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Chapter 1

Introduction

This chapter serves as an introduction in the field of Machine Learning and
Genetic Programming. The last section presents the goals and the achieve-
ments of the thesis.

1.1 Machine Learning and Genetic Program-

ming

Automatic Programming is one of the most important areas of computer
science research today. Hardware speed and capability has increased expo-
nentially, but the software is years behind. The demand for software has also
increased significantly, but it is still written in old-fashion: by using humans.

There are multiple problems when the work is done by humans: cost,
time, quality. It is costly to pay humans, it is hard to keep them satisfied for
long time, it takes a lot of time to teach and train them and the quality of
their output is in most cases low (in software, mostly due to bugs).

The real advances in the human civilization appeared during the indus-
trial revolutions. Before the first revolution most people worked in agricul-
ture. Today, very few percent of people work in this field.

A similar revolution must appear in the computer programming field.
Otherwise we will have so many people working in this field as we had in the
past working in agriculture.

How people know how to write computer programs? Very simple: by
learning. Can we do the same for software? Can we put the software to
learn how to write software?

13



It seems that is possible (to some degree) and the term is called Machine
Learning. It was first coined in 1959 by the first person who made a computer
perform a serious learning task, namely Samuel [89].

However, things are not so easy as in humans (well, truth to be said -
for some humans it is impossible to learn how to write software). So far
we do not have a software which can learn perfectly to write software. We
have some particular cases where some programs do better than humans, but
the examples are sporadic at best. Learning from experience is difficult for
computer programs.

Instead of trying to simulate how humans teach humans how to write
computer programs, we can simulate nature. What is the advantage of na-
ture when solving problems? Answer: Nature is huge and can easily solve
problems by brute force. It can try a huge number of possibilities and choose
the best one (by a mechanism called survival).

Genetic algorithms are inspired by nature. They have random generation
of solutions, they have crossover, mutation, selection and so on. However,
genetic algorithms cannot simulate the nature perfectly because they run on
computers which have limited resources.

Can genetic algorithms learn programming? Yes. The subfield is called
Genetic Programming [42] and is quite popular today.

In Genetic Programming, we evolve computer programs by using ideas
inspired from nature.

Because Genetic Programming belongs to Machine learning, it should be
able to learn. It can do that if it has a set of so called training data which
is nothing but a set of pairs (input;output). The most important aspect
of learning in Genetic Programming is how the fitness is computed. That
measurement tells us how great is learning so far.

After training we usually use a so called test set to see if the obtained
program is able to generalize on unseen data. If we still get minimum errors
on test set, it means that we have obtained an intelligent program.

However, one should not imagine that things are so easy. Currently Ge-
netic Programming has generated some good results, but in general it cannot
generate large computer programs. It cannot generate an operating system.
Not even an word editor, not even a game. The programmer of such system
should know its limitations and should help the system to reduce the search
space. It is very important to ask Genetic Programming to do what humans
cannot do.

There are several questions to be answered when solving a problem using

14



a GP/ML technique. Some of the questions are:

How are solutions represented in the algorithm?

What search operators does the algorithm use to move in the solution
space?

What type of search is conducted?

Is the learning supervised or unsupervised?

Shortly speaking, Genetic Programming (GP) [41, 42] is a special sub-
domain of the ML. GP individuals are computer programs evolved by using
specific genetic operators. The GP search is guided by a fitness function and
the learning process is usually unsupervised.

1.2 Thesis structure and achievements

This thesis describes several evolutionary models developed by the author
during his PhD program.

Chapter 2 provides an introduction to the field of Evolutionary Code Gen-
eration. The most important evolutionary technique addressing the problem
of code generation is Genetic Programming (GP) [42]. Several linear vari-
ants of the GP technique namely Gene Expression Programming (GEP) [23],
Grammatical Evolution (GE) [82], Linear Genetic Programming (LGP) [9]
and Cartesian Genetic Programming (CGP) [55], are briefly described.

Chapter 3 describes Multi Expression Programming (MEP), an original
evolutionary paradigm intended for solving computationally difficult prob-
lems. MEP individuals are linear entities that encode complex computer
programs. MEP chromosomes are represented in the way C or Pascal compil-
ers translate mathematical expressions into machine code. A unique feature
of MEP is its ability of storing multiple solutions in a chromosome. This
ability proved to be crucial for improving the search process. The chapter is
entirely original and is based on the paper [64].

In chapters 4, 5 MEP technique is used for solving certain difficult prob-
lems such as symbolic regression, classification, multiplexer, designing digital
circuits. MEP is compared to Genetic Programming, Gene Expression Pro-
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gramming, Linear Genetic Programming and Cartesian Genetic Program-
ming by using several well-known test problems. This chapter is entirely
original and it is based on the papers [64, 66, 71, 79, 80].

Chapter 6 describes the way in which MEP may be used for evolving more
complex computer programs such as heuristics for the Traveling Salesman
Problem and winning strategies for the Nim-like games and Tic-Tac-Toe.
This chapter is entirely original and it is based on the papers [70, 76].

Chapter 7 describes a new evolutionary technique called Infix Form Ge-
netic Programming (IFGP). IFGP individuals encodes mathematical expres-
sions in infix form. Each IFGP individual is an array of integer numbers
that are translated into mathematical expressions. IFGP is used for solving
several well-known symbolic regression and classification problems. IFGP is
compared to standard Genetic Programming, Linear Genetic Programming
and Neural Networks approaches. This chapter is entirely original and it is
based on the paper [67].

Chapter 8 describes Multi Solution Linear Genetic Programming (MSLGP),
an improved technique based on Linear Genetic Programming. Each MSLGP
individual stores multiple solutions of the problem being solved in a single
chromosome. MSLGP is used for solving symbolic regression problems. Nu-
merical experiments show that Multi Solution Linear Genetic Programming
performs significantly better than the standard Linear Genetic Programming
for all the considered test problems. This chapter is entirely original and it
is based on the paper [74, 78].

Chapter 9 describes two evolutionary models used for evolving evolution-
ary algorithms. The models are based on Multi Expression Programming and
Linear Genetic Programming. The output of the programs implementing the
proposed models are some full-featured evolutionary algorithms able to solve
a given problem. Several evolutionary algorithms for function optimization,
Traveling Salesman Problem and for the Quadratic Assignment Problem are
evolved using the proposed models. This chapter is entirely original and it
is based on the papers [63, 65].

Chapter 10 describes an attempt to provide a practical evidence of the
No Free Lunch (NFL) theorems. NFL theorems state that all black box al-
gorithms perform equally well over the space of all optimization problems,
when averaged over all the optimization problems. An important question
related to NFL is finding problems for which a given algorithm A is better
than another specified algorithm B. The problem of finding mathematical
functions for which an evolutionary algorithm is better than another evo-
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lutionary algorithm is addressed in this chapter. This chapter is entirely
original and it is based on the papers [68, 69].

1.3 Other ML results not included in this

Thesis

During the PhD program I participated to the development of other evolu-
tionary paradigms and algorithms:

Traceless Genetic Programming (TGP) [73, 77] - a Genetic Programming
variant that does not store the evolved computer programs. Only the outputs
of the program are stored and recombined using specific operators.

Evolutionary Cutting Algorithm (ECA) [72] - an algorithm for the 2-
dimensional cutting stock problem.

DNA Theorem Proving [96] - a technique for proving theorems using DNA
computers.

Genetic Programming Theorem Prover [20] - an algorithm for proving
theorems using Genetic Programming.

Adaptive Representation Evolutionary Algorithm (AREA) [35] - an evolu-
tionary model that allow dynamic representation, i.e. encodes solutions over
several alphabets. The encoding alphabet is adaptive and it may be changes
during the search process in order to accomodate to the fitness landscape.

Evolving Continuous Pareto Regions [21] - a technique for detecting con-
tinuous Pareto regions (when they exist).
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Chapter 2

Genetic Programming and
related techniques

This chapter describes Genetic Programming (GP) and several related tech-
niques. The chapter is organized as follows: Genetic Programming is de-
scribed in section 2.1. Cartesian Genetic Programming is presented in sec-
tion 2.2. Gene Expression Programming is described in section 2.3. Linear
Genetic Programming is described in section 2.4. Grammatical Evolution is
described in section 2.5.

2.1 Genetic Programming

Genetic Programming (GP) [42, 43, 44] is an evolutionary technique used
for breeding a population of computer programs. Whereas the evolution-
ary schemes employed by GP are similar to those used by other techniques
(such as Genetic Algorithms [39], Evolutionary Programming [102], Evo-
lution Strategies [88]), the individual representation and the corresponding
genetic operators are specific only to GP. Due to its nonlinear individual rep-
resentation (GP individuals are usually represented as trees) GP is widely
known as a technique that creates computer programs.

Each GP individual is usually represented as a tree encoding a complex
computer program. The genetic operators used with GP are crossover and
mutation. The crossover operator takes two parents and generates two off-
spring by exchanging sub-trees between the parents. The mutation operator
generates an offspring by changing a sub-tree of a parent into another sub-
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tree.
For efficiency reasons, each GP program tree is stored as a vector using

the Polish form (see [44] chapter 63). A mathematical expression in Infix
and Polish notations and the corresponding GP program tree are depicted
in Figure 2.1.

Figure 2.1: A mathematical expression in infix form (a), Polish form (c) and
the corresponding program tree (b).

Each element in this vector contains a function or a terminal symbol.
Since each function has a unique arity we can clearly interpret each vector
that stores an expression in Polish notation. In this notation, a sub-tree
of a program tree corresponds to a particular contiguous subsequence of the
vector. When applying the crossover or the mutation operator, the exchanged
or changed subsequences can easily be identified and manipulated.

2.2 Cartesian Genetic Programming

Cartesian Genetic Programming (CGP) [55] is a GP technique that encodes
chromosomes in graph structures rather than standard GP trees. The mo-
tivation for this representation is that the graphs are more general than the
tree structures, thus allowing the construction of more complex computer
programs [55].
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CGP is Cartesian in the sense that the graph nodes are represented in
a Cartesian coordinate system. This representation was chosen due to the
node connection mechanism, which is similar to GP mechanism. A CGP
node contains a function symbol and pointers towards nodes representing
function parameters. Each CGP node has an output that may be used as
input for another node.

An example of CGP program is depicted in Figure 2.2.

Figure 2.2: A CGP program with 5 inputs, 2 outputs and 3 functions (0, 1,
2 inside square nodes). The grey squares represent unconnected nodes.

Each CGP program (graph) is defined by several parameters: number of
rows (nr), number of columns (nc), number of inputs, number of outputs,
and number of functions. The nodes interconnectivity is defined as being
the number (l) of previous columns of cells that may have their outputs
connected to a node in the current column (the primary inputs are treated
as node outputs).

CGP chromosomes are encoded as strings by reading the graph columns
top down and printing the input nodes and the function symbol for each
node. The CGP chromosome depicted in Figure 2.2 is encoded as:

C = 0 1 3 0 1 0 4 1 3 5 2 2 8 5 0 1 6 8 3 2 4 2 6 0 6 10 7 2 9 11 10
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1 8 8 6 2 11 13

Standard string genetic operators (crossover and mutation) are used within
CGP system. Crossover may be applied without any restrictions. Mutation
operator requires that some conditions are met. Nodes supplying the outputs
are not fixed as they are also subject to crossover and mutation.

2.3 Gene Expression Programming

Gene Expression Programming (GEP) [23] uses linear chromosomes. A chro-
mosome is composed of genes containing terminal and function symbols.
Chromosomes are modified by mutation, transposition, root transposition,
gene transposition, gene recombination, one-point and two-point recombina-
tion.

GEP genes are composed of a head and a tail. The head contains both
functions and terminals symbols. The tail contains only terminal symbols.

For each problem the head length (h) is chosen by the user. The tail
length (denoted t) is calculated using the formula:

t = (n− 1) ∗ h+ 1,

where n is the number of arguments of the function with more arguments.
A tree-program is translated into a GEP gene is by means of breadth-first

parsing.
Let us consider a gene made up of symbols in the set S:

S = {*, /, +, -, a, b}.

In this case we have n = 2. If we choose h = 10 we get t = 11, and the
length of the gene is 10 + 11 = 21. Such a gene is given below:

C = +*ab/+aab+ababbbababb.

The expression encoded by the gene C is:

E = (a+ b)/a ∗ b+ a.
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The expression E represents the phenotypic transcription of a chromo-
some having C as its unique gene.

Usually, a GEP gene is not entirely used for phenotypic transcription.
If the first symbol in the gene is a terminal symbol, the expression tree
consists of a single node. If all symbols in the head are function symbols, the
expression tree uses all the symbols of the gene.

GEP genes may be linked by a function symbol in order to obtain a fully
functional chromosome. In the current version of GEP, the linking functions
for algebraic expressions are addition and multiplication. A single type of
function is used for linking multiple genes.

This seems to be enough in some situation [23]. But, generally, it is not
a good idea to assume that the genes may be linked either by addition or
by multiplication. If the functions {+, -, *, /} are used as linking operators
then, the complexity of the problem grows substantially (since the problem
of determining how to mixed these operators with the genes is as hard as the
initial problem).

When solving computationally difficult problems (like automated code
generation) one should not assume that a unique kind of function symbol
(like for, while or if instructions) is necessary for inter-connecting different
program parts.

Moreover, the success rate of GEP increases with the number of genes
in the chromosome [23]. However, after a certain value, the success rate
decreases if the number of genes in the chromosome increases. This is because
one can not force a complex chromosome to encode a less complex expression.

Thus, when using GEP one must be careful with the number of genes
that form the chromosome. The number of genes in the chromosome must
be somehow related to the complexity of the expression that one wants to
discover.

According to [23], GEP performs better than standard GP for several
particular problems.

2.4 Linear Genetic Programming

Linear Genetic Programming (LGP) [9, 10, 11] uses a specific linear repre-
sentation of computer programs. Instead of the tree-based GP expressions of
a functional programming language (like LISP), programs of an imperative
language (like C ) are evolved.
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A LGP individual is represented by a variable-length sequence of simple C
language instructions. Instructions operate on one or two indexed variables
(registers) r or on constants c from predefined sets. The result is assigned to
a destination register, e.g. ri = rj * c.

An example of the LGP program is the following one:
void LGP(double v[8])
{
v[0] = v[5] + 73;
v[7] = v[3] - 59;
if (v[1] > 0)
if (v[5] > 21)
v[4] = v[2] * v[1];
v[2] = v[5] + v[4];
v[6] = v[7] * 25;
v[6] = v[4] - 4;
v[1] = sin(v[6]);
if (v[0] > v[1])
v[3] = v[5] * v[5];
v[7] = v[6] * 2;
v[5] = [7] + 115;
if (v[1] <= v[6])
v[1] = sin(v[7]);
}
A linear genetic program can be turned into a functional representation

by successive replacements of variables starting with the last effective in-
struction. The variation operators used here are crossover and mutation. By
crossover, continuous sequences of instructions are selected and exchanged
between parents. Two types of mutations are used: micro mutation and
macro mutation. By micro mutation an operand or an operator of an instruc-
tion is changed. Macro mutation inserts or deletes a random instruction.

2.5 Grammatical Evolution

Grammatical Evolution (GE) [82] uses Backus - Naur Form (BNF) in order
to express computer programs. BNF is a notation that allows a computer
program to be expressed as a grammar.
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A BNF grammar consists of terminal and non-terminal symbols. Gram-
mar symbols may be re-written in other terminal and non-terminal symbols.

Each GE individual is a variable length binary string that contains the
necessary information for selecting a production rule from a BNF grammar
in its codons (groups of 8 bits).

An example from a BNF grammar is given by the following production
rules:

S ::= expr (0)
|if -stmt (1)
|loop (2)

These production rules state that the start symbol S can be replaced
(re-written) either by one of the non-terminals expr, if -stmt, or by loop.

The grammar is used in a generative process to construct a program by
applying production rules, selected by the genome, beginning with the start
symbol of the grammar.

In order to select a GE production rule, the next codon value on the
genome is generated and placed in the following formula:

Rule = Codon Value MOD Num Rules.

If the next Codon integer value is 4, knowing that we have 3 rules to
select from, as in the example above, we get 4 MOD 3 = 1.

Therefore, S will be replaced with the non-terminal if-stmt, corresponding
to the second production rule.

Beginning from the left side of the genome codon, integer values are
generated and used for selecting rules from the BNF grammar, until one of
the following situations arises:

(i) A complete program is generated. This occurs when all the non-
terminals in the expression being mapped, are turned into elements
from the terminal set of the BNF grammar.

(i) The end of the genome is reached, in which case the wrapping operator
is invoked. This results in the return of the genome reading frame
to the left side of the genome once again. The reading of the codons
will then continue unless a higher threshold representing the maximum
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number of wrapping events has occurred during this individual mapping
process.

In the case that a threshold on the number of wrapping events is ex-
ceeded and the individual is still incompletely mapped, the mapping process
is halted, and the individual is assigned the lowest possible fitness value.

Example

Consider the grammar:

G = {N , T , S, P},

where the terminal set is:

T = {+, -, *, /, sin, exp, var, (, )},

and the nonterminal symbols are:

N = {expr, op, pre op}.

The start symbol is S = <expr>.

The production rules P are:

<expr> :: <expr> <op> <expr> | (0)
(<expr> <op> <expr>) | (1)
<pre op> (<expr>) | (2)
<var>. (3)
<op> ::= + | (0)
- | (1)
* | (2)
/. (3)
<pre op> ::= sin | (0)
exp. (1)
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An example of a GE chromosome is the following:

CGE = 000000000000001000000001000000110000001000000011.

Translated into GE codons, the chromosome is:

CGE = 0, 2, 1, 3, 2, 3.

This chromosome is translated into the expression:

E = exp(x) * x.

Using the BNF grammars for specifying a chromosome provides a natural
way of evolving programs written in programming languages whose instruc-
tions may be expressed as BNF rules.

The wrapping operator provides a very original way of translating short
chromosomes into very long expressions. Wrapping also provides an efficient
way to avoid the obtaining of invalid expressions.

The GE mapping process also has some disadvantages. Wrapping may
never end in some situations. For instance consider the GGE grammar de-
fined above. In these conditions the chromosome

C ′GE = 0, 0, 0, 0, 0

cannot be translated into a valid expression as it does not contain operands.
To prevent infinite cycling a fixed number of wrapping occurrences is allowed.
If this threshold is exceeded the obtained expression is incorrect and the
corresponding individual is considered to be invalid.

Since the debate regarding the supremacy of binary encoding over integer
encoding has not finished yet we cannot say which one is better. However,
as the translation from binary representations to integer/real representations
takes some time we suspect that the GE system is a little slower than other
GP techniques that use integer representation. GE uses a steady-state [95]
algorithm.
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Chapter 3

Multi Expression Programming

The chapter is organized as follows: MEP algorithm is given in section 3.2.
Individual representation is described in section 3.3. The way in which MEP
individuals are translated in computer programs is presented in section 3.4.
The search operators used in conjunction with MEP are given in section
3.6. The way in which MEP handles exceptions raised during the fitness
assignment process is presented in section 3.7. MEP complexity is computed
in section 3.8.

The chapter is entirely original and it is based on the papers [64, 66, 65,
71, 79, 78].

3.1 MEP basic ideas

Multi Expression Programming (MEP) [64] is a GP variant that uses a lin-
ear representation of chromosomes. MEP individuals are strings of genes
encoding complex computer programs.

When MEP individuals encode expressions, their representation is sim-
ilar to the way in which compilers translate C or Pascal expressions into
machine code [2]. This may lead to very efficient implementation into as-
sembler languages. The ability of evolving machine code (leading to very
important speedups) has been considered by others researchers, too. For in-
stance Nordin [62] evolves programs represented in machine code. Poli and
Langdon [85] proposed Sub-machine code GP, which exploits the processor
ability to perform some operations simultaneously. Compared to these ap-
proaches, MEP has the advantage that it uses a representation that is more
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compact, simpler, and independent of any programming language.
A salient MEP feature is the ability of storing multiple solutions of a

problem in a single chromosome. Usually, the best solution is chosen for
fitness assignment. When solving symbolic regression or classification prob-
lems (or any other problems for which the training set is known before the
problem is solved) MEP has the same complexity as other techniques storing
a single solution in a chromosome (such as GP, CGP, GEP or GE).

Evaluation of the expressions encoded into a MEP individual can be per-
formed by a single parsing of the chromosome.

Offspring obtained by crossover and mutation are always syntactically
correct MEP individuals (computer programs). Thus, no extra processing
for repairing newly obtained individuals is needed.

3.2 MEP algorithm

Standard MEP algorithm uses steady-state evolutionary model [95] as its
underlying mechanism.

The MEP algorithm starts by creating a random population of individu-
als. The following steps are repeated until a given number of generations is
reached: Two parents are selected using a standard selection procedure. The
parents are recombined in order to obtain two offspring. The offspring are
considered for mutation. The best offspring O replaces the worst individual
W in the current population if O is better than W .

The variation operators ensure that the chromosome length is a constant
of the search process. The algorithm returns as its answer the best expression
evolved along a fixed number of generations.

The standard MEP algorithm is outlined below:

Standard MEP Algorithm

S1. Randomly create the initial population P(0)
S2. for t = 1 to Max Generations do
S3. for k = 1 to |P(t)| / 2 do
S4. p1 = Select(P(t)); // select one individual from the current
// population
S5. p2 = Select(P(t)); // select the second individual
S6. Crossover (p1, p2, o1, o2); // crossover the parents p1 and p2
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// the offspring o1 and o2 are obtained
S7. Mutation (o1); // mutate the offspring o1

S8. Mutation (o2); // mutate the offspring o2

S9. if Fitness(o1) < Fitness(o2)
S10. then if Fitness(o1) < the fitness of the worst individual
in the current population
S11. then Replace the worst individual with o1;
S12. else if Fitness(o2) < the fitness of the worst individual
in the current population
S13. then Replace the worst individual with o2;
S14. endfor
S15. endfor

3.3 MEP representation

MEP genes are (represented by) substrings of a variable length. The number
of genes per chromosome is constant. This number defines the length of the
chromosome. Each gene encodes a terminal or a function symbol. A gene
that encodes a function includes pointers towards the function arguments.
Function arguments always have indices of lower values than the position of
the function itself in the chromosome.

The proposed representation ensures that no cycle arises while the chro-
mosome is decoded (phenotypically transcripted). According to the proposed
representation scheme, the first symbol of the chromosome must be a terminal
symbol. In this way, only syntactically correct programs (MEP individuals)
are obtained.

Example

Consider a representation where the numbers on the left positions stand
for gene labels. Labels do not belong to the chromosome, as they are provided
only for explanation purposes.

For this example we use the set of functions:

F = {+, *},
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and the set of terminals

T = {a, b, c, d}.

An example of chromosome using the sets F and T is given below:

1: a
2: b
3: + 1, 2
4: c
5: d
6: + 4, 5
7: * 3, 6

The maximum number of symbols in MEP chromosome is given by the
formula:

Number of Symbols = (n+1) * (Number of Genes – 1) + 1,

where n is the number of arguments of the function with the greatest number
of arguments.

The maximum number of effective symbols is achieved when each gene
(excepting the first one) encodes a function symbol with the highest number
of arguments. The minimum number of effective symbols is equal to the
number of genes and it is achieved when all genes encode terminal symbols
only.

3.4 MEP phenotypic transcription. Fitness

assignment

Now we are ready to describe how MEP individuals are translated into com-
puter programs. This translation represents the phenotypic transcription of
the MEP chromosomes.

Phenotypic translation is obtained by parsing the chromosome top-down.
A terminal symbol specifies a simple expression. A function symbol specifies
a complex expression obtained by connecting the operands specified by the
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argument positions with the current function symbol.
For instance, genes 1, 2, 4 and 5 in the previous example encode simple

expressions formed by a single terminal symbol. These expressions are:

E1 = a,
E2 = b,
E4 = c,
E5 = d,

Gene 3 indicates the operation + on the operands located at positions 1
and 2 of the chromosome. Therefore gene 3 encodes the expression:

E3 = a+ b.

Gene 6 indicates the operation + on the operands located at positions 4
and 5. Therefore gene 6 encodes the expression:

E6 = c+ d.

Gene 7 indicates the operation * on the operands located at position 3
and 6. Therefore gene 7 encodes the expression:

E7 = (a+ b) ∗ (c+ d).

E7 is the expression encoded by the whole chromosome.
There is neither practical nor theoretical evidence that one of these ex-

pressions is better than the others. Moreover, Wolpert and McReady [100,
101] proved that we cannot use the search algorithm’s behavior so far for a
particular test function to predict its future behavior on that function. This
is why each MEP chromosome is allowed to encode a number of expressions
equal to the chromosome length (number of genes). The chromosome de-
scribed above encodes the following expressions:

E1 = a,
E2 = b,
E3 = a+ b,
E4 = c,
E5 = d,
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E6 = c+ d,
E7 = (a+ b) * (c+ d).

The value of these expressions may be computed by reading the chromo-
some top down. Partial results are computed by dynamic programming [7]
and are stored in a conventional manner.

Due to its multi expression representation, each MEP chromosome may
be viewed as a forest of trees rather than as a single tree, which is the case
of Genetic Programming.

As MEP chromosome encodes more than one problem solution, it is in-
teresting to see how the fitness is assigned.

The chromosome fitness is usually defined as the fitness of the best ex-
pression encoded by that chromosome.

For instance, if we want to solve symbolic regression problems, the fitness
of each sub-expression Ei may be computed using the formula:

f(Ei) =
n∑
k=1

|ok,i − wk|, (3.1)

where ok,i is the result obtained by the expression Ei for the fitness case
k and wk is the targeted result for the fitness case k. In this case the fitness
needs to be minimized.

The fitness of an individual is set to be equal to the lowest fitness of the
expressions encoded in the chromosome:

f(C) = min
i
f(Ei). (3.2)

When we have to deal with other problems, we compute the fitness of
each sub-expression encoded in the MEP chromosome. Thus, the fitness of
the entire individual is supplied by the fitness of the best expression encoded
in that chromosome.

3.5 MEP representation revisited

Generally a GP chromosome encodes a single expression (computer program).
This is also the case for GEP and GE chromosomes. By contrast, a MEP
chromosome encodes several expressions (as it allows a multi-expression rep-
resentation). Each of the encoded expressions may be chosen to represent
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the chromosome, i.e. to provide the phenotypic transcription of the chromo-
some. Usually, the best expression that the chromosome encodes supplies its
phenotypic transcription (represents the chromosome).

Therefore, the MEP technique is based on a special kind of implicit paral-
lelism. A chromosome usually encodes several well-defined expressions. The
ability of MEP chromosome to encode several syntactically correct expres-
sions in a chromosome is called strong implicit parallelism (SIP).

Although, the ability of storing multiple solutions in a single chromosome
has been suggested by others authors, too (see for instance [49]), and several
attempts have been made for implementing this ability in GP technique. For
instance Handley [37] stored the entire population of GP trees in a single
graph. In this way a lot of memory is saved. Also, if partial solutions are
efficiently stored, we can get a considerable speed up.

Linear GP [9] is also very suitable for storing multiple solutions in a
single chromosome. In that case the multi expression ability is given by the
possibility of choosing any variable as the program output.

It can be seen that the effective length of the expression may increases
exponentially with the length of the chromosome. This is happening because
some sub-expressions may be used more than once to build a more complex
(or a bigger) expression. Consider, for instance, that we want to obtain a
chromosome that encodes the expressiona2

n
, and only the operators {+, -,

*, /} are allowed. If we use a GEP representation the chromosome has to
contain at least (2n+1– 1) symbols since we need to store 2n terminal sym-
bols and (2n – 1) function operators. A GEP chromosome that encodes the
expression E = a8 is given below:

C = *******aaaaaaaa.

A MEP chromosome uses only (3n + 1) symbols for encoding the expres-
sion a2

n
. A MEP chromosome that encodes expression E = a8 is given below:

1: a
2: * 1, 1
3: * 2, 2
4: * 3, 3

As a further comparison, when n = 20, a GEP chromosome has to have
2097151 symbols, while MEP needs only 61 symbols.
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MEP representation is similar to GP and CGP, in the sense that each
function symbol provides pointers towards its parameters. Whereas both
GP and CGP have complicated representations (trees and graphs), MEP
provides an easy and effective way to connect (sub) parts of a computer
program. Moreover, the motivation for MEP was to provide an individual
representation close to the way in which C or Pascal compilers interpret
mathematical expressions [2]. That code is also called three addresses code
or intermediary code.

Some GP techniques, like Linear GP, remove non-coding sequences of
chromosome during the search process. As already noted [9] this strategy
does not give the best results. The reason is that sometimes, a part of
the useless genetic material has to be kept in the chromosome in order to
maintain population diversity.

3.6 Search operators

The search operators used within MEP algorithm are crossover and mutation.
These search operators preserve the chromosome structure. All offspring are
syntactically correct expressions.

3.6.1 Crossover

By crossover two parents are selected and are recombined.
Three variants of recombination have been considered and tested within

our MEP implementation: one-point recombination, two-point recombina-
tion and uniform recombination.

One-point recombination

One-point recombination operator in MEP representation is similar to
the corresponding binary representation operator [19]. One crossover point
is randomly chosen and the parent chromosomes exchange the sequences at
the right side of the crossover point.

Example
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Consider the parents C1 and C2 given below. Choosing the crossover point
after position 3 two offspring, O1 and O2 are obtained as given in Table 3.6.1.

Table 3.1: MEP one-point recombination.
Parents Offspring
C1 C2 O1 O2

1: b
2: * 1, 1
3: + 2, 1
4: a
5: * 3, 2
6: a
7: - 1, 4

1: a
2: b
3: + 1, 2
4: c
5: d
6: + 4, 5
7: * 3, 6

1: b
2: * 1, 1
3: + 2, 1
4: c
5: d
6: + 4, 5
7: * 3, 6

1: a
2: b
3: + 1, 2
4: a
5: * 3, 2
6: a
7: - 1, 4

Two-point recombination

Two crossover points are randomly chosen and the chromosomes exchange
genetic material between the crossover points.

Example

Let us consider the parents C1 and C2 given below. Suppose that the
crossover points were chosen after positions 2 and 5. In this case the offspring
O1 and O2 are obtained as given in Table 3.6.1.

Uniform recombination

During the process of uniform recombination, offspring genes are taken
randomly from one parent or another.

Example

Let us consider the two parents C1 and C2 given below. The two offspring
O1 and O2 are obtained by uniform recombination as given in Table 3.3.

It is easy to derive - by analogy with standard GA several recombination
operators.
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Table 3.2: MEP two-point recombination.
Parents Offspring
C1 C2 O1 O2

1: b
2: * 1, 1
3: + 2, 1
4: a
5: * 3, 2
6: a
7: - 1, 4

1: a
2: b
3: + 1, 2
4: c
5: d
6: + 4, 5
7: * 3, 6

1: b
2: * 1, 1
3: + 1, 2
4: c
5: d
6: a
7: - 1, 4

1: a
2: b
3: + 2, 1
4: a
5: * 3, 2
6: + 4, 5
7: * 3, 6

Table 3.3: MEP uniform recombination.

Parents Offspring
C1 C2 O1 O2

1: b
2: * 1, 1
3: + 2, 1
4: a
5: * 3, 2
6: a
7: - 1, 4

1: a
2: b
3: + 1, 2
4: c
5: d
6: + 4, 5
7: * 3, 6

1: a
2: * 1, 1
3: + 2, 1
4: c
5: * 3, 2
6: + 4, 5
7: - 1, 4

1: b
2: b
3: + 1, 2
4: a
5: d
6: a
7: * 3, 6
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3.6.2 Mutation

Each symbol (terminal, function of function pointer) in the chromosome may
be the target of the mutation operator. Some symbols in the chromosome
are changed by mutation. To preserve the consistency of the chromosome,
its first gene must encode a terminal symbol.

We may say that the crossover operator occurs between genes and the
mutation operator occurs inside genes.

If the current gene encodes a terminal symbol, it may be changed into
another terminal symbol or into a function symbol. In the later case, the
positions indicating the function arguments are randomly generated. If the
current gene encodes a function, the gene may be mutated into a terminal
symbol or into another function (function symbol and pointers towards ar-
guments).

Example

Consider the chromosome C given below. If the boldfaced symbols are
selected for mutation an offspring O is obtained as given in Table 3.4.

Table 3.4: MEP mutation.

C O
1: a
2: * 1, 1
3: b
4: * 2, 2
5: b
6: + 3, 5
7: a

1: a
2: * 1, 1
3: + 1, 2
4: * 2, 2
5: b
6: + 1, 5
7: a

3.7 Handling exceptions within MEP

Exceptions are special situations that interrupt the normal flow of expression
evaluation (program execution). An example of exception is division by zero,
which is raised when the divisor is equal to zero.
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Exception handling is a mechanism that performs special processing when
an exception is thrown.

Usually, GP techniques use a protected exception handling mechanism
[42]. For instance, if a division by zero exception is encountered, a predefined
value (for instance 1 or the numerator) is returned.

GEP uses a different mechanism: if an individual contains an expression
that generates an error, this individual receives the lowest fitness possible
[23].

MEP uses a new and specific mechanism for handling exceptions. When
an exception is encountered (which is always generated by a gene containing
a function symbol), the gene that generated the exception is mutated into a
terminal symbol. Thus, no infertile individual appears in a population.

3.8 MEP complexity

Let NG be the number of genes in a chromosome.
When solving symbolic regression, classification or any other problems for

which the training set is known in advance (before computing the fitness),
the fitness of an individual can be computed in O(NG) steps by dynamic
programming [7]. In fact, a MEP chromosome needs to be read once for
computing the fitness.

Thus, MEP decoding process does not have a higher complexity than
other GP - techniques that encode a single computer program in each chro-
mosome.

3.9 Conclusions

Multi Expression Programming has been described in this chapter. A de-
tailed description of the representation and of the fitness assignment has
been given.

A distinct feature of MEP is its ability to encode multiple solutions in
the same chromosome. It has been shown that the complexity of decoding
process is the same as in the case of other GP techniques encoding a single
solution in the same chromosome.
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Chapter 4

MEP for Data Mining

4.1 Introduction

Multi Expression Programming is used for solving several symbolic regression
and classification problems. A comparison of MEP with standard GP, GEP
and CGP is also provided.

The chapter is organized as follows: Symbolic regression problems are
addressed in section 4.2. For this problem MEP is compared to GP, GEP and
CGP. Even Parity problems are addressed in section 5.1. The Multiplexer is
addressed in section 5.2. The way in which MEP may be used for designing
digital circuits is described in sections 5.3 and 5.4. In sections 6.1 and 6.2
MEP is used to evolve winning strategies for the Tic-Tac-Toe and Nim-like
games. Another interesting application of MEP is the discovery of heuristics
for NP-Complete problems. In section 6.3 MEP is used for evolving an
heuristic for the Traveling Salesman Problem.

The chapter is based on the author’s papers [64].

4.2 Symbolic regression

In this section, MEP technique is used for solving symbolic regression prob-
lems. Results are reported in the papers [64].

39



4.2.1 Problem statement

The aim of symbolic regression is to discover a function that satisfies a set
of fitness cases.

Two well-known problems are used for testing the MEP ability of solving
symbolic regression problems. The problems are:

The quartic polynomial [42]. Find a mathematical expression that satis-
fies best a set of fitness cases generated by the function:

f(x) = x4 + x3 + x2 + x.

The sextic polynomial [43]. Find a mathematical expression that satisfies
best a set of fitness cases generated by the function:

f(x) = x6 − 2x4 + x2.

A set of 20 fitness cases was randomly generated over the interval [-1.0,
1.0] and used in the experiments performed.

4.2.2 Numerical experiments

In this section several numerical experiments with Multi Expression Pro-
gramming for solving symbolic regression problems are performed.

Experiment 1

The success rate of the MEP algorithm is analyzed in this experiment.
Success rate is computed as the number of successful runs over the total num-
ber of runs. The chromosome length is gradually increased. MEP algorithm
parameters are given in Table 4.1.

The success rate of the MEP algorithm depending on the number of
symbols in the chromosome is depicted in Figure 4.1.

The success rate of the MEP algorithm increases with the chromosome
length and never decreases towards very low values. When the search space
(chromosome length) increases, an increased number of expressions are en-
coded by MEP chromosomes. Very large search spaces (very long chromo-
somes) are extremely beneficial for MEP technique due to its multi expression
representation. This behavior is different from those obtained with the GP

40



Table 4.1: Algorithm parameters for the Experiment 1.

Parameter Value
Population size 30
Number of generations 50
Mutation 2 symbols / chromosome
Crossover type Uniform-crossover
Crossover probability 0.9
Selection Binary tournament
Terminal Set T = {x}
Function Set F = {+, -, *, /}

Figure 4.1: The relationship between the success rate and the number of
symbols in a MEP chromosome. The number of symbols in chromosome
varies between 5 and 100. The results are summed over 100 runs.
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variants that encode a single solution in a chromosome (such as GEP). Fig-
ure 4.1 also shows that the sextic polynomial is more difficult to solve with
MEP (with the parameters given in Table 4.1) than the quatic polynomial.

Experiment 2

From Experiment 1 we may infer that for the considered problem, the
MEP success rate never decreases to very low values as the number of genes
increases. To obtain an experimental evidence for this assertion longer chro-
mosomes are considered. We extend chromosome length up to 300 genes (898
symbols).

The success rate of MEP is depicted in Figure 4.2.

Figure 4.2: The relationship between the success rate and the number of
symbols in a MEP chromosome. The number of symbols in chromosome
varies between 5 and 300. The results are summed over 100 runs.

Figure 4.2 shows that, when solving the quartic (sextic) polynomial prob-
lem, the MEP success rate, lies in the interval [90, 100] ([60, 80]) for the
chromosome length larger than 20.

One may note that after that the chromosome length becomes 10, the
success rate never decrease more than 90% (for the quartic polynomial) and
never decrease more than 60% (for the sextic polynomial). It also seems
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that, after a certain value of the chromosome length, the success rate does
not improve significantly.

Experiment 3

In this experiment the relationship between the success rate and the pop-
ulation size is analyzed. Algorithm parameters for this experiment are given
in Table 4.2.

Table 4.2: Algorithm parameters for Experiment 3.

Parameter Value
Number of generations 50
Chromosome length 10 genes
Mutation 2 symbols / chromosome
Crossover type Uniform-crossover
Crossover probability 0.9
Selection Binary tournament
Terminal Set T = {x}
Function Set F = {+, -, *, /}

Experiment results are given in Figure 4.3.
For the quartic problem and for the MEP algorithm parameters given in

Table 4.2, the optimal population size is 70 (see Figure 4.3). The correspond-
ing success rate is 99%. A population of 100 individuals yields a success rate
of 88% for the sextic polynomial. This result suggests that even small MEP
populations may supply very good results.

Experiment 4

In this experiment the relationship between the MEP success rate and
the number of generations used in the search process is analyzed.

MEP algorithm parameters are given in Table 4.3.
Experiment results are given in Figure 4.4.
Figure 4.4 shows that the success rate of the MEP algorithm rapidly

increases from 34%, respectively 8% (when the number of generations is 10)
up to 95%, and 74% respectively (when the number of generations is 300).
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Figure 4.3: Success rate of the MEP algorithm. Population size varies be-
tween 5 and 100. The results are summed over 100 runs.

Table 4.3: Algorithm parameters for Experiment 4.

Parameter Value
Population size 20
Chromosome length 12 genes
Mutation 2 genes / chromosome
Crossover type Uniform-crossover
Crossover probability 0.9
Selection Binary tournament
Terminal Set T = {x}
Function Set F = {+, -, *, /}
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Figure 4.4: Relationship between the success rate of MEP algorithm and the
number of generations used in the search process. The number of generations
varies between 10 and 300. The results are summed over 100 runs.

4.2.3 MEP vs. GEP

In [23] GEP has been used for solving the quartic polynomial based on a
set of 10 fitness cases randomly generated over the interval [0, 20]. Several
numerical experiments analyzing the relationship between the success rate
and the main parameters of the GEP algorithm have been performed in [23].
In what follows we will perform similar experiments with MEP.

The first experiment performed in [23] analyses the relationship between
the GEP chromosome length and the success rate. GEP success rate increases
up to 80% (obtained when the GEP chromosome length is 30) and then
decreases. This indicates that very long GEP chromosomes cannot encode
short expressions efficiently. The length of the GEP chromosome must be
somehow related to the length of the expression that must be discovered.

Using the same parameter setting (i.e. Population Size = 30, Number
of Generations = 50; Crossover probability = 0.7, Mutations = 2 / chromo-
some), the MEP obtained a success rate of 98% when the chromosome length
was set to 20 genes (58 symbols).

The second experiment performed in [23] analyses the relationship be-
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tween the population size used by the GEP algorithm and the success rate.
For a population of size 30, the GEP success rate reaches 80%, and for a
population of 50 individuals the GEP success rate reaches 90%.

Using the same parameter setting (i.e. Number of Symbols in Chromo-
some = 49 (17 MEP genes), Number of Generations = 50; Crossover prob-
ability = 0.7, Mutations = 2 / chromosome), MEP obtained a success rate
of 99% (in 99 runs out of 100 MEP has found the correct solution) using a
population of only 30 individuals.

In another experiment performed in [23], the relationship between the
number of generations used by GEP and the rate of success is analysed. The
success rate of 69% was obtained by GEP when the number of generations
was 70 and a success rate of 90% was obtained only when the number of
generations reached 500. For the considered generation range GEP success
rate never reached 100%.

Using the same parameter setting (i.e. Number of Symbols in Chromo-
some = 80 (27 MEP genes), Population Size = 30; Crossover probability =
0.7, Mutations = 2 / chromosome), the MEP obtained a success rate of 97%
(in 97 runs out of 100 MEP has found the correct solution) using 30 gener-
ations only. This is an improvement (regarding the number of generations
used to obtain the same success rate) with more than one order of magnitude.

We may conclude that for the quartic polynomial, the MEP has a higher
success rate than GEP using the previously given parameter settings.

4.2.4 MEP vs. CGP

CGP has been used [55] for symbolic regression of the sextic polynomial
problem.

In this section, the MEP technique is used to solve the same problem using
parameters settings similar to those of CGP. To provide a fair comparison,
all experimental conditions described in [55] are carefully reproduced for the
MEP technique.

CGP chromosomes were characterized by the following parameters: nr
= 1, nc = 10, l = 10. MEP chromosomes are set to contain 12 genes (in
addition MEP uses two supplementary genes for the terminal symbols {1.0,
x}).

MEP parameters (similar to those used by CGP) are given in Table 4.4.
In the experiment with CGP a population of 10 individuals and a number

of 8000 generations have been used. We performed two experiments. In the
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Table 4.4: Algorithm parameters for the MEP vs. CGP experiment.

Parameter Value
Chromosome length 12 genes
Mutation 2 genes / chromosome
Crossover type One point crossover
Crossover probability 0.7
Selection Binary tournament
Elitism size 1
Terminal set T = {x, 1.0}
Function set F = {+, -, *, /}

first experiment, the MEP population size is set to 10 individuals and we
compute the number of generations needed to obtain the success rate (61 %)
reported in [55] for CGP.

When the MEP run for 800 generations, the success rate was 60% (in
60 runs (out of 100) MEP found the correct solution). Thus MEP requires
10 times less generations than CGP to solve the same problem (the sextic
polynomial problem in our case). This represents an improvement of one
order of magnitude.

In the second experiment, the number of generations is kept unchanged
(8000) and a small MEP population is used. We are interested to see which
is the optimal population size required by MEP to solve this problem.

After several trials, we found that MEP has a success rate of 70% when
a population of 3 individuals is used and a success rate of 46% when a
population of 2 individuals is used. This means that MEP requires 3 times
less individuals than CGP for solving the sextic polynomial problem.

4.2.5 MEP vs. GP

In [42] GP was used for symbolic regression of the quartic polynomial func-
tion.

GP parameters are given in Table 4.5.
It is difficult to compare MEP with GP since the experimental conditions

were not the same. The main difficulty is related to the number of symbols
in chromosome. While GP individuals may increase, MEP chromosomes

47



Table 4.5: GP parameters used for solving the quartic problem.

Parameter Value
Population Size 500
Number of generations 51
Crossover probability 0.9
Mutation probability 0
Maximum tree depth 17
Maximum initial tree
depth

6

Terminal set T = {x}
Function set F = {+, - , *, %, Sin, Cos, Exp, RLog}

have fixed length. Individuals in the initial GP population are trees having
a maximum depth of 6 levels. The number of nodes in the largest tree
containing symbols from F ∪ T and having 6 levels is 26 – 1 = 63 nodes.
The number of nodes in the largest tree containing symbols from F ∪ T
and having 17 levels (maximum depth allowed for a GP tree) is 217 – 1 =
131071 nodes.

Due to this reason we cannot compare MEP and GP relying on the num-
ber of genes in a chromosome. Instead, we analyse different values for the
MEP chromosome length.

MEP algorithm parameters are similar to those used by GP [42]. The
results are depicted in Figure 4.5.

For this problem, the GP cumulative probability of success is 35% (see
[42]). Figure 4.5 shows that the lowest success rate for MEP is 65%, while the
highest success rate is 100% (for the considered chromosome length domain).
Thus, MEP outperforms GP on the quartic polynomial problem (when the
parameters given in Table 4.1 are used).

4.3 Conclusions

In this chapter, MEP has been used for solving various symbolic regres-
sion problems. MEP has been compared with other Genetic Programming
techniques. Numerical results indicate that MEP performs better than the
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Figure 4.5: The relationship between the number of genes in a chromosome
and the MEP success rate. The number of genes in a chromosome varies
between 10 and 100. The results are averaged over 100 runs.

compared methods.
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Chapter 5

Designing Digital Circuits with
MEP

MEP is used for designing digital circuits based on the truth table. Four
problems are addressed: even-parity, multiplexer, arithmetic circuits and
circuits for NP-complete problems. This chapter is entirely original and it is
based on the papers [66, 79, 80].

5.1 Even-parity problem

5.1.1 Problem statement

The Boolean even-parity function of k Boolean arguments returns T (True)
if an even number of its arguments are T. Otherwise the even-parity function
returns NIL (False) [42].

In applying MEP to the even-parity function of k arguments, the terminal
set T consists of the k Boolean arguments d0, d1, d2, ... dk−1. The function
set F consists of four two-argument primitive Boolean functions: AND, OR,
NAND, NOR. According to [42] the Boolean even-parity functions appear to
be the most difficult Boolean functions to be detected via a blind random
search.

The set of fitness cases for this problem consists of the 2k combinations
of the k Boolean arguments. The fitness of an MEP chromosome is the
sum, over these 2k fitness cases, of the Hamming distance (error) between
the returned value by the MEP chromosome and the correct value of the
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Boolean function. Since the standardized fitness ranges between 0 and 2k, a
value closer to zero is better (since the fitness is to be minimized).

5.1.2 Numerical experiments

The parameters for the numerical experiments with MEP for even-parity
problems are given in Table 5.1.

Table 5.1: The MEP algorithm parameters for the numerical experiments
with even-parity problems.

Parameter Value
Number of generations 51
Crossover type Uniform
Crossover probability 0.9
Mutation probability 0.2
Terminal set T3 = {D0, D1, D2} for even-3-parity

T4 = {D0, D1, D2, D3} for even-4-parity
Function set F = {AND, OR, NAND, NOR}

In order to reduce the length of the chromosome all the terminals are
kept on the first positions of the MEP chromosomes. The selection pressure
is also increased by using higher values (usually 10% of the population size)
for the q-tournament size.

Several numerical experiments with MEP have been performed for solv-
ing the even-3-parity and the even-4-parity problems. After several trials
we have found that a population of 100 individuals having 300 genes was
enough to yield a success rate of 100% for the even-3-parity problem and a
population of 400 individuals with 200 genes yielded a success rate of 43%
for the even-4-parity problem. GP without Automatically Defined Functions
has been used for solving the even-3 and even-4 parity problems using a pop-
ulation of 4000 individuals [42]. The cumulative probability of success was
100% for the even-3-parity problem and 42% for the even-4-parity problem
[42]. Thus, MEP outperforms GP for the even-3 and even-4 parity problems
with more than one order of magnitude. However, we already mentioned,
a perfect comparison between MEP and GP cannot be drawn due to the
incompatibility of the respective representations.
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One of the evolved circuits for the even-3-parity problem is given in Figure
5.1 and one of the evolved circuits for the even-4-parity is given in Figure
5.2.

Figure 5.1: An evolved circuit for the even-3-parity problem.

5.2 Multiplexer problem

In this section, the MEP technique is used for solving the 6-multiplexer
and the 11-multiplexer problems [42]. Numerical experiments obtained by
applying MEP to multiplexer problem are reported in [64].

5.2.1 Problem statement

The input to the Boolean N -multiplexer function consists of k address bits
ai and 2k data bits di, where

N = k + 2k. That is, the input consists of the k+2k bits ak−1, ... ,
a1, a0, d2k−1, ... , d1, d0. The value of the Boolean multiplexer function
is the Boolean value (0 or 1) of the particular data bit that is singled out
by the k address bits of the multiplexer. Another way to look at the search
space is that the Boolean multiplexer function with k+2k arguments is a
particular function of 2k+2k possible Boolean functions of k+2k arguments.
For example, when k=3, then k+2k = 11 and this search space is of size 2211.
That is, the search space is of size 22048, which is approximately 10616.

The terminal set for the 6-multiplexer problem consists of the 6 Boolean
inputs, and for the 11-multiplexer problem consists of the 11 Boolean inputs.
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Figure 5.2: An evolved circuit for the even-4-parity problem.

Thus, the terminal set T for the 6-multiplexer is of T= {a0, a1, d0, d1, ... ,
d4} and for the 11-multiplexer is of T= {a0, a1, a2, d0, d1, ... , d7}.

The function set F for this problem is F = {AND, OR, NOT, IF} taking
2, 2, 1, and 3 arguments, respectively [42]. The function IF returns its 3rd

argument if its first argument is set to 0. Otherwise it returns its second
argument.

There are 211 = 2,048 possible combinations of the 11 arguments a0a1a2d0d1d2d3d4d5d6d7
along with the associated correct value of the 11-multiplexer function. For
this particular problem, we use the entire set of 2048 combinations of argu-
ments as the fitness cases for evaluating fitness.

5.2.2 Numerical experiments

Several numerical experiments with the 6-multiplexer and 11-multiplexer are
performed in this section.

Experiments with 6-multiplexer

Two main statistics are of high interest: the relationship between the success
rate and the number of genes in a MEP chromosome and the relationship
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between the success rate and the size of the population used by the MEP
algorithm. For these experiments the parameters are given in Table 5.2.

Table 5.2: MEP algorithm parameters for the numerical experiments with
6-multiplexer problem.

Parameter Value
Number of generations 51
Crossover type Uniform
Crossover probability 0.9
Mutation probability 0.1
Terminal set T= {a0, a1, d0, d1, ... , d4}
Function set F= {AND, OR, NOT, IF}

A population of 100 individuals is used when the influence of the number
of genes is analysed and a code length of 100 genes is used when the influence
of the population size is analysed. For reducing the chromosome length we
keep all the terminals on the first positions of the MEP chromosomes. We
also increased the selection pressure by using larger values (usually 10% of
the population size) for the tournament sample.

The results of these experiments are given in Figure 5.3.
Figure 5.3 shows that MEP is able to solve the 6-multiplexer problem very

well. A population of 500 individuals yields a success rate of 84%. A similar
experiment using the GP technique with a population of 500 individuals has
been reported in [83]. The reported probability of success is a little less
(79,5%) than the one obtained with MEP (84%).

Experiments with 11-multiplexer

We also performed several experiments with the 11-multiplexer problem. We
have used a population of 500 individuals and three values (100, 200 and 300)
for the number of genes in a MEP chromosome. In all these experiments,
MEP was able to find a perfect solution (out of 30 runs), thus yielding a
success rate of 3.33%. When the number of genes was set to 300, the average
of the best fitness of each run taken as a percentage of the perfect fitness
was 91.13%, with a standard deviation of 4.04. As a comparison, GP was
not able to obtain a perfect solution by using a population of 500 individuals

54



Figure 5.3: The success rate of the MEP algorithm for solving the 6-
multiplexer problem. (a) The relationship between the success rate and the
chromosome length. (b) The relationship between the success rate and the
population size. Results are summed over 100 runs.
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and the average of the best fitness of each run taken as a percentage of the
perfect fitness was 79.2% (as reported in [83]).

5.3 Designing digital circuits for arithmetic

functions

The problem of evolving digital circuits has been intensely analyzed in the
recent past [54, 56, 57, 58, 91]. A considerable effort has been spent on
evolving very efficient (regarding the number of gates) digital circuits. J.
Miller, one of the pioneers in the field of the evolvable digital circuits, used
a special technique called Cartesian Genetic Programming (CGP) [55] for
evolving digital circuits. CGP architecture consists of a network of gates
(placed in a grid structure) and a set of wires connecting them. For instance
this structure has been used for evolving digital circuits for the multiplier
problem [58]. The results [58] shown that CGP was able to evolve digital
circuits better than those designed by human experts.

In this section, we use Multi Expression Programming for evolving digital
circuits with multiple outputs. We present the way in which MEP may be
efficiently applied for evolving digital circuits. We show the way in which
multiple digital circuits may be stored in a single MEP chromosome and the
way in which the fitness of this chromosome may be computed by traversing
the MEP chromosome only once.

Several numerical experiments are performed with MEP for evolving
arithmetic circuits. The results show that MEP significantly outperforms
CGP for the considered test problems.

Numerical results are reported in the papers [79].

5.3.1 Problem statement

The problem that we are trying to solve here may be briefly stated as follows:

Find a digital circuit that implements a function given by its truth table.

The gates that are usually used in the design of digital circuits along with
their description are given in Table 5.3.

The symbols used to represent some of the logical gates are given in Figure
5.4.
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Table 5.3: Function set (gates) used in numerical experiments. Some func-
tions are independent on the input (functions 0 and 1), other depend on only
one of the input variables (functions 2-5), other functions depend on two
input variables (functions 6-15) and the other functions depends on three
input variables (functions 16-19). These functions are taken from [58].

# Function # Function
0 0 10 a⊕ b
1 1 11 a⊕ b̄
2 a 12 a+ b
3 b 13 a+ b̄
4 ā 14 ā+ b
5 b̄ 15 ā+ b̄
6 a · b 16 a · c̄+ b · c
7 a · b̄ 17 a · c̄+ b̄ · c
8 ā · b 18 ā · c̄+ b · c
9 ā · b̄ 19 ā · c̄+ b̄ · c

Figure 5.4: The symbols used to represent some of the logical gates in Table
5.3 (OR is function 12, AND is function 6, XOR is function 10 and MUX is
function 16). In some pictures a small circle may appear on these symbols
indicating the negation (inversion) of the respective results.
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The MUX gate may be also represented using 2 ANDs and 1 OR [58].
However some modern devices use the MUX gate as an atomic device in that
all other gates are synthesized using this one.

Gates may also be represented using the symbols given in Table 5.4.

Table 5.4: Representation of some functions given in Table 5.3.

Gate Representation
AND ·
OR +
XOR ⊕
NOT -

5.3.2 CGP for evolving digital circuits

An example of CGP program encoding a digital circuit is depicted in Figure
5.5.

Figure 5.5: A Cartesian Genetic Programming program for 1-bit adder prob-
lem.

In Figure 5.5, a gate array representation of a one-bit adder is given. A,
B, and Cin are the binary inputs. The outputs Sum and Cout are the binary
outputs. Sum represents the sum bit of the addition of A+B+Cin, and Cout
the carry bit. The chromosome representation of the circuit in Figure 2 is
the following (function symbols are given in bold):
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0 1 0 10 0 0 2 6 3 2 1 10 0 2 3 16 6 5.
The evolutionary algorithm used in [58] to evolve digital circuits is a

simple form of (1+λ)-ES [19, 58], where λ was set to 4. This algorithm
seems to perform very well in conjunction to CGP representation. However,
a Genetic Algorithm (GA) [34] may also be used as underlying mechanism
for CGP.

5.3.3 MEP for evolving digital circuits

In this section we describe the way in which Multi Expression Programming
may be efficiently used for evolving digital circuits.

Each circuit has one or more inputs (denoted by NI ) and one or more
outputs (denoted NO). In section 3.4 we presented the way in which is the
fitness of a chromosome with a single output is computed. When multiple
outputs are required for a problem, we have to choose NO genes which will
provide the desired output (it is obvious that the genes must be distinct
unless the outputs are redundant).

In CGP, the genes providing the program’s output are evolved just like all
other genes. In MEP, the best genes in a chromosome are chosen to provide
the program’s outputs. When a single value is expected for output we simply
choose the best gene (see section 3.4). When multiple genes are required as
outputs we have to select those genes which minimize the difference between
the obtained result and the expected output.

We have to compute first the quality of a gene (sub-expression) for a given
output:

f(Ei, q) =
n∑
k=1

|ok,i − wk,q|, (5.1)

where ok,i is the obtained result by the expression (gene) Ei for the fitness
case k and wk,q is the targeted result for the fitness case k and for the output
q. The values f(Ei, q) are stored in a matrix (by using dynamic programming
[7] for latter use (see formula (5.2)).

Since the fitness needs to be minimized, the quality of a MEP chromosome
is computed by using the formula:

f(C) = min
i1,i2,...,iNO

NO∑
q=1

f(Eiq , q). (5.2)
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In equation (5.2) we have to choose numbers i1, i2, . . . , iNO in such way
to minimize the program’s output. For this we shall use a simple heuristic
which does not increase the complexity of the MEP decoding process: for
each output q (1 ≤ q ≤ NO) we choose the gene i that minimize the
quantity f(Ei, q). Thus, to an output is assigned the best gene (which has
not been assigned before to another output). The selected gene will provide
the value of the qth output.

Remark
Formulas (5.1) and (5.2) are the generalization of formulas (3.1) and (3.2)
for the case of multiple outputs of a MEP chromosome.

The complexity of the heuristic used for assigning outputs to genes is

O(NG · NO)

where NG is the number of genes and NO is the number of outputs.
We may use another procedure for selecting the genes that will provide the

problem’s outputs. This procedure selects, at each step, the minimal value in
the matrix f(Ei, q) and assign the corresponding gene i to its paired output
q. Again, the genes already used will be excluded from the search. This
procedure will be repeated until all outputs have been assigned to a gene.
However, we did not used this procedure because it has a higher complexity
– O(NO ·log2(NO)·NG) - than the previously described procedure which has
the complexity O(NO ·NG).

5.3.4 Numerical experiments

In this section, several numerical experiments with MEP for evolving digital
circuits are performed. For this purpose several well-known test problems
[58] are used.

For reducing the chromosome length and for preventing input redundancy
we keep all the terminals on the first positions of the MEP chromosomes.

For assessing the performance of the MEP algorithm three statistics are
of high interest:

(i) The relationship between the success rate and the number of genes in
a MEP chromosome.
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(ii) The relationship between the success rate and the size of the population
used by the MEP algorithm.

(iii) The computation effort.

The success rate is computed using the equation (5.3).

Success rate =
The number of successful runs

The total number of runs
. (5.3)

The method used to assess the effectiveness of an algorithm has been
suggested by Koza [42]. It consists of calculating the number of chromosomes,
which would have to be processed to give a certain probability of success.
To calculate this figure one must first calculate the cumulative probability of
success P (M, i), where Mrepresents the population size, and ithe generation
number. The value R(z) represents the number of independent runs required
for a probability of success (given by z) at generation i. The quantity I(M, z,
i) represents the minimum number of chromosomes which must be processed
to give a probability of success z, at generation i. Ns(i) represents the number
of successful runs at generation i, and Ntotal, represents the total number of
runs:

The formulae are given below:

P (M, i) =
Ns(i)

Ntotal

. (5.4)

R(z) = ceil

{
log(1− z)

log(1− P (M, i)

}
. (5.5)

I(M, i, z) = M ·R(z) · i. (5.6)

Note that when z = 1.0 the formulae are invalid (all runs successful). In
the tables and graphs of this section z takes the value 0.99.

In the numerical experiments performed in this section the number of
symbols in a MEP chromosome is usually larger than the number of symbols
in a CGP chromosome because in a MEP the problem’s inputs are also
treated as a normal gene and in a CGP the inputs are treated as being
isolated from the main CGP chromosome. Thus, the number of genes in a
MEP chromosome is equal to the number of genes in CGP chromosome +
the number of problem’s inputs.
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Two-bit multiplier: a MEP vs. CGP experiment

The two-bit multiplier [54] implements the binary multiplication of two two-
bit numbers to produce a possible four-bit number. The training set for
this problem consist of 16 fitness cases, each of them having 4 inputs and 4
outputs.

Several experiments for evolving a circuit that implements the two-bit
multiplier are performed. In the first experiment we want to compare the
computation effort spent by CGP and MEP for solving this problem. Gates
6, 7 and 10 (see Table 5.3) are used in this experiment.

The parameters of CGP are given in Table 5.5 and the parameters of the
MEP algorithm are given in Table 5.6.

Table 5.5: Parameters of the CGP algorithm.

Parameter Value
Number of rows 1
Number of columns 10
Levels back 10
Mutation 3 symbols / chromosome
Evolutionary scheme (1+4) ES

Table 5.6: Parameters of the MEP algorithm.

Parameter Value
Code length 14 (10 gates + 4 inputs)
Crossover Uniform
Crossover probability 0.9
Mutation 3 symbols / chromosome
Selection Binary Tournament

One hundred runs of 150000 generations are performed for each popula-
tion size. Results are given in Table 5.7.

MEP outperforms CGP for all considered population sizes as shown in
Table 5.7. The differences range from 3.24% (for 3 individuals in the popu-
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Table 5.7: Computation effort spent for evolving two-bit multipliers for dif-
ferent population sizes. CGP results are taken from [58]. The differences ∆
in percent considering the values of MEP as a baseline are given in the last
column. Results are averaged over 100 runs.

Population
size

Cartesian Genetic
Programming

Multi Expression
Programming

∆

2 148808 53352 178.91
3 115224 111600 3.24
4 81608 54300 50.29
5 126015 59000 113.58
6 100824 68850 46.44
7 100821 39424 155.73
8 96032 44160 117.46
9 108036 70272 53.73
10 108090 28910 273.88
12 115248 25536 351.31
14 117698 26544 343.40
16 120080 21216 465.98
18 145854 17820 718.48
20 120100 21120 468.65
25 180075 23500 666.27
30 162180 19440 734.25
40 216360 16000 1252.25
50 225250 13250 1600.00
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lation) up to 1600% (for 50 individuals in the population). From this exper-
iment we also may infer that large populations are better for MEP than for
CGP. The computational effort decrease for MEP as the population size is
increased.

We are also interested in computing the relationship between the success
rate and the chromosome length and the population size.

The number of genes in each MEP chromosome is set to 20 genes when
the relationship between the success rate and the population size is analyzed.
When the relationship between the success rate and the population size is
analyzed a population consisting of 20 MEP chromosomes is used. Gates 6,
7 and 10 are used in this experiment. Other MEP parameters are given in
Table 5.6.

Results are depicted in Figure 5.6.

Figure 5.6: The relationship between the success rate of the MEP algorithm
and (a) number of genes in a chromosome, (b) the number of individuals in
population. Results are averaged over 100 runs.

Figure 5.6 shows that MEP is able to find a correct digital circuit in
multiple runs. A population consisting of 90 individuals with 20 genes yields a
success rate of 100% (see Figure 5.6(b)) and a population with 20 individuals
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with 85 genes yields a success rate of 92% (see Figure 5.6(a)).
From Figure 5.6(a) we may infer that larger MEP chromosomes are better

than the shorter ones. The minimum number of gates for this circuit is 7.
This number has been achieved by Miller during his numerical experiments
(see [58]). A MEP chromosome implementing Miller’s digital circuit has 11
genes (the actual digital circuit + 4 input genes). From Figure 5.6(a) we can
see that, for a MEP chromosome with 11 genes, only 6 correct solutions have
been evolved. As the chromosome length increases the number of correct
solutions evolved by also increases. If the chromosome has more than 21
genes the success rate never decreases below than 70%.

Even if the chromosome length is larger than the minimum required (11
genes) the evolved solutions usually have no more than 14 genes. This is
due to the multi expression ability of MEP which acts like a provider of
variable length chromosomes [64]. The length of the obtained circuits could
be reduced by adding another feature to our MEP algorithm. This feature
has been suggested by C. Coello in [13] and it consists of a multiobjective
fitness function. The first objective is to minimize the differences between the
expected output and the actual output (see formulas (5.1) and (5.2)). The
second objective is to minimize the number of gates used by the digital circuit.
Note that he first objective is more important than the second one. We also
have to modify the algorithm. Instead of stopping the MEP algorithm when
an optimal solution (regarding the first objective) is found we continue to
run the program until a fixed number of generations have been elapsed. In
this way we hope that also the number of gates (the second objective) will
be minimized.

Two-bit adder with carry

A more complex situation is the Two Bit Adder with Carry problem [58].
The circuit implementing this problem adds 5 bits (two numbers represented
using 2 bits each and a carry bit) and gives a three-bit number representing
the output.

The training set consists of 32 fitness cases with 5 inputs and 3 outputs.
The relationship between the success rate and the chromosome length

and the population size is analyzed for this problem.
When the relationship between the success rate and the population size

is analyzed the number of genes in each MEP chromosome is set to 20 genes.
When the relationship between the success rate and the population size is
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analyzed a population consisting of 20 MEP chromosomes is used. Gates
10 and 16 (see Table 5.3) are used in this experiment (as indicated in [58]).
Other MEP parameters are given in Table 5.4.

Results are depicted in Figure 5.7.

Figure 5.7: The relationship between the success rate of the MEP algorithm
and (a) number of genes in a chromosome, (b) the number of individuals in
population. Results are averaged over 100 runs.

Figure 5.7 shows that MEP is able solve this problem very well. When
the number of genes in a MEP chromosome is larger than 30 in more than
80 cases (out of 100) MEP was able to find a perfect solution (see Figure
5.7(a)). After this value, the success rate does not increase significantly. A
population with 270 individuals yields over 90 (out of 100) successful runs
(see Figure 5.7(b)).

This problem is more difficult than the two-bit multiplier even if we used a
smaller function set (functions 10 and 16) that the set used for the multiplier
(function 6, 7 and 10).
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Two-bit adder

The circuit implementing the N-Bit Adder problem adds two numbers rep-
resented using N bits each and gives a (N + 1)-bit number representing the
output.

The training set for this problem consists of 16 fitness cases with 4 inputs
and 3 outputs.

For this problem the relationship between the success rate and the chro-
mosome length and the population size is analyzed.

When the relationship between the success rate and the population size
is analyzed the number of genes in each MEP chromosome is set to 12 genes.
When the relationship between the success rate and the chromosome length
is analyzed a population consisting of 100 MEP chromosomes is used.

Gates 0 to 9 (see Table 5.3) are used in this experiment. Other MEP
parameters are given in Table 5.8.

Table 5.8: Parameters of the MEP algorithm for evolving digital circuits.

Parameter Value
Crossover type Uniform
Crossover probability 0.9
Mutation 2 symbols / chromosome
Selection Binary Tournament

For reducing the chromosome length and for preventing input redundancy
we keep all terminals on the first positions of the MEP chromosomes.

Results are depicted in Figure 5.8
Figure 5.8 shows that MEP is able solve this problem very well. When

the number of genes in a MEP chromosome is 27 in more than 98 cases (out
of 100) MEP was able to find a perfect solution (see Figure 5.8(a)). After
this value, the success rate does not increase significantly. A population with
500 individuals yields over 69 (out of 100) successful runs (see Figure 5.8(b)).
The success rate for this problem may be increased by reducing the set of
function symbols to an optimal set.

From Figure 5.8(a) we may infer that larger MEP chromosomes are better
than the shorter ones. The minimum number of gates for this circuit is 7. A
MEP chromosome implementing the optimal digital circuit has 11 genes (the
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Figure 5.8: The relationship between the success rate of the MEP algorithm
and (a) number of genes in chromosome, (b) the number of individuals in
population. Results are averaged over 100 runs.
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actual digital circuit + 4 genes storing the inputs). From Figure 5.8(a) we can
see that, for a MEP chromosome with 11 genes, only 2 correct solutions have
been evolved. As the chromosome length increases the number of correct
solutions evolved by also increases. If the chromosome has more than 21
genes the success rate never decreases below than 89%.

Three-bit adder

The training set for this problem consists of 64 fitness cases with 6 inputs
and 4 outputs.

Due to the increased size of the training set we analyze in this section
only the cumulative probability of success and the computation effort over
100 independent runs.

Gates 0 to 9 (see Table 5.3) are used in this experiment. Other MEP
parameters are given in Table 5.9.

Table 5.9: Parameters of the MEP algorithm for solving the 3-Bit Adder
problem.

Parameter Value
Population size 2000
Code Length 30 genes
Crossover type Uniform
Crossover probability 0.9
Mutation 2 symbols / chromo-

some
Selection Binary Tournament

Results are depicted in Figure 5.9.
Figure 5.9 shows that MEP is able solve this problem very well. In 62

cases (out of 100) MEP was able to produce a perfect solution. The minimum
number of individuals required to be processed in order to obtain a solution
with a 99% probability is 2030000. This number was obtained at generation
145. The shortest evolved circuit for this problem contains 12 gates.
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Figure 5.9: The cumulative probability of success and the number of indi-
viduals to be processed in order to obtained a solution with 99% probability.
Results are averaged over 100 runs.

Four-bit adder: preliminary results

The training set for this problem consists of 256 fitness cases, each of them
having 8 inputs and 5 outputs. Due to the increased complexity of this
problem we performed only 30 independent runs using a population of 5000
individuals having 60 genes each. The number of generations was set to 1000.

In 24 (out of 30) runs MEP was able to find a perfect solution. The short-
est evolved digital circuit contains 19 gates. Further numerical experiments
will be focused on evolving more efficient circuits for this problem.

Two-bit multiplier

The two-bit multiplier circuit implements the binary multiplication of two
N -bit numbers to produce a possible 2 * N -bit number.

The training set for this problem consists of 16 fitness cases, each of them
having 4 inputs and 4 outputs.

Several experiments for evolving a circuit that implements the two-bit
multiplier are performed. Since the problem has a reduced computational
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complexity we perform a detailed analysis by computing the relationship
between the success rate and the code length and the population size.

The number of genes in each MEP chromosome is set to 14 genes when
the relationship between the success rate and the population size is analyzed.
When the relationship between the success rate and the chromosome length
is analyzed a population consisting of 50 MEP chromosomes is used. Gates
0 to 9 (see Table 5.3) are used in this experiment. Other MEP parameters
are given in Table 5.4.

Results are depicted in Figure 5.10.

Figure 5.10: The relationship between the success rate of the MEP algorithm
and (a) number of genes in a chromosome, (b) the number of individuals in
population. Results are averaged over 100 runs.

Figure 5.10 shows that MEP is able to find a correct digital circuit in
many runs. A population consisting of 120 individuals with 14 genes yields a
success rate of 94% (see Figure 5.10(b)) and a population with 50 individuals
with 47 genes yields a success rate of 90% (see Figure 5.10(a)). We can see
that the success rate increase with more than 60% from MEP chromosomes
with 11 genes to MEP chromosomes with 15 genes. The minimum number
of gates required by this circuit is 7 and it has been obtained in most of the
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runs.

3-Bit multiplier

The training set for this problem consists of 64 fitness cases, each of them
having 6 inputs and 6 outputs.

This problem turned out to be more difficult than the corresponding
3-Bit Adder (see section 5.3.4). Using a population of 10000 individuals
each having 100 genes we have obtained only 20 perfect solutions (out of 50
independent runs). The shortest evolved digital circuit contains 35 gates.
Further research will be focused on evolving more efficient circuits for this
problem.

5.4 Designing digital circuits for NP-Complete

problems

MEP is used for evolving digital circuits for a well-known NP-Complete [31]
problem: the knapsack (subset sum) problem. Numerical results are reported
in [71].

Since this problem is NP-Complete we cannot realistically expect to find
a polynomial-time algorithm for it. Instead, we have to speed-up the existing
techniques in order to reduce the time needed to obtain a solution. A possi-
bility for speeding-up the algorithms for this problem is to implement them
in assembly language. This could lead sometimes to improvements of over
two orders of magnitude. Another possibility is to design and build a special
hardware dedicated to that problem. This approach could lead to signifi-
cantly improvements of the running time. Due to this reason we have chosen
to design, by the means of evolution, digital circuits for several instances of
the knapsack problem.

5.4.1 Evolving circuits for the knapsack problem

The knapsack problem may also be used as benchmarking problem for the
evolutionary techniques which design electronic circuits. The main advantage
of the knapsack problem is its scalability: increasing the number of inputs
leads to more and more complicated circuits. The results show that MEP
performs very well for all the considered test problems.
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The knapsack problem is a well-known NP-Complete problem [31]. No
polynomial-time algorithm is known for this problem.

Instead of designing a heuristic for this problem we will try to evolve
digital circuits which will provide the answer for a given input.

In the experiments performed in this section the set M consists of several
integer numbers from the set of consecutive integers starting with 1. For
instance if the base set is {1, 2, 3, 4, 5, 6, 7} then M may be {2, 5, 6}. We
will try to evolve a digital circuit that is able t provide the correct answer
for all subsets M of the base set.

The input for this problem is a sequence of bits. A value of 1 in position k
means that the integer number k belongs to the set M , otherwise the number
k does not belong to the set M .

For instance consider the consecutive integer numbers starting with 1
and ending with 7. The string 0100110 encodes the set M = {2, 5, 6}. The
number 1, 3, 4 and 7 do not belong to M since the corresponding positions
are 0. The possible subsets of M instance have the sum 2, 5, 6, 7, 8, 11 or
13. In our approach, the target sum is fixed and we are asking if is there a
subset of given sum.

The number of training instances for this problem depends on the number
of consecutive integers used as base for M . If we use numbers 1, 2 and 3,
we have 23 = 8 training instances. If we use number 1, 2, 3, 4, 5, 6 and 7,
we have 27 = 128 training instances. In this case, whichever subset M of
{1,. . . ,7} will be presented to the evolved circuit we have to obtain a binary
answer whether the target sum k may or not be obtained from a subset of
M .

5.4.2 Numerical experiments

In this section several numerical experiments for evolving digital circuits for
the knapsack problem are performed. The general parameters of the MEP
algorithm are given in Table 5.10. Since different instances of the problem
being solved will have different degrees of difficulty we will use different pop-
ulation sizes, number of genes in a chromosome and number of generations
for each instance. Particular parameters are given in Table 5.11.

Experimental results are given in Table 5.12. We are interested in com-
puting the number of successful runs and the number of gates in the shortest
evolved circuit.
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Table 5.10: General parameters of the MEP algorithm for evolving digital
circuits.

Parameter Value
Crossover probability 0.9
Crossover type Uniform
Mutations 5 / chromosome
Function set Gates 0 to 9
Terminal set Problem inputs
Selection Binary Tournament

Table 5.11: Particular parameters of the MEP algorithm for different in-
stances of the knapsack problem. In the second column the base set of
numbers is given for each instance. In the third column the target sum is
given.

# Set of
num-
bers

Sum Number
of fitness
cases

Population
size

Number
of genes

Number of
generations

1 {1. . . 4} 5 16 20 10 51
2 {1. . . 5} 7 32 100 30 101
3 {1. . . 6} 10 64 500 50 101
4 {1. . . 7} 14 128 1000 100 201

Table 5.12: Results obtained by MEP for the considered test problems. 100
independent runs have been performed for all problems.

# Set of
numbers

Sum Successful runs Number of gates in
the shortest circuit

1 {1. . . 4} 5 39 out of 100 3
2 {1. . . 5} 7 31 out of 100 5
3 {1. . . 6} 10 10 out of 100 11
4 {1. . . 7} 14 7 out of 100 21
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Table 5.12 shows that MEP successfully found at least a solution for
the considered test problems. The difficulty of evolving a digital circuit for
this problem increases with the number of inputs of the problem. Only
20 individuals are required to obtain 39 solutions (out of 100 runs) for the
instance with 4 inputs. In return, 1000 individuals (50 times more) are
required to obtain 10 perfect solutions (out of 100 independent runs) for the
instance with 7 inputs. Also the size of the evolved circuits increases with
the number of problem inputs. However, due to the reduced number of runs
we cannot be sure that we have obtained the optimal circuits. Additional
experiments are required in this respect.

Due to the NP-Completeness of the problem it is expected that the num-
ber of gates in the shortest circuit to increase exponentially with the number
of inputs.

5.5 Conclusions and Further Work

In this section, Multi Expression Programming has been used for evolving
digital circuits. It has been shown the way in which multiple digital cir-
cuits may be encoded in the same chromosome and the way in which MEP
chromosomes are read only once for computing their quality. There was no
human input about how the circuits should be designed, just a measurement
of the degree to which a given circuit achieves the desired response.

Several numerical experiments for evolving digital circuits have been per-
formed. The circuits evolved during the numerical experiments are for the
2 and 3-bit Multiplier, the 2, 3 and 4-bit Adder problems, even-parity, NP-
complete problems and multiplexers.

These problems are well-known benchmark instances used for assessing
the performance of the algorithms evolving digital circuits.

Further numerical experiments with Multi Expression Programming will
be focused on evolving digital circuits for other interesting problems.
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Chapter 6

MEP for Evolving Algorithms
and Game Strategies

6.1 Discovering game strategies

In this section we investigate the application of MEP technique for discover-
ing game strategies. This chapter is entirely original and it is based on the
papers [64, 70, 76].

Koza [42] suggested that GP can be applied to discover game strategy.
The game-playing strategy may be viewed as a computer program that takes
the information about the game as its input and produces a move as output.

The available information may be an explicit history of previous moves or
an implicit history of previous moves in the form of a current state of game
(e.g. the position of each piece on the chess board) [42].

Tic-tac-toe (TTT, or naughts and crosses) is a game with simple rules, but
complex enough to illustrate the ability of MEP to discover game strategy.

6.1.1 TTT game description

In Tic-Tac-Toe there are two players and a 3 × 3 grid. Initially the grid is
empty. Each player moves in turn by placing a marker in an open square. By
convention, the first player’s marker is ”X” and the second player’s marker
is ”0”.

The player that put three markers of his type (”X” for the first player
and ”0” for the second player) in a row is declared the winner.
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The game is over when one of the players wins or all squares are marked
and no player wins. In the second case, the game ends with draw (none of
the players win). Enumerating the game tree shows that the second player
can obtain at least a draw.

A well-known evolutionary algorithm that evolves game strategy has been
proposed in [12]. This algorithm will be reviewed in the next section.

6.1.2 Chellapilla’s approach of TTT

In [12] Evolutionary Programming has been used in order to obtain a good
strategy (that never loses) for the Tic-Tac-Toe game. A strategy is encoded
in a neural network. A population of strategies encoded by neural networks
is evolved.

Each network receives a board pattern as input and yields a move as
output. The aim is to store in a neural network the function that gives the
quality of a configuration. When a configuration is presented to the network,
the network output (supplies) the next move.

Each neural network has an input layer with 9 nodes, an output layer
with 9 nodes, and a hidden layer with a variable number of nodes.

Fogel’s algorithm starts with a random population of 50 neural networks.
For each network the number of nodes from the hidden layer is randomly
chosen with a uniform distribution over integers 1...10. The initial weighted
connection strengths and bias terms are randomly distributed according to
a uniform distribution ranging over [-0.5, 0.5].

From each parent a single offspring is obtained by mutation. Mutation op-
erator affects the hidden layer structure, weight connections and bias terms.

Each strategy encoded in a neural network was played 32 times against
a heuristic rule base procedure.

The payoff function has several values corresponding to winning, loosing
and draw.

The best individuals from a generation are retained to form the next
generation.

The process is evolved for 800 generations. According to [12], the best
obtained neural network is able to play to win or draw with a perfect play
strategy.
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6.1.3 MEP approach of TTT

In this section we illustrate the use of MEP to discover an unbeatable play
strategy for Tic-Tac-Toe.

We are searching for a mathematical function F that gives the quality of
each game configuration. Using this function the best configurations that can
be reached in one move from the current configuration, is selected. Therefore
function F supplies the move to be performed for each game configuration.

Function F evaluating each game configuration is represented as a MEP
chromosome. The best expression encoded by a chromosome is chosen to be
the game strategy of that chromosome.

Without any loose of generality we may allow MEP strategy to be the
first player in each game.

All expressions in the chromosome are considered in the fitness assignment
process. Each expression is evaluated using an ”all-possibilities” procedure.
This procedure executes all moves that are possible for the second player. The
fitness of an expression E is the number of games that the strategy encoded
by the expression E loses. Obviously the fitness has to be minimized.

Let us denote by

P = (p0, p1. . . p8)

a game configuration.
Each pk describes the states ”X”, ”0” or an empty square. In our experi-

ments the set {5, -5, 2} has been used for representing the symbols ”X”, ”0”
and the empty square.

The game board has been linearized by scanning board squares from up
to down and from left to right. Thus the squares in the first line have indices
0, 1 and 2, etc. (see Figure 6.1).

Figure 6.1: Game board linearized representation.

Algorithm parameters are given in Table 6.1.
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Table 6.1: Algorithm parameters for TTT game.

Parameter Value
Population size 50
Chromosome length 50 genes
Mutation probability 0.05
Crossover type Two-point-crossover
Selection Binary tournament
Elitism size 1
Terminal set T = {p0, p1,. . . , p8}
Function set F = {+, -, *, /}

The MEP algorithm is able to evolve a perfect, non-loosing, game strategy
in 11 generations. This process requires less than 10 seconds when an Intel
Pentium 3 processor at 1GHz is used.

In Figure 6.2, the fitness of the best individual in the best run and average
fitness of the best individuals over all runs are depicted.

Figure 6.2 shows that an individual representing a non-loosing strategy
appears in the population at generation 14.

Some functions evolved by the MEP algorithm are given below:

F1(P ) = ((p4 − p5-(p6 + p5))*p8 + p4*p3)*(p4 − p7),

F2(P ) = p2-(p8*p7 − p4)− p7-(p2*p5),

F3(P ) = (p4*p1 + p2)*p7-(p1 − p2 + p7*p5)-(p8-(p3*p5)).

These functions do not force the win when it is possible, but they never
lose. This is a consequence of fitness assignment process. However, the
proposed technique can also generate a function that forces the win whenever
it is possible.

It is not easy to compare this result with the result obtained by Chel-
lapilla and Fogel [12] as the experiment conditions were not the same. In [12]
evolved strategies play against a heuristic procedure, but here MEP formulas
play against an all-moves procedure. Population size was the same (50 indi-
viduals). Individual sizes are difficult to be compared. All MEP individual
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Figure 6.2: Fitness of the best individual in the best runs and the average
fitness of the best individuals over all runs. The results are taken over 30
runs.
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have the same size: 148 symbols. Neural network’s sizes used in [12] are
variable since the hidden layer contains a variable number of nodes. If the
number of nodes in the hidden layer is 9, then the size of the neural network
(biases + connection weights) is 9 * 9 + 9 * 9 * 9 + 9 * 9 = 324.

MEP approach seems to be faster as MEP was able to discover a non-
losing strategy in no more than 17 generations. As noted in [12] neural
network approach requires 800 generations.

A TTT heuristic vs. MEP approach

A good heuristic for Tic-Tac-Toe is described in what follows:

S1. If a winning move is available make that move, else
S2. If a winning move is available for the opponent, move to block it, else
S3. If a move of the opponent that leads to two winning ways is available,

block that move, else
S4. If the board center is available, move in the board center,
S5. If one ore more corners of the table are available, move in one of

them, else
S6. Move randomly in an available square.

This heuristic performs well on most of the game positions. However, by
applying one of the formulas evolved by the MEP algorithm some benefits
are obtained:

� easy implementation in programming languages,

� MEP evolved formula is a faster algorithm than the previously shown
heuristic.

Applying MEP for generating complex game strategies

Using the all-possibilities technique (a backtracking procedure that plays all
the moves for the second player) allows us to compute the absolute quality
of a game position.

For complex games a different fitness assignment technique is needed since
the moves for the second player can not be simulated by an all-possibilities
procedure (as the number of moves that needs to be simulated is too large).
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One fitness assignment possibility is to use a heuristic procedure that
acts as the second player. But there are several difficulties related to this
approach. If the heuristic is very good it is possible that none of evolved
strategy could ever beat the heuristic. If the heuristic procedure plays as a
novice then many evolved strategy could beat the heuristic from the earlier
stages of the search process. In the last case fitness is not correctly assigned
to population members and thus we can not perform a correct selection.

A good heuristic must play on several levels of complexity. At the be-
ginning of the search process the heuristic procedure must play at easier
levels. As the search process advances, the level of difficulty of the heuristic
procedure must increases.

However, for complex games such a procedure is difficult to implement.
Another possibility is to search for a game strategy using a coevolutionary

algorithm [12]. This approach seems to offer the most spectacular results. In
this case, MEP population must develop intelligent behavior based only on
internal competition.

6.2 Evolving winning strategies for Nim-like

games

In this section, we propose an evolutionary approach for computing the win-
ning strategy for Nim-like games. The proposed approach is is entirely orig-
inal and it is reported in the paper [76].

6.2.1 Introduction

Nim is one of the older two-person games known today. Whereas the stan-
dard approaches for determining winning strategies for Nim are based on the
Grundy-Sprague theory [8, 14], this problem can be solved using other tech-
niques. For instance, the first winning strategy for this game was proposed
in 1901 by L.C. Bouton from the Harvard University. The Bouton’s solution
is based on computing the xor sum of the numbers of objects in each heap.
In other words Bouton computed a relation between the current state of the
game and the player which has a winning strategy if it is his/her turn to
move.

In this section, we propose an evolutionary approach for computing the
winning strategy for Nim-like games. The proposed approach is based on
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Multi Expression Programming. The idea is to find a mathematical relation
(an expression) between the current game state and the winner of the game
(assuming that both players do not make wrong moves). The searched ex-
pression should contain some mathematical operators (such as +, -, *, div ,
mod , and , or , not , xor) and some operands (encoding the current game
state).

It is widely known [8, 30] that a winning strategy is based on separation
of the game’s states in two types of positions: P -positions (advantage to the
previous player) and N -positions (advantage to the next player). Our aim
is to find a formula that is able to detect whether a given game position
belongs to P -positions or to N -positions. Our formula has to return 0 if the
given position is a P -position and a nonzero value otherwise. That could
be easily assimilated to a symbolic regression [42] or a classification task.
It is well-known that machine learning techniques (such as Neural Networks
or Evolutionary Algorithms [34] are very suitable for solving this kind of
problems. However, the proposed approach is different from the classical
approaches mainly because the P and N -positions are usually difficult to be
identified for a new game. Instead we propose an approach that checks P
and N -position during the traversing of the game tree.

This theory can be easily extended for other games that share several
properties with the Nim game (i.e. games for which the winning strategy is
based on P and N -positions).

The problem of finding N and P -positions could be also viewed as a
classification task with two classes. However, we do not use this approach
because in this case it is required to know the class (P or N) for each game
position.

The results presented in this section enter in the class of human-competitive
results produced by an artificial machine. According to [42, 44] a result pro-
duced by an artificial machine is considered intelligent if it is equal or better
than a result that was accepted as a new scientific result at the time when
it was published in a peer-reviewed scientific. A list with other human-
competitive results produced by the Genetic Programming can be found in
[44].

6.2.2 Basics on Nim game

Nim is one of the oldest and most engaging of all two-person mathemati-
cal games known today [8, 14]. The name and the complete theory of the
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game were invented by the professor Charles Leonard Bouton from Harvard
University about 100 years ago.

Players take turns removing objects (counters, pebbles, coins, pieces of
paper) from heaps (piles, rows, boxes), but only from one heap at a time. In
the normal convention the player who removes the last object wins.

The usual practice in impartial games is to call a hot position (N -position
- advantage to the next player, i.e. the one who is about to make a move)
and a cold one (P -position - advantage to the previous player, i.e. the one
who has just made a move).

In 1930, R. P. Sprague and P. M. Grundy developed a theory of impar-
tial games in which Nim played a most important role. According to the
Sprague-Grundy theory every position in an impartial game can be assigned
a Grundy number which makes it equivalent to a Nim heap of that size. The
Grundy number of a position is variously known as its Nim-heap or nimber
for short [8, 14].

A P-position for the Nim game is given by the equation:
x1 xor x2 xor . . .xor xn = 0,

where n is the number of heaps, xi is the number of objects in the ith heap
and xor acts as the modulo 2 operator.

A variant of the Nim game, also analyzed in this section, is the one
in which players may remove no more than k objects from a heap. In this
variant a P -position is characterized by the equation:

(x1 mod k) xor (x2 mod k) xor . . .xor (xn mod k) = 0,
where the equation parameters have been previously explained.

Due to the way of computing P -position we shall call this game Nim-
ModK .

6.2.3 Fitness assignment process

The procedure used for computing the quality of a chromosome is described
in this section.

Even if this problem could be easily handled as a classification problem
(based on a set of fitness cases), we do not use this approach since for the
new games it is difficult to find which the P -positions and N -positions are.
Instead we employ an approach based on the traversing the game tree. Each
nod in this tree is a game configuration (state).

There are three theorems that run the winning strategy for the Nim
game [8]:
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(i) Any move applied to a P -position turns the game into a N -position.

(ii) There is at least one move that turns the game from a N -position into
a P -position.

(iii) The final position (when the game is over) is a P -position.

The value of the expression encoded into a MEP chromosome is computed
for each game state. If the obtained value is 0, the corresponding game state
is considered as being a P -position, otherwise the configuration is considered
as being a N -position.

The fitness of a chromosome is equal to the number of violations of the
above described rule that arises in a game tree. Thus, if the current formula
(chromosome) indicates that the game state encoded into a node of the game
tree is a P -position and (the same current formula indicates that) all the
game states encoded in the offspring nodes are also P -positions means that
we have a violation of the rule b).

Since we do not want to have violations of the previously described rule,
our chromosome must have the fitness equal to zero. This means that the
fitness has to be minimized.

For a better understanding of the fitness assignment process we provide
an example where we shall compute by hand the fitness of a chromosome.

Consider the game state (2,1), and a MEP chromosome encoding the
expression E = a1 − a2*a1. The game tree of the Nim game is given in
Figure 6.3.

Figure 6.3 shows that the fitness of a MEP chromosome encoding the
formula E = a1 − a2*a1 is four (there are four violations of the winning
strategy rules).

6.2.4 Numerical experiments

Several numerical for evolving winning strategies for Nim-like games are per-
formed in this section.

The purpose of these experiments is to evolve a formula capable to dis-
tinguish between a N -position and a P -position for the Nim game. We
shall analyze the relationships between the success rate and the population
size, the chromosome length and the number of generations used during the
search process.
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Figure 6.3: The game tree for a Nim game that starts with the configu-
ration (2, 1). At the right side of each game configuration is printed the
configuration’ state (P -position or N -position) as computed by the formula
E = a1 − a1*a2. The configurations that violate one of the three rules de-
scribed above are encircled.

In all the experiments it is considered the following configuration for the
Nim game: (4, 4, 4, 4). This configuration has been chosen in order to have
a small computational time. However, this configuration has proved to be
enough for evolving a winning strategy.

The total number of game configurations is 70 (which can be obtained
either by counting nodes in the game tree or by using the formula of combi-
nations with repetitions). Two permutations of the same configuration are
not considered different.

Remark
The success rate is computed by using the formula:

Success rate =
the number of successful runs

the total number of runs
.

Experiment 1

In the first experiment the relationship between the population size and
the success rate is analyzed. MEP algorithm parameters are given in Table
6.2.

The results of this experiment are depicted in Figure 6.4.
Figure 6.4 shows that the success rate increases as the population size

86



Table 6.2: MEP algorithm parameters for Experiment 1.

Parameter Value
Chromosome length 15 genes
Number of generations 100
Crossover probability 0.9
Mutations 2 mutations / chromosome
Selection strategy binary tournament
Terminal set TNim = {n, a1, a2, . . . , an}.
Function set F= {+, -, *, div , mod , and , not , xor ,

or}

Figure 6.4: The relationship between the population size and the rate of
success. The results are averaged over 50 runs. The population size varies
between 20 and 200.
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increases. The highest value - 37 successful runs (out of 50) - is obtained
with a population containing 140 individuals. Even a population with 20
individuals is able to yield 6 successful runs (out of 50).

Experiment 2

In the second experiment the relationship between the number of genera-
tions and the success rate is analyzed. MEP algorithm parameters are given
in Table 6.3.

Table 6.3: MEP algorithm parameters for Experiment 2.

Parameter Value
Chromosome length 15 genes
Population Size 100 individuals
Crossover probability 0.9
Mutations 2 mutations / chromosome
Selection strategy binary tournament
Terminal set TNim = {n, a1, a2, . . . , an}.
Function set F= {+, -, *, div, mod, and, not, xor,

or}

The results of this experiment are depicted in Figure 6.5.
Figure 6.5 shows that MEP is able to find a winning strategy for the

Nim game in most of the runs. In 41 runs (out of 50) a perfect solutions
was obtained after 100 generations. 9 successful runs were obtained when
the algorithm is run for 20 generations.

Experiment 3

In the third experiment the relationship between the chromosome length
and the success rate is analyzed. MEP algorithm parameters are given in
Table 6.4.

The results of this experiment are depicted in Figure 6.6.
Figure 6.6 shows that the optimal number of genes of a MEP chromosome

is 35. With this value 25 runs (out of 50) were successful.
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Figure 6.5: The relationship between the number of generations and the rate
of success. The results are averaged over 50 runs. The number of generations
varies between 20 and 200.

Table 6.4: MEP algorithm parameters for Experiment 3.

Parameter Value
Number Of Generations 50
Population Size 100 individuals
Crossover probability 0.9
Mutations 2 mutations / chromosome
Selection strategy binary tournament
Terminal set TNim = {n, a1, a2, . . . , an}.
Function set F= {+, -, *, div, mod, and, not, xor,

or}

89



Figure 6.6: The relationship between the chromosome length and the success
rate. The results are averaged over 50 runs. The chromosome length varies
between 5 and 50.

It is interesting to note that the formulas evolved by MEP are sometimes
different from the classical a1 xor a2 xor a3 xor a4. For instance a correct
formula evolved by MEP is:

F = a1 xor a2 xor a3 − a4.

This formula is also correct due to the properties of the xor operator.

Experiment 4

In this experiment a formula for the NimModK game is evolved. The
initial configuration was the same (4, 4, 4, 4) and k was set to 2. The
parameters for the MEP algorithm are given in Table 6.5.

This problem turned out to be more difficult than the previous one. In
only 3 runs (out of 50) MEP was able to find a perfect formula (i.e. a formula
that has the fitness equal to 0).
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Table 6.5: MEP algorithm parameters for Experiment 4.

Parameter Value
Chromosome length 35 genes
Number of generations 100
Population size 1000 individuals
Crossover probability 0.9
Mutations 2 mutations / chromosome
Selection strategy binary tournament
Terminal set TNimModK = {n, k, a1, a2, . . . , an}.
Function set F= {+, -, *, div , mod , and , not , xor ,

or}

6.3 Evolving heuristics for NP-Complete prob-

lems

MEP technique is used for discovering TSP heuristics for graphs satisfying
triangle inequality (TI graphs). This option was chosen due to the existence
of a big number of real-world applications implying TI graphs (e.g. plains,
trains and vehicles routes). MEP technique is used to learn a path function
f that is used for evaluating the reachable nodes. This function serves as a
heuristic for detecting the optimum path.

This section is entire original and it is based on the paper [70].

6.3.1 MEP for TSP

In the proposed approach the TSP path starts with a randomly selected node
of the graph. Each node reachable from the current node in one step is eval-
uated using the function (computer program) f evolved by MEP algorithm.
The best node is added to the already detected path. The algorithm stops
when the path contains all graph nodes.

MEP learning process for TSP has a remarkable quality: the evolved
(learned) heuristic works very well for data sets much larger than the train-
ing set. For MEP training stage graphs having 3 to 50 nodes are considered.
Evolved MEP function was tested and performs well for graphs having max-
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imum 1000 nodes.
Evolved function f is compared with some well known heuristics. Nu-

merical experiments emphasize that (for considered examples) MEP function
outperforms dedicated heuristics.

6.3.2 TSP problem with triangle inequality

TSP problem for TI graphs (i.e. satisfying triangle inequality) is stated as
follows.

Consider a set C = {c0, c1,. . . , cN–1} of cities, and a distance d(ci, cj) ∈
Z+ for each pair ci, cj ∈ C, d(ci, cj) = d(cj, ci), and for each three cities
ci, cj, ck ∈ C, d(ci, cj) ≤ d(ci, ck) + d(ck, cj). The tour <cπ(0), cπ(1),
. . . , cπ(N–1) > of all cities in C having minimum length is needed [1, 31]

TSP problem with triangle inequality is an NP-complete problem [31].
No polynomial time algorithm for solving TSP problem is known.

Several heuristics for solving TSP problem have been proposed. The most
important are Nearest Neighbor and the Minimum Spanning Tree [15, 31].

In this section we address the problem of discovering heuristics that can
solve TSP rather than solving a particular instance of the problem.

MEP technique is used for evolving a path function f that gives a way to
choose graph vertices in order to obtain a Hamiltonian cycle. The fitness is
assigned to a function f in the current population by applying f on several
randomly chosen graphs (training set) and evaluating the results.

Evolved path function may be used for solving particular instances of
TSP. For each problem the graph nodes are evaluated using the path function
f and are added one by one to the already build path.

The algorithm for TSP using evolved path function f may be described
as follows:

S1. Let cπ(0) = c0 {the path starts with the node c0}
S2. k = 1;
S3. while k < N – 1 do
S4. Using function f select cπ(k+1) – the next node of the path
S5. Add cπ(k+1) to the already built path.
S6. k = k + 1;
S7. endwhile
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S4 is the key step of this algorithm. The procedure that selects the next
node of the path in an optimal way uses the function f evolved by the MEP
technique as described in the next sections.

6.3.3 Terminals and functions for evolving heuristic
function f

Path function f has to use (as input) some information about already build
path and some information about unvisited nodes. We consider a special
terminal set which is independent with respect to the number of graph nodes.

Let us denote by y1 the last visited node (current node). We have to
select the next node to be added to the path. In this respect all unvisited
nodes are considered. Let us denote by y2 the next node to be visited.

For evolving path function f we consider a set T of terminals involving
the following elements:

d y1 y2 – distance between the graph nodes y1 and y2,
min g y1 (min g y2) – the minimum distance from the nodes y1 (y2) to

unvisited nodes,
sum g y1 (sum g y2) – the sum of all distances between nodes y1 (y2) and

unvisited nodes,
prod g y1 (prod g y2) – the product of all distances between nodes y1 (y2)

and unvisited nodes,
max g y1 (max g y2) – the maximum distance from the nodes y1 (y2) to

unvisited nodes,
length – the length of the already built path.

The set T of terminals (function variables) is thus:

T = {d y1 y2, min g y1, min g y2, max g y1, max g y2, sum g y1, sum g y2,
prod g y1, prod g y2, length}.

Let us remark that members of T are not actual terminals (in the standard
acceptation). For this reason we may call members of T as instantiated (or
intermediate) nonterminals.

Set T of terminals is chosen in such way to be independent of the number
of graph nodes. This choice confers flexibility and robustness to the evolved
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heuristic.
For evolving a MEP function for TSP problem we may consider the fol-

lowing set of function symbols: F = {+, -, /, *, cos, sin, min, max}.
The node y2 that generates the lowest output of evolved function f is

chosen to be the next node of the path. Ties are solved arbitrarily. For
instance we may consider the node with the lowest index is selected.

Example

Consider the MEP linear structure:

1: d y1 y2
2: min g y1

3: + 1, 2
4: sum g y2

5: * 2, 4

This MEP individual encodes the path functions f1, f2, f3, f4, f5 given by:

f1 = d y1 y2,
f2 = min g y1,
f3 = d y1 y2 + min g y1,
f4 = sum g y2,
f5 = min g y1* sum g y2.

6.3.4 Fitness assignment

In order to obtain a good heuristic we have to train the path function f
using several graphs. The training graphs are randomly generated at the
beginning of the search process and remain unchanged during the search
process. To avoid overfitting (see [86]), another set of randomly generated
graphs (validation set) is considered. After each generation the quality of the
best-so-far individual is calculated using the validation set in order to check
its generalization ability during training. At the end of the search process,
the function with the highest quality is supplied as the program output.

The fitness (quality) of a detected path function f is defined as the sum
of the TSP path length of graphs in the training set. Thus the fitness is to
be minimized.
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6.3.5 A numerical experiment

In this experiment we evolve a heuristic for solving TSP problem.
Let us denote by Gk the set of class of TI graphs having maximum k

nodes.
MEP algorithm considers the class G50 (i.e. graphs having 3 to 50 nodes)

for training and the class G100 for validation. Evolved path function was
tested for graphs in the class G1000 (i.e. graphs having maxim 1000 nodes).
MEP algorithm parameters are given in Table 6.3.5.

Table 6.6: MEP algorithm parameters for evolving a heuristic for TSP with
triangle inequality

Parameter Value
Population size 300
Number of generations 100
Chromosome length 40 genes
Mutation probability 0.1
Crossover type One-Crossover-Point
Crossover probability 0.9
Training set size 30
Maximum number of nodes in training set 50
Validation set size 20
Maximum number of nodes in validation set 100

The evolution of the best individual fitness and the average fitness of the
best individuals over 30 runs are depicted in Table 6.7.

A path function evolved by the MEP algorithm is:

f = (sum g(y2)) * (d y1 y2 - (max (d y1 y2, max g(y1))) + d y1 y2).

Heuristic function f that is evolved by MEP technique is directly used
for building the optimum path. The corresponding learning process has a
remarkable quality: the evolved (learned) heuristic works very well on data
sets significantly larger than the training set. In our example the training
set G50 is significantly smaller than the set G1000 used for testing.
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Figure 6.7: The fitness evolution of the best individual in the best run and
the average fitness of the best individuals over 30 runs.

6.3.6 Assessing the performance of the evolved MEP
heuristic

In this section the performance of evolved MEP heuristic, NN and MST are
compared. In the first experiment we compare the considered algorithms on
some randomly generated graphs. In the second experiment the heuristics
are compared against several difficult problems in TSPLIB [87].

Experiment 1

In this experiment we provide a direct comparison of the evolved MEP
heuristic, NN and MST. The considered heuristics are tested for randomly
generated graphs satisfying triangle inequality.

Evolved heuristic was tested for different graphs from the classes G200,
G500 and G1000. For each graph class 1000 graphs satisfying triangle inequal-
ity have been randomly generated. These graphs have been considered for
experiments with evolved MEP heuristic, NN and MST.

Performance of evolved MEP heuristic, NN and MST are depicted in
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Table 6.7.

Table 6.7: Evolved MEP heuristic vs. NN, MST. For each graph class we
present the number of graphs for which evolved MEP heuristic generates a
cycle shorter than the cycle obtained by the algorithm MST and NN.

Graphs types MST NN
G200 953 800
G500 974 906
G1000 990 948

Results obtained emphasizes that evolved MEP heuristic outperforms NN
and MST algorithms on random graphs.

Experiment 2

To obtain a stronger evidence of the results above we test the performance
of the considered heuristics against some difficult problems in TSPLIB. The
results are presented in Table 6.8.

From Table 6.8 we can see that evolved MEP heuristic performs better
than NN and MST on most of the considered problems. Only for five prob-
lems (bier127, ch150, d198, d493, fl417) NN performs better than evolved
MEP heuristic. MST does not perform better than evolved MEP heuristic
for no problem. The highest error obtained by the evolved MEP heuristic
is 23.05 (the problem d493) while the highest error obtained by NN is 23.45
(the problem rd400). The lowest error obtained with MEP is 1.72 (problem
berlin52) while the lowest error obtained by NN is 8.17 (problem bier127).
The mean of errors for all considered problems is 10.61 (for evolved MEP
heuristic) 16.33 (for NN heuristic) and 35.77 (for MST heuristic).

6.4 Conclusions and further work

Three approaches have been proposed in this section:

� an evolutionary approach for the Nim game. The underlying evolu-
tionary technique is Multi Expression Programming - a very fast and
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Table 6.8: The performance of evolved MEP heuristic, NN and MST on
some problems in TSPLIB. Length is the length of the TSP path obtained
with one of the considered heuristics. Error is calculated as (Length - Short-
est Length)/ Shortest Length * 100. Each node of the graph has been con-
sidered as the first node of the path

Problem MEP NN MST
Length Error

(%)
Length Error (%) Length Error

(%)
a280 2858.86 10.85 3084.22 19.58976 3475.23 34.75
att48 37188.2 10.93 39236.9 17.04227 43955.8 31.11
berlin52 7672.1 1.72 8182.19 8.488332 10403.9 37.94
bier127 134945 14.08 127954 8.177068 152747 29.13
ch130 6558.03 7.33 7198.74 17.81899 8276.51 35.45
ch150 7104.03 8.82 7078.44 8.431985 9142.99 40.05
d198 17780.7 12.67 17575.1 11.37579 17957.6 13.79
d493 43071.3 23.05 41167 17.61328 41846.6 19.55
d657 56965.6 16.46 60398.7 23.48442 63044.2 28.89
eil101 685.013 8.9 753.044 19.72083 846.116 34.51
eil51 441.969 3.74 505.298 18.61455 605.049 42.03
eil76 564.179 4.86 612.656 13.87658 739.229 37.4
fl417 13933.8 17.47 13828.2 16.58545 16113.2 35.85
gil262 2659.17 11.82 2799.49 17.72456 3340.84 40.48
kroA150 28376.3 6.98 31482 18.6925 38754.8 46.11
kroA200 32040.3 9.09 34547.7 17.63722 40204.1 36.89
kroB100 24801 12.01 25883 16.90077 28803.5 30.09
kroB200 33267.4 13.01 35592.4 20.91042 40619.9 37.98
lin105 15133.2 5.24 16939.4 17.80652 18855.6 31.13
lin318 46203.4 9.93 49215.6 17.09915 60964.8 45.05
pcb442 56948.3 12.15 57856.3 13.9397 73580.1 44.9
pr226 84937.8 5.68 92905.1 15.59818 111998 39.35
pr264 55827.1 13.61 54124.5 10.15468 65486.5 33.27
rat195 2473.49 6.47 2560.62 10.22901 2979.64 28.26
rat575 7573.6 11.82 7914.2 16.84925 9423.4 39.13
rat783 9982.96 13.36 10836.6 23.05928 11990.5 36.16
rd400 16973.3 11.07 18303.3 19.77816 20962 37.17
ts225 136069 7.44 140485 10.92994 187246 47.85
u574 43095.6 16.77 44605.1 20.86465 50066 35.66
u724 46545.7 11.06 50731.4 21.04844 60098.9 43.39

98



efficient Genetic Programming variant. Numerical experiments have
shown that MEP is able to discover a winning strategy in most of the
runs.

The proposed method can be easily applied for games whose winning
strategy is based on P and N -positions. The idea is to read the game
tree and to count the number of configurations that violates the rules
of the winning strategy.

� an evolutionary approach for the Tic-Tac-Toe game. Evolved strat-
egy is very fast. About 400.000 games/second can be played without
loss.

� an evolutionary approach for evolving heuristics for the TSP. Numerical
experiments have shown that the evolved heuristic performs better than
the NN and MST heuristics.

6.4.1 Applying MEP for generating complex game strate-
gies

Using the all-possibilities technique (a backtracking procedure that plays all
the moves for the second player) allows us to compute the absolute quality of
a game position. For complex games a different fitness assignment technique
is needed since the moves for the second player can not be simulated by an
all-possibilities procedure (as the number of moves that needs to be simulated
is too large). One fitness assignment possibility is to use a heuristic procedure
that acts as the second player. But there are several difficulties related to
this approach. If the heuristic is very good it is possible that none of evolved
strategy could ever beat the heuristic. If the heuristic procedure plays as a
novice then many evolved strategy could beat the heuristic from the earlier
stages of the search process. In the last case fitness is not correctly assigned
to population members and thus we can not perform a correct selection. A
good heuristic must play on several levels of complexity. At the beginning
of the search process the heuristic procedure must play at easier levels. As
the search process advances, the level of difficulty of the heuristic procedure
must increases. However, for complex games such a procedure is difficult
to implement. Another possibility is to search for a game strategy using a
coevolutionary algorithm. This approach seems to offer the most spectacular

99



results. In this case, MEP population must develop intelligent behavior based
only on internal competition.
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Chapter 7

Infix Form Genetic
Programming

A new GP variant called Infix Form Genetic Programming (IFGP) is de-
scribed. IFGP individuals are arrays of integer values encoding mathematical
expressions in infix form. IFGP is used for solving real-world classification
problems.

The chapter is entirely original and it is based on the paper [67].

7.1 Introduction

Classification is the task of assigning inputs to a number of discrete categories
or classes [38]. Examples include classifying a handwritten letter as one from
A-Z, classifying a speech pattern to the corresponding word, etc.

Machine learning techniques have been extensively used for solving clas-
sification problems. In particular Artificial Neural Networks (ANNs) [38, 86]
have been originally designed for classifying a set of points in two distinct
classes. Genetic Programming (GP) techniques [42] have also been used for
classification purposes. For instance, LGP [9] has been used for solving sev-
eral classification problems in PROBEN1. The conclusion was that LGP is
able to solve the classification problems with the same error rate as a neural
network.

Infix Form Genetic Programming (IFGP), chromosomes are strings en-
coding complex mathematical expressions using infix form. An interesting
feature of IFGP is its ability of storing multiple solutions of a problem in a
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chromosome.
In what follows IFGP is described and used for solving several real-world

classification problems taken from PROBEN1 [86].

7.2 Prerequisite

We denote by F the set of function symbols (or operators) that may appear
in a mathematical expression. F usually contains the binary operators {+,
−, *, /}. Number of Operators denotes the number of elements in F . A
correct mathematical expression also contains some terminal symbols. The
set of terminal symbols is denoted by T . The number of terminal symbols is
denoted by Number of Variables.

The symbols that may appear in a mathematical expression encoded by
the IFGP are from the set T ∪ F ∪ {’(’, ’)’}. The total number of sym-
bols that may appear in a valid mathematical expression is denoted by Num-
ber of Symbols.

By Ci we denote the value on the ith gene in a IFGP chromosome and
by Gi the symbol in the ith position in the mathematical expression encoded
into an IFGP chromosome.

7.3 Individual representation

In this section we describe how IFGP individuals are represented and how
they are decoded in order to obtain a valid mathematical expression.

Each IFGP individual is a fixed size string of genes. Each gene is an inte-
ger number in the interval [0 .. Number Of Symbols - 1]. An IFGP individual
can be transformed into a functional mathematical expression by replacing
each gene with an effective symbol (a variable, an operator or a parenthesis).

Example

If we use the set of functions symbols F = {+, *, -, /}, and the set of
terminals T = {a, b}, the following chromosome

C = 7, 3, 2, 2, 5
is a valid chromosome in IFGP system.
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7.4 Decoding IFGP individuals

We will begin to decode this chromosome into a valid mathematical expres-
sion. In the first position (in a valid mathematical expression) we may have
either a variable, or an open parenthesis. That means that we have Num-
ber Of Variables + 1 possibilities to choose a correct symbol on the first
position. We put these possibilities in order: the first possibility is to choose
the variable x1, the second possibility is to choose the variable x2 . . . the last
possibility is to choose the closed parenthesis ’)’. The actual value is given
by the value of the first gene of the chromosome. Because the number stored
in a chromosome gene may be larger than the number of possible correct
symbols for the first position we take only the value of the first gene modulo
number of possibilities for the first gene.

Generally, when we compute the symbol stored in the ith position in
expression we have to compute first how many symbols may be placed in that
position. The number of possible symbols that may be placed in the current
position depends on the symbol placed in the previous position. Thus:

(i) if the previous position contains a variable (xi), then for the current
position we may have either an operator or a closed parenthesis. The
closed parenthesis is considered only if the number of open parentheses
so far is larger than the number of closed parentheses so far.

(ii) if the previous position contains an operator, then for the current po-
sition we may have either a variable or an open parenthesis.

(iii) if the previous position contains an open parenthesis, then for the cur-
rent position we may have either a variable or another open parenthesis.

(iv) if the previous position contains a closed parenthesis, then for the cur-
rent position we may have either an operator or another closed paren-
thesis. The closed parenthesis is considered only if the number of open
parentheses so far is larger than the number of closed parentheses.

Once we have computed the number of possibilities for the current posi-
tion it is easy to determine the symbol that will be placed in that position:
first we take the value of the corresponding gene modulo the number of pos-
sibilities for that position. Let p be that value
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(p = Ci mod Number Of Possibilities).

The pth symbol from the permitted symbols for the current is placed in
the current position in the mathematical expression. (Symbols that may
appear into a mathematical expression are ordered arbitrarily. For instance
we may use the following order: x1, x2, . . . , +, -, *, /, ’(’, ’)’. )

All chromosome genes are translated but the last one. The last gene is
used by the correction mechanism (see below).

The obtained expression usually is syntactically correct. However, in
some situations the obtained expression needs to be repaired. There are two
cases when the expression needs to be corrected:

The last symbol is an operator (+, -, *, /) or an open parenthesis. In that
case a terminal symbol (a variable) is added to the end of the expression.
The added symbol is given by the last gene of the chromosome.

The number of open parentheses is greater than the number of closed
parentheses. In that case several closed parentheses are automatically added
to the end in order to obtain a syntactically correct expression.

Remark
If the correction mechanism is not used, the last gene of the chromosome will
not be used.

Example

Consider the chromosome

C = 7, 3, 2, 0, 5, 2

and the set of terminal and function symbols previously defined

T = {a, b},

F = {+, -, *, /}.

For the first position we have 3 possible symbols (a, b and ‘(‘). Thus,
the symbol in the position C0 mod 3 = 1 in the array of possible symbols is
placed in the current position in expression. The chosen symbol is b, because
the index of the first symbol is considered to be 0.
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For the second position we have 4 possibilities (+, -, *, /). The possibility
of placing a closed parenthesis is ignored since the difference between the
number of open parentheses and the number of closed parentheses is zero.
Thus, the symbol ’/’ is placed in position 2.

For the third position we have 3 possibilities (a, b and ’(’). The symbol
placed on that position is an open parenthesis ’(’.

In the fourth position we have 3 possibilities again (a, b and ’(’). The
symbol placed on that position is the variable a.

For the last position we have 5 possibilities (+, -, *, /) and the closed
parenthesis ’)’. We choose the symbol on the position 5 mod 5 = 0 in the
array of possible symbols. Thus the symbol ‘+’ is placed in that position.

The obtained expression is E = b / (a+.
It can be seen that the expression E it is not syntactically correct. For

repairing it we add a terminal symbol to the end and then we add a closed
parenthesis. Now we have obtained a correct expression:

E = b / (a+ a).

The expression tree of E is depicted in Figure 7.1.

Figure 7.1: The expression tree of E = b / (a+ a).

7.5 Using constants within the IFGP model

An important issue when designing a new GP technique is the way in which
the constants are embaded into the proposed model.

Fixed or ephemeral random constants have been extensively tested within
GP systems [42]. The interval over which the constants are initially generated
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is usually problem-dependent. For a good functionality of the program a
priori knowledge about the required constants is usually needed.

By contrast, IFGP involves a problem-independent system of constants.
It is known that each real number may be written as a sum of powers of

2.
Within the IFGP model each constant is a power of 2. The total number

of constants is also problem-independent. For instance, if we want to solve
problems using double precision constants, we need 127 constants:

2−63, 2−62,. . . , 2−1, 20, 21,. . . , 263.

Particular instances of the classification problems may require fewer con-
stants. As can be seen in section 7.4 a good solution for some classification
problems can be obtained without using constants. However, if we do not
know what kind of constants are required by the problems being solved it is
better the use the double precision system of constants (as described above).

Within the IFGP chromosome each constant is represented by its expo-
nent. For instance the constant 217 is stored as the number 17, the constant
2−4 is stored as the number -4 and the constant 1 = 20 is stored as the num-
ber 0. These constants will act as terminal symbols. Thus the extended set
of terminal symbols is

T = {x1, x2,. . . , -63, -62, .., -1, 0, 1, . . . , 62, 63}.

7.6 Fitness assignment process

In this section we describe how IFGP may be efficiently used for solving
classification problems.

A GP chromosome usually stores a single solution of a problem and the
fitness is normally computed using a set of fitness cases.

Instead of encoding a single solution, an IFGP individual is allowed to
store multiple solutions of a problem. The fitness of each solution is computed
in a conventional manner and the solution having the best fitness is chosen
to represent the chromosome.

In the IFGP representation each sub-tree (sub-expression) is considered
as a potential solution of a problem.
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Example

The previously obtained expression (see section 7.4) contains 4 distinct
solutions (sub-expressions):

E1 = a,
E2 = b,
E3 = a+ a,
E4 = b / (a+ a).

Now we will explain how the fitness of a (sub)expression is computed.
Each class has associated a numerical value: the first class has the value

0, the second class has the value 1 and the mth class has associated the
numerical value m−1. Any other system of distinct numbers may be used.
We denote by ok the number associated to the kth class.

The value vj(Ei) of each expression Ei (in an IFGP) chromosome for
each row (example) j in the training set is computed. Then, each row in
the training set will be classified to the nearest class (the class k for which
the difference |vj(Ei) − ok| is minimal). The fitness of a (sub)expression is
equal to the number of incorrectly classified examples in the training set.
The fitness of an IFGP chromosome will be equal to the fitness of the best
expression encoded in that chromosome.

Remarks

(i) Since the set of numbers associated with the problem classes was arbi-
trarily chosen it is expected that different systems of number to gener-
ate different solutions.

(ii) When solving symbolic regression or classification problems IFGP chro-
mosomes need to be traversed twice for computing the fitness. That
means that the complexity of the IFGP decoding process it is not higher
than the complexity of other methods that store a single solution in a
chromosome.
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7.7 Search operators

Search operators used within the IFGP model are recombination and muta-
tion. These operators are similar to the genetic operators used in conjunction
with binary encoding [19].

7.7.1 Crossover

By recombination two parents exchange genetic material in order to obtain
two offspring. In our numerical experiments only two-point recombination is
used.

7.7.2 Mutation

Mutation operator is applied with a fixed mutation probability (pm). By mu-
tation a randomly generated value over the interval [0, Number of Symbols-1]
is assigned to the target gene.

7.8 Handling exceptions within IFGP

Exceptions are special situations that interrupt the normal flow of expression
evaluation (program execution). An example of exception is division by zero
which is raised when the divisor is equal to zero.

GP techniques usually use a protected exception handling mechanism [42].
For instance if a division by zero exception is encountered, a predefined value
(for instance 1 or the numerator) is returned. This kind of handling mecha-
nism is specific for Linear GP [9], standard GP [42] and GE [82].

IFGP uses a new and specific mechanism for handling exceptions. When
an exception is encountered (which is always generated by a gene containing
a function symbol), the entire (sub) tree which has generated the exception is
mutated (changed) into a terminal symbol. Exception handling is performed
during the fitness assignment process.

7.9 IFGP algorithm

A steady-state [95] variant of IFGP is employed in this section. The algorithm
starts with a randomly chosen population of individuals. The following steps
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are repeated until a termination condition is reached. Two parents are chosen
at each step using binary tournament selection [19]. The selected individuals
are recombined with a fixed crossover probability pc. By recombining two
parents, two offspring are obtained. The offspring are mutated and the best
of them replaces the worst individual in the current population (only if the
offspring is better than the worst individual in population).

The algorithm returns as its answer the best expression evolved for a fixed
number of generations.

7.10 Solving classification problems using IFGP

IFGP technique is applied for solving difficult learning problems. Real-world
data sets are considered for the training process.

7.10.1 Data sets

Numerical experiments performed in this section are based on several bench-
mark problems taken from PROBEN1 [86]. These datasets were created
based on the datasets from the UCI Machine Learning Repository [103].

Used problems are briefly described in what follows.

Cancer

Diagnosis of breast cancer. Try to classify a tumor as either benignant
or malignant based on cell descriptions gathered by microscopic examination.

Diabetes

Diagnosis diabetes of Pima Indians. Based on personal data and the re-
sults of medical examinations try to decide whether a Pima Indian individual
is diabetes positive or not.

Heartc

Predicts heart disease. Decides whether at least one of four major vessels
is reduced in diameter by more than 50%. The binary decision is made
based on personal data such as age, sex, smoking habits, subjective patient
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pain descriptions and results of various medical examinations such as blood
pressure and electro cardiogram results.

This data set was originally created by Robert Detrano from V.A. Medi-
cal Center Long Beach and Cleveland Clinic Foundation.

Horse

Predicts the fate of a horse that has colic. The results of a veterinary
examination of a horse having colic are used to predict whether the horse
will survive will die or should be euthanized.

The number of inputs, of classes and of available examples, for each test
problem, are summarized in Table 7.1.

Table 7.1: Summarized attributes of several classification problems from
PROBEN1.

Problem Number of in-
puts

Number of
classes

Number of ex-
amples

cancer 9 2 699
diabetes 8 2 768
heartc 35 2 303
horse 58 3 364

7.10.2 Numerical experiments

The results of several numerical experiments with ANNs, LGP and IFGP are
presented in this section.

Each data set is divided in three sub-sets (training set -50%, validation
set - 25 %, and test set - 25%) (see [86]).

The test set performance is computed for that chromosome which had
minim validation error during the search process. This method, called early
stopping, is a good way to avoid overfitting [86] of the population individuals
to the particular training examples used. In that case the generalization
performance will be reduced.
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In [9] Linear GP was used to solve several classification problems from
PROBEN1. The parameters used by Linear GP are given in Table 7.2.

Table 7.2: Linear GP parameters used for solving classification tasks from
PROBEN1

Parameter Value
Population size 5000
Number of demes 10
Migration rate 0.05
Classification error weight in fitness 1.0
Maximum number of generations 250
Crossover probability 0.9
Mutation probability 0.9
Maximum mutation step size for con-
stants

±5

Maximum program size 256 instructions
Initial maximum program size 25 instructions
Function set {+, -, *, /, sin, exp, if >, if ≤}
Terminal set {0,..,256} ∪ {input variables}

IFGP algorithm parameters are given in Table 7.3.
The results of the numerical experiments are presented in Table 7.4.
Table 7.4 shows that IFGP is able to obtain similar performances as those

obtained by LGP even if the population size and the chromosome length used
by IFGP are smaller than those used by LGP. When compared to ANNs we
can see that IFGP is better only in 3 cases (out of 12).

We are also interested in analysing the relationship between the classifi-
cation error and the number of constants used by the IFGP chromosomes.
For this purpose we will use a small population made up of only 50 indi-
viduals. Note that this is two magnitude orders smaller than those used by
LGP. Other IFGP parameters are given in Table 7.3. Experimental results
are given in Table 7.5.

Table 7.5 shows that the best results are obtained when the constants
are not used in our IFGP system. For 8 (out of 12) cases the best result
obtained by IFGP outperform the best result obtained by LGP. That does
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Table 7.3: IFGP algorithm parameters for solving classification problems
from PROBEN1.

Parameter Value
Population Size 250
Chromosome length 30
Number of generations 250
Crossover probability 0.9
Crossover type Two-point Crossover
Mutation 2 mutations per chromosome
Number of Constants 41 {2−20, . . . , 20, 220}
Function set {+, -, *, /, sin, exp}
Terminal set {input variables} ∪ The set of con-

stants.

not mean that the constants are useless in our model and for the considered
test problems. An explanation for this behaviour can be found if we take
a look at the parameters used by IFGP. The population size (of only 50
individuals) and the chromosome length (of only 30 genes) could not be
enough to obtain a perfect convergence knowing that some problems have
many parameters (input variables). For instance the horse problem has 58
attributes and a chromosome of only 30 genes could not be enough to evolve
a complex expression that contains sufficient problem’s variables and some
of the considered constants. It is expected that longer chromosomes will
increase the performances of the IFGP technique.

7.11 Conclusion and further work

An evolutionary technique, Infix Form Genetic Programming (IFGP) has
been described in this chapter. The IFGP technique has been used for solving
several classification problems. Numerical experiments show that the error
rates obtained by using IFGP are similar and sometimes even better than
those obtained by Linear Genetic Programming.

Further numerical experiments will try to analyse the relationship be-
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Table 7.4: Classification error rates of IFGP, LGP and ANN for some date
sets from PROBEN1. LGP results are taken from [9]. ANNs results are taken
from [86]. The cases where IFGP is better than LGP have been written on
a grey background. The cases where IFGP is better than ANNs have been
bolded and italicized. Results are averaged over 30 runs

Problem IFGP–test set LGP–test set NN–test set
best mean stddev best mean stddev mean stddev

cancer1 1.14 2.45 0.69 0.57 2.18 0.59 1.38 0.49
cancer2 4.59 6.16 0.45 4.02 5.72 0.66 4.77 0.94
cancer3 3.44 4.92 1.23 3.45 4.93 0.65 3.70 0.52
diabetes1 22.39 25.64 1.61 21.35 23.96 1.42 24.10 1.91
diabetes2 25.52 28.92 1.71 25.00 27.85 1.49 26.42 2.26
diabetes3 21.35 25.31 2.20 19.27 23.09 1.27 22.59 2.23
heart1 16.00 23.06 3.72 18.67 21.12 2.02 20.82 1.47
heart2 1.33 4.40 2.35 1.33 7.31 3.31 5.13 1.63
heart3 12.00 13.64 2.34 10.67 13.98 2.03 15.40 3.20
horse1 23.07 31.11 2.68 23.08 30.55 2.24 29.19 2.62
horse2 30.76 35.05 2.33 31.87 36.12 1.95 35.86 2.46
horse3 30.76 35.01 2.82 31.87 35.44 1.77 34.16 2.32
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Table 7.5: Classification error rates of IFGP (on the test set) using different
number of constants. The cases where IFGP is better than LGP have been
written on a grey background. The cases where IFGP is better than ANNs
have been bolded and italicized. Results are averaged over 30 runs.

Problem IFGP–41 con-
stants

IFGP–0 con-
stants

IFGP–81 con-
stants

best mean stddevbest mean stddev best mean stddev
cancer1 1.14 2.45 0.60 1.14 3.18 1.06 1.14 2.41 0.77
cancer2 4.02 6.16 0.91 4.02 6.14 0.81 4.59 6.24 0.99
cancer3 3.44 5.17 1.10 2.87 5.07 1.50 2.87 5.15 1.07
diabetes1 22.39 25.74 2.19 21.87 26.04 1.76 21.87 25.34 2.08
diabetes2 26.04 29.91 1.65 25.00 29.21 2.21 25.52 29.82 1.30
diabetes3 21.87 25.34 1.76 19.79 24.79 1.91 22.91 25.88 3.60
heart1 17.33 24.44 3.76 18.67 23.28 3.33 18.66 25.28 3.64
heart2 1.33 6.97 4.07 1.33 4.97 3.16 1.33 7.06 4.60
heart3 12.00 14.00 2.51 10.67 15.42 3.40 9.33 15.11 4.25
horse1 26.37 32.16 3.12 25.27 30.69 2.49 27.47 31.57 1.91
horse2 30.76 35.64 2.37 30.76 35.49 2.81 31.86 35.71 2.23
horse3 28.57 34.13 3.14 28.57 35.67 3.90 28.57 34.90 3.53
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tween the parameters of the IFGP algorithm and the classification error for
the considered test problems.
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Chapter 8

Multi Solution Linear Genetic
Programming

A new Linear Genetic Programming [9] variant called Multi-Solution Linear
Genetic Programming (MS-LGP) is described. Each MS-LGP chromosome
encodes multiple solutions of the problem being solved. The best of these
solutions is used for fitness assignment purposes.

This chapter is entirely original and it is based on the papers [74, 78].

8.1 MS-LGP representation and fitness as-

signment process

MS-LGP enrichs LGP structure in two ways:

� Each destination variable is allowed to represent the output of the
program. In the standard LGP only one variable is chosen to provide
the output.

� The program output is checked after each instruction in chromosome.
Note that within the standard LGP the output is checked after the
execution of all instructions in a chromosome.

After each instruction, the value stored in the destination variable is
considered as a potential solution of the problem. The best value stored in
one of the destination variables is considered for fitness assignment purposes.
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Example

Consider the chromosome C given below:

void LGP(double r [8])
{

r[5] = r[3] * r[2];
r[3] = r[1] + 6;
r[0] = r[4] * r[7];
r[6] = r[4] – r[1];
r[1] = r[6] * 7;
r[0] = r[0] + r[4];
r[2] = r[3] / r[4];

}

Instead of encoding the output of the problem in a single variable (as in
SS-LGP) we allow that each of the destination variables (r[5], r[3], r[0], r[6],
r[1] or r[2]) to store the program output. The best output stored in these
variables will provide the fitness of the chromosome.

For instance, if we want to solve symbolic regression problems, the fitness
of each destination variable r[i] may be computed using the formula:

f(r[i]) =
n∑
k=1

|ok,i − wk|,

where ok,i is the result obtained in variable r[i] for the fitness case k, wk is
the targeted result for the fitness case k and n is the number of fitness cases.
For this problem the fitness needs to be minimized.

The fitness of an individual is set to be equal to the lowest fitness of the
destination variables encoded in the chromosome:

f(C) = min
i
f(r[i]).

Thus, we have a Multi-Solution program at two levels:

� First level is given by the possibility that each variable to represent the
output of the program.

� Second level is given by the possibility of checking for the output at
each instruction in the chromosome.
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Our choice was mainly motivated by the No Free Lunch Theorems for
Search [100, 101]. There is neither practical nor theoretical evidence that
one of the variables employed by the LGP is better than the others. More
than that, Wolpert and McReady [100] proved that we cannot use the search
algorithm’s behavior so far for a particular test function to predict its future
behavior on that function.

The Multi-Solution ability has been tested within other evolutionary
model such as Multi Expression Programming [64] or Infix Form Genetic
Programming [67]. For these methods it has been shown [64] that encoding
multiple solutions in a single chromosome leads to significant improvements.

8.2 Numerical experiments

In this section several experiments with SS-LGP and MS-LGP are performed.
For this purpose we use several well-known symbolic regression problems.
The problems used for assessing the performance of the compared algorithms
are:

f1(x) = x4 + x3 + x2 + x.

f2(x) = x6 – 2x4 + x2.

f3(x) = sin(x4 + x2).

f4(x) = sin(x4) + sin(x2).

For each function 20 fitness cases have been randomly generated with a
uniform distribution over the [0, 1] interval.

The general parameters of the LGP algorithms are given in Table 8.1.
The same settings are used for Multi Solution LGP and for Single-Solution
LGP.

For all problems the relationship between the success rate and the chro-
mosome length and the population size is analyzed. The success rate is
computed as the number of successful runs over the total number of runs.

Experiment 1
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Table 8.1: The parameters of the LGP algorithm for symbolic regression
problems.

Parameter Value
Number of generations 51
Crossover probability 0.9
Crossover type Uniform
Mutations 2 / chromosome
Function set F = {+, -, *, /, sin}
Terminal set Problem inputs + 4 supplementary registers
Constants Not used
Selection Binary Tournament
Algorithm Steady State

In this experiment the relationship between the success rate and the chro-
mosome length is analyzed. For this experiment the population size was set
to 50 individuals. Other parameters of the LGP algorithms are given in Table
8.1. Results are depicted in Figure 8.1.

Figure 8.1 shows that Multi-Solution LGP significantly outperforms Single-
Solution LGP for all the considered test problems and for all the considered
parameter setting. More than that, large chromosomes are better for MS-
LGP than short chromosomes. This is due to the multi-solution ability:
increasing the chromosome length leads to more solutions encoded in the
same individual.

The easiest problem is f1. MS-LGP success rate for this problem is over
90% when the number of instructions in a chromosome is larger than 12. The
most difficult problem is f4. For this problem and with the parameters given
in Table 8.1, the success rate of the MS-LGP algorithm never increases over
47%. However, these results are very good compared to those obtained by
SS-LGP (the success rate never increases over 5%).

Experiment 2

In this experiment the relationship between the success rate and the pop-
ulation size is analyzed. For this experiment the number of instructions in a
LGP chromosome was set to 12. Other parameters for the LGP algorithms
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Figure 8.1: The relationship between the success rate and the number of
instructions in a chromosome. Results are averaged over 100 runs.
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are given in Table 8.1. Results are depicted in Figure 8.2.
Figure 8.2 also shows that Multi-Solution LGP performs better than

Single-Solution LGP. Problem f1 is the easiest one and problem f4 is the
most difficult one.

8.3 Conclusions and further work

The ability of encoding multiple solutions in a single chromosome has been
analyzed in this chapter for Linear Genetic Programming. It has been shown
how to efficiently decode the considered chromosomes by traversing them only
once.

Numerical experiments have shown that Multi-Solution LGP significantly
improves the evolutionary search for all the considered test problems. There
are several reasons for which Multi Solution Programming performs better
than Single Solution Programming:

� MS-LGP chromosomes act like variable-length chromosomes even if
they are stored as fixed-length chromosomes. The variable-length chro-
mosomes are better than fixed-length chromosomes because they can
easily store expressions of various complexities,

� MS-LGP algorithms perform more function evaluations than their SS-
LGP counterparts. However the complexity of decoding individuals is
the same for both MS-LGP and SS-LGP techniques.

The multi-solution ability will be investigated within other evolutionary
models.
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Figure 8.2: The relationship between the population size and the success
rate. Population size varies between 10 and 100. Results are averaged over
100 runs.
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Chapter 9

Evolving Evolutionary
Algorithms

Two new models for evolving Evolutionary Algorithms are described in this
chapter. The models are based on Multi Expression Programming and Linear
Genetic Programming. Several Evolutionary Algorithms for function opti-
mization and Traveling Salesman Problem are evolved using the proposed
models.

This chapter is entirely original and it is based on the papers [63, 65].

9.1 Introduction

Evolutionary Algorithms (EAs) [39, 34] are nonconventional tools for solving
difficult real-world problems. They were developed under the pressure gener-
ated by the inability of classical (mathematical) methods to solve some com-
plex real-world problems. Many of these unsolved problems are (or could be
turned into) optimization problems. Solving an optimization problem means
finding of solutions that maximize or minimize a criteria function [19, 39, 34].

Many EAs were proposed for dealing with optimization problems. Many
solution representations and search operators were proposed and tested within
a wide range of evolutionary models. There are several natural questions that
are to be answered in all of these evolutionary models:

What is the optimal population size?
What is the optimal individual representation?
What are the optimal probabilities for applying specific genetic operators?
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What is the optimal number of generations before halting the evolution?
A breakthrough arose in 1995 when Wolpert and McReady unveiled their

work on the No Free Lunch (NFL) theorems [100, 101]. The NFL theorems
state that all of the black-box algorithms perform equally well over the entire
set of optimization problems. A black-box algorithm does not take into
account any information about the problem or the particular instance being
solved.

The magnitudes of the NFL results stroke all of the efforts for develop-
ing a universal black-box optimization algorithm able to solve best all the
optimization problems.

In their attempt to solve problems, men delegated computers to develop
algorithms able to perform certain tasks. The most prominent effort in this
direction is Genetic Programming (GP) [42]. Instead of evolving solutions
for a particular problem instance, GP is mainly intended for discovering com-
puter programs able to solve particular classes of problems. (This statement
is only partially true, since the discovery of computer programs may be also
viewed as a technique for solving a particular problem instance. The fol-
lowing could be an example of a problem: ”Find a computer program that
calculates the sum of the elements of an array of integers.”)

There are many such approaches so far in the GP literature [42, 43, 44].
The evolving of deterministic computer programs able to solve specific prob-
lems requires a lot of effort.

Instead of evolving deterministic computer programs we evolve a full-
featured evolutionary algorithm (i.e. the output of the main program will be
an EA able to perform a given task). Proposed approach works with EAs at
two levels:

� The first (macro) level consists of a steady-state EA [95] which uses
a fixed population size, a fixed mutation probability, a fixed crossover
probability etc.

� The second (micro) level consists of the solution encoded in a chromo-
some from the GA on the first level.

We propose two evolutionary models similar to Multi Expression Pro-
gramming (MEP) [64] and Linear Genetic Programming [9]. These models
are very suitable for evolving computer programs that may be easily trans-
lated into an imperative language (like C or Pascal).
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9.2 Evolving evolutionary algorithms using Multi

Expression Programming

In this section, Multi Expression Programming is used for evolving Evolu-
tionary Algorithms.

9.2.1 Evolutionary model

In order to use MEP for evolving EAs we have to define a set of terminal
symbols and a set of function symbols. When we define these sets we have
to keep in mind that the value stored by a terminal symbol is independent of
other symbols in the chromosome and a function symbol changes the solution
stored in another gene.

An EA usually involves 4 types of genetic operators:

� Initialize - randomly initializes a solution,

� Select - selects the best solution among several already existing solu-
tions

� Crossover - recombines two already existing solutions,

� Mutate - varies an already existing solution.

These operators act as symbols that may appear into an MEP chromo-
some. The only operator that generates a solution independent of the already
existing solutions is the Initialize operator. This operator will constitute the
terminal set. The other operators will be considered function symbols. Thus,
we have:

T = {Initialize},

F = {Select, Crossover, Mutate}.

A MEP chromosome C, storing an evolutionary algorithm is:

1: Initialize {Randomly generates a solution.}
2: Initialize {Randomly generates another solution.}
3: Mutate 1 {Mutates the solution stored on position 1}
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4: Select 1, 3 {Selects the best solution from those}
{stored on positions 1 and 3}

5: Crossover 2, 4 {Recombines the solutions on positions 2 and

4}
6: Mutate 4 {Mutates the solution stored on position 4}
7: Mutate 5 {Mutates the solution stored on position 5}
8: Crossover 2, 6 {Recombines the solutions on positions 2 and

6}

This MEP chromosome encodes multiple evolutionary algorithms. Each
EA is obtained by reading the chromosome bottom up, starting with the
current gene and following the links provided by the function pointers. Thus
we deal with EAs at two different levels: a micro level representing the evo-
lutionary algorithm encoded in a MEP chromosome and a macro level GA,
which evolves MEP individuals. The number of genetic operators (initializa-
tions, crossovers, mutations, selections) is not fixed and it may vary between
1 and the MEP chromosome length. These values are automatically discov-
ered by the evolution. The macro level GA execution is bound by the known
rules for GAs (see [34]).

For instance, the chromosome defined above encodes 8 EAs. They are
given in Table 9.1.

Remarks

(i) In our model the Crossover operator always generates a single offspring
from two parents. The crossover operators generating two offspring may
also be designed to fit our evolutionary model.

(ii) The Select operator acts as a binary tournament selection. The best
out of two individuals is always accepted as the selection result.

(iii) The Initialize, Crossover and Mutate operators are problem dependent.

9.2.2 Fitness assignment

We have to compute the quality of each EA encoded in the chromosome in
order to establish the fitness of a MEP individual. For this purpose each
EA encoded in a MEP chromosome is run on the particular problem being
solved.
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Table 9.1: Evolutionary Algorithms encoded in the MEP chromosome C.

EA1 EA2

i1=Initialize i1=Initialize

EA3 EA4

i1=Initialize
i2=Mutate (i1)

i1=Initialize
i2=Mutate (i1)
i3=Select (i1, i2)

EA5 EA6

i1=Initialize
i2=Initialize
i3=Mutate (i1)
i4=Select (i1, i3)
i5=Crossover (i2, i4)

i1=Initialize
i2=Mutate (i1)
i3=Select (i1, i2)
i4=Mutate (i3)

EA7 EA8

i1=Initialize
i2=Initialize
i3=Mutate (i1)
i4=Select (i1, i3)
i5=Crossover (i2, i4)
i6 =Mutate (i5)

i1=Initialize
i2=Initialize
i3=Mutate (i1)
i4=Select (i1, i3)
i5=Mutate (i4)
i6=Crossover (i2, i5)
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Roughly speaking the fitness of a MEP individual is equal to the fitness of
the best solution generated by one of the evolutionary algorithms encoded in
that MEP chromosome. But, since the EAs encoded in a MEP chromosome
use pseudo-random numbers it is likely that successive runs of the same EA
generate completely different solutions. This stability problem is handled in
the following manner: each EA encoded in a MEP chromosome is executed
(run) more times and the fitness of a MEP chromosome is the average of
the fitness of the best EA encoded in that chromosome over all runs. In all
of the experiments performed in this section each EA encoded into a MEP
chromosome was run 200 times.

9.2.3 Numerical experiments

In this section, we evolve an EA for function optimization. For training
purposes we use the Griewangk’s function [102].

Griewangk’s test function is defined by the equation 9.1.

f(x) =
1

4000

n∑
i=1

x2i −
n∏
i=1

cos

(
xi√
i

)
+ 1. (9.1)

The domain of definition is [−500, 500]n. We use n = 5 in this study. The
optimal solution is x0 = (0,. . . ,0) and f(x0) = 0. Griewangk’s test function
has many widespread local minima which are regularly distributed.

An important issue concerns the representation of the solutions evolved
by the EAs encoded in an MEP chromosome and the specific genetic opera-
tors used for this purpose. The solutions evolved by the EAs encoded in MEP
chromosomes are represented by using real values [34] (i.e. a chromosome of
the second level EA is an array of real values). By initialization, a random
point within the definition domain is generated. The convex crossover with
α = 1

2
and the Gaussian mutation with σ = 0.5 are used.

Experiment 1

In this experiment we are interested in seeing the way in which the qual-
ity of the best evolved EA improves as the search process advances. MEP
algorithm parameters are given in Table 9.2.

The results of this experiment are depicted in Figure 9.1.
Figure 9.1 clearly shows the effectiveness of our approach. The MEP

technique is able to evolve an EA for solving optimization problems. The
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Table 9.2: The parameters of the MEP algorithm for Experiment 1.

Parameter Value
Population size 100
Code Length 3000 genes
Number of generations 100
Crossover probability 0.7
Crossover type Uniform Crossover
Mutation 5 mutations per chromosome
Terminal set F = {Initialize}
Function set F = {Select, Crossover, Mutate}

quality of the best evolved EA is 8.5 at generation 0. That means that the
fitness of the best solution obtained by the best evolved EA is 8.5 (averaged
over 200 runs). This is a good result, knowing that the worst solution over
the definition domain is about 313. After 100 generations the quality of the
best evolved EA is 3.36.

Experiment 2

We are also interested in seeing how the structure of the best evolved EA
changed during the search process.

The evolution of the number of the genetic operators used by the best
evolved EA is depicted in Figure 9.2.

Figure 9.2 shows that the number of the genetic operators used by the
best EA increases as the search process advances. For instance the averaged
number of Initializations in the best EA from generation 0 is 27, while the
averaged number of Initializations in the best evolved EA (after 100 genera-
tions) is 43. The averaged number of Mutations is small (less than 18) when
compared to the number of occurrences of other genetic operators.
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Figure 9.1: The fitness of the best individual in the best run and the average
(over 10 runs) of the fitness of the best individual over all runs.

9.3 Evolving evolutionary algorithms with Lin-

ear Genetic Programming

In order to use LGP for evolving EAs we have to modify the structure of an
LGP chromosome and to define a set of function symbols. This model was
proposed in [63].

9.3.1 Individual representation for evolving EAs

Instead of working with registers, our LGP program will modify an array of
individuals (the population). In what follows we denote by Pop the array of
individuals (the population) which will be modified by an LGP program.

The set of function symbols will consist of genetic operators that may
appear into an evolutionary algorithm. Usually, there are 3 types of genetic
operators that may appear into an EA. These genetic operators are:

Select - that selects the best solution among several already existing so-
lutions,

Crossover - that recombine two existing solutions,
Mutate - that varies an existing solution.
These operators will act like possible function symbols that may appear

into a LGP chromosome. Thus, each simple C instruction that has appeared
into a standard LGP chromosome will be replaced by a more complex instruc-
tion containing genetic operators. More specific, in the modified LGP chro-
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Figure 9.2: The fitness of the best individual in the best run and the average
(over 10 runs) of the fitness of the best individual over all runs.

mosomes we may have three major types of instructions. These instructions
are:

Pop[k] = Select (Pop[i], Pop[j]); // Select the best individual from those
stored in

// Pop[i ] and Pop[j ] and keep the result in position k .
Pop[k] = Crossover (Pop[i], Pop[j]); // Crossover the individuals stored in

Pop[i ] and Pop[j ]
// and keep the result in position k .
Pop[k] = Mutate (Pop[i]); // Mutate the individual stored in
// position i and keep the result in position k .

An LGP chromosome C, storing an evolutionary algorithm is the follow-
ing.

void LGP Program(Chromosome Pop[8]) // a population with 8 individuals
{
...
Pop[0] = Mutate(Pop[5]);
Pop[7] = Select(Pop[3], Pop[6]);
Pop[4] = Mutate(Pop[2]);
Pop[2] = Crossover(Pop[0], Pop[2]);
Pop[6] = Mutate(Pop[1]);
Pop[2] = Select(Pop[4], Pop[3]);
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Pop[1] = Mutate(Pop[6]);
Pop[3] = Crossover(Pop[5], Pop[1]);
...
}

These statements will be considered as genetic operations that are exe-
cuted during an EA generation. Since our purpose is to evolve a generational
EA we have to add a wrapper loop around the genetic operations that are
executed during an EA generation. More than that, each EA starts with
a random population of individuals. Thus, the LGP program must contain
some instructions that initialize the initial population.

The obtained LGP chromosome is given below:

void LGP Program(Chromosome Pop[8]) // a population consisting of 8
individuals
{
Randomly initialize the population();
for (int k = 0; k ¡ MaxGenerations; k++){ // repeat for a fixed
// number of generations
Pop[0] = Mutate(Pop[5]);
Pop[7] = Select(Pop[3], Pop[6]);
Pop[4] = Mutate(Pop[2]);
Pop[2] = Crossover(Pop[0], Pop[2]);
Pop[6] = Mutate(Pop[1]);
Pop[2] = Select(Pop[4], Pop[3]);
Pop[1] = Mutate(Pop[6]);
Pop[3] = Crossover(Pop[5], Pop[1]);
}
}

Remark

The initialization function and the for cycle will not be affected by the
genetic operators. These parts are kept unchanged during the search process.
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9.3.2 Fitness assignment

We deal with EAs at two different levels: a micro level representing the
evolutionary algorithm encoded into a LGP chromosome and a macro level
GA, which evolves LGP individuals. Macro level GA execution is bounded
by known rules for GAs [9].

For computing the fitness of a LGP individual we have to compute the
quality of the EA encoded in that chromosome. For this purpose the EA
encoded into a LGP chromosome is run on the particular problem being
solved.

Roughly speaking the fitness of a LGP individual is equal to the fitness of
the best solution generated by the evolutionary algorithm encoded into that
LGP chromosome. But, since the EA encoded into a LGP chromosome use
pseudo-random numbers it is very possible as successive runs of the same EA
to generate completely different solutions. This stability problem is handled
in a standard manner: the EA encoded into a LGP chromosome is executed
(run) more times (in fact 200 runs are executed in all the experiments per-
formed for evolving EAs for function optimization and 15 runs for evolving
EAs for the TSP) and the fitness of a LGP chromosome is the average of the
fitness of the EA encoded in that chromosome over all runs.

Remark

In the standard LGP one of the registers is chosen as the program output.
This register is not changed during the search process. In our approach
the register storing the best value (best fitness) is chosen to represent the
chromosome. Thus, each LGP chromosome stores multiple solutions of a
problem in the same manner as Multi Expression Programming [64].

9.3.3 The model used for evolving EAs

For evolving EAs we use the steady state algorithm [95]. For increasing the
generalization ability (e.g. the ability of the evolved EA to yield good results
on new test problems), the problem set has been divided into three sets,
suggestively called training set, validation set and test set (see [86]). In our
experiments the training set consists of a difficult test problem. Validation is
performed using another difficult test problem. The test set consists of other
well-known benchmarking problems.
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A method called early stopping is used to avoid overfitting of the popula-
tion individuals to the particular training examples used [86]. This method
consists of computing the test set performance for that chromosome which
had the minimum validation error during the search process. Using the early
stopping technique will increase the generalization performance [86].

The test set consists of several well-known benchmarking problems [87,
102] used for assessing the performances of the evolutionary algorithms.

9.3.4 Evolving EAs for function optimization

Test functions

Ten test problems f1 − f10 (given in Table 9.3) are used to asses the per-
formance of the evolved EA. Functions f1 − f6 are unimodal test function.
Functions f7 − f10 are highly multimodal (the number of local minima in-
creases exponentially with the problem dimension [102]).

Experimental results

In this section we evolve an EA for function optimization and then we asses
the performance of the evolved EA. A comparison with a standard GA is
performed later in this section.

For evolving an EA we use f2 as the training problem and the function
f3 as the validation problem.

An important issue regards the solutions evolved by the EAs encoded into
a LGP chromosome and the specific genetic operators used for this purpose.
Solutions evolved by the EA encoded into LGP chromosomes are represented
using real values [34]. By initialization, a point within the definition domain
is randomly generated. Convex crossover with α = 1/2 and Gaussian mutation
with σ = 0.5 are used (for more information on real encoding and specific
operators see [19]).

Experiment 1

In this experiment, an EA for function optimization is evolved.
There is a wide range of EAs that can be evolved using the technique

described above. Since, the evolved EA has to be compared with another
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Table 9.3: Test functions used in our experimental study. The parameter n
is the space dimension (n = 5 in our numerical experiments) and fmin is the
minimum value of the function.

Test function Domain fmin

f1(x) =
n∑
i=1

(i · x2i ). [-5, 5]n 0

f2(x) = 10 · n+
n∑
i=1

(x2i − 10 · cos(2 · π · xi)) [-5, 5]n 0

f3(x) = −a · e−b

√
n∑

i=1

x2
i

n − e
∑

cos(c·xi)
n + a+ e. [-32, 32]n

a = 20, b =
0.2, c = 2π.

0

f4(x) = 1
4000
·
n∑
i=1

x2i −
n∏
i=1

cos( xi√
i
) + 1. [-500, 500]n 0

f5(x) =
n∑
i=1

(−xi · sin(
√
|xi|)) [-500, 500]n -n •

418.9829

f6(x) =
n∑
i=1

x2i . [-100, 100]n 0

f7(x) =
n∑
i=1
|xi|+

n∏
i=1
|xi|. [-10, 10]n 0

f8(x) =
n∑
i=1

(
i∑

j=1
x2j

)
. [-100, 100]n 0

f9(x) = maxi{xi, 1 ≤ i ≤ n}. [-100, 100]n 0

f10(x) =
n−1∑
i=1

100 · (xi+1 − x2i )2 + (1− xi)2. [-30, 30]n 0
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algorithm (such as a standard GA or an ES), the parameters of the evolved
EA have to be similar to the parameters of the algorithm used for comparison.

For instance, a standard GA uses a primary population of N individuals
and an additional population (the new population) that stores the offspring
obtained by crossover and mutation. Thus, the memory requirements for a
standard GA is O(2*N). In each generation there will be 2 * N Selections,
N Crossovers and N Mutations (we assume here that only one offspring is
obtained by crossover of two parents). Thus, the number of genetic opera-
tors (Crossovers, Mutations and Selections) in a standard GA is 4 * N . We
do not take into account the complexity of the genetic operators, since in
most of the cases this complexity is different from operator to operator. The
standard GA algorithm is given below:

Standard GA algorithm

S1. Randomly create the initial population P(0)
S2. for t = 1 to Max Generations do
S3. P’(t) = φ;
S4. for k = 1 to |P(t)| do
S5. p1 = Select(P(t)); // select an individual from the mating pool
S6. p2 = Select(P(t)); // select the second individual
S7. Crossover (p1, p2, offsp); // crossover the parents p1 and p2

// the offspring offspr is obtained
S8. Mutation (offspr); // mutate the offspring offspr
S9. Add offspf to P’(t);
S10. endfor
S11. P(t+1) = P ’(t);
S12. endfor

Rewritten as an LGP program, the Standard GA is given below. The
individuals of the standard (main) population are indexed from 0 to PopSize
– 1 and the individuals of the new population are indexed from PopSize up
to 2 * PopSize – 1.

void LGP Program(Chromosome Pop[2 * PopSize])
//an array containing of 2 * PopSize individuals
{
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Randomly initialize the population();
for (int k = 0; k ¡ MaxGenerations; k++){ // repeat for a fixed
// number of generations
// create the new population
p1 = Select(Pop[3], Pop[6]);
p2 = Select(Pop[7], Pop[7]);
o = Crossover(p1, p2);
Pop[PopSize] = Mutate(o);
p1 = Select(Pop[3], Pop[6]);
p2 = Select(Pop[7], Pop[7]);
o = Crossover(p1, p2);
Pop[PopSize + 1] = Mutate(o);
p1 = Select(Pop[3], Pop[6]);
p2 = Select(Pop[7], Pop[7]);
o = Crossover(p1, p2);
Pop[PopSize + 2] = Mutate(o);
...
p1 = Select(Pop[3], Pop[6]);
p2 = Select(Pop[7], Pop[7]);
o = Crossover(p1, p2);
Pop[2 * PopSize - 1] = Mutate(o);
// pop(t + 1) = new pop (t)
// copy the individuals from new pop to the next population
Pop[0] = Pop[PopSize];
Pop[1] = Pop[PopSize];
Pop[2] = Pop[PopSize];
...
Pop[PopSize - 1] = Pop[2 * PopSize - 1];
}
}

The parameters of the standard GA are given in Table 9.4.
We will evolve an EA that uses the same memory requirements and the

same number of genetic operations as the standard GA described above.

Remark
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Table 9.4: The parameters of a standard GA for Experiment 1.

Parameter Value
Population size 20 (+ 20 individuals in the new

pop)
Individual encoding Real
Number of generations 100
Crossover probability 1
Crossover type Convex Crossover with α = 0.5
Mutation Gaussian mutation with σ = 0.01
Selection Binary Tournament

Our comparison is based on the memory requirements (i.e. the population
size) and the number of genetic operators used during the search process. A
better comparison could be made if we take into account only the number
of function evaluations performed during the search. Unfortunately, this
comparison cannot be realized in our model since we cannot control the
number of function evaluations (this number is decided by the evolution).
The total number of genetic operators (crossovers + mutations + selections)
is the only parameter that can be controlled in our model.

The parameters of the LGP algorithm are given in Table 9.5.

Table 9.5: The parameters of the LGP algorithm used for Experiment 1.

Parameter Value
Population size 500
Code Length 80 instructions
Number of generations 100
Crossover probability 0.7
Crossover type Uniform Crossover
Mutation 5 mutations per chromosome
Function set F = {Select, Crossover, Mutate}

The parameters of the evolved EA are given in Table 9.6.
The results of this experiment are depicted in Figure 9.3.
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Table 9.6: The parameters of the evolved EA for function optimization.

Parameter Value
Population size 40
Number of generations 100
Crossover probability 1
Crossover type Convex Crossover with α = 0.5
Mutation Gaussian mutation with σ = 0.01
Selection Binary Tournament

Figure 9.3: The relationship between the fitness of the best individual in
each generation and the number of generations. Results are averaged over
10 runs.
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Figure 9.3 shows the effectiveness of our approach. LGP technique is
able to evolve an EA for solving optimization problems. The quality of the
evolved EA improves as the search process advances.

Experiment 2

In this experiment we compare the evolved EA to the standard Genetic
Algorithm described in Experiment 1. The parameters used by the evolved
EA are given in Table 9.6 and the parameters used by the standard GA are
given in Table 9.4. The results of the comparison are given in Table 9.7.

Table 9.7: The results of applying the Evolved EA and the Standard GA
for the considered test functions. StdDev stands for the standard deviation.
The results are averaged over 30 runs.

Test function
Evolved EA
40 individuals

Standard GA
20 individuals in the
standard population +
20 individuals in the
new population

Mean StdDev Mean StdDev
f1 0.6152 0.8406 3.1636 3.7997
f2 2.6016 1.7073 5.8268 3.9453
f3 7.5945 2.5006 10.8979 2.7603
f4 2.4639 1.6389 6.0176 4.4822
f5 -552.0043 218.8526 -288.3484 200.5584
f6 273.7000 235.7794 817.1237 699.2686
f7 2.0521 1.1694 4.8836 2.4269
f8 340.2770 348.3748 639.2252 486.7850
f9 10.3317 4.2009 20.6574 8.8268
f10 10123.3083 18645.7247 208900.5717 444827.6967

From Table 9.7 it can be seen that the Evolved EA significantly outper-
forms the standard GA on all of the considered test problems.

To avoid any suspicion regarding the Evolved EA we will compare it with
a GA that uses the same standard population size as the Evolved EA. Thus,
the standard GA will use a double population (a standard population and a
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new population) vis-à-vis the population employed by the Evolved EA. Note
that this will provide a significant advantage of the standard GA over the
Evolved EA. However, we use this larger population because, in this case,
both algorithms (the Standard GA and the Evolved EA) have one important
parameter in common: they perform the same number of initializations.
Results are presented in Table 9.8.

Table 9.8: The results of applying the Evolved EA and the Standard GA
for the considered test functions. StdDev stands for the standard deviation.
Results are averaged over 30 runs.

Test function
Evolved EA
40 individuals

Standard GA
40 individuals in
the standard pop-
ulation + 40 indi-
viduals in the new
population

Mean StdDev Mean StdDev
f1 0.6152 0.8406 0.2978 0.5221
f2 2.6016 1.7073 3.4031 2.7188
f3 7.5945 2.5006 6.2529 2.8255
f4 2.4639 1.6389 2.4669 1.5651
f5 -552.0043 218.8526 -287.0752 156.5294
f6 273.7000 235.7794 263.6049 239.6022
f7 2.0521 1.1694 2.0366 1.5072
f8 340.2770 348.3748 285.9284 254.9170
f9 10.3317 4.2009 10.3776 5.9560
f10 10123.3083 18645.7247 9102.8337 23981.1050

Form Table 9.8 it can be seen that the Evolved EA is better than the
standard GA in 4 cases (out of 10). However, in this case the standard GA
has a considerable advantage over the Evolved EA.

Experiment 3

We are also interested to analyze the relationship between the number of
generations of the evolved EA and the quality of the solutions obtained by
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applying the evolved EA for the considered test functions. The parameters
of the Evolved EA (EEA) are given in Table 9.6 and the parameters of the
Standard GA (SGA) are given in Table 9.4.

The results of this experiment are depicted in Figure 9.4 (for the unimodal
test functions) and in Figure 9.5 (for the multimodal test functions).

Figures 9.4 and 9.5 show that the Evolved EA is scalable in comparison
with the number of generations. It also can be sent that the Evolved EA
outperforms the standard GA for all the considered number of generations.
For the unimodal test functions (f1−f6) we can see a continuous improvement
tendency during the search process. For the multimodal test functions we
can see a similar behavior only for the test function f10.

9.3.5 Evolving EAs for TSP

In this section, an Evolutionary Algorithm for solving the Traveling Salesman
Problem [31, 53, 46] is evolved. First of all, an EA is evolved and its perfor-
mance is assessed by running it on several well-known instances in TSPLIB
[87].

This section is entirely original and it is based on the papers [70].
Experiment 5

In this experiment, an EA for the TSP problem is evolved.
A TSP path will be represented as a permutation of cities [51] and it is

initialized by using the Nearest Neighbor heuristic [15, 31]. Genetic operators
used by the Evolved EA are DPX as crossover [52] and 2-Exchange [46] as
mutation. These operators are briefly described in what follows.

DPX recombination operator copies into offspring all the common edges
of the parents. Then it completes the offspring to achieve a valid tour with
links that do not belong to the parents, in such way that the distance between
parents in the newly created offspring is preserved. This completion may be
done by using nearest neighbor information [52].

Mutation is done by applying 2-Exchange operator. The 2-Exchange
operator breaks the tour by 2 edges and then rebuilds the path by adding 2
new edges (see [46]).

The parameters used by the LGP algorithm are given in Table 9.9.
The parameters of the Evolved EA are given in Table 9.10.

142



Figure 9.4: The relationship between the number of generations and the
quality of the solutions obtained by the Evolved EA (EEA) and by the Stan-
dard GA (SGA) for the unimodal test functions f1 − f6. The number of
generations varies between 20 and 600. Results are averaged over 30 runs.
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Figure 9.5: The relationship between the number of generations and the
quality of the solutions obtained by the Evolved EA (EEA) and by the Stan-
dard GA (SGA) for the multimodal test functions f7 − f10. The number of
generations varies between 20 and 600. Results are averaged over 30 runs.
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Table 9.9: The parameters of the LGP algorithm used for Experiment 5.

Parameter Value
Population size 500
Code Length 80 instructions
Number of generations 50
Crossover probability 0.7
Crossover type Uniform Crossover
Mutation 5 mutations per chromosome
Function set F = {Select, Crossover, Mutate}

Table 9.10: The parameters of the evolved EA for TSP.

Parameter Value
Population size 40
Number of generations 100
Crossover probability 1
Crossover type DPX
Mutation 2-Exchange
Selection Binary Tournament
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For training and testing stages of our algorithm we use several problems
from the TSPLIB [86]. The att48 problem (containing 48 nodes) is used for
training purposes and the berlin52 problem (containing 52 nodes) is used for
validation purposes. Other 25 well-known TSP instances are used as the test
set.

Five runs for evolving EAs were performed. A run took about one day
on a PIII -600 MHz computer. In each run an EA yielding very good per-
formance has been evolved. One of these EAs has been tested against other
25 difficult instances from TSPLIB. The results of the Evolved EA along
with the results obtained with the standard GA described in section 9.3.4
are given in Table 9.11. The standard GA uses a standard population of
40 individuals and an additional population (the new population) with 40
individuals.

Table 9.11 shows that the Evolved EA performs better than the standard
GA for all the considered test problems. The difference ∆ ranges from 0.97
% (for the problem bier127 ) up to 20.67 % (for the problem lin105 ).

One can see that the standard GA performs very poor compared to other
implementations found in literature [52, 46]. This is due to the weak (non-
elitist) evolutionary scheme employed in this experiment. The performance
of the GA can be improved by preserving the best individual found so far.
However, this is beyond the purpose of this research. Our main aim was to
evolve an Evolutionary Algorithm and then to compare it with some similar
(in terms of number of genetic operations performed) EA structures.

Experiment 6

In this experiment we use the EA (evolved for function optimization) to
solve TSP instances. This transmutation is always possible since the evolved
EA does not store any information about the problem being solved. Results
are given in Table 9.12.

From Tables 9.11 and 9.12 it can be seen that the EA evolved for function
optimization performs better than the standard GA but worse than the EA
evolved for TSP. These results suggest that the structure of an evolutionary
algorithm might depend on the problem being solved. This observation is in
full concordance with the NFL theorems which tell us that we cannot obtain
”the best” EA unless we embed some information about the problem being
solved.
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Table 9.11: The results of the standard GA and Evolved EA for 27 instances
from TSPLIB. Mean stands for the mean over all runs and StdDev stands
for the standard deviation. The difference ∆ is in percent and it is computed
considering the values of the Evolved EA as a baseline. Results are averaged
over 30 runs.

Problem
Standard GA
40 individuals in the
standard population
+ 40 individuals in
the new population

Evolved EA
40 individuals

∆

Mean StdDev Mean StdDev
a280 3291.18 39.25 3066.72 51.67 7.31
att48 39512.65 883.47 36464.63 780.86 8.35
berlin52 8872.41 145.00 8054.99 128.36 10.14
bier127 129859.76 854.03 128603.46 1058.51 0.97
ch130 7531.64 116.92 6818.78 142.05 10.45
ch150 8087.08 181.14 7019.56 140.01 15.20
d198 18592.67 291.75 17171.83 254.37 8.27
d493 42846.82 686.30 40184.86 544.35 6.62
d657 62348.86 364.76 58421.90 740.38 6.72
eil101 806.03 17.61 734.62 8.60 9.72
eil51 510.81 4.41 470.64 12.19 8.53
eil76 677.55 26.34 599.71 11.46 12.97
fl417 15287.26 159.86 14444.20 268.73 5.83
gil262 2952.11 67.68 2746.59 53.71 7.48
kroA100 25938.18 650.96 23916.58 529.01 8.45
kroA150 33510.69 445.14 30650.92 558.66 9.33
kroA200 35896.96 295.57 34150.88 814.83 5.11
kroB100 27259.50 1295.30 23912.50 346.77 13.99
kroB150 32602.75 590.64 29811.95 519.03 9.36
kroC100 25990.92 453.61 22263.00 585.83 16.74
kroD100 26454.58 864.43 24454.33 383.18 8.17
kroE100 27126.75 667.92 24295.64 517.73 11.65
lin105 19998.93 339.39 16573.09 528.26 20.67
lin318 53525.55 976.88 49778.67 768.35 7.52
p654 45830.71 384.92 41697.25 1356.95 9.91
pcb442 60528.60 294.78 59188.30 677.04 2.26
pr107 48438.22 476.81 46158.41 268.34 4.93
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Table 9.12: The results of the Evolved EA for function optimization (see
Appendix 1) and Evolved EA for TSP (see Appendix 2) for 27 instances
from TSPLIB. Mean stands for the mean over all runs and StdDev stands
for the standard deviation. The difference ∆ is in percent and it is computed
considering the values of the Evolved EA for TSP as a baseline. Results are
averaged over 30 runs.

Problem
Evolved EA for func-
tion optimization
40 individuals

Evolved EA for TSP
40 individuals

∆

Mean StdDev Mean StdDev
a280 3156.39 8.54 3066.72 51.67 2.92
att48 39286.76 192.38 36464.63 780.86 7.73
berlin52 8389.56 316.86 8054.99 128.36 4.15
bier127 131069.06 1959.86 128603.46 1058.51 1.91
ch130 7221.11 30.51 6818.78 142.05 5.90
ch150 7094.49 13.57 7019.56 140.01 1.06
d198 18001.13 81.42 17171.83 254.37 4.82
d493 41837.06 492.34 40184.86 544.35 4.11
d657 60844.49 336.61 58421.90 740.38 4.14
eil101 742.77 5.92 734.62 8.60 1.10
eil51 506.59 2.95 470.64 12.19 7.63
eil76 615.68 6.69 599.71 11.46 2.66
fl417 15284.92 64.54 14444.20 268.73 5.82
gil262 2923.88 27.38 2746.59 53.71 6.45
kroA100 25273.13 550.62 23916.58 529.01 5.67
kroA150 31938.69 384.85 30650.92 558.66 4.20
kroA200 35015.95 377.26 34150.88 814.83 2.53
kroB100 25919.43 90.71 23912.50 346.77 8.39
kroB150 31822.17 403.77 29811.95 519.03 6.74
kroC100 23588.58 107.12 22263.00 585.83 5.95
kroD100 25028.15 171.43 24454.33 383.18 2.34
kroE100 25061.34 200.77 24295.64 517.73 3.15
lin105 16977.1 49.02 16573.09 528.26 2.43
lin318 50008.23 413.72 49778.67 768.35 0.46
p654 43689.11 228.15 41697.25 1356.95 4.77
pcb442 59825.62 292.70 59188.30 677.04 1.07
pr107 47718.90 113.56 46158.41 268.34 3.38148



9.4 Conclusions

In this chapter, LGP and MEP have been used for evolving Evolutionary
Algorithms. A detailed description of the proposed approaches has been
given allowing researchers to apply the method for evolving Evolutionary
Algorithms that could be used for solving problems in their fields of interest.

The proposed model has been used for evolving Evolutionary Algorithms
for function optimization and the Traveling Salesman Problem. Numerical
experiments emphasize the robustness and the efficacy of this approach. The
evolved Evolutionary Algorithms perform similar and sometimes even better
than some standard approaches in the literature.

149



Chapter 10

Searching for a Practical
Evidence of the No Free Lunch
Theorems

A framework for constructing test functions that match a given algorithm
is developed in this chapter. More specific, given two algorithms A and B,
the question is which the functions for which A performs better than B (and
vice-versa) are. For obtaining such functions we will use an evolutionary
approach: the functions matched to a given algorithm are evolved by using
the Genetic Programming (GP) [42] technique.

This chapter is entirely original and it is based on the paper [68, 69].

10.1 Introduction

Since the advent of No Free Lunch (NFL) theorems in 1995 [100], the trends
of Evolutionary Computation (EC) [34] have not changed at all, although
these breakthrough theories should have produced dramatic changes. Most
researchers chose to ignore NFL theorems: they developed new algorithms
that work better than the old ones on some particular test problems. The
researchers have eventually added: ”The algorithm X performs better than
another algorithm on the considered test functions”. That is somehow useless
since the proposed algorithms cannot be the best on all the considered test
functions. Moreover, most of the functions employed for testing algorithms
are artificially constructed.
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Consider for instance, the field of evolutionary single-criteria optimization
where most of the algorithms were tested and compared on some artificially
constructed test functions (most of them being known as De’Jong test prob-
lems) [34, 102]. These test problems were used for comparison purposes
before the birth of the NFL theorems and they are used even today (8 years
later after the birth of the NFL theorems). Evolutionary multi-criteria op-
timization was treated in a similar manner: most of the recent algorithms
in this field were tested on several artificially constructed test functions pro-
posed by K. Deb in [17].

Roughly speaking, the NFL theorems state that all the black-box opti-
mization algorithms perform equally well over the entire set of optimization
problems. Thus, if an algorithm A is better than another algorithm B on
some classes of functions, the algorithm B is better than A on the rest of the
functions.

As a consequence of the NFL theories, even a computer program (imple-
menting an Evolutionary Algorithm (EA)) containing programming errors
can perform better than some other highly tuned algorithms for some test
functions.

Random search (RS) being a black box search / optimization algorithm
should perform better than all of the other algorithms for some classes of test
functions. Even if this statement is true, there is no result reported in the
specialized literature of a test function for which RS performs better than all
the other algorithms (taking into account the NFL restriction concerning the
number of distinct solutions visited during the search). However, a function
which is hard for all Evolutionary Algorithms is presented in [18].

Three questions (on how we match problems to algorithms) are of high
interest:

For a given class of problems, which is (are) the algorithm(s) that per-
forms (perform) better than all other algorithms?

For a given algorithm which is (are) the class(es) of problems for which
the algorithm performs best?

Given two algorithms A and B, which is (are) the class (es) of problems
for which A performs better than B?

Answering these questions is not an easy task. All these problems are
still open questions and they probably lie in the class of the NP-Complete
problems. If this assumption is true it means that we do not know if we are
able to construct a polynomial algorithm that takes a function as input and
outputs the best optimization algorithm for that function (and vice versa).
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Fortunately, we can try to develop a heuristic algorithm able to handle this
problem.

10.2 Basics on No Free Lunch Theorems

The results provided by the No Free Lunch Theorems are divided in two
main classes: No Free Lunch Theorems for Oprimization and No Free Lunch
Theorems for Search.

Roughly speaking, the NFL theorems for Optimization [101] state that all
the black-box optimization algorithms perform equally well over the entire
set of optimization problems.

Thus, if an algorithm A is better than another algorithm B on some
classes of functions, the algorithm B is better than A on the rest of the
functions.

The NFL theorems for Search [100] state that we cannot use the informa-
tion about the algorithm’ behaviour so far to predict it’s future behaviour.

10.3 A NFL-style algorithm

Firstly, we define a black-box optimization algorithm as indicated by Wolpert
and McReady in [100].

The evolutionary model (the NFL-style algorithm) employed in this study
uses a population consisting of a single individual. This considerably simplify
the description and the implementation of a NFL-style algorithm. No archive
for storing the best solutions found so far (see for instance Pareto Archived
Evolution Strategy [45]) is maintained. However, we implicitly maintain an
archive containing all the distinct solutions explored until the current state.
We do so because only the number of distinct solutions is counted in the
NFL theories. This kind of archive is also employed by Tabu Search [32, 33].

The variables and the parameters used by a NFL algorithm are given in
Table 10.1.

The NFL-style algorithm is outlined below:

NFL Algorithm

S1. Archive = ∅;
S2. Randomly initializes the current solution (curr sol)
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Table 10.1: The variables used by the NFL algorithm.

Variable Meaning
Archive the archive storing all distinct solutions

visited by algorithm
curr sol the current solution (point in the search

space)
new sol a new solution (obtained either by mu-

tation or by initialization)
MAX STEPS the number of generations (the number

of distinct points in the search space
visited by the algorithm).

t the number of distinct solutions ex-
plored so far

// add the current solution to the archive
S3. Archive = Archive + {curr sol};
S4. t = 1;
S5. while t < MAX STEPS do
S6. Select a new solution (new sol) in
the neighborhood of the curr sol
S7. Archive = Archive + {new sol};
S8. curr sol = new sol;
S9. t = t + 1;
S10. endwhile

An important issue concerning the NFL algorithm described above is
related to the step S6 which selects a new solution that does not belong
to the Archive. This is usually done by mutating the current solution and
keeping the offspring if the latter does not already belong to the Archive
(The actual acceptance mechanism is minutely described in section 10.5). If
the offspring belongs to the Archive for a fixed number of mutations (steps)
it means that the neighborhood of the current solutions could be exhausted
(completely explored). In this case, a new random solution is generated and
the search process moves to another region of the search space.

It is sometimes possible the generated solution to already belong to the
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Archive. In this case, another random solution is generated over the search
space. We assume that the search space is large enough and after a finite
number of re-initializations the generated solution will not belong to the
Archive.

The algorithm for selecting a new solution which does not belong to the
Archive (the step S6) is given below:

SS1. nr mut = 0; // the number of mutations is set to 0
SS2. Repeat
SS3. new sol = Mutate (curr sol);
SS4. nr mut = nr mut + 1;
SS5. until (nr mut = MAX MUTATIONS) and (new sol /∈Archive) and

Accepted(new sol);
SS6. while new sol /∈Archive do
SS7. Initialize(new sol); //we jump into another randomly chosen point of

the search space
SS8. endwhile

10.4 Evolutionary Model and the Fitness As-

signment Process

Our aim is to find a test function for which a given algorithm A performs
better than another given algorithm B. The test function that is being
searched for will be evolved by using Genetic Programming [42] with steady
state [95].

The quality of the test function encoded in a GP chromosome is computed
in a standard manner. The given algorithms A and B are applied to the test
function. These algorithms will try to optimize (find the minimal value of)
that test function. To avoid the lucky guesses of the optimal point, each
algorithm is run 500 times and the results are averaged. Then, the fitness of
a GP chromosome is computed as the difference between the averaged results
of the algorithm A and the averaged results of the algorithm B. In the case
of function minimization, a negative fitness of a GP chromosome means that
the algorithm A performs better than the algorithm B (the values obtained
by A are smaller (on average) than those obtained by B).

154



10.5 Algorithms used for comparison

We describe several evolutionary algorithms used for comparison purposes.
All the algorithms described in this section are embedded in the NFL algo-
rithm described in section 10.3. More precisely, the considered algorithms
particularize the solution representation, the mutation operator, and the
acceptance mechanism (the procedure Accepted) of the NFL algorithm de-
scribed in section 10.3. The mutation operator is the only search operator
used for exploring the neighborhood of a point in the search space.

A1 - real encoding (the individuals are represented as real numbers using
32 bits), Gaussian mutation with σ1 = 0.001, the parent and the offspring
compete for survival.

A2 - real encoding (the individuals are represented as real numbers using
32 bits), Gaussian mutation with σ2 = 0.01, the parent and the offspring
compete for survival.

A3 - binary encoding (the individuals are represented as binary strings of
32 bits), point mutation with pm = 0.3, the parent and the offspring compete
for survival.

A4 - binary encoding (the individuals are represented as binary strings of
32 bits), point mutation with pm = 0.1, the parent and the offspring compete
for survival.

10.6 Numerical experiments

Several numerical experiments for evolving functions matched to a given
algorithm are performed in this section. The algorithms used for comparison
have been described in section 10.5.

The number of dimensions of the space is set to 1 (i.e. one-dimensional
functions) and the definition domain of the evolved test functions is [0, 1].

The parameters of the GP algorithm are given in Table 10.2.
The small number of generations (only 10) has been proved to be sufficient

for the experiments performed in this study.
Evolved functions are given in Table 10.3. For each pair (Ak, Aj) is given
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Table 10.2: The parameters of the GP algorithm used for numerical experi-
ments

Parameter Value
Population size 50
Number of generations 10
Maximal GP tree depth 6
Function set F = {+, -, *, sin, exp}
Terminal set T = {x}
Crossover probability 0.9
Mutation 1 mutation / chromosome
Runs 30

the evolved test function for which the algorithm Ak performs better than
the algorithm Aj. The mean of the fitness of the best GP individual over 30
runs is also reported.

Table 10.3: The evolved test functions.

Algorithms Evolved Test Func-
tion

Averaged fitness

(A1, A2) f1(x) = 0. 0
(A2, A1) f2(x) = −6x3 − x. -806.03
(A3, A4) f3(x) = x− 2x5. -58.22
(A4, A3) f4(x) = −4x8. -34.09
(A2, A4) f5(x) = 0. 0
(A4, A2) f6(x) = −6x3 − x. -1601.36

Table 10.3 shows that the proposed approach made possible the evolving
of test functions matched to the most of the given algorithms. The results of
these experiments give a first impression of how difficult the problems are.
Several interesting observations can be made:

The GP algorithm was able to evolve a function for which the algorithm
A2 (real encoding with σ = 0.01) was better then the algorithm A1 (real
encoding with σ = 0.001) in all the runs (30). However, the GP algorithm
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was not able to evolve a test function for which the algorithm A1 is better
that the algorithm A2. In this case the function f(x) = 0 (where both
algorithms perform the same) was the only one to be found. It seems to be
easier to find a function for which an algorithm with larger ”jumps” is better
than an algorithm with smaller ”jumps” than to find a function for which
an algorithm with smaller ”jumps” is better than an algorithm with larger
”jumps”.

A test function for which the algorithm A4 (binary encoding) is better
than the algorithm A2 (real encoding) was easy to find. The reverse (i.e.
a test function for which the real encoding algorithm A2 is better than the
binary encoded algorithmA4) has not been found by using the GP parameters
considered in Table 10.2.

10.7 Conclusions and further work

In this paper, a framework for evolving test functions that are matched to
a given algorithm has been proposed. The proposed framework is intended
to provide a practical evidence for the NFL theories. Numerical experiments
have shown the efficacy of the proposed approach.

Further research will be focused on the following directions:

(i) extending the function set (F ) and the number of space dimensions.

(ii) comparing other evolutionary algorithms for single and multiobjective
optimization. Several test functions matched to some classical algo-
rithms (such as standard GAs or ES) for function optimization will
be evolved. In this case the problem is much more difficult since the
number of distinct solutions visited during the search process could be
different for each algorithm.

(iii) evolving test instances for algorithms used for solving other real-world
problems (such as TSP, symbolic regression, classification etc).

(iv) finding test functions for which random search is better than other
algorithms.

(v) finding the set of test functions for which an algorithm is better than
the other.
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Chapter 11

Conclusions and further work

Three new techniques have been proposed during the course of this the-
sis: Multi Expression Programming, Infix Form Genetic Programming, and
Traceless Genetic Programming.

Proposed techniques have been used in the following applications: sym-
bolic regression, classification, designing digital circuits, evolving play strate-
gies, evolving heuristics for NP-complete problems, evolving evolutionary al-
gorithms, and evolving test problems.

Further work will be focused on developing new GP techniques, Designing
digital circuits for reversible computers, evolving fast winning strategies for
the end of the chess and othello games, evolving EAs with patterns, evolving
heuristics for other NP-complete problems, applying the existing GP tech-
niques to real-world prediction data, etc.
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