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Abstract 

Motion has traditionally been defined extrinsically, as the change in the position of an object, 

such as a particle, over time. In previous work titled "Motion From a Particle's Point of View: An 

Interpretation of the Double Slit Experiment" we argued that this definition of motion is 

incomplete and that it is using it which leads to the "weirdness" of quantum mechanics, as 

exemplified by the double slit experiment. We proposed an alternative intrinsic definition of 

motion, using which we claimed quantum mechanics can be understood without weirdness. In 

this paper, we extend this previous work, which only considered constant-speed motion of a 

single particle, to the case of: first, multiple particles in constant-speed motion; and, second, the 

case of multiple accelerating, that is, interacting, particles. We show we can in this way recover 

the key equations and phenomena of both special and general relativity. By showing that the 

intrinsic definition of motion underlies the theories of special and general relativity, as well as 

quantum mechanics, we propose it may be of use in developing a theory of quantum gravity. 

 

1. Introduction 

This paper is a direct sequel to our previous work [1], which we assume the reader is familiar 

with. We do not repeat the discussions, definitions, equations, postulates and lemmas of that 

paper here, but refer to them as needed. 

In [1], we defined motion intrinsically, with the speed 𝑣 along a "road" given by the reciprocal of 

the period of the repetition of "scenery" (such as lampposts, or graduations of a coordinate scale) 

along the road seen from the point of view of the object moving along the road: 

𝑣 =  
1

𝜏
                                                                                 (1) 

As discussed in [1], roads can join and split at junctions. We can thus describe the entire road 

network through which a particle can move as a road graph, composed of a set of vertices, the 

junctions, and a set of edges, the roads connecting the junctions. We label each vertex by a lower 

case letter 𝑎, 𝑏, 𝑐 … Each road 𝑅𝑖𝑗  is identified by a pair of vertices 𝑖 and 𝑗 such that motion along 

the road is possible from 𝑖 to 𝑗. We consider all the roads to be one-way, so that if motion is 

possible in both directions between two vertices 𝑖 and 𝑗, we must have two roads connecting 

them, 𝑅𝑖𝑗  and 𝑅𝑗𝑖 . 

Given a road 𝑅𝑖𝑗 , we denote the period of repetition of scenery along it 𝜏𝑖𝑗  and the intrinsic speed 

along it as 𝑣𝑖𝑗 . These are related as before by (1): 
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𝑣𝑖𝑗 =  
1

𝜏𝑖𝑗
                                                                               (2) 

We denote the total time it takes to travel from 𝑖 to 𝑗 by 𝑡𝑖𝑗 . 

In [1], we only considered the case of a single particle moving through a road graph. In section 2 

below we consider the case of multiple particles moving through the road graph, and how we can 

reason about the relative motion of any pair of particles. The resulting theory is identical to 

special relativity. In section 3 we examine the case where the multiple particles in the road graph 

can accelerate by interacting with each other, and show that from this we can recover the key 

equations and phenomena of general relativity. We thus show that using the intrinsic definition 

of motion allows for a framework in which both quantum and gravitational phenomena can be 

analyzed. 

 

2. Special Relativity from a Road Graph 

In physics, we normally think of spacetime as having a primary existence, as really being "out 

there," and as particles simply moving "in" this spacetime. This assumption is hidden in the 

traditional definition of motion as the change in position over a change in time. In the intrinsic 

view we turn this worldview "inside-out." We start with particles which can move. We think of a 

particle as akin to a driver in a car driving along a road, and gauging its speed by the period of 

repetition of scenery. If the road is part of a road graph, then spacetime is, in our view, just the 

best model or map that can be made of the junctions of the roads based only on information 

available to particles travelling through it. With this "flipped" worldview in mind, we now seek 

to reconstruct the mathematics of relativity. 

A basic property of a road graph is that, in general, the total time to travel between two given 

vertices depends on the route taken, that is, on what other vertices are visited along the way. 

Let's study the simplest such case. Let's say Alice travels through our road graph from vertex 𝑎 

to vertex 𝑏 along a road 𝑅𝑎𝑏  in a time 𝑡𝑎𝑏  and with intrinsic speed 𝑣𝑎𝑏 . Let's say Bob also starts 

at vertex 𝑎, but then travels to a vertex 𝑐 (in time 𝑡𝑎𝑐  and with intrinsic speed 𝑣𝑎𝑐 ), before 

continuing to vertex 𝑏 (in time 𝑡𝑐𝑏  and with intrinsic speed 𝑣𝑐𝑏 ). We imagine that during their 

travels, both Alice and Bob (our observers) write down the durations and intrinsic speeds of 

every road they traverse, and then they both stop at vertex 𝑏 and meet up to compare notes, and 

try to build a map of the journeys they took. 

That is, they will try to build a "diagram" or "map" in an Euclidean n-dimensional space which is 

the best possible representation of their journeys given only the intrinsic measurements they 

possess. As in [1], they will draw each section of road in between adjacent junctions as a straight 

line segment in this space. Unlike [1], which considered non-relativistic mechanics and therefore 

used a "pseudoextrinsic" definition of distance, in the present paper our observers will use the 

intrinsic definition of distance (equation (3) of [1] and (3) below) to fix the length of a road given 

its duration and intrinsic speed. In the case of multiple interconnected roads, Alice and Bob can 

use the intrinsic distances between the junctions to trilaterate the relative locations of the 

junctions in their diagram or map. 
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For every road 𝑅𝑖𝑗  traversed by Alice and Bob they multiply the duration 𝑡𝑖𝑗  by the intrinsic 

speed 𝑣𝑖𝑗  to compute the total intrinsic distance 𝑥𝑖𝑗  travelled from their point of view: 

𝑥𝑖𝑗 = 𝑣𝑖𝑗 𝑡𝑖𝑗                                                                             (3) 

So when Alice and Bob meet up at vertex 𝑏 they can draw a map of their journeys as a triangle in 

an Euclidean space, as shown in figure 1. 

 

Fig. 1: Alice's and Bob's map of their journeys. 

Let's say Alice wants to figure out at what point during her journey along 𝑅𝑎𝑏  she was the closest 

to vertex 𝑐 on their map. We call this the perigee point of 𝑅𝑎𝑏  with respect to 𝑐. We denote the 

time it occurs 𝑇𝑎𝑏  as measured by Alice's clock, and let 𝑋𝑎𝑏 = 𝑣𝑎𝑏𝑇𝑎𝑏 . The perigee point can be 

found by drawing a line segment from, and perpendicular to, the line segment 𝑎𝑏 and ending at 𝑐 

in figure 1. We call the length of this new line segment the perigee distance ℎ. This is shown in 

figure 2. 

 

Fig. 2: 𝑝 is the perigee point and ℎ the perigee distance of road 𝑅𝑎𝑏  with respect to 𝑐. 

The perigee distance is a purely artificial construct, and it cannot be measured during Alice's and 

Bob's journeys, only inferred after they meet up at 𝑏 and compare their notes regarding the roads 

they traversed. Nevertheless, the distance is useful to have if we wish to build a map of a road 

graph, and it has some useful mathematical properties which we develop below. 

From the right angle triangle 𝑎𝑝𝑐 in figure 2 we have: 

𝑥𝑎𝑐
2 =  𝑋𝑎𝑏

2 + ℎ2                                                               (4) 

that is, 

𝑎 𝑏 

𝑐 

𝑥𝑐𝑏  
𝑥𝑎𝑐  

𝑋𝑎𝑏  

ℎ 

𝑝 

𝑥𝑎𝑏  

𝑎 𝑏 

𝑐 

𝑥𝑐𝑏  
𝑥𝑎𝑐  

𝑥𝑎𝑏  
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𝑋𝑎𝑏
2

𝑥𝑎𝑐
2

=  1 −
ℎ2

𝑥𝑎𝑐
2

                                                                (5) 

Let's define 𝑡 as follows: 

𝑡 ≝
1

𝑣𝑎𝑐
ℎ                                                                               (6) 

which is the time Bob would need to travel at the same speed he travelled from 𝑎 to 𝑐 to cover 

the perigee distance from 𝑐 to 𝑝. Then we can write: 

 𝑣𝑎𝑏𝑇𝑎𝑏  
2

 𝑣𝑎𝑐 𝑡𝑎𝑐  2
=  1 −

𝑡2

𝑡𝑎𝑐
2                                                        (7) 

or 

𝑡𝑎𝑐
2

𝑇𝑎𝑏
2 =  

𝑣𝑎𝑏
2

𝑣𝑎𝑐
2

1

1 −
𝑡2

𝑡𝑎𝑐
2

                                                      (8) 

Now we define the quantity 𝑣𝑟  by: 

𝑣𝑟 ≝
𝑡

𝑡𝑎𝑐
=

ℎ

𝑥𝑎𝑐
                                                                    (9) 

which has a natural interpretation as the magnitude of the relative velocity of Alice with respect 

to Bob. It is a ratio of the distance Bob would have to travel from 𝑐 to the perigee point 𝑝 on 𝑅𝑎𝑏  

to the distance he travelled along 𝑅𝑎𝑐 . It ranges from 0, in the case where the perigee distance is 

zero and 𝑐 lies on 𝑅𝑎𝑏 , to 1, if 𝑅𝑎𝑏  and 𝑅𝑎𝑐  are perpendicular. 𝑣𝑟  is therefore a measure of the 

angle between the two roads, ranging from 0 if they are parallel, to 1 if they are perpendicular, 

and so is also a useful quantity to define when building a map of a road graph from purely 

intrinsic measurements. 

Let's consider the simple case when 𝑣𝑎𝑐 =  𝑣𝑎𝑏 , that is, when Alice and Bob see themselves to be 

travelling with the same intrinsic speed. We then have: 

𝑡𝑎𝑐
𝑇𝑎𝑏

=  
1

 1 − 𝑣𝑟
2

                                                               (10) 

This expression has a very simple interpretation if we make one more simplifying assumption, 

that both roads Bob traverses are of the same duration and intrinsic speed: 𝑡𝑎𝑐 =  𝑡𝑐𝑏  and 

𝑣𝑎𝑐 =  𝑣𝑐𝑏 . Then the triangle 𝑎𝑏𝑐 in figure 2 is isosceles. When Alice and Bob meet up at 𝑏 

Alice will have travelled for a total time 𝑡𝑎𝑏 =  2𝑇𝑎𝑏 , while Bob's total travel time would be 

2𝑡𝑎𝑐 . Alice and Bob will interact at vertex b, that is, they will be both disturbed in the sense of 

P3 of [1]. But they will not agree on the time this disturbance occurred, and there is no way to 

assign a "correct" absolute time to when this disturbance occurred. Instead, Alice will claim the 

time was 2𝑇𝑎𝑏 , and Bob will claim it was 2𝑡𝑎𝑐 . Since (10) implies 𝑡𝑎𝑐 >  𝑇𝑎𝑏  if 𝑣𝑟 >  0, we say 

that Bob experiences time dilation, or that "moving clocks run slow," a key effect in the theory of 

special relativity. 
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Note that whatever 𝑣𝑟  is (still assuming 𝑣𝑎𝑐 =  𝑣𝑎𝑏 ) we always have: 

𝑇𝑎𝑏
2 = 𝑡𝑎𝑐

2 − 𝑡2                                                                (11) 

We interpret this as follows, again assuming the triangle 𝑎𝑏𝑐 is isosceles. Alice takes time 

𝑡𝑎𝑏 =  2𝑇𝑎𝑏  to go from 𝑎 to 𝑏. Depending on 𝑣𝑟 , Bob will take a different time 2𝑡𝑎𝑐  to go from 𝑎 

to 𝑏. But, independent of the magnitude of the relative velocity, the quantity 𝑡𝑎𝑐
2 − 𝑡2 will be 

constant for any given journey of Alice from 𝑎 to 𝑏. We therefore call the quantity (11) an 

invariant. This is the same invariant known as Alice's proper time (time measured in Alice's rest 

frame) in special relativity. 

When Bob is at vertex 𝑐, his clock reads 𝑡𝑎𝑐 , and the perigee distance is given by 

ℎ = 𝑣𝑟𝑣𝑎𝑐 𝑡𝑎𝑐 . However, at the perigee point Alice's clock reads 𝑇𝑎𝑏  which is different from 𝑡𝑎𝑐  

if 𝑣𝑟 >  0. We can ask what the perigee distance to Alice is when Bob is partway along the road 

from 𝑎 to 𝑐, having travelled a time equal to 𝑇𝑎𝑏 , given by ℎ′ = 𝑣𝑟𝑣𝑎𝑐𝑇𝑎𝑏 . We then have: 

ℎ′

ℎ
=

𝑣𝑟𝑣𝑎𝑐𝑇𝑎𝑏

𝑣𝑟𝑣𝑎𝑐 𝑡𝑎𝑐
=   1 − 𝑣𝑟

2                                            (12) 

where we used (10). If 𝑣𝑟 >  0, ℎ′ < ℎ, so we say that "moving rods shrink," the phenomenon 

known as Lorentz contraction in special relativity. 

We can summarize (10) and (12) by noting that either Alice and Bob agree on the distance ℎ 

between them, but measure different times 𝑇𝑎𝑏  and 𝑡𝑎𝑐  related by (10), or they agree on the time 

𝑇𝑎𝑏 , but measure different distances ℎ and ℎ′ related by (12). These two equations form the basis 

of the Lorentz transform, fundamental to special relativity. We are using natural units, in which 

the speed of light 𝑐 = 1. We also recognize the fact that 𝑣𝑟  as defined in (9) cannot exceed 1 as 

the special relativity principle that nothing can travel faster than the speed of light. 

Now that Alice and Bob know how to map out a triangle of roads, and how to define useful 

quantities for such triangles, they wish to map out a more complicated graph. We assume that 

this road graph is bidirectional, so that for every road 𝑅𝑖𝑗  there is a road 𝑅𝑗𝑖  with the same 

duration and intrinsic speed. 

For any road 𝑅𝑖𝑗 , Alice and Bob can compute the intrinsic distance 𝑥𝑖𝑗  between 𝑖 and 𝑗 using (3). 

Let's say Bob travels through the road graph in such a way that he traverses each road 𝑅𝑖𝑗  at least 

once. He records all the distances 𝑥𝑖𝑗  between all pairs of vertices connected by a road. Now Bob 

wants to build a map of this road graph in a 3-dimensional Euclidean space. As discussed above, 

in this map each road between adjacent vertices 𝑖 and 𝑗 will be a straight line segment of length 

𝑥𝑖𝑗 . Every vertex 𝑖 is represented by a point with coordinates chosen so that all the distances 

between these points match the intrinsic distance between each pair of vertices. This process is 

known as trilateration. The idea is the same as reconstructing the map of a country from a table 

of straight-line distances between cities. A general road graph may not be able to be represented 

in a 3-dimensional Euclidean space, but if a specific road graph can be, we call it a Euclidean 3-

dimensional road graph. In such a graph, each vertex 𝑖 is represented by a point with coordinates 

given by: 
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𝑥 𝑖 =  

𝑥1𝑖

𝑥2𝑖

𝑥3𝑖

                                                                             (13) 

Such an assignment of coordinates is not unique. We use the superposed arrow on a letter to 

indicate 3-vectors. 

Given an assignment of coordinates in a Euclidean 3-dimensional road graph, we can generalize 

(10) and (11) as follows. We define: 

𝑥 𝑖𝑗 = 𝑥 𝑗 − 𝑥 𝑖                                                                       (14) 

and 

𝑡 𝑖𝑗 =
1

𝑣𝑖𝑗
𝑥 𝑖𝑗       and      𝑇  𝑖𝑗 =

1

𝑣𝑖𝑗
𝑋 𝑖𝑗                                               (15) 

Referring to figure 2 and the surrounding discussion, we have: 

𝑥 𝑎𝑐
2

= 𝑋 𝑎𝑏
2

+ ℎ  2                                                             (16) 

where 𝑋 𝑎𝑏  are the coordinates of the perigee point 𝑝 minus the coordinates 𝑥 𝑎  of 𝑎, and ℎ   are the 

coordinates of the perigee point minus 𝑥 𝑐 , those of 𝑐. It follows that (compare (5)): 

𝑋 𝑎𝑏
2

𝑥 𝑎𝑐
2 =  1 −

ℎ  2

𝑥 𝑎𝑐
2                                                              (17) 

Similarly to (6) we define: 

𝑡 ≝
1

𝑣𝑎𝑐
ℎ                                                                              (18) 

Using (15) and (17) we have: 

𝑣𝑎𝑏
2𝑇  𝑎𝑏

2

𝑣𝑎𝑐
2𝑡 𝑎𝑐

2 =  1 −
𝑡 2

𝑡 𝑎𝑐
2                                                       (19) 

or: 

𝑡 𝑎𝑐
2

𝑇  𝑎𝑏
2 =  

𝑣𝑎𝑏
2

𝑣𝑎𝑐
2

1

1 −
𝑡 2

𝑡 𝑎𝑐
2

                                                     (20) 

Now we can define the relative velocity vector by: 

𝑣 𝑟 ≝
𝑡 

 𝑡 𝑎𝑐  
                                                                            (21) 
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to obtain: 

𝑡 𝑎𝑐
2

𝑇  𝑎𝑏
2 =  

𝑣𝑎𝑏
2

𝑣𝑎𝑐
2

1

1 − 𝑣 𝑟
2                                                      (22) 

(Compare with (8)). If we assume 𝑣𝑎𝑐 =  𝑣𝑎𝑏 , then this is the same equation as (10), except 

expressed in terms of coordinates of vertices in the "map" space, not just the intrinsic distances 

between vertices as (10) was. 

To make further connections with special relativity, let us define the 4-vector 𝒙𝑖𝑗  (we use bold 

letters for 4-vectors) by: 

𝒙𝑖𝑗 ≝  
 𝑡 𝑖𝑗  

𝑡 
                                                                        (23) 

So, 𝒙𝑎𝑐  is a 4-vector where the 0-component is the reading on Bob's clock when he reaches 

vertex 𝑐 from 𝑎, and the remaining components 1, 2, 3 are a 3-vector equal to the difference in 

coordinates between the perigee point of Alice and 𝑐 divided by 𝑣𝑎𝑐 . The 4-vector can be thought 

of as the answer to the question of where Alice's perigee point is from Bob's point of view. In 

special relativity, this is called the coordinates of Alice in a moving frame of reference belonging 

to Bob. We remind ourselves, however, that the vector 𝑡  is an artificial construct that can only be 

measured after Alice and Bob meet up. The 4-vector 𝒙𝑖𝑗  is useful to define when mapping a road 

graph, even if it can't be directly measured. We develop these properties below. We define the 

norm of a 4-vector using the Lorentz metric (compare (11)): 

 𝒙𝑖𝑗  
2
≝  𝑡 𝑖𝑗  

2
− 𝑡 2                                                           (24) 

For the case of Alice and Bob in figure 2, using (11) we have: 

 𝒙𝑎𝑐  
2 = 𝑇  𝑎𝑏

2
                                                                    (25) 

which is an invariant independent of the relative velocity of Alice with respect to Bob. Further, 

we define the 4-vector 𝒑𝑖𝑗𝑘 : 

𝒑𝑖𝑗𝑘 ≝
1

 𝑇  𝑖𝑗  
𝒙𝑖𝑘 =  

1

 𝑇  𝑖𝑗  
 
 𝑡 𝑖𝑘  

𝑡 
 =

 𝑡 𝑖𝑘  

 𝑇  𝑖𝑗  
 

1
𝑣 𝑟

 =
𝑣𝑖𝑗

𝑣𝑖𝑘

1

 1 − 𝑣 𝑟
2

 
1
𝑣 𝑟

                       (26) 

and it follows from (23) and (24) that: 

 𝒑𝑖𝑗𝑘  
2

=  
𝑣𝑖𝑗

𝑣𝑖𝑘
 

2 1

1 − 𝑣 𝑟
2  1 − 𝑣 𝑟

2
 =  

𝑣𝑖𝑗

𝑣𝑖𝑘
 

2

                                         (27) 

Comparing with special relativity, we recognize the 4-vector 𝒑𝑖𝑗𝑘  is the energy-momentum 

4-vector, and the quantity on the right hand side of (27) is the square of the rest mass 𝜇: 
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𝜇 =
𝑣𝑖𝑗

𝑣𝑖𝑘
                                                                          (28) 

In the case of Alice and Bob, we have: 

 𝒑𝑎𝑏𝑐  =
𝑣𝑎𝑏

𝑣𝑎𝑐
                                                                     (29) 

which is the ratio of the intrinsic speeds of the traversals by Alice from 𝑎 to 𝑏 and Bob from 𝑎 to 

𝑐 respectively. In our model, therefore, we interpret rest mass as the ratio of intrinsic speeds of 

two roads, one along which the body under study moves, and the other one along which the 

observer moves. This is intimately related to the role of mass in general relativity, where mass is 

equated with the curvature of spacetime; in our model, the higher the mass, the higher the 

difference in intrinsic distance travelled along the two different roads during the same length of 

time, as if space were "shrunk" along one road compared to the other. We develop this further in 

section 3. 

But first, we turn to the final part of special relativity, that of conversion between mass and 

energy in processes where composite bodies split into parts or parts join into composite bodies, 

as in nuclear fission and fusion. 

We need to slightly extend the road network model presented in [1] to encompass the splitting 

and joining of moving bodies. Crucially, such a splitting or joining is an interaction of bodies in 

the sense of P3 [1], and so is a disturbance to the motion of the bodies. 

Imagine we have two cars A and B, each with a driver, and each travelling along different roads 

A and B. The drivers measure the times between successive lampposts, respectively 𝜏𝐴 and 𝜏𝐵 , 

and from them compute their intrinsic speeds 𝑣𝐴 and 𝑣𝐵 . So in a fixed period of time 𝛥𝑡, car A 

will pass 𝑛𝐴 = 𝑣𝐴𝛥𝑡 lampposts, while car B will pass 𝑛𝐵 = 𝑣𝐵𝛥𝑡 lampposts. 

Now let the roads A and B join into one composite road AB, where the two cars A and B join 

into one new composite car AB. That is, from either car's point of view, it will bump into and 

join with the other car to form one new car AB. This process will be a disturbance to both 

incoming cars in the sense of P3 of [1]. We assume that the driver of the new composite car will 

see 𝑛𝐴𝐵 = 𝑛𝐴 + 𝑛𝐵  lampposts in each period of time 𝛥𝑡. This "conservation of lampposts per 

unit time" is the intrinsic point of view equivalent of the extrinsic "conservation of momentum." 

The intrinsic speed 𝑣𝐴𝐵  of the composite car will thus be given by: 

𝑣𝐴𝐵 = 𝑣𝐴 + 𝑣𝐵                                                                    (30) 

The situation of a composite car AB splitting into two cars A and B is simply the reverse of the 

above scenario. 

Now we can apply this expanded road graph model to discuss how Alice and Bob would deal 

with mapping a junction where composite roads are formed or split up. We imagine a case where 

two cars A and B join into one AB. So now instead of one Alice, we start with two people, 

AliceA and AliceB, which join into one AliceAB. Before the junction, Bob can measure the 

journeys of AliceA and AliceB obtaining (refer (23)): 
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𝒙𝑎𝑐𝐴 =  
 𝑡 𝑎𝑐𝐴  

𝑡𝐴    
 𝒙𝑎𝑐𝐵 =  

 𝑡 𝑎𝑐𝐵  

𝑡𝐵    
                                                 (31) 

and 

𝒑𝑎𝑏𝑐𝐴 =
1

 𝑇  𝑎𝑏𝐴  
𝒙𝑎𝑐𝐴 𝒑𝑎𝑏𝑐𝐵 =

1

 𝑇  𝑎𝑏𝐵  
𝒙𝑎𝑐𝐵                               (32) 

Now the conservation of lampposts per unit time (30) implies: 

𝒑𝑎𝑏𝑐𝐴𝐵 = 𝒑𝑎𝑏𝑐𝐴 + 𝒑𝑎𝑏𝑐𝐵                                                        (33) 

or, 

1

 𝑇  𝑎𝑏𝐴𝐵  
𝒙𝑎𝑐𝐴𝐵 =

1

 𝑇  𝑎𝑏𝐴  
𝒙𝑎𝑐𝐴 +

1

 𝑇  𝑎𝑏𝐵  
𝒙𝑎𝑐𝐵                           (34) 

Using (26) and (28) we have: 

𝜇𝐴𝐵

 1 − 𝑣 𝑟𝐴𝐵
2

 
1

𝑣 𝑟𝐴𝐵
 =

𝜇𝐴

 1 − 𝑣 𝑟𝐴
2

 
1

𝑣 𝑟𝐴
 +

𝜇𝐵

 1 − 𝑣 𝑟𝐵
2

 
1

𝑣 𝑟𝐵
                       (35) 

where 𝜇𝐴, 𝜇𝐵 and 𝜇𝐴𝐵  are the rest masses of AliceA, AliceB and AliceAB respectively. 

Now let us choose a situation where  𝑣 𝑟𝐴𝐵  = 0, that is 𝑣 𝑟𝐴 =  − 𝑣 𝑟𝐵 . Then, looking at the 

0-component of (35), we have: 

𝜇𝐴𝐵 =
𝜇𝐴 + 𝜇𝐵

 1 − 𝑣 𝑟𝐴
2

                                                            (36) 

So, as long as  𝑣 𝑟𝐴  > 0 this means: 

𝜇𝐴𝐵 > 𝜇𝐴 + 𝜇𝐵                                                                   (37) 

So the rest mass of the composite body is greater than the sum of the rest masses of the 

constituent bodies if they were in relative motion before the composite body was formed. This 

conversion between the relative motion of constituent parts and extra rest mass of the composite 

body formed of them, and vice versa, is the famous phenomenon of mass and energy equivalence 

in special relativity. 

 

3. General Relativity from a Road Network 

Combining general relativity with quantum mechanics has proven to be a challenge due to a 

fundamental chicken-and-egg type problem. The mass-energy in a region of spacetime depends 

on what interactions between particles take place there; but where these particles are, and so 

what interactions take place, depends on the curvature of the region of spacetime, that is, on its 

mass-energy. What particles do depends on where they are, and where they are depends on what 
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they do: an unsolvable problem in any but a trivial (high-symmetry) case. In this final section we 

propose our expanded road network as a tool to help approach this problem from a new angle. 

Fist, we argue that general relativity can be recovered from the road graph model, given some 

simplifying assumptions, that is, our model is more general than general relativity. Then our 

equating of quantum mechanical measurement with the interaction of particles (see P3 of [1]) 

solves the chicken-and-egg problem. Which interactions occur (see P4 of [1]) and the rest masses 

of the product particles (see (36)) and thus the curvature of space seen by the product particles, 

are both decided simultaneously at every vertex at which interaction is possible, in a random but 

intrinsically local fashion. By looking at the interactions and changes in rest mass from the 

particles' points of view, we avoid the question of where in some "external" space these 

interactions take place, or what the curvature of that space is. 

Given a vertex 𝑖 in a road graph, we can look at the set of roads leaving it, consisting of roads 

𝑅𝑖𝑗 , where 𝑗 is the ending vertex of each outgoing road. We argued in the previous section that 

Alice and Bob, while maintaining their strictly intrinsic points of view, can assign to every road a 

3-vector 𝑥 𝑖𝑗 = 𝑣𝑖𝑗 𝑡 𝑖𝑗  (see (15)). Of course, the values of 𝑣𝑖𝑗  can differ between different 

outgoing roads. This means that if Alice leaves vertex 𝑖 and travels for a fixed amount of time 

𝛥𝑡 =  𝑡 𝑖𝑗  , the intrinsic distance she travels will be: 

𝛥𝑥𝑖𝑗 = 𝑣𝑖𝑗  𝑡 𝑖𝑗                                                                     (38) 

or, 

 𝛥𝑥𝑖𝑗  
2

= 𝑣𝑖𝑗
2 𝑡 𝑖𝑗  

2
                                                        (39) 

Thus, the distance she travels in a fixed amount of time depends on the direction she travels in. 

So we can write the distance she travels from vertex 𝑖, namely 𝛥𝑥𝑖 , as a function of 𝑡 𝑖𝑗 : 

 𝛥𝑥𝑖 𝑡 𝑖𝑗   
2

= 𝑣𝑖𝑗
2 𝑡 𝑖𝑗  

2
                                               (40) 

Now we make a crucial simplifying assumption to recover the theory of general relativity. We 

assume that 𝛥𝑥𝑖 𝑡 𝑖𝑗   varies smoothly and slowly as a function of the direction of the vector 𝑡 𝑖𝑗 , 

and that  𝑡 𝑖𝑗   is small. This implies that the manifold in which motion is taking place is 

continuous, not "shredded" into interconnected ribbons as described in [1], and thus does not 

exhibit quantum effects such as interference. We can then approximate the function (40) by its 

power expansion, truncated to quadratic terms only: 

 𝛥𝑥𝑖 𝑡 𝑖𝑗   
2

≈ 𝑡 𝑖𝑗
𝑇
𝐺𝑖  𝑡 𝑖𝑗                                                  (41) 

where 𝐺𝑖  is a 3×3 matrix of real numbers associated with the vertex 𝑖. 

If Alice travels for a time ∆𝑡 along road 𝑅𝑖𝑗 , then Bob, who is travelling from 𝑖 along a different 

road, will describe Alice's motion by the reading of his clock and the perigee distance, that is the 

4-vector 𝒙𝑖𝑗  (see (23)). So Bob can express (41) in terms of 𝒙𝑖𝑗 : 

 𝛥𝑥𝑖 𝒙𝑖𝑗   
2

≈ 𝒙𝑖𝑗
𝑇𝐺′𝑖  𝒙𝑖𝑗                                               (42) 
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Where 𝐺′𝑖  is a 4×4 matrix. We recognize 𝐺′𝑖  is what is called the metric in general relativity, that 

is, (42) corresponds to the equation for distance in general relativity: 

𝑑𝑠2 = 𝑔𝜇𝜈 𝑑𝑥𝜇𝑑𝑥𝜈                                                            (43) 

where 𝑔𝜇𝜈  is a function of position, just as 𝐺′𝑖  is a function of the vertex 𝑖. 

Now that, given the smoothness assumption, we have defined a metric on a road graph, and since 

having a metric implies we are dealing with a manifold which in general can be curved (if 𝑔𝜇𝜈  

and 𝐺′𝑖  have non-zero off-diagonal components), we have recovered the curved spacetime of 

general relativity from the road graph model. It remains to show that this curvature is related to 

the mass-energy in the same way in general relativity as in the road graph model. 

Feynman discussed the meaning of general relativity in a lecture [2]: "Consider a small three-

dimensional sphere, of given surface area. Its actual radius exceeds the radius calculated by 

Euclidean geometry ( 𝑎𝑟𝑒𝑎 4𝜋 ) by an amount proportional to the amount of matter inside the 

sphere (𝑟 −  𝑎𝑟𝑒𝑎 4𝜋 = 𝐺 3𝑐2 𝑚𝑖𝑛𝑠𝑖𝑑𝑒 )." A similar interpretation is discussed in [3]. We wish 

to show that we can recover this same relation from the road graph model. Let's imagine a road 

𝑅𝑎𝑏  from vertex 𝑎 located in the center of a small 3-sphere to a vertex 𝑏 on the surface of it. This 

road is defined by its intrinsic speed 𝑣𝑎𝑏  and duration 𝑡𝑎𝑏 . Let's imagine a copy of this situation, 

with road 𝑅𝑐𝑑  going from a vertex 𝑐 at the center of another 3-sphere to vertex 𝑑 on its surface, 

with intrinsic speed 𝑣𝑐𝑑 = 𝑣𝑎𝑏 + 𝛥𝑣 and duration same as 𝑅𝑎𝑏 , that is 𝑡𝑐𝑑 = 𝑡𝑎𝑏 . In the first 

case, Alice travelling along road 𝑅𝑎𝑏  will conclude the radius of the sphere is: 

𝑟′ = 𝑣𝑎𝑏 𝑡𝑎𝑏                                                                        (44) 

while in the second case, travelling from 𝑐 to 𝑑: 

𝑟 = 𝑣𝑐𝑑 𝑡𝑐𝑑 = 𝑣𝑐𝑑 𝑡𝑎𝑏                                                         (45) 

Then we have: 

𝑟 − 𝑟′ =  𝑣𝑐𝑑 − 𝑣𝑎𝑏  𝑡𝑎𝑏 = 𝛥𝑣𝑡𝑎𝑏                                 (46) 

We call the first case, with road 𝑅𝑎𝑏 , the "empty space" case, and the second case with 𝑅𝑐𝑑 , the 

"presence of matter" case. We see that as 𝛥𝑣 increases, 𝑟 exceeds 𝑟′ by a larger and larger 

amount. That is, in the same amount of time, the person travelling to the surface of the second 

sphere from its center will cover a greater and greater distance. But (28) recognizes the ratio of 

the intrinsic speeds of two roads, one being the observer's, as the concept called "rest mass" in 

special relativity, So, if we keep the observer's intrinsic speed constant, we have: 

𝜇 ∝ 𝛥𝑣                                                                                  (47) 

Now 𝛥𝑣 is just the extra intrinsic speed in the presence of matter case, that is the extra rest mass 

encountered by Alice for a total duration 𝑡𝑎𝑏 . So the total extra rest mass encountered by Alice 

is: 

𝑚𝑖𝑛𝑠𝑖𝑑𝑒 ∝ 𝛥𝑣𝑡𝑎𝑏                                                                 (48) 

So we have: 
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𝑟 − 𝑟′ ∝ 𝑚𝑖𝑛𝑠𝑖𝑑𝑒                                                                 (49) 

as described in the quote by Feynman above. 

 

4. Conclusion 

We have shown that the road graph model lies below the theories of special and general relativity 

(and in previous work [1] – quantum mechanics) and is consistent with their predictions, in the 

sense that these theories can be recovered from the road graph model. We propose this model 

can be used to develop a theory of quantum gravity by approaching it from a new, intrinsic, point 

of view. The metric of general relativity is recovered in the smooth-case ("not shredded" 

manifold) approximation to the road graph. But this simplifying approximation need not be 

made, and the bare road graph model can be used to model phenomena with both quantum and 

gravitational aspects. Our equating the interaction between particles with quantum measurement 

solves the chicken-and-egg problem inherent in combining quantum and gravitational theories. 

We propose the road graph model could be used for calculations of quantum gravity phenomena 

from which quantitative predictions could be made to test our model experimentally. 
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