint operators
in B(H). Prove that if (An) is bounded monotone increasing, then it
is strongly convergent to a self-adjoint operator in B(H).

Exercise 5.1.26. Let A ∈ B(H) be positive.
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(1) Suppose that ‖A‖ ≤ 1. Define a sequence (Bn) of operators
in B(H) by {

B0 = 0,
Bn+1 = Bn + 1

2
(A−B2

n).

Show that (Bn) is a sequence of positive self-adjoint operators
which is also bounded monotone increasing.

(2) Deduce that (Bn) strongly converges to a positive B ∈ B(H)
such that B2 = A. Infer also that any operator which com-
mutes with A commutes with B.

(3) Obtain the same conclusion by making no assumption this
time on the norm ‖A‖.

(4) Show that if B and C are positive and such that B2 = A and
C2 = A, then B = C.

Exercise 5.1.27. Give another proof of the uniqueness of the posi-
tive square root of positive operators (hint: if T ∈ B(H) is self-adjoint,
what is ‖T 4‖?).

Exercise 5.1.28. Let A and B be two positive operators on a com-
plex Hilbert space H.

(1) Show that if A and B commute, then AB (and hence BA) is
positive. Infer that

(AB)
1
2 = A

1
2 B

1
2 .

(2) Give an example showing the importance of the commutativity
of A and B for the result to hold.

(3) Prove the converse of the result in Question 1, that is, prove
that if A, B and AB are all positive operators, then A and B
must commute.

Exercise 5.1.29. (cf. Exercise 5.1.15) Let A, K ∈ B(H) where A
is positive and K is a contraction. Show that if AK = KA, then
K∗AK ≤ A.

Exercise 5.1.30. Let A, B ∈ B(H) be such that 0 ≤ A ≤ B.
(1) Show that

√
A ≤

√
B.

(2) If further A is taken to be invertible, then show that B too is
invertible and that B−1 ≤ A−1.

Exercise 5.1.31. Let A, B ∈ B(H) be such that AB = BA and
A, B ≥ 0. Show that

√
A + B ≤

√
A +

√
B ≤

√
2(A + B).
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Exercise 5.1.32. Let A be a self-adjoint operator on a complex
Hilbert space H such that ‖A‖ ≤ 1. Let I be the identity operator on
H.

(1) Justify the existence of (I − A2)
1
2 .

(2) Set U± = A± i(I −A2)
1
2 . Show that U± are unitary operators

on H.

Exercise 5.1.33. Show that any A ∈ B(H) may be written as a
linear combination of four unitary operators.

Exercise 5.1.34. Let H be a complex Hilbert space. If A, B ∈
B(H) are self-adjoint and BA ≥ 0, then show that

∀x ∈ H : ‖Ax‖ ≤ ‖Bx‖ ⇐⇒ ∃K ∈ B(H) positive contraction : A = KB.

Exercise 5.1.35. Let A, B ∈ B(H) be positive and commuting.
Show that

0 ≤ A ≤ B =⇒ A2 ≤ B2.

Exercise 5.1.36. ([7]) Let A, B, C ∈ B(H) be such that A, B ≥ 0.
Define an operator T on B(H ⊕H) by

T =

(
A C∗

C B

)
.

Show that

T ≥ 0 ⇐⇒ | < Cx, y > |2 ≤< Ax, x >< By, y >, ∀x, y ∈ H.

Exercise 5.1.37. Let A, B, C ∈ B(H) be such that B and C are
positive. Show that if BA = AC, then

√
BA = A

√
C.

Exercise 5.1.38. ([121]). Let A, B ∈ B(H) be such that either A
or B is positive. We want to show that

‖[A, B]‖ ≤ ‖A‖‖B‖...(1)

WLOG, we choose A ≥ 0.
(1) If B is a self-adjoint contraction, show that

‖[A, B]‖ ≤ ‖A‖.

(2) Deduce that if B is self-adjoint but not necessarily a contrac-
tion this time, then Inequality (1) still holds.

(3) Show, via an operator matrix trick, that Inequality (1) holds
for any B ∈ B(H).
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Exercise 5.1.39. ([158], cf. Exercise 5.1.40) Let T ∈ B(H) be such
that T 2 = 0 and Re T ≥ 0 (or Im T ≥ 0). Show that T is normal and
so T = 0.

Exercise 5.1.40. ([77]) Let T = A + iB ∈ B(H) and let n ≥ 2.
Show that if T n = 0 and A ≥ 0 (or B ≥ 0), then T = 0.

Exercise 5.1.41. Let p and q be two relatively prime numbers, and
let A, B ∈ B(H) be such that Ap = Bp and Aq = Bq. Show that
A = B whenever A is invertible.

5.2. Solutions

Solution 5.2.1. Both A and B are positive. Let x, y ∈ R. Then

<

(
1 1
1 1

) (
x
y

)
,

(
x
y

)
>= <

(
x + y
x + y

)
,

(
x
y

)
>

=x2 + yx + xy + y2

=(x + y)2 ≥ 0.

As for B, despite the fact that

<

(
1 1
0 2

) (
x
y

)
,

(
x
y

)
> =<

(
x + y
2y

)
,

(
x
y

)
>

= x2 + yx + 2y2

=
(
x +

y

2

)2

+
7

4
y2 > 0,

we cannot consider it as a positive matrix as B is not symmetric!
In fine, C is not positive because

<

(
1 2
2 2

) (
x
y

)
,

(
x
y

)
>= x2 + 4xy + 2y2

can be negative (e.g. if x = 1 and y = −1).

Solution 5.2.2. The answer is yes. Let x = (x1, x2, · · · ) ∈ `2.
Then we already know that

S(S∗x) = S(x2, x3, · · · ) = (0, x2, x3, · · · ).
Hence

(I − SS∗)(x1, x2, · · · ) = (x1, x2, · · · )− (0, x2, · · · ) = (x1, 0, 0, · · · ).
Thence
< (I−SS∗)x, x >=< (x1, 0, 0, · · · ), (x1, x2, · · · ) >= x1x1+0+· · · = |x1|2.
Therefore, I − SS∗ is positive.
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Remark. We know that S∗S = I. This means that we have
just shown that SS∗ ≤ S∗S. In fact, any isometry A verifies AA∗ ≤
A∗A . This seems to be an unnecessary observation but this shows
that the shift operator belongs to an important class of operators (see
Hyponormal Operators).

Solution 5.2.3. We know that A is self-adjoint iff αn is real-
valued for each n. If αn ≥ 0 for all n, then clearly for any x =
(x1, x2, · · · , xn, · · · ) ∈ `2

< Ax, x >=
∞∑

n=1

αn|xn|2 ≥ 0,

i.e. A ≥ 0.
Conversely, if A ≥ 0, then for any x = (x1, x2, · · · , xn, · · · ) ∈ `2

< Ax, x >=
∞∑

n=1

αn|xn|2 ≥ 0.

In particular, for x = en (from the usual orthonormal basis), we have
that αn ≥ 0 for all n, as needed.

Solution 5.2.4. Let x ∈ H. Since A is self-adjoint, A/2 too is
self-adjoint so that e

A
2 is self-adjoint. We may then write for all x ∈ H

< eAx, x >=< e
A
2 e

A
2 x, x >=< e

A
2 x, e

A
2 x >= ‖e

A
2 x‖2 ≥ 0.

Solution 5.2.5. No! Consider the positive matrices

A =

(
1 1
1 1

)
and B =

(
0 0
0 1

)
.

Then,

AB =

(
0 1
0 1

)
and BA = (AB)∗ =

(
0 0
1 1

)
.

But
AB + BA =

(
0 1
1 2

)
is not positive (why?).

Solution 5.2.6. Let x ∈ H. We may write for all x ∈ H

0 =< (A + B)x, x >=< Ax, x > + < Bx, x > .

But < Ax, x > and < Bx, x > are two positive real numbers because
A and B are positive operators. Therefore,

< Ax, x >= 0 and < Bx, x >= 0 for all x ∈ H,

i.e. A = B = 0.
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Solution 5.2.7. Since A ≥ 0, A is self-adjoint. Hence it is diago-
nalizable (a well known fact or see e.g. [10]). Thus, for some invertible
P ,

P−1AP = D,

where D is a diagonal matrix whose diagonal contains the eigenvalues
of A which are all positive (why?). But, clearly

trD = tr(P−1AP ) = tr(APP−1) = trA.

Since trA=0, trD=0, that is, the sum of the positive eigenvalues van-
ishes. This forces D = 0 or A = 0.

Solution 5.2.8.
(1) Let x ∈ H. Then

< T ∗ATx, x >=< ATx, T ∗∗x >=< ATx, Tx >≥ 0

since A is positive. A similar argument applies to prove the
other inequality.

(2) Since A − B ≥ 0, we may just apply the previous results to
have

T ∗(A−B)T ≥ 0 or T ∗AT ≥ T ∗BT

(since also T ∗AT and T ∗BT are self-adjoint) and

T (A−B)T ∗ ≥ 0 or TAT ∗ ≥ TBT ∗.

Solution 5.2.9. Assume that P −Q is an orthogonal projection.
Then (P −Q)2 = P −Q so that for all x ∈ H, we have

< (P−Q)x, x >=< (P−Q)2x, x >=< (P−Q)x, (P−Q)x >= ‖(P−Q)x‖2 ≥ 0,

meaning that P ≥ Q.
Conversely, assume that P ≥ Q. Then we leave it to the reader to

show that this is equivalent to saying that PQ = Q, and also equivalent
to QP = Q. Hence

(P −Q)2 = P 2 − PQ−QP + Q2 = P −Q−Q + Q = P −Q.

Accordingly, P −Q is an orthogonal projection (because P −Q is also
self-adjoint).

Solution 5.2.10.
(1) Let x, y ∈ H. Define

[x, y] =< Ax, y > .

Then [·, ·] verifies all the properties of an inner product except
perhaps that we may have [x, x] = 0 for some x 6= 0. So, to
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establish the required inequality, just proceed as in the first
question of Exercise 3.3.7.

Remark. ([132]) Another way of establishing the previ-
ous inequality is to set < x, y >r=< Ax, y > +r < x, y >
where r > 0. Then show that < ·, · >r is an inner product, ap-
ply the standard Cauchy-Schwarz Inequality to it, send r → 0
and finally get the desired generalization!

(2) Setting y = Ax in the previous result, we get

‖Ax‖4 = | < Ax,Ax > |2 ≤< Ax, x >< A2x, Ax >≤< Ax, x > ‖A2x‖‖Ax‖.
Whence

‖Ax‖4 ≤< Ax, x > ‖A‖‖Ax‖‖Ax‖ =⇒ ‖Ax‖4 ≤< Ax, x > ‖A‖‖Ax‖2.

Thus
‖Ax‖2 ≤ ‖A‖ < Ax, x > .

Remark. Another way of proving the previous inequal-
ity is via the Reid Inequality (as observed in [183]). Indeed,
setting A = K in the Reid Inequality gives a shorter proof of
this result.

Solution 5.2.11.
(1) Since A is self-adjoint, < Ax, x > is real (for all x ∈ H). We

may then write

< (±A− I)x, x > = ± < Ax, x > −‖x‖2

= | < Ax, x > | − ‖x‖2

≤ ‖Ax‖‖x‖ − ‖x‖2 (by the Cauchy-Schwarz Inequality)
= (‖Ax‖ − ‖x‖)‖x‖.

If ‖A‖ ≤ 1, then clearly ‖Ax‖ ≤ ‖A‖‖x‖ ≤ ‖x‖ for each
x ∈ H. Hence

< (±A− I)x, x >≤ 0 or merely ± A ≤ I,

i.e. −I ≤ A ≤ I.
To prove the other implication, notice that if −I ≤ A ≤ I,

then

∀x ∈ H : ± < Ax, x >≤ ‖x‖2 or | < Ax, x > | ≤ ‖x‖2

for all x ∈ H. Passing to the supremum over ‖x‖ = 1 yields
(by taking into account the self-adjointness of A)

‖A‖ = sup
‖x‖=1

| < Ax, x > | ≤ 1
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and this marks the end of the proof.
(2) If α = 0, then the results is obvious. If α > 0, then apply the

previous question with 1
α
A instead of A.

Solution 5.2.12. By assumption, for all x ∈ H

− < Ax, x >≤< Bx, x >≤< Ax, x > or merely | < Bx, x > | ≤< Ax, x > .

Therefore,

‖B‖ = sup
‖x‖=1

| < Bx, x > | ≤ sup
‖x‖=1

< Ax, x >= ‖A‖,

as desired.

Solution 5.2.13. WLOG, we may assume that ‖A‖ ≥ ‖B‖. So
we must show that

‖A−B‖ ≤ ‖A‖.
Since A, B ≥ 0, they are self-adjoint, and so is then A − B. Again,
since A, B ≥ 0, we have

−B ≤ A−B ≤ A.

Also for all x ∈ H, we have (by the Cauchy-Schwarz Inequality)

< Ax, x >≤ ‖Ax‖‖x‖ ≤ ‖A‖ < Ix, x >=< ‖A‖Ix, x >,

i.e. A ≤ ‖A‖I. Similarly, we find that −B ≥ −‖B‖I. Thus,

−‖B‖I ≤ A−B ≤ ‖A‖I.

Taking into account the choice ‖A‖ ≥ ‖B‖ yields

−‖A‖I ≤ A−B ≤ ‖A‖I.

Finally, by Exercise 5.1.11, we then obtain

‖A−B‖ ≤ ‖A‖ = max(‖A‖, ‖B‖).

Solution 5.2.14. The proof presented here is mostly due to Reid
in [183]. WLOG, we may assume that ‖K‖ ≤ 1 (why?). Therefore,
we need only show

| < AKx, x > | ≤< Ax, x >

for all x ∈ H.
Since AK is self-adjoint, it follows that AK = K∗A. Hence

AK2 = K∗AK = (K∗)2A = (AK2)∗, AK3 = (K∗)2AK = (K∗)3A = (AK3)∗, · · · ,

so by induction, for each n, AKn is self-adjoint.
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Since A ≥ 0, Corollary ?? yields for all x ∈ H:

| < AKx, x > | ≤1

2
[< Ax, x > + < AKx,Kx >]

=
1

2
[< Ax, x > + < K∗AKx, x >]

=
1

2
[< Ax, x > + < AK2x, x >].

Thanks to the previous inequality and by doing a little induction,
we get for all n (and all x)

| < AKx, x > | ≤ (2−1+· · ·+2−n) < Ax, x > +2−n < AK2n

x, x > ...(1)

Since ‖K‖ ≤ 1, we have by the Cauchy-Schwarz Inequality

| < AK2n

x, x > | ≤ ‖AK2n

x‖‖x‖ ≤ ‖A‖‖K2n‖‖x‖2 ≤ ‖A‖‖K‖2n‖x‖2 ≤ ‖A‖‖x‖2

and so passing to the limit as n →∞ in (1) gives clearly

| < AKx, x > | ≤< Ax, x >,

as suggested.

Solution 5.2.15. First, observe that

AK∗ = KA =⇒ A(K∗)2 = KAK∗ = K2A.

Since A is positive, so is KAK∗ or A(K∗)2. Thereupon, using Reid
Inequality, we know that

< KAK∗x, x >=< A(K∗)2x, x >= | < A(K∗)2x, x > | ≤< Ax, x > .

So much for the proof.

Solution 5.2.16. WLOG, we may suppose that 0 ≤ B ≤ I (oth-
erwise work with B

‖B‖). Hence ‖I − B‖ ≤ 1. Since A(I − B) is clearly
self-adjoint and A ≥ 0, it follows from Reid Inequality that

AB = A− A(I −B) ≥ 0.

Solution 5.2.17. The proof follows by induction (using the fact
that the product of two positive commuting operators remains posi-
tive). Alternatively, we can treat two cases: n being even and n being
odd (remembering that a positive operator is self-adjoint). Details are
left to the reader.

Solution 5.2.18.
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(1) The answer is no! Anticipating a little bit, we know from
Question 2 that we need to choose two non-commuting A and
B. Consider

A =

(
2 1
1 1

)
and B =

(
1 0
0 0

)
.

Observe that both A and B are positive. So it only remains to
check that A ≥ B whereas A2 6≥ B2, that is, we need to verify
that A−B ≥ 0 and that A2 −B2 6≥ 0. We see that

A−B =

(
1 1
1 1

)
≥ 0

whereas

A2 −B2 =

(
5 3
3 2

)
−

(
1 0
0 0

)
=

(
4 3
3 2

)
6≥ 0

(check it).
(2) Since AB = BA, we clearly have

A2 −B2 = (A + B)(A−B).

But, A ≥ B means that A − B ≥ 0. Also, it is plain that
A + B ≥ 0.

The fact that A−B commutes with A+B (as AB = BA)
imply that

(A + B)(A−B) = A2 −B2 ≥ 0,

and hence A2 ≥ B2 (remember that A2 and B2 are self-
adjoint, a simple but a crucial point!). This marks the
end of the proof.

Solution 5.2.19. Since AB = BA, we have

0 ≤ A ≤ B =⇒ 0 ≤ A2 ≤ AB

and
0 ≤ A ≤ B =⇒ 0 ≤ AB ≤ B2.

Hence
A2 ≤ B2

(which is another proof of the result of Exercise 5.1.18). Using a similar
argument, and a proof by induction, we can easily prove the required
inequality for n ∈ N...

Solution 5.2.20.
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(1) Let x ∈ H. By the Cauchy-Schwarz Inequality

c‖x‖2 ≤< Ax, x >≤ ‖Ax‖‖x‖.

Therefore ‖Ax‖ ≥ c‖x‖. Since A is self-adjoint, the result
follows.

(2) By hypothesis 4 = a2 − 4b < 0. Then

p(A) = A2 + aA + bI

is self-adjoint. We may write

A2 + aA + bI =
(
A +

a

2
I
)2

+ b− a2

4
=

(
A +

a

2
I
)2

− 44.

Since A + a/2I is self-adjoint, (A + a
2
I)2 is positive. Hence for

all x ∈ H

< p(A)x, x >≥ −44︸ ︷︷ ︸
>0

< x, x > .

Thus p(A) is invertible by the foregoing question.
(3) Straightforward!
(4) Let

A =

(
0 −1
1 0

)
.

Then A is not self-adjoint. It is also easy to see that

A2 = −I or A2 + I = 0.

With the above notation, a = 0 and b = 1 and so a2 − 4b < 0.
In the end, it is clear that A2 + I is not invertible.

Solution 5.2.21.

(1) Let x ∈ H. By considering

‖(A + iI)x‖2 =< (A + iI)x, (A + iI)x >,

one can easily see that

∀x ∈ H : ‖(A + iI)x‖ ≥ ‖x‖.

Hence A+ iI is bounded below. Since A is self-adjoint, A+ iI
is normal. Therefore, A + iI is invertible.
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(2) First we compute U∗. We have

U∗ =[(A− iI)(A + iI)−1]∗

=[(A + iI)−1]∗(A− iI)∗

=[(A + iI)∗]−1(A∗ + iI∗)

=[(A∗ − iI∗)]−1(A∗ + iI)

=(A− iI)−1(A + iI) (because A is self-adjoint).

Since A commutes with multiples of the identity, we easily see
that

U∗U =[(A− iI)]−1(A + iI)(A− iI)(A + iI)−1

= [(A− iI)]−1(A− iI)︸ ︷︷ ︸
I

(A + iI)(A + iI)−1︸ ︷︷ ︸
I

=I.

In a similar vein, we find that UU∗ = I, that is, U is unitary.

Solution 5.2.22.
(1) "(1) ⇒ (2)": First, we set

A =
1

2
(U + I) and B =

1

2
(V + I).

Then it is clear that

‖A−B‖ =
1

2
‖U − V ‖ < 1.

Hence ‖A−B‖2 < 1 so that there exists some α > 0 such that

‖(A−B)∗(A−B)‖ = ‖A−B‖2 ≤ 1− α.

Whence

(A−B)∗(A−B) ≤ (1− α)I

or after simplification,

I − A∗A−B∗B + A∗B + B∗A ≥ αI.

It is clear that

A∗A =
1

2
(A + A∗) and B∗B =

1

2
(B + B∗).

Since U = 2A− I and V = 2B − I, we have

(U + V )∗(U + V ) =4(A∗ + B∗ − I)(A + B − I)

=4(I − A∗A−B∗B + A∗B + B∗A)

≥4αI.
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Similarly, by considering

A∗ =
1

2
(U∗ + I) and B∗ =

1

2
(V ∗ + I),

we may show that

(U + V )(U + V )∗ ≥ 4αI.

Thus U + V is invertible.
(2) The other implication may be proved by going backwards in

the previous proof (do the details!).

Solution 5.2.23. It is clear that if α ∈ R, then

(A−αI)∗(A−αI)−α2I = (A∗−αI)(A−αI)−α2I = A∗A−α(A∗+A)...(1)

If the previous quantity is positive for all α < 0, then we have

α(A∗ + A) ≤ A∗A or A∗ + A ≥ 1

α
A∗A.

Taking the limit as α → −∞ gives

A + A∗ ≥ 0, i.e. ReA ≥ 0

and this proves "⇐".
Now assume that ReA ≥ 0 and let α < 0. Since A∗A is positive, it

is evident that
A + A∗ ≥ 0 ≥ A∗A

α
.

This means that the quantities on each side of the equalities involved
in Equation (1) are greater than or equal to zero, so that for any α < 0,

(A− αI)∗(A− αI) ≥ α2I,

establishing "⇒".

Solution 5.2.24.
(1) It is easy to see that A is positive (do the details!). It then

follows that A has one and only one positive square root. As
clearly A2 = A, then

√
A = A is the (unique) positive square

root of A.
(2) The shift operator and its adjoint do not possess any square

root whatsoever. Assume for the sake of contradiction that
e.g. S∗ does, i.e. A2 = S∗, where A ∈ B(H). Then, A2S =
S∗S = I and by the general theory A is right invertible and so
it is surjective. Notice also that A cannot be injective (indeed,
this would imply that A2 = S∗ is injective and this is untrue).

Now, we show that ker A = ker S∗ = Re1, where e1 =
(1, 0, 0, · · · ). The equality ker S∗ = Re1 is known and clear.
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It also implies that dim ker S∗ = 1. Now, we obviously have
ker A ⊂ ker S∗ because A2 = S∗. Since A is not injective, we
are forced to have ker A = ker S∗ as ker A and ker S∗ are vector
spaces.

Since A is onto, for all y ∈ `2, in particular for e1 ∈ `2, there
is an x ∈ `2 such that Ax = e1 (and so x 6∈ ker A = ker S∗).
Thus (as e1 ∈ ker A)

A2x = Ae1 = 0 6= S∗x.

This shows that S∗ does not have any square root.
If S had a square root, then we would have S = B2, where

B ∈ B(`2). Therefore, S∗ = (B2)∗ = (B∗)2, i.e. S∗ would pos-
sess a square root! This is a contradiction with what we have
just seen. Accordingly, S cannot have a square root either!

Solution 5.2.25. By assumption, we know that A1 ≤ A2 ≤ · · · ≤
An ≤ · · · ≤ A for some self-adjoint A ∈ B(H). WLOG we may assume
that A1 ≤ A2 ≤ · · · ≤ An ≤ · · · ≤ I (just divide each Ai by ‖A‖ and
relabel Ai

‖A‖ as Ai). There is also no loss of generality in assume that all
An ≥ 0 (e.g. we could use the sequence (An − A1)n, say). Therefore,
we may work with 0 ≤ A1 ≤ A2 ≤ · · · ≤ An ≤ · · · ≤ I.

The primary aim is to show that (Anx) converges for each x in H.
By the completeness of H, this means that it suffices then to show that
(Anx) is Cauchy. Let n > m and let x ∈ H. Then An − Am ≥ 0 and
An − Am ≤ I. Hence ‖An − Am‖ ≤ 1. Now, we may write

‖Anx− Amx‖4 =< (An − Am)x, (An − Am)x >2

≤< (An − Am)x, x >< (An − Am)2x, (An − Am)x >

≤< (An − Am)x, x > ‖(An − Am)2x‖‖(An − Am)x‖
≤< (An − Am)x, x > ‖An − Am‖‖(An − Am)x‖2

≤< (An − Am)x, x > ‖Anx− Amx‖2

where we have used Theorem ?? in the first inequality. Therefore,

‖Anx− Amx‖2 ≤< (An − Am)x, x >=< Anx, x > − < Amx, x > .

But (< Anx, x >)n is an increasing real sequence which is bounded
above by (‖x‖2). Whence, it converges and so it is Cauchy. Thereupon,

lim
n,m→∞

‖Anx− Amx‖ = 0.

This means, as already observed above, that limn→∞Anx exists for
each x ∈ H.
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Define now for each x

Ax = lim
n→∞

Anx

(in the sense that ‖Anx − Ax‖ → 0 for all x). Then A is clearly
linear. It only remains to see why A is bounded and self-adjoint. We
prove these two requirements together: By the continuity of the inner
product, we have for all x, y ∈ H

< Ax, y >= lim
n→∞

< Anx, y >= lim
n→∞

< x,Any >=< x,Ay > .

Calling on the Hellinger-Toeplitz Theorem, we obtain that A ∈
B(H), and clearly A is self-adjoint.

To summarize, the bounded monotone increasing sequence (An)
converges strongly to the self-adjoint bounded operator A.

Solution 5.2.26.
(1) Observe first that since A is positive and ‖A‖ ≤ 1, we have

0 ≤ A ≤ I. Another equally important observation is that the
sequence (Bn) is a "polynomial" of A. This implies that all of
Bn are pairwise commuting.

Next, B0 = 0 is evidently self-adjoint. So, assuming that
Bn is self-adjoint (and recalling that A is self-adjoint), we can
easily check that Bn+1 too is self-adjoint. Therefore, all Bn

are self-adjoint.
Now, we claim that Bn ≤ I for all n. This is obviously true

for n = 0. Assume that Bn ≤ I. Observing that (I−Bn)2 ≥ 0
(why?), we then have

I −Bn+1 = I −Bn −
1

2
(A−B2

n) =
1

2
(I −Bn)2 +

1

2
(I − A) ≥ 0.

To prove that (Bn) is increasing, observe first that B0 ≤
1
2
A = B1. Assuming that Bn ≥ Bn−1, we may write

Bn+1 −Bn =
1

2
[(I −Bn−1) + (I −Bn)](Bn −Bn−1)

which, being a product of commuting positive operators, itself
is positive.

Consequently, we have shown that

0 = B0 ≤ B1 ≤ · · · ≤ Bn ≤ · · · ≤ I,

as needed.
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(2) Since (Bn) is bounded monotone increasing, by Theorem ??
we know that (Bn) converges strongly to some self-adjoint B ∈
B(H). Since each Bn is positive, we have

< Bx, x >= lim
n→∞

< Bnx, x >≥ 0

as strong convergence implies weak one. Thus, B ≥ 0.
It remains to show that B2 = A. Let x ∈ H. We have by

hypothesis

Bn+1x = Bnx +
1

2
(Ax−B2

nx).

Passing to the strong limit and using ‖B2
nx−B2x‖ → 0 (why?),

we finally get B2 = A, as required.
Finally, assume that a C ∈ B(H) commutes with A, i.e.

AC = CA. We must show that BC = CB. Since C com-
mutes with A, we may easily show that C commutes with Bn

too, that is, CBnx = BnCx (for all n and all x). On the
one hand, we clearly see that BnCx → BCx. On the other
hand, invoking the (sequential) continuity of C, we have that
CBnx → CBx. By uniqueness of the strong limit, we get

BCx = CBx, ∀x ∈ H,

as desired.
(3) If A = 0, then B = 0 will do. So if A 6= 0, considering

T = A
‖A‖ gives 0 ≤ T ≤ 1. Then, apply what we have already

done above.
(4) The proof of uniqueness here, although not being complicated,

is not as direct as one is used to with other theorems.
We have already shown that B2 = A. Assume that there

is another positive C ∈ B(H) such that C2 = A. We must
show that Bx = Cx for all x ∈ H. Observe first that A plainly
commutes with C. By Question (2), C commutes with B as
well, i.e. BC = CB. This tells us that

(B + C)(B − C) = B2 − C2 = A− A = 0.

So, if we let x ∈ H and set y = (B − C)x, then

< By, y > + < Cy, y >=< (B+C)y, y >=< (B+C)(B−C)x, y >= 0.

Because both B and C are positive, we obtain (cf. Exercise
5.1.6)

< By, y >=< Cy, y >= 0.
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By Question (2) again, B ≥ 0 has a square root which we
denote by D, say. That is, D2 = B. Therefore,

‖Dy‖2 =< Dy,Dy >=< D2y, y >=< By, y >= 0

and so Dy = 0. This implies that By = D2y = D(0) = 0.
Using also a square root of C, we may similarly show that

Cy = 0. Consequently,

‖Bx− Cx‖2 =< (B − C)x, (B − C)x >=< (B − C)y, x >= 0.

Accordingly, B = C, i.e. we have proven that the positive A
can only have one positive square root, marking the end of the
proof.

Solution 5.2.27. Assume that A ∈ B(H) is positive. Hence,
there is a positive B ∈ B(H) such that B2 = A. Assume that there
is another positive C ∈ B(H) such that A = C2 and so B2 = C2. We
ought to show that B = C.

First, it is clear that

CA = C3 = AC.

Hence C commutes with B as well (why?). This gives

(B − C)B(B − C) + (B − C)C(B − C) = (B2 − C2)(B − C) = 0.

As B, C ≥ 0 and B − C is self-adjoint, then (B − C)B(B − C) and
(B − C)C(B − C) are both positive and so

(B − C)B(B − C) = (B − C)C(B − C) = 0.

Thereupon,

(B − C)B(B − C)− (B − C)C(B − C) = 0,

that is
(B − C)3 = 0.

Whence
(B − C)4 = 0.

Now, if T ∈ B(H) is self-adjoint, then ‖T 2‖ = ‖T‖2. Since T 2 is
self-adjoint, we get ‖T 4‖ = ‖T‖4.

Consequently,

0 = ‖(B − C)4‖ = ‖B − C‖4,

that is B = C, as required.

Solution 5.2.28.
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(1) Since A is positive, it admits a unique positive square root,
which we denote by P (that is P 2 = A). Since B commutes
with A, it commutes with P as well.

Let x ∈ H. We may write (remembering that positive
operators are necessarily self-adjoint)

< ABx, x >=< P 2Bx, x >=< PBx, Px >=< BPx, Px >≥ 0

as B is positive. Therefore, AB ≥ 0.
Since A and B are positive, both A

1
2 and B

1
2 exist and are

well-defined. Since A and B also commute, AB is positive and
it makes sense then to define (AB)

1
2 . If we come to show that

(A
1
2 B

1
2 )2 = AB,

then by the uniqueness of the square root, the desired result
follows.

Now since A and B commute, so do their square roots and
we have

(A
1
2 B

1
2 )2 = A

1
2 B

1
2 A

1
2 B

1
2 = A

1
2 A

1
2 B

1
2 B

1
2 = AB.

The proof is complete.
(2) Let

A =

(
1 0
0 2

)
and B =

(
1 1
1 3

)
.

Then both A and B are positive.
We may also check that

AB =

(
1 1
2 6

)
,

i.e. AB is not positive because it is not even self-adjoint and

AB =

(
1 1
2 6

)
6=

(
1 2
1 6

)
= BA.

(3) Since A, B and AB are all positive operators, they are all
self-adjoint. Accordingly,

BA = B∗A∗ = (AB)∗ = AB,

that is A and B commute.

Solution 5.2.29. Since KA = AK and A is self-adjoint, it follows
that AK∗ = K∗A. Hence AK∗K = K∗KA. Therefore A

1
2 K∗K =

K∗KA
1
2 as A ≥ 0.
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Now, let x ∈ H. By the Generalized Cauchy-Schwarz Inequality,
we may write

< K∗AKx, x >2=< AK∗Kx, x >2≤< Ax, x >< AK∗Kx, K∗Kx > .

But,

< AK∗Kx, K∗Kx >=< A
1
2 K∗Kx, A

1
2 K∗Kx >= ‖A

1
2 K∗Kx‖2 = ‖K∗KA

1
2 x‖2.

Because ‖K∗K‖ ≤ 1, we obtain

‖K∗KA
1
2 x‖2 ≤ ‖A

1
2 x‖2 =< A

1
2 x, A

1
2 x >=< Ax, x >

so that
< K∗AKx, x >2≤< Ax, x >2,

completing the proof.

Solution 5.2.30.
(1) Let x ∈ H. Since 0 ≤ A ≤ B, we have for all x ∈ H

0 ≤< Ax, x >≤< Bx, x >⇐⇒ 0 ≤<
√

Ax,
√

Ax >≤<
√

Bx,
√

Bx >

and so (for all x)

0 ≤ ‖
√

Ax‖2 ≤ ‖
√

Bx‖2.

So, by Theorem 3.1.69, we know that
√

A = K
√

B for some
contraction K ∈ B(H). Since

√
A is self-adjoint, it follows

that K
√

B too is self-adjoint, i.e. K
√

B =
√

BK∗. Since√
B ≥ 0, by the Reid Inequality we obtain:

<
√

Ax, x >=<
√

BK∗x, x >≤<
√

Bx, x >,

that is, √
A ≤

√
B,

as required.
(2) As before, we know that

√
A = K

√
B for some contraction

K ∈ B(H). Since
√

A is invertible (as A is), it follows that
I = (

√
A)−1K

√
B, i.e. the self-adjoint

√
B is left invertible.

By taking adjoints, we see that
√

B is also right invertible.
Thus, B is invertible and

(
√

B)−1 = (
√

A)−1K = K∗(
√

A)−1

by the self-adjointness of both (
√

B)−1 and (
√

A)−1.
Finally, let x ∈ H. Then (since K∗ too is a contraction)

< B−1x, x >= ‖(
√

B)−1x‖2 = ‖K∗(
√

A)−1x‖2 ≤ ‖(
√

A)−1x‖2 =< A−1x, x >,

as needed.
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Solution 5.2.31. Since AB = BA and A, B ≥ 0, we have
√

A
√

B =√
B
√

A. Hence
√

A
√

B ≥ 0. Therefore,

A + B ≤ A + 2
√

A
√

B + B = (
√

A +
√

B)2.

Since
√

A +
√

B ≥ 0, we get
√

A + B ≤
√

A +
√

B,

establishing half of the result.
Finally, to prove the other inequality, reason similarly using

(
√

A−
√

B)2 ≥ 0...

Solution 5.2.32.
(1) We need only verify that I − A2 is a positive operator. Let

x ∈ H. We have

< (I − A2)x, x >≥ 0 ⇐⇒< x, x > − < A2x, x >≥ 0

⇐⇒< A2x, x >≤ ‖x‖2

⇐⇒< Ax,Ax >= ‖Ax‖2 ≤ ‖x‖2.

But by hypothesis, ‖A‖ ≤ 1 which leads to

‖Ax‖2 ≤ ‖A‖2‖x‖2 ≤ ‖x‖2.

Therefore, I − A2 ≥ 0.
(2) We only prove U+ is unitary (the proof for U− is very akin).

Since A is self-adjoint, one has

U∗
+ = (A + i(I − A2)

1
2 )∗ = A− i(I − A2)

1
2 .

Since A and I − A2 commute, so do A and (I − A2)
1
2 and so

U+U∗
+ = (A + i(I − A2)

1
2 )(A− i(I − A2)

1
2 )

= A2 − iA(I − A2)
1
2 + i(I − A2)

1
2 A + I − A2

= I.

Similarly, one shows that U∗
+U+ = I

Solution 5.2.33. We already know that any A ∈ B(H) may be
written as A = Re A+i Im A, that is, every A ∈ B(H) may be expressed
as a linear combination of two self-adjoint operators.

Now, suppose that B ∈ B(H) is self-adjoint. WLOG, we may
assume that ‖B‖ ≤ 1 (otherwise, you know what you should do!). By
Exercise 5.1.32, B ± i(I −B2)

1
2 are unitary operators and clearly

B =
1

2
[B + i(I −B2)

1
2 ] +

1

2
[B − i(I −B2)

1
2 ],
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so that each self-adjoint operator may be expressed as a linear com-
bination of two unitary operators, and this leads to the fact that any
A ∈ B(H) may be written as a linear combination of four unitary
operators.

Solution 5.2.34.
(1) "⇐": Let x ∈ H. Then

0 ≤< KBx, Bx >=< Ax,Bx >=< BAx, x >,

that is, BA ≥ 0.
(2) "⇒": Since BA ≥ 0, it follows that BA is self-adjoint, i.e.

AB = BA. As a consequence, ker A reduces A and B, and
the restriction of A to ker A is the zero operator on ker A.
Hence, we can assume that A is injective. Therefore, be-
cause ker B ⊂ ker A = {0}, we see that B−1 is self-adjoint
and densely defined (i.e. defined on a dense domain). Set
K0 = AB−1. Then K0 is densely defined and

||K0(Bx)|| = ||AB−1Bx|| = ||Ax|| ≤ ||Bx||,∀x ∈ H,

signifying that K0 is a contraction with a unique contractive extension
K to the whole H. Since

< K0(Bx), Bx >=< Ax,Bx >=< BAx, x >≥ 0

for all x ∈ H, we see that K is positive as well. Clearly

KBx = K0(Bx) = Ax

for all x ∈ H, and this completes the proof.

Solution 5.2.35. Since AB ≥ 0, we know that (why?)
√

A =

K
√

B for some positive contraction K ∈ B(H) and K
√

B =
√

BK.
Hence

A = K
√

BK
√

B = K2B.

So for all x ∈ H:

‖Ax‖2 = ‖K2Bx‖2 ≤ ‖Bx‖2

or merely

< A2x, x >=< Ax,Ax >= ‖Ax‖2 ≤ ‖Bx‖2 =< B2x, x >,

as required.

Solution 5.2.36.
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(1) "=⇒": Assume that T ≥ 0. By the Generalized Cauchy-
Schwarz Inequality (applied to the vectors (x, 0) and (0, y)),
we have∣∣∣∣< T

(
x
0

)
,

(
0
y

)
>

∣∣∣∣2 ≤< T

(
x
0

)
,

(
x
0

)
>< T

(
0
y

)
,

(
0
y

)
> .

But T =

(
A C∗

C B

)
and so the previous inequality becomes

after simplifications:

| < Cx, y > |2 ≤< Ax, x >< By, y >,

valid obviously for all x, y ∈ H.
(2) "⇐=": Now, suppose that

| < Cx, y > |2 ≤< Ax, x >< By, y >, ∀x, y ∈ H.

To show that T is positive, let x, y ∈ H and observe that

< T

(
x
y

)
,

(
x
y

)
>=< Ax, x > + < C∗y, x > + < Cx, y > + < By, y > .

Since

< C∗y, x > + < Cx, y >= < Cx, y >+ < Cx, y >= 2Re < Cx, y >,

it follows that

< T

(
x
y

)
,

(
x
y

)
> =< Ax, x > +2Re < Cx, y > + < By, y >

≥ 2 < Ax, x >
1
2 < Bx, x >

1
2 +2Re < Cx, y > (why?)

≥ 2| < Cx, y > |+ 2Re < Cx, y > (by assumption)
≥ 2| < Cx, y > | − 2| < Cx, y > |
= 0,

marking the end of the proof.

Solution 5.2.37. Set

T =

(
B 0
0 C

)
and S =

(
0 A
0 0

)
both defined on H⊕H. Since B, C ≥ 0, it easily follows that T ≥ 0 as

<

(
B 0
0 C

) (
x
y

)
,

(
x
y

)
= <

(
Bx
Cy

)
,

(
x
y

)
>

= < Bx, x > + < Cy, y >≥ 0
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for all x, y ∈ H. It is also clear that the square root of T is given by
√

T =

( √
B 0

0
√

C

)
.

Since by assumption BA = AC, we get

TS =

(
B 0
0 C

) (
0 A
0 0

)
=

(
0 BA
0 0

)
=

(
0 AC
0 0

)
= ST.

Now, as T ≥ 0, then we obtain
√

TS = S
√

T . This means that( √
B 0

0
√

C

) (
0 A
0 0

)
=

(
0 A
0 0

) ( √
B 0

0
√

C

)
or (

0
√

BA
0 0

)
=

(
0 A

√
C

0 0

)
,

i.e.
√

BA = A
√

C, as required.

Solution 5.2.38. First, recall that

[A, B] = AB −BA.

(1) Let B be a self-adjoint contraction. By Exercise 5.1.32, U =
B + i

√
I −B2 is unitary and B =Re U = U+U∗

2
.

‖AB −BA‖ =

∥∥∥∥A

(
U + U∗

2

)
−

(
U + U∗

2

)
A

∥∥∥∥
=

1

2
‖AU − UA + AU∗ − U∗A‖

≤ 1

2
‖AU − UA‖+

1

2
‖AU∗ − U∗A‖

=
1

2
‖AU − UA‖+

1

2
‖U(AU∗ − U∗A)U‖

=
1

2
‖AU − UA‖+

1

2
‖(UAU∗ − A)U‖

=
1

2
‖AU − UA‖+

1

2
‖UA− AU‖

= ‖AU − UA‖
= ‖(A− UAU∗)U‖
= ‖A− UAU∗‖
≤ max(‖A‖, ‖UAU∗‖) (Exercises 5.1.8 & 5.1.13)
= ‖A‖,

establishing the result.
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(2) Let B be self-adjoint. The inequality clearly holds for B =
0, so assume that ‖B‖ > 0. Hence B

‖B‖ remains self-adjoint
and besides, it is a contraction. Therefore, the result of the
previous question applies and yields∥∥∥∥A

B

‖B‖
− B

‖B‖
A

∥∥∥∥ ≤ ‖A‖,
that is,

‖AB −BA‖ ≤ ‖A‖‖B‖,
as required.

(3) Let B ∈ B(H). Define on H ⊕H

Ã =

(
A 0
0 A

)
and B̃ =

(
0 B
B∗ 0

)
,

where the 0 is the zero operator on H. Observe that B̃ is
self-adjoint (even if B is not one), and that Ã is self-adjoint
because A is one! Hence, by the previous question we know
that

‖ÃB̃ − B̃Ã‖ ≤ ‖Ã‖‖B̃‖.
But,

ÃB̃ − B̃Ã =

(
0 AB −BA

AB∗ −B∗A 0

)
.

Also, we have∥∥∥∥(
C 0
0 D

)∥∥∥∥ =

∥∥∥∥(
0 C
D 0

)∥∥∥∥ = max(‖C‖, ‖D‖).

Hence (why?)

‖Ã‖ = ‖A‖ and ‖B̃‖ = ‖B‖

With all these observations, we infer that

‖ÃB̃ − B̃Ã‖ = max(‖AB −BA‖, ‖AB∗ −B∗A‖)
= max(‖AB −BA‖, ‖(AB∗ −B∗A)∗‖)
= max(‖AB −BA‖, ‖BA− AB‖)
= ‖AB −BA‖,

so that finally we get

‖ÃB̃ − B̃Ã‖ ≤ ‖Ã‖‖B̃‖ ⇐⇒ ‖AB −BA‖ ≤ ‖A‖‖B‖,

and this completes the proof.
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Solution 5.2.39. Write T = A + iB where A, B ∈ B(H) are self-
adjoint with A = Re T and B = Im T as is known to readers. Then
clearly

T 2 = A2 −B2 + i(AB + BA).

So, if T 2 = 0, then

A2 −B2 + i(AB + BA) = 0 =⇒
{

A2 = B2,
AB = −BA.

Hence, if A ≥ 0 (a similar argument works when B ≥ 0), then

AB = −BA =⇒ A2B = −ABA = BA2 =⇒ AB = BA.

Therefore, T is normal. Accordingly

‖T‖2 = ‖T 2‖ = 0 =⇒ T = 0,

as suggested.

Solution 5.2.40. The proof is carried out in two steps.
(1) Let dim H < ∞. The proof uses a trace argument. First,

assume that A ≥ 0. Clearly, the nilpotence of T does yield
tr T = 0. Hence

0 = tr(A + iB) = tr A + i tr B.

Since A and B are self-adjoint, we know that tr A, tr B ∈ R.
By the above equation, this forces tr B = 0 and tr A = 0. The
positiveness of A now intervenes to make A = 0. Therefore,
T = iB and so T is normal. Thus, and as alluded above,

0 = ‖T n‖ = ‖T‖n,

thereby, T = 0.
In the event B ≥ 0, reason as above to obtain T = A and

so T = 0, as wished.
(2) Let dim H = ∞. The condition ReT ≥ 0 is equivalent to

Re < Tx, x >≥ 0 for all x ∈ H. So if E is a closed invariant
subspace of T , then the previous condition also holds for T |E :
E → E.

Now, we proceed to show that T = 0, i.e. we must show
that Tx = 0 for all x ∈ H. So, let x ∈ H and let E be the span
of x, Tx, · · · , T n−1x (that is, the orbit of x under the action of
T ). Hence E is a finite dimensional subspace of H (and so it
is equally a Hilbert space). By the nilpotence assumption, we
have

T nx = 0,
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from which it follows that E is invariant for T . So, by the
first part of the proof (the finite dimensional case), we know
that T = 0 on E whereby Tx = 0. As this holds for any x, it
follows that T = 0 on H, as needed.

Solution 5.2.41. Since A is invertible, it is seen that B too is
invertible. Indeed, by the invertibility of A, we get that of Ap or that
of Bp. So, CBp = BpC = I for a certain C ∈ B(H), and hence
(CBp−1)B = B(Bp−1C) = I, whereby B is invertible.

Since p and q are relatively prime numbers, Bezout’s theorem in
arithmetic says that up + vq = 1 for some integers u and v (only one
of them is negative). WLOG, suppose that u is the negative integer.
Now, Ap = Bp yields Aup = Bup, and Aq = Bq implies that Avq = Bvq.
Therefore, AupAvq = BupBvq

A = Aup+vq = Bup+vq = B,

as looked forward to.
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