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Abstract

The idea of using a path of tempered posterior distributions has been widely applied
in the literature for the computation of marginal likelihoods (a.k.a., Bayesian evidence).
Thermodynamic integration, path sampling and annealing importance sampling are well-
known examples of algorithms belonging to this family of methods. In this work, we introduce
a generalized thermodynamic integration (GTI) scheme which is able to perform a complete
Bayesian inference, i.e., GTI can approximate generic posterior exceptions (not only the
marginal likelihood). Several scenarios of application of GTI are discussed and different
numerical simulations are provided.

Keywords: Bayesian inference; Thermodynamic integration; Target-aware inference;
Tempering; Monte Carlo; Quadrature methods.

1 Introduction

Bayesian methods have become very popular in many domains of science and engineering over
the last years, as they allow for obtaining estimates of parameters of interest as well as comparing
competing models in a principled way [1, 2]. The Bayesian quantities can generally be expressed
as integrals involving the posterior density. They can be divided in two main categories: posterior
expectations and marginal likelihood computation (useful for model selection purposes).
Generally, computational methods are required for the approximation of these integrals, e.g.,
Monte Carlo algorithms such as Markov chain Monte Carlo (MCMC) and importance sampling
(IS) [1, 2, 3]. The computation of the marginal likelihood is particularly complicated, specially with
MCMC outputs [4, 5, 6]. For this reason, sophisticated and powerful schemes have been specifically
designed [5, 7]. The most powerful techniques involves the idea of the so-called tempering of the
posterior [8, 9, 10]. The tempering effect is commonly employed in order to foster the exploration
and improve the efficiency of MCMC chains [11, 12]. State-of-the-art methods for computing
marginal likelihoods consider tempered transitions (i.e. sequence of tempered distributions), such
as annealed IS (An-IS) [8], sequential Monte Carlo (SMC) [13], thermodynamic integration (TI),
a.k.a., path sampling (PS) or “power posteriors” (PP) in the statistics literature [9, 10, 14], and
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stepping stones (SS) sampling [15]. In Figure 1, we give a graphical summary of the techniques for
computing marginal likelihoods based on tempering: An-IS is a special case of SMC framework,
PP is a special case of TI/PS, and SS sampling present similar features to An-IS and PP. For
more details, see [5]. It is worth to mention that TI has been introduced in the physics literature
for computing free-energy differences [16, 14].

Figure 1: Graphical summary of computational approaches based on tempering for marginal
likelihood estimation. Here, Z denotes the marginal likelihood. Note that some of the methods
estimate Z in log-scale.

In this work, we extend the TI method, introducing the generalized thermodynamic integration
(GTI) technique, for computing generic integrals involving the posterior distribution, as posterior
expectations (not only the marginal likelihood). The extension of TI for the computation of a
generic posterior expectation Eπ̄ [f(x)] is not straightforward, since it requires to build a continuous
path between densities with possibly different support. In the case of a geometric path (which is
the default choice in practice [10, 9]), the generalization of TI needs a careful look at the support
of the negative and positive parts of f(x). We discuss the application of GTI for the computation
of posterior expectations of generic real-valued function f(x), and also describe the case of vector-
valued function f(x). The benefits of GTI are clearly shown by illustrative numerical simulations.
The structure of the paper is the following. In Section 2, we introduce the Bayesian inference
setting and describe the thermodynamic method for the computation of the marginal likelihood.
In Section 3, we introduce the GTI procedure. More specifically, we discuss first the case when
f(x) is strictly in Section 3.2, and then consider the general case of a real-valued f(x) in Section
3.3. In Section 4, we discuss some computational details of the approach, and the application of
GTI for vector-valued functions f(x). We show the benefits of GTI in two numerical experiments
in Section 5. Finally, Section 6 contains the conclusions.

2 Background

2.1 Bayesian inference

In many real world applications, the goal is to infer a variable of interest given a set of data [1].
Let us denote the parameter of interest by x ∈ X ⊆ RD, and let y ∈ Rdy be the observed data.
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In a Bayesian analysis, all the statistical information is contained in the posterior distribution,
which is given by

π̄(x) = p(x|y) = ℓ(y|x)g(x)
Z(y)

, (1)

where ℓ(y|x) is the likelihood function, g(x) is the prior pdf, and Z(y) is the Bayesian model
evidence (a.k.a. marginal likelihood). The marginal likelihood Z(y) is important for model
selection purposes [5, 17]. Generally, Z(y) is unknown, so we are able to evaluate the unnormalized
target function, π(x) = ℓ(y|x)g(x). The analytical computation of the posterior density
π̄(x) ∝ π(x) is often unfeasible, hence numerical approximations are needed. Our goal is to
approximate integrals of the form

I = Eπ̄ [f(x)] =

∫
X
f(x)π̄(x)dx =

1

Z

∫
X
f(x)π(x)dx, (2)

where f(x) is some integrable function, and

Z =

∫
X
π(x)dx. (3)

The quantity Z is called marginal likelihood (a.k.a., Bayesian evidence) and is useful for model
selection purpose [5]. Generally, I is analytically intractable and we need to resort to numerical
algorithms such as Markov chain Monte Carlo (MCMC) and importance sampling algorithms.

2.2 Thermodynamic integration for estimating Z

Thermodynamic integration (TI) is a powerful technique that has been proposed in literature for
computing ratios of constants [16, 14, 9]. Here, for simplicity, we focus on the approximation of
just one constant, the marginal likelihood Z. More precisely, TI produces an estimation of logZ.
Let us consider a family of (generally unnormalized) densities

π(x|β), β ∈ [0, 1], (4)

such that π(x|0) = g(x) is the prior and π(x|1) = π(x) is the unnormalized posterior distribution.
An example is the so-called geometric path π(x|β) = g(x)1−βπ(x)β, with β ∈ [0, 1] [18]. The
corresponding normalized densities in the family are denoted as

π̄(x|β) = π(x|β)
c(β)

, c(β) =

∫
X
π(x|β)dx. (5)

Then, the main TI identity is [5]

logZ =

∫ 1

0

[
∂ log π(x|β)

∂β
π̄(x|β)dx

]
dβ

=

∫ 1

0

Eπ̄(x|β)

[
∂ log π(x|β)

∂β

]
dβ, (6)
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where the expectation is with respect to (w.r.t.) π̄(x|β) = π(x|β)
c(β)

.

TI estimator: Quadrature + Monte Carlo. Using a sequence of discrete values {βi}Ni=1 (e.g.
βi’s uniformly in [0, 1]), one can approximate the integral in Eq. (6) via quadrature w.r.t. β, and
then approximate the inner expectation with a Monte Carlo estimator using samples from p(x|βi)

for i = 1, . . . , N . Namely, defining U(x) = ∂ log π(x|β)
∂β

and E(β) = Eπ̄(x|β) [U(x)], the resulting

estimator of Eq. (6) is given by

logZ ≈
N∑
i=1

(βi+1 − βi)Êi, (7)

where

Êi =
1

N

N∑
j=1

U(xi,j), xi,j ∼ p(x|βi). (8)

Note that we used the simplest quadrature rule in Eq. (7), but others can be used such as
Trapezoidal, Simpson’s, etc [10, 9].
The power posteriors (PP) method. Let us consider the specific case of a geometric path
between prior g(x) and unnomalized posterior π(x),

π(x|β) = g(x)1−βπ(x)β = g(x)

[
π(x)

g(x)

]β
, (9)

= g(x)ℓ(y|x)β, β ∈ [0, 1], (10)

where we have used π(x) = ℓ(y|x)g(x). Note that, in this scenario,1

∂ log π(x|β)
∂β

= log ℓ(y|x). (11)

Hence, the identity in Eq. (6) can be also written as

logZ =

∫ 1

0

∫
X
log ℓ(y|x)π̄(x|β)dxdβ =

∫ 1

0

Eπ̄(x|β)[log ℓ(y|x)]dβ, (12)

The power posteriors (PP) method is a special case of TI which considers (a) the geometric path
and (b) trapezoidal quadrature rule for integrating w.r.t. the variable β [10]. Namely, letting
β1 = 0 < · · · < βN = 1 denote a fixed temperature schedule, an approximation of Eq. (12) can be
obtained via the trapezoidal rule

logZ ≈
N−1∑
i=1

(βi+1 − βi)
Eπ̄(x|βi+1)[log ℓ(y|x)] + Eπ̄(x|βi)[log ℓ(y|x)]

2
, (13)

1From Eq. (10), we can write log π(x|β) = log g(x) + β log ℓ(y|x). Hence, ∂ log π(x|β)
∂β = log ℓ(y|x).

4



where the the expectations are generally substituted with MCMC estimates as in Eq. (8). TI and
PP are popular methods for computing marginal likelihoods (even in high-dimensional spaces)
due to their reliability. Theoretical properties are studied in [14, 19], and empirical validation
is provided in several works, e.g., [10, 9]. Different extensions and improvements on the method
have also been proposed [20, 21, 19].

Remark 1. Note that, in order to ensure that the integrand in Eq. (12) is finite, so that the
estimator in Eq. (13) can be applied, we need that (a) ℓ(y|x) is strictly positive everywhere, or (b)
ℓ(y|x) = 0 only whenever g(x) = 0 (i.e., they have the same support).

Goal. We have seen that the TI method has been proposed for computing logZ (or log-ratios of
constants). Our goal is to extend the TI scheme in order to obtain a complete Bayesian inference
analysis. Namely, we generalize the idea of these methods (thermodynamic integration, power
posteriors, etc.) to the computation of posterior expectations for a given f(x). See Figure 2 for a
graphical summary.

Figure 2: Thermodynamic integration has been employed for the computation of the marginal
likelihood Z. In this work, we introduce the generalized thermodynamic integration procedure for
computing also posterior expectations Eπ̄ [f(x)].

3 Generalized TI (GTI) for Bayesian inference

In this section, we extend the TI method for computing any posterior expectation. The basic idea,
as we show below, is the formulation I as a ratio of normalizing constants. First, we consider the
case f(x) > 0 for all x and then the case of a generic real-valued f(x).

3.1 General approach

In order to apply TI, we need to formulate the posterior expectation I as a ratio of two
constants. Since f(x) can be positive or negative, let us consider the positive and negative parts,
f+(x) = max(0, f(x)) and f−(x) = min(0,−f(x)), such that f(x) = f+(x)− f−(x), where f+(x)
and f−(x) are non-negative functions. The following identity shows that any posterior expectation
can be expressed in terms of two quotients (formed by three values),

I =

∫
X f+(x)π(x)dx∫

X π(x)dx
−

∫
X f−(x)π(x)dx∫

X π(x)dx
=

c+
Z
− c−

Z
, (14)
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where c+ =
∫
X φ+(x)dx are c− =

∫
X φ−(x)dx are respectively the normalizing constants of

φ+(x) = f+(x)π(x), and φ−(x) = f−(x)π(x).
Proposed scheme. Denoting η+ = log c+

Z
and η− = log c−

Z
in the case of a generic f(x), we

propose to obtain estimates of these quantities using thermodynamic integration. Then, we can
obtain the final estimator as

Î = exp (η̂+)− exp (η̂−) . (15)

In the next section, we give details on how to compute η̂+, η̂− by using a generalized TI method.

3.2 GTI for strictly positive or strictly negative f(x)

Let us consider the scenario where f(x) > 0 for all x ∈ X . In this scenario, we can set

f+(x) = f(x) > 0, and Î = exp (η̂+) .

Note that, with respect to Eq. (15), we only consider the first term. Hence, we link the
unnormalized pdfs π(x) and φ+(x) = f+(x)π(x) with a geometric path, by defining

φ̄+(x|β) ∝ φ+(x|β) = f+(x)
βπ(x), β ∈ [0, 1]. (16)

Hence, we have φ̄+(x|0) = π̄(x) and φ̄+(x|1) = 1
c+
f+(x)π(x) where c+ =

∫
X f+(x)π(x)dx. The

Eq. (6) is thus

η+ =

∫ 1

0

Eφ̄+(x|β)[log f+(x)]dβ. (17)

Letting β1 = 0 < · · · < βN = 1 denote a fixed temperature schedule, the estimator (using the
Trapezoidal rule) is thus

η̂+ =
N−1∑
i=1

(βi+1 − βi)
Eφ̄+(x|βi+1)[log f+(x)] + Eφ̄+(x|βi)[log f+(x)]

2
, (18)

where we use MCMC estimates for the terms

Eφ̄+(x|βi)[log f+(x)] =

∫
X
log f+(x)φ̄+(x|βi)dx ≈

1

M

M∑
m=1

log f+(xm), xm ∼ φ̄+(x|βi), (19)

for i = 1, . . . , N . The case of a strictly negative f(x), i.e., f−(x) = −f(x), is equivalent.

Function f(x) with zeros with null measure. So far, we have considered strictly positive or
strictly negative f(x). This case could be extended to a positive (or negative) f(x) with zeros in
a null measure set. Indeed, note that the identity in Eq. (17) requires that Eφ̄(x|β)[log f(x)] <∞
for all β ∈ [0, 1]. If the zeros of f(x) has null measure and the improper integral converges, the
procedure above is also suitable. Table 1 summarizes the Generalized TI (GTI) steps for f(x)
that are strictly positive. We discuss other scenarios in the next section.

6



Table 1: GTI for strictly positive f(x)

- Initialization: Choose the set of nodes {βi}Ni=1 (with β1 = 0 and βN = 1), and the number
of iterations N .
- For i = 1, . . . , N :

1. Sampling: Sample {xi,m}Mm=1 ∼ φ̄+(x|βi) ∝ f(x)βiπ(x).

2. Compute:

Êi =
1

M

M∑
k=1

log f(xi,k). (20)

3. Update: If i = 1, set η(i) = 0. If i > 1, update recursive estimate

η̂(i) ← η̂(i−1) + 0.5 · (βi − βi−1)
(
Êi + Êi−1

)
. (21)

- Outputs: Final estimator η̂(N) which approximates log I.

3.3 GTI for generic f(x)

Using the results from previous section, we apply GTI to a generic function f(x), namely, it can
be positive and negative, as well as having zero-valued regions with a non-null measure. Here, we
desire to connect the posterior π(x) with the f+(x)π(x) and f−(x)π(x) with two continuous paths.
However, a requirement for the validity of the approach is that π(x) is zero whenever f+(x)π(x)
or f−(x)π(x) is zero, which does not generally fulfills as f(x) can have a smaller support than
π(x). Therefore, we need to define the unnormalized restricted posteriors densities

π+(x) = π(x)1X+(x), and π−(x) = π(x)1X−(x), (22)

where 1X+(x) is the indicator function over the set X+ = {x ∈ X : f+(x) > 0} and 1X−(x) is the
indicator function over the set X− = {x ∈ X : f−(x) > 0}. The idea is to connect with a path
π+(x) and f+(x)π(x), and π−(x) with f−(x)π(x), by the densities

φ̄+(x|β) ∝ f+(x)
βπ+(x), φ̄−(x|β) ∝ f−(x)

βπ−(x), β ∈ [0, 1].

Defining also

Z+ =

∫
X
π+(x)dx, Z− =

∫
X
π−(x)dx, (23)

and recalling

c+ =

∫
X
f+(x)π(x)dx, c− =

∫
X
f−(x)π(x)dx, (24)
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the idea is to apply separately TI for approximating ηres+ = log c+
Z+

and ηres− = log c−
Z−

, where
we denote with res to account that we consider the restricted components Z+ and Z−. Hence,
two correction factors R+ and R− are also required, in order to obtain R+ exp

(
ηres+

)
= c+

Z
and

R− exp
(
ηres−

)
= c−

Z
. Below, we also show how to estimate the correction factors at a final stage

and combine them to the estimations of ηres+ and ηres− . We can approximate the quantities

ηres+ = log
c+
Z+

=

∫ 1

0

Eφ̄+(x|β)[log f+(x)]dβ,

ηres− = log
c−
Z−

=

∫ 1

0

Eφ̄−(x|β)[log f+(x)]dβ,

using the estimators

η̂res+ =
N−1∑
i=1

(βi+1 − βi)
Ê+

i+1 + Ê+
i

2
, (25)

η̂res− =
N−1∑
i=1

(βi+1 − βi)
Ê−

i+1 + Ê−
i

2
, (26)

where

Ê+
i =

1

M

M∑
m=1

log f+(xi,m), xi,m ∼ φ̄+(x|βi), (27)

Ê−
i =

1

M

M∑
m=1

log f−(vi,m), vi,m ∼ φ̄−(x|βi). (28)

When comparing the estimators in Eqs. (25)-(26) with respect to the GTI estimator in Eq. (18),
here the only difference is that the expectation at β = 0 is approximated by using samples from the
restricted posteriors, π+(x) and π−(x), instead of the posterior π(x).2 To obtain an approximation
of the true quantities of interest η+, η− (instead of ηres+ and ηres− ), we compute two correction factors
from a single set of K samples from π̄(x) as follows

R̂+ =
1

K

K∑
i=1

1X+(zi) ≈
Z+

Z
, (29)

R̂− =
1

K

K∑
i=1

1X−(zi) ≈
Z−

Z
, zi ∼ π̄(x), (30)

where 1X+(xi) = 1 if f+(xi) > 0, 1X−(xi) = 1 if f−(xi) > 0, and both zero otherwise. The final
estimator of I is

Î = R̂+ exp
(
η̂res+

)
− R̂− exp

(
η̂res−

)
, (31)

including the two correction factors. Table 2 provides all the details of GTI in this scenario.

2In order to obtain samples from π±(x), we just need to consider π±(x) as target density instead of π(x), in
the MCMC steps. A similar alternative procedure is to apply rejection sampling, discarding the samples from π(x)
such that f±(x) = 0.
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Table 2: GTI for generic functions f(x)

- Initialization: Choose the set of nodes {βi}Ni=1 (with β1 = 0 and βN = 1), and the number
of iterations N .
- For i = 1, . . . , N :

1. Sampling: Sample

{xi,m}Mm=1 ∼ φ̄+(x|βi) ∝ f+(x)
βiπ+(x), π+(x) = π(x)1X+(x),

{vi,m}Mm=1 ∼ φ̄−(x|βi) ∝ f−(x)
βiπ−(x), π−(x) = π(x)1X−(x).

2. Compute:

Ê+
i =

1

M

M∑
m=1

log f+(xi,m), Ê−
i =

1

M

M∑
m=1

log f−(vi,m).

3. Update: If i = 1, set η
(i)
+ = η

(i)
− = 0 . If i > 1, update recursive estimates

η̂
(i)
+ ← η̂

(i−1)
+ + 0.5 · (βi − βi−1)

(
Ê+

i + Ê+
i−1

)
,

η̂
(i)
− ← η̂

(i−1)
− + 0.5 · (βi − βi−1)

(
Ê−

i + Ê−
i−1

)
.

- Correction: Compute correction factor using samples {zk}Kk=1 ∼ π̄(x),

R̂+ =
1

K

K∑
i=1

1X+(zi), R̂− =
1

K

K∑
i=1

1X−(zi), zi ∼ π̄(x),

- Outputs: The final estimator

Î = R̂+ exp
(
η̂
(N)
+

)
− R̂− exp

(
η̂
(N)
−

)
,

Remark 2. Standard TI as special case of GTI: Note that the GTI scheme contains TI as
a special case if we set f(x) = ℓ(y|x) (i.e., the likelihood function) and let the prior g(x) play the
role of π(x). Since the likelihood ℓ(y|x) is non-negative we have η− = −∞ (then, exp (η−) = 0),
hence we only have to consider the estimation of η+. Moreover, if ℓ(y|x) is strictly positive we do
not need to compute the correction factor.

Remark 3. The GTI procedure, described above, also allows the application of the standard TI
for computing marginal likelihoods when the likelihood function is not strictly positive, by applying
a correction factor in the same fashion (in this case, considering a restricted prior pdf).
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4 Computational considerations and other extensions

In this section, we discuss computational details, different scenarios and further extensions, that
are listed below.
Acceleration schemes. In order to apply GTI, the user must set N and M , so that the total
number of samples/evaluations of f(x) in Table 1 is E = NM . The evaluations of f(x) in Table
2 are E = 2NM +K. We can reduce the cost of algorithm in Table 2 to E = NM +K with an
acceleration scheme. Instead of running separate MCMC algorithms for φ̄+(x|β) ∝ f+(x)

βπ+(x)
and φ̄−(x|β) ∝ f−(x)

βπ−(x), we use a single run targeting

φ̄abs(x|β) ∝ |f(x)|βπ(x)1 (f(x) ̸= 0) . (32)

We can obtain two MCMC samples, one from φ̄+(x|β) and one from φ̄−(x|β), by separating the
sample into two: samples with positive value of f(x), and samples with negative value of f(x),
respectively. The procedure can be repeated until obtaining the desired number of samples from
each density, φ̄+(x|β) and φ̄−(x|β).
Moreover, note that in Table 2 we need to draw samples from π+(x), π−(x) and π(x). Instead of
sampling each one separately, we can use the following procedure. Obtain a set of samples from
π(x) and then apply rejection sampling (i.e. discard samples with f±(x) = 0) in order to obtain
samples from π±(x). Combining this idea with the acceleration scheme above reduces the cost of
Table 2 to E = MN .
Parallelization. Note that steps 1 and 2 in Table 1 and Table 2 are amenable to parallelization. In
other words, those steps need not be performed sequentially but can be done using embarrassingly
parallel MCMC chains (i.e. with no communication among N , or 2N , workers). Only step 3
requires communicating to a central node and combining the estimates. With this procedure, the
number of evaluations E is the same but the computation time is reduced by 1

N
(or 1

2N
) factor.

On the other hand, population MCMC techniques can be used, but parallelization speedups are
lower since communication among workers occurs every so often, in order to foster the exploration
of the chains [22, 19].
Vector-valued functions f(x). In Bayesian inference, one is often interested in computing
moments of the posterior, i.e.,

I =

∫
X
xαπ̄(x)dx, α ≥ 1. (33)

In this case I is a vector and f(x) = xα. When α = 1, I represents the minimum mean square
error (MMSE) estimator. More generally, we can have a vector-valued function,

f(x) =
[
f1(x), . . . , fdf (x)

]⊤
: X → Rdf ,

hence the integral of interest is a vector I = [I1, . . . , Idf ]
⊤ where Ii =

∫
X fi(x)π̄(x)dx. In this

scenario, we need to apply the GTI scheme to each component of I separately, obtaining estimates
Îi of the form in Eq. (31).
Alternative procedure avoiding corrections. We have seen that we can apply GTI to
compute the posterior expectation of a generic f(x), that can be positive, negative and have
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zero-valued regions. For doing this, we connected with a tempered path, π+(x) and π−(x), to
f+(x)π(x) and f−(x)π(x) respectively and then apply correction factors.
An alternative procedure is to use reference distributions in order to compute separately c+, c−
and Z in Eq. (14), which are the normalizing constants of the unnormalized pdfs f+(x)π(x),
f−(x)π(x) and π(x) respectively (similarly as suggested in [3]). Let us define as

prefi (x), i = 1, 2, 3,

three unnormalized reference densities with normalizing constants,

Zref
i =

∫
X
prefi (x)dx, i = 1, 2, 3.

Then, the idea is to apply GTI for obtaining estimates of log c+
Zref
1
, log c−

Zref
2

and log Z
Zref
3
. A

requirement is that pref1 (x) is zero where f+(x)π(x) is zero, pref2 (x) is zero where f−(x)π(x) is
zero, and pref3 (x) is zero where π(x) is zero. Namely, we need to be able to build a continuous path
between the reference distributions and the corresponding unnormalized pdf of interest. With this
procedure, we do not need to apply correction factors, but we just need to apply the algorithm in
Table 1 three times. Of course, the choice of the reference distributions affects the performance of
the final estimator. Choosing reference distributions that are closer than what π(x) is to f+(x)π(x)
or f−(x)π(x), improves the results. The advantage of this alternative procedure is that, ideally,
with pref3 (x) = π(x), pref1 (x) = f+(x)π(x) and pref2 (x) = f−(x)π(x), we can obtain a zero-variance
estimator (see also [3] for discussion).

5 Numerical experiments

In this section, we illustrate the performance of the proposed scheme in two numerical experiments
which consider different kind of densities π̄ with different features and different dimensions, and
also different function f(x). In the first example, f(x) is strictly positive so we apply the algorithm
described in Table 1. In the second example, we consider f(x) to have zero-valued regions, and
hence we apply the algorithm in Table 2. It is important to remark that the setup of these
numerical examples have been considered in other relevant works (e.g., see [3, 23, 24]).

5.1 First numerical analysis

Let us consider the following Gaussian model [3]

g(x) = N (x|0D, ID), ℓ(y|x) = N
(
− y√

D
1D

∣∣∣x, ID) , f(x) = N
(
x
∣∣∣ y√

D
1D,

1

2
ID

)
, (34)

where D is the dimensionality, ID is the identity matrix, 0D and 1D are D-vectors containing
only zeros or ones respectively, and y is a scalar value that represents the radial distance of the
observation y = − y√

D
1D to the origin. We are interested in the estimation of I =

∫
X f(x)π̄(x)dx.
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Thus this problem consists in computing the posterior predictive density, under the above model,
at the point y√

D
1D. In this toy example, we can sample directly from the tempered distributions,

φ̄(x|β) = N
(
x
∣∣∣2β − 1

2β + 2

y√
D
1D,

1

2β + 2
ID

)
, β ∈ [0, 1]. (35)

We compare our proposed approach against two extreme cases of self-normalized IS (SNIS)

estimators ÎSNIS = 1∑Mtot
j=1 wj

∑Mtot

i=1 wif(xi), where xi ∼ q(x) and wi = π(xi)
q(xi)

is the IS weight.

Namely, (a) SNIS using samples from the posterior (SNIS-1), i.e., q(x) = π̄(x) (hence, SNIS-1
coincides with standard Monte Carlo), where

π̄(x) = N
(
x
∣∣∣− 1

2

y√
D
1D,

1

2
ID

)
, (36)

and (b) SNIS using samples from q(x) = φ(x|1) ∝ f(x)π(x) (SNIS-2), which corresponds to
setting β = 1 in Eq. (35). These choices are optimal for estimating, respectively, the denominator
and the numerator of the right hand side of Eq. (2) [1]. The ground-truth is known, and can be

written as Gaussian density evaluated in y√
D
1D, more specifically, I = N

(
y√
D
1D

∣∣∣− 1
2

y√
D
1D, ID

)
.

We test the values y ∈ {2, 3.5, 5} and D ∈ {10, 25, 50}. Note that, as we increase y, the posterior
π̄(x) and the density φ̄(x|1) ∝ f(x)π(x) become further apart. We use the powered fraction

schedule: βi =
(

i−1
N−1

)5
for i = 1, . . . , N , with N = 100 quadrature points [10, 15]. The results are

given in Figure 3, which show, for each pair (y,D), the median relative square error along with the
25% and 75% quantiles (over 100 simulations) versus the number of total samples Mtot. In order
to keep the comparison fair, we only draw M = Mtot

N
samples from each tempered distribution,

where Mtot denotes the total number of samples. We see that GTI with N = 100 outperforms
SNIS-1 and SNIS-2 for all y and D considered. The performance gain is higher with larger y, as
expected, since this represents a larger mismatch between π̄(x) and φ̄(x|1) ∝ f(x)π(x), that is a
scenario where GTI is well suited. Furthermore, the performance of GTI seems rather insensitive
to increasing the dimension D.

5.2 Second numerical analysis

We consider the following two-dimensional banana-shaped density (which is a benchmark example
[3, 23, 24]),

π(x1, x2) = exp

(
−1

2

(
0.03x2

1 +
(x2

2
+ 0.03

(
x2
1 − 100

))2
))

, (37)

and the function

f(x1, x2) = (x2 + 10) exp

(
−1

4
(x1 + x2 + 25)2

)
1 (x2 > −10) . (38)

We compare GTI using N ∈ {10, 50, 100} against a single MCMC chain targeting π(x) in the

estimation of Eπ̄[f(x)]. We use again the powered fraction schedule: βi =
(

i−1
N−1

)5
for i = 1, . . . , N .
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(a) y = 2, D = 10 (b) y = 2, D = 25 (c) y = 2, D = 50

(d) y = 3.5, D = 10 (e) y = 3.5, D = 25 (f) y = 3.5, D = 50

(g) y = 5, D = 10 (h) y = 5, D = 25 (i) y = 5, D = 50

Figure 3: Relative squared error of GTI, IS and RIS as a function of number of samples Mtot, for
different y and D. The TI method uses N = 100 quadrature points and M = Mtot

N
samples from

each tempered distribution for estimating Eφ̄(x|β)[log f(x)] (hence the total number of samples is
Mtot).

For GTI, we run N chains for M = Mtot

N
iterations, each one addressing a different tempered

distribution f(x)βiπ(x). All the MCMC algorithms use a Gaussian random-walk proposal with
covariance Σ = 3I2. The budget of evaluations is Mtot ∈ {105, 106}, for all the compared schemes.
The results are shown in Table 3. We show the median relative square error of the methods over
100 independent simulations. For the sample sizes considered, GTI performs better than simple
MCMC. Indeed, for N = 100, the performance gains are almost of one order of magnitude over
MCMC. However, note that, for Mtot = 106, GTI with the choice N = 10 is worse than MCMC
due to the discretization error, i.e., there is not enough quadrature nodes, so the estimation in
Eq. (18) has considerable bias. In that situation, increasing the sample size from Mtot = 105
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to Mtot = 106 does not translate into a significant performance gain (as opposed to N = 50, 100
where the performance increases by one order of magnitude).

(a) π(x) (b) f(x) · π(x) (c) f(x)β · π(x)

Figure 4: Plots of π(x), f(x)π(x) and f(x)βπ(x) with β = 0.0173 for the banana example. We
see that f(x) and f(x)π(x) have little overlap and hence a direct MCMC estimate of Eπ̄[f(x)] is
not efficient. The tempered distributions, f(x)βπ(x), are in-between those distributions, helping
in the estimation of Eπ̄[f(x)].

Table 3: Median relative square error of GTI for Mtot ∈ {105, 106} and N ∈ {10, 50, 100}. For
each Mtot, best results are boldfaced.

Mtot MCMC GTI, N = 10 N = 50 N = 100
105 0.042849 0.038422 0.016544 0.00641
106 0.0040054 0.01516 0.0012224 0.00060778

6 Conclusions

We have extended the powerful thermodynamic integration (TI) technique for performing a
complete Bayesian inference. GTI allows the computation of posterior expectations of real-valued
functions f(x), and also vector-valued functions f(x). GTI contains the standard TI as special
case. Even for the estimation of the marginal likelihood, this work provides a way for extending the
application of the standard TI avoiding the assumption of strictly positive likelihood functions (see
Remarks 1- 2). Several computational considerations and variants are discussed. The advantages
of GTI are clearly shown in different numerical comparisons. As a future research line, we plan
to study new continuous paths for linking densities with different support, avoiding the need of
the correction terms. Alternatively, as discussed in Sect. 4, another approach would be to design
suitable approximations of φ+(x), φ−(x) and π(x) (see Sect. 3.1) using, e.g., regression techniques
[25, 26].
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