
(SQUARE) ROOTS OF BOUNDED OPERATORS

BY PROF. MOHAMMED HICHEM MORTAD

Students may contact me at : mhmortad@gmail.com for any
questions.

1. Basics

Definition. Let A ∈ B(H). We say that B ∈ B(H) is a square root
of A if B2 = A.

We can similarly define a cube root. Indeed, we say that B ∈ B(H)
is a cube root of some A ∈ B(H) if B3 = A.

More generally, we say that B ∈ B(H) is a nth root of some A ∈
B(H) if Bn = A (where n ∈ N).

Example 1.1. Let I be the identity 2× 2 matrix, i.e.

I =

(
1 0
0 1

)
.

Then I has infinitely many square roots. Indeed,

Ax =

(
x 1

1− x2 −x

)
represents, for each x ∈ R, a square root of I (as A2

x = I whichever x).
In fact, I has infinitely many self-adjoint square roots! Just consider

Ax =

(
x

√
1− x2

√
1− x2 −x

)
where x ∈ [−1, 1]. Then

A2
x = I, ∀x ∈ [−1, 1].

Remarks.
(1) Every self-adjoint operator has roots of any order.
(2) More generally, normal operators have roots of any order. The

proof in the finite dimensional setting is based on the Complex
Spectral Theorem.

Example 1.2. A square root of(
1 0
0 2

)
1
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is: (
1 0

0
√

2

)
.

Another one is: (
−1 0

0
√

2

)
.

Are there more? The answer is yes!

Theorem 1.3. Let A be an n × n matrix. Assume that A is defined
over the complex field and that A has n pairwise distinct nonzero eigen-
values. Then A has exactly 2n square roots.

Proof. A way of establishing this result is via a proof by induction. As-
sume that an n×n matrix (already having n pairwise distinct nonzero
eigenvalues) has 2n square roots. Let A be an (n + 1) × (n + 1) ma-
trix having n + 1 pairwise distinct nonzero eigenvalues. Hence A is
diagonalizable and so there exists an invertible matrix T such that

T−1AT =


λ1 0 0 · · · 0
0 λ2 0 · · · 0
... . . . . . . . . . ...
0 · · · 0 λn 0
0 · · · · · · 0 λn+1

 := D

where λk, k = 1, · · · , n, n + 1 are pairwise different and nonzero. By
the induction’s assumption, the matrix having the eigenvalues λk, k =
1, · · · , n in its diagonal has 2n square roots. Thus, it becomes clear
that D has 2 × 2n = 2n+1 square roots (as also λn+1 6= 0) whereby A
too has 2n+1 square roots, as wished. �

Remark. The fact that we have assumed that the eigenvalues have to
be pairwise distincts and non zero is essential. For example, we saw
above that the identity matrix on C2, which has two equal eigenvalues,
has infinitely many square roots (and not only 22). Also, the matrix

A =

(
1 0
0 0

)
, which has one zero eigenvalue, has two square roots

only!

Thanks to the spectral theorem for a normal matrix A, we may write
U∗AU = D where D is diagonal, and for some unitary U . Now, given
the fact that we can easily find square roots of diagonal matrices, we
may say the following:

Theorem 1.4. A square root of a normal matrix A is of the form

B = UCU∗
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where C is a square root of D defined above.

Proof. The proof is easy. We have

B2 = UCU∗UCU∗ = UC2U∗ = UDU∗ = A,

as wished. �

Example 1.5. On C2, let

A =

(
0 1
1 0

)
.

Then A is self-adjoint (but not positive) and has two distinct non zero
eigenvalues and so A ought to have four and only four square root of
any nature. To find them explicitly, we need to diagonalize A. We find

A = UDU∗ where D =

(
1 0
0 −1

)
and U =

(
1 0
0 −1

)
.

Then D has four square roots given by(
−1 0
0 −i

)
,

(
−1 0
0 i

)
,

(
1 0
0 −i

)
and

(
1 0
0 i

)
.

The square roots of A are therefore

1

2

(
−1− i −1 + i
−1 + i −1− i

)
,

1

2

(
−1 + i −1− i
−1− i −1 + i

)
,

1

2

(
1− i 1 + i
1 + i 1− i

)
and

1

2

(
1 + i 1− i
1− i 1 + i

)
.

Remark. As one observes none of the previous matrices is self-adjoint,
let alone its positiveness. In other words, all square roots in this exam-
ple are non self-adjoint.

However, a positive operator has one, and only one, positive
square root. We have:

Theorem 1.6. Let A ∈ B(H) be positive. Then A possesses a unique
positive square root denoted exclusively by

√
A (or A

1
2 ). Moreover, if

B ∈ B(H) is such that AB = BA, then
√

AB = B
√

A.

Remark. The proof in a finite dimensional space is easy. The proof to
be given is longer, however, it bypasses the spectral theorem and it is
valid for infinite dimensional spaces.

Proof.
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(1) Observe first that since A is positive and ‖A‖ ≤ 1, we have
0 ≤ A ≤ I. Another equally important observation is that the
sequence (Bn) is a "polynomial" of A. This implies that all of
Bn are pairwise commuting.

Next, B0 = 0 is evidently self-adjoint. So, assuming that
Bn is self-adjoint (and recalling that A is self-adjoint), we can
easily check that Bn+1 too is self-adjoint. Therefore, all Bn are
self-adjoint.

Now, we claim that Bn ≤ I for all n. This is obviously true
for n = 0. Assume that Bn ≤ I. Observing that (I −Bn)2 ≥ 0
(why?), we then have

I −Bn+1 = I −Bn −
1

2
(A−B2

n) =
1

2
(I −Bn)2 +

1

2
(I − A) ≥ 0.

To prove that (Bn) is increasing, observe first that B0 ≤
1
2
A = B1. Assuming that Bn ≥ Bn−1, we may write

Bn+1 −Bn =
1

2
[(I −Bn−1) + (I −Bn)](Bn −Bn−1)

which, being a product of commuting positive operators, itself
is positive.

Consequently, we have shown that

0 = B0 ≤ B1 ≤ · · · ≤ Bn ≤ · · · ≤ I,

as needed.
(2) Since (Bn) is bounded monotone increasing, by Theorem ?? we

know that (Bn) converges strongly to some self-adjoint B ∈
B(H). Since each Bn is positive, we have

< Bx, x >= lim
n→∞

< Bnx, x >≥ 0

as strong convergence implies weak one. Thus, B ≥ 0.
It remains to show that B2 = A. Let x ∈ H. We have by

hypothesis

Bn+1x = Bnx +
1

2
(Ax−B2

nx).

Passing to the strong limit and using ‖B2
nx−B2x‖ → 0 (why?),

we finally get B2 = A, as required.
Finally, assume that a C ∈ B(H) commutes with A, i.e.

AC = CA. We must show that BC = CB. Since C commutes
with A, we may easily show that C commutes with Bn too, that
is, CBnx = BnCx (for all n and all x). On the one hand, we
clearly see that BnCx → BCx. On the other hand, invoking
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the (sequential) continuity of C, we have that CBnx → CBx.
By uniqueness of the strong limit, we get

BCx = CBx, ∀x ∈ H,

as desired.
(3) If A = 0, then B = 0 will do. So if A 6= 0, considering T = A

‖A‖
gives 0 ≤ T ≤ 1. Then, apply what we have already done
above.

(4) The proof of uniqueness here, although not being complicated,
is not as direct as one is used to with other theorems.

We have already shown that B2 = A. Assume that there
is another positive C ∈ B(H) such that C2 = A. We must
show that Bx = Cx for all x ∈ H. Observe first that A plainly
commutes with C. By Question (2), C commutes with B as
well, i.e. BC = CB. This tells us that

(B + C)(B − C) = B2 − C2 = A− A = 0.

So, if we let x ∈ H and set y = (B − C)x, then

< By, y > + < Cy, y >=< (B+C)y, y >=< (B+C)(B−C)x, y >= 0.

Because both B and C are positive, we obtain (cf. Exercise ??)

< By, y >=< Cy, y >= 0.

By (2) again, B ≥ 0 has a square root which we denote by
D, say. That is, D2 = B. Therefore,

‖Dy‖2 =< Dy,Dy >=< D2y, y >=< By, y >= 0

and so Dy = 0. This implies that By = D2y = D(0) = 0.
Using also a square root of C, we may similarly show that

Cy = 0. Consequently,

‖Bx− Cx‖2 =< (B − C)x, (B − C)x >=< (B − C)y, x >= 0.

Accordingly, B = C, i.e. we have proven that the positive A
can only have one positive square root, marking the end of the
proof.

�

Corollary 1.7. Let A and B be two positive operators on a complex
Hilbert space H. If A and B commute, then AB (and hence BA) is
positive. Moreover,

(AB)
1
2 = A

1
2 B

1
2 .
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Proof. Since A is positive, it admits a unique positive square root,
which we denote by P (that is P 2 = A). Since B commutes with A, it
commutes with P as well.

Let x ∈ H. We may write (remembering that positive operators are
necessarily self-adjoint)

< ABx, x >=< P 2Bx, x >=< PBx, Px >=< BPx, Px >≥ 0

as B is positive. Therefore, AB ≥ 0.
Since A and B are positive, both A

1
2 and B

1
2 exist and are well-

defined. Since A and B also commute, AB is positive and it makes
sense then to define (AB)

1
2 . If we come to show that

(A
1
2 B

1
2 )2 = AB,

then by the uniqueness of the square root, the desired result follows.
Now since A and B commute, so do their square roots and we have

(A
1
2 B

1
2 )2 = A

1
2 B

1
2 A

1
2 B

1
2 = A

1
2 A

1
2 B

1
2 B

1
2 = AB.

The proof is complete. �

Remark. We give an example showing the importance of the commu-
tativity of A and B for the result to hold. Let

A =

(
1 0
0 2

)
and B =

(
1 1
1 3

)
.

Then both A and B are positive.
We may also check that

AB =

(
1 1
2 6

)
,

i.e. AB is not positive because it is not even self-adjoint and

AB =

(
1 1
2 6

)
6=

(
1 2
1 6

)
= BA.

Proposition 1.8. Let A, B ∈ B(H) be such that 0 ≤ A ≤ B. Then
√

A ≤
√

B.

A proof is based upon the following fairly standard result whose
proof may be consulted in Theorem 3.1.69 in [2]:

Theorem 1.9. Let A, B ∈ B(H). Then

∀x ∈ H : ‖Ax‖ ≤ ‖Bx‖ ⇐⇒ ∃K ∈ B(H) contraction : A = KB.

Now, we prove Proposition 1.8.
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Proof. Let x ∈ H. Since 0 ≤ A ≤ B, we have for all x ∈ H

0 ≤< Ax, x >≤< Bx, x >⇐⇒ 0 ≤<
√

Ax,
√

Ax >≤<
√

Bx,
√

Bx >

and so (for all x)
0 ≤ ‖

√
Ax‖2 ≤ ‖

√
Bx‖2.

So, by Theorem 1.9, we know that
√

A = K
√

B for some contraction
K ∈ B(H). Since

√
A is self-adjoint, it follows that K

√
B too is self-

adjoint, i.e. K
√

B =
√

BK∗. Since
√

B ≥ 0, by Reid’s inequality we
obtain:

<
√

Ax, x >=<
√

BK∗x, x >≤<
√

Bx, x >,

that is, √
A ≤

√
B,

as required. �

2. Exercises

Exercise 1. Find matrices without any square root.

Solution. Let

A =

(
0 1
0 0

)
.

Then A does not have any square root. To see this, assume that A has
a square root, B say, which is a 2× 2 matrix of the form

B =

(
a b
c d

)
.

Then

B2 = A ⇐⇒
(

a2 + bc ab + bd
ac + cd bc + d2

)
=

(
0 1
0 0

)
and hence 

a2 + bc = 0,
ab + bd = 1,
ac + cd = 0,
bc + d2 = 0.

The previous system has no solution (as the reader may easily check)
meaning that A has no square root.

We give another example to use a different approach. Let

A =

 0 1 0
0 0 1
0 0 0

 .
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Then

A2 =

 0 0 1
0 0 0
0 0 0

 and A3 =

 0 0 0
0 0 0
0 0 0

 .

Assume that A has a square root B, that is, B2 = A. Hence B6 = A3 =
0, i.e. B is nilpotent. Since B is a 3×3 matrix, its index cannot exceed
3. Therefore, B3 = 0, but this is just not consistent with B4 = A2 6= 0.
Thus A has no square root.

Exercise 2. Find a square root of A + I where

A =

 0 1 1
0 0 1
0 0 0

 .

Solution. Clearly, A3 = 0. Inspired by the Taylor expansion series of√
1 + x, we conjecture that a square root of A + I is

I +
1

2
A− 1

8
A2 =

 1 1
2

3
8

0 1 1
2

0 0 1


︸ ︷︷ ︸

:=B

.

This is in effect the case as we can readily check that B2 = A + I.

Remark. More generally and by the same token, we may give an nth
root of A + I (n ≥ 2). Indeed, one (nth) root is given by

B = I +
1

n
A +

1
n
( 1

n
− 1)

2
A2 =

 1 1
n

n+1
2n2

0 1 1
n

0 0 1

 ,

that is, Bn = A (which could be verified by a proof by induction).

Exercise 3. Can you provide an operator having only one square root?

Solution. This is impossible for a simple reason. If B is a non-zero
square root of a given operator A, i.e. B2 = A, then −B too is another
square root of A as

(−B)2 = B2 = A.

Remark. Therefore, the number of (non-zero) square roots is always
even.

Exercise 4. ([3]) Let T ∈ B(H) be such that T 2 = 0. Show that if
Re T ≥ 0 (or ImT ≥ 0), then T is normal and so T = 0.
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Solution. Write T = A+iB where A, B ∈ B(H) are self-adjoint where
A = Re T and B = ImT . Then clearly

T 2 = A2 −B2 + i(AB + BA).

So, if T 2 = 0, then

A2 −B2 + i(AB + BA) = 0 =⇒
{

A2 = B2,
AB = −BA.

Hence, if A ≥ 0 (a similar argument works when B ≥ 0), then

AB = −BA =⇒ A2B = −ABA = BA2 =⇒ AB = BA

(by Theorem 1.6). Therefore, T is normal. Accordingly,

‖T‖2 = ‖T 2‖ = 0 =⇒ T = 0,

as suggested.

The next exercise provides a generalization as well as a different
proof.

Exercise 5. ([1]) Let T = A + iB be a finite square matrix and let
n ≥ 2. Show that if T n = 0 and A ≥ 0 (or B ≥ 0), then T = 0.

Solution. Let dim H < ∞. The proof uses a trace argument. First,
assume that A ≥ 0. Clearly, the nilpotence of T does yield tr T = 0.
Hence

0 = tr(A + iB) = tr A + i tr B.

Since A and B are self-adjoint, we know that tr A, tr B ∈ R. By the
above equation, this forces tr B = 0 and tr A = 0. The positiveness
of A now intervenes to make A = 0. Therefore, T = iB and so T is
normal. Thus, and as alluded above,

0 = ‖T n‖ = ‖T‖n,

thereby, T = 0.
In the event B ≥ 0, reason as above to obtain T = A and so T = 0,

as wished.

3. More exercises

Exercise 6. Show that an invertible matrix over C has always a square
root. Is this result still valid over R?

Exercise 7. Let T ∈ B(H) be a normal operator. As is known, T
could have infinitely many square roots.

Show that it can occur that two (normal) square roots of T do not
commute.
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Exercise 8. Give an operator A ∈ B(H) having a square root but A
does not have a cube root.

Exercise 9. Provide an operator A ∈ B(H) without any square root
but A has a cube root.
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