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ABSTRACT

In 1907 using special relativity, Albert Einstein proved that vacuum permittivity, ε, changes in accel-
erating coordinate reference frames. ε is the scalar in Maxwell’s equations that determines the speed
of light and the strength of electrical fields. In 1952, Møller confirmed Einstein’s discovery by proving
that ε is a function of the curvature of static spacetimes. In 1994, Sumner proved that ε changes
with the curvature of Friedmann spacetime. Photon energies are proportional to ε, but the energies of
photons emitted by atoms are proportional to ε2. This difference reverses the interpretation of Hubble
redshifts. Hubble redshifts only result when a Friedmann universe is collapsing. This is confirmed by
the Pantheon redshift data fit of 1048 supernovas with a negative Hubble constant Ho = -72.10± 0.75
km s−1 Mpc−1 and a deceleration parameter 1/2 < qo < 0.51. The velocity of light in Friedmann
geometry is inversely proportional to the radius of the universe. The velocity of light was infinite
at the Big Bang and decreased to zero at maximum size when the universe began to collapse. The
velocity of light is now accelerating towards infinity. Its current value is c. Collapse will be complete
in 9.05 billion years. The current age of the universe is estimated to be 1.54x 104 billion years.

1. INTRODUCTION

In Friedmann spacetime, vacuum permittivity, ε, is di-
rectly proportional to the Friedmann radius so ε changes
with time. As the size of the Friedmann universe evolves,
the changing strength of the electrical force between
charges shifts atomic energy levels, changing the wave-
lengths of emitted light. The wavelengths of photons
also change but only half as much. This difference in
evolution of atomic emissions and photons reverses the
interpretation of Hubble redshift Sumner (1994). Today
the Friedmann universe is closed and collapsing, Figure
1.

In Maxwell’s equations, vacuum permittivity is the
scalar that determines the speed of light and the strength
of electrical fields. Einstein’s discovery means that both
the wavelengths of photons and the wavelengths of pho-
tons emitted by atoms change with spacetime curvature
in general relativity.

Figure 1. Photons blueshift in a collapsing universe. Atomic
spectra blueshift more. Hubble redshifts of photons from the su-
pernova (SN) are observed.

wqsumner@gmail.com

2. MATHEMATICAL MODELS

2.1. Einstein’s Solution

In his study of Maxwell’s equations in an uniformly ac-
celerated coordinate system, Einstein (1907)1 concluded
that the velocity of light in special relativity, c, is re-
duced to c∗, the local coordinate velocity of light in the
accelerated system. Einstein (1989, p 310) found in
an accelerated system which corresponds locally to the
gravitational field of a point mass

c∗ = c

(
1 +

Φ

c2

)
, (1)

where Φ is the Newtonian gravitational potential

Φ = − km

r
. (2)

m is the mass of the object creating the gravitational
field at a distance r. k is the gravitational constant.

The connection between Einstein’s result, equation (1),
and the strength of the electrical field comes from the
definition of relative vacuum permittivity ε,

ε =
c

c∗
. (3)

Combining equations (1), (2), and (3) gives Einstein’s
value for ε,

ε (r) =
1(

1 − km

rc2

) . (4)

Møller (1952, p 308) and Landau & Lifshitz (1975, p
258) studied the effects of curved spacetime on Maxwell’s
equations. Both proved that in a static gravitational
field the electromagnetic field equations take the form of

1 English translation (Einstein 1989, p 252)
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Maxwell’s phenomenological equations in a medium at
rest with

ε(r) =
1
√
g00

. (5)

g00 is the time component of the metric tensor gµν .
Einstein’s pre-general relativity result, equation (4), is

the first approximation to the exact relativistic equation
(5),

ε(r) =
1
√
g00

=
1√(

1− 2km

rc2

) ≈ 1(
1 − km

rc2

) . (6)

2.2. Friedmann Solution

Friedmann (1922) published a closed universe solution
to Einstein’s theory of general relativity without a cos-
mological constant. The Friedmann universe rapidly ex-
pands from a singularity, slowing until it reaches a max-
imum size before accelerating back to a singularity.
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Figure 2. Friedmann’s solution for a closed universe with α = 1
in equation 8.

Friedmann assumed the metric,

ds2 = c2dt2−

a2(t)

[
dr2

(1− r2)
+ r2

(
dθ2 + sin2θ dφ2

)]
,

(7)

homogeneous, incoherent matter, conserved in amount
and exerting negligible pressure. His solution is the cy-
cloid shown in Figure 2,

a =
α

2
(1− cosψ) c t =

α

2
(ψ − sinψ), (8)

where α is a constant and 0 ≤ ψ ≤ 2π (Tolman 1934).
Sumner (1994) examined Maxwell’s equations in

Friedmann geometry and found that ε changes in time
along with spacetime curvature,

ε (t) = a(t). (9)

a(t) is the radius of the Friedmann universe defined above
with α = 1.

2.3. Local Mathematical Coordinates

The effects of spacetime curvature in nature are often
explained as gravitational forces or simply ignored. The
extraordinary success of the special theory of relativity
confirms this approach. But spacetime is never precisely
flat as ubiquitous gravity clearly shows. Flat spacetime
exists only in mathematical models. Every spacetime in
nature is curved.

To understand the effects of spacetime curvature on
atoms and photons, a coordinate system that includes
spacetime curvature is necessary. The method used
by Einstein, Møller, Landau, Lifshitz, and Sumner is
adopted where a local pseudo-Cartesian coordinate sys-
tem is used with the vacuum permittivity ε(xµ) deter-
mined by the general relativistic geometry at that space-
time point. Specifically,

ds2 =
c2

ε2(xµ)
dt2 −

[
dr2 + r2

(
dθ2 + sin2θ dφ2

)]
.

(10)
If the variation in ε(xµ) in the region of interest is ig-

nored, equation (10) is just the metric of special relativity
with a velocity of light c/ε(xµ). If ε(xµ) = 1 the result
is special relativity with spacetime curvature ignored.

2.4. Changes in Atoms and Photons

The Bohr radius ao of a hydrogen atom in its ground
state at t is 2

ao(t) =
4πεo ε (t) ~2

me2
. (11)

εo = 8.854187817 . . . x10−12 F/m (farads per meter) is
the defined value of εo. m is the mass of the electron, e
is the charge of the electron, and ~ is Planck’s constant
h divided by 2π. These are assumed to remain constant
as spacetime curvature changes.

The change in Bohr radius ao as t changes is

ao(t1)

ao(t2)
=
ε (t1)

ε (t2)
. (12)

The characteristic wavelength λe emitted by a hydro-
gen atom during the transition between the principle
quantum numbers n2 and n1 is

λe(t) =
8 ε2o ε

2 (t) ~3 c
me4

(
n21 n

2
2

n22 − n21

)
. (13)

c in equation (13) comes from the defining relationship
between λ and ν, λ ν = c.

The change in λe(t) as t changes is

λe(t1)

λe(t2)
=
ε2 (t1)

ε2 (t2)
. (14)

Consider the Compton wavelength, λc, of a particle
with mass mp,

λc(t) =
h

mp c∗(t)
=
h ε (t)

mp c
. (15)

2 See standard texts, e.g. Leighton (1959).
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The change in λc(t) as t changes is

λc(t1)

λc(t2)
=
ε (t1)

ε (t2)
. (16)

The Compton wavelength of a particle is equivalent
to the wavelength of a photon of the same energy as
the particle. Compton and photon wavelengths have the
same ε(t) dependency that the Bohr radius has. The
wavelength change for a photon is

λ(t1)

λ(t2)
=
ε (t1)

ε (t2)
. (17)

2.5. Gravitational Redshift

The following notation is used. The wavelength of a
photon λ emitted at t1 and examined at t1 will be written
λ(t1, t1). The wavelength of a photon λ emitted at t1 and
examined at t2 will be written λ(t1, t2).

The traditional redshift z formula assumes that atomic
emissions do not evolve, λ(t2, t2) = λ(t1, t1), but that
photons do (Equation (17)).

z =
λ(t1, t2) − λ(t1, t1)

λ(t1, t1)
=

ε(t2)

ε(t1)
− 1. (18)

t2 is the observer’s location and t1 is the location at the
time of emission.

Since atomic emissions do evolve with spacetime ge-
ometry, a new redshift variable ζ (the Greek letter zeta)
is defined to match what is done experimentally,

ζ =
λ(t1, t2) − λ(t2, t2)

λ(t2, t2)
. (19)

t2 is the observer’s location and t1 is the location at the
time of emission.

ζ =
ε(t1)

ε(t2)
− 1. (20)

Substituting ε(t) = a(t) into equation (20) gives the
redshift ζ for Friedmann geometry,

ζ =
a(t1)

a(t2)
− 1. (21)

Hubble redshift (ζ > 0) implies a(t1) > a(t2). The
universe was larger in the past, a(t1), than it is now,
a(t2). This puts us somewhere on the collapsing half
of the curve in Figure 2. The logic is simple. Since
Hubble shifts are red (ζ > 0), the Friedmann universe
is collapsing. If Hubble shifts were blue (ζ < 0), the
Friedmann universe would be expanding.

3. ANALYZING HUBBLE REDSHIFTS

The analysis of redshift observations must include the
changes in atomic emissions in addition to the changes
in photons. Astronomers measure the redshift defined by
ζ, equation (21). The following derivation is similar to
the one made when atomic evolution is ignored and the
universe is assumed to be expanding (Narlikar 1983),
but is different because ζ not z describes the observed
redshift and some choices in signs are made differently
when the universe is contracting (Sumner & Vityaev

2000). It is assumed that observed photons were emitted
after contraction began.

The mathematical coordinate distance r to a source
can be shown to be a function of the observed redshift
ζ of the source and the deceleration parameter qo in the
following way.

Setting ds = 0 in the Friedmann metric, equation (7),
gives

c dt =
−a(t) dr

(1 − r2)
1/2

. (22)

The source is located at the spatial coordinates
(r1, 0, 0) with emission at time t1 and the observer is
at (0, 0, 0) with reception at time t2.

c

∫ t2

t1

dt

a(t)
=

∫ r1

0

dr

(1 − r2)
1/2

= sin−1 r1. (23)

Substituting a(t) and dt calculated from the Friedmann
solution, equation (8), gives

r1 = sin(ψ2 − ψ1). (24)

The Friedmann equation for the closed universe is
(Narlikar 1983, p 113)

ȧ2 = c2
(α
a
− 1
)
. (25)

The Hubble constant H and the deceleration parame-
ter q are defined by

H(t) =
ȧ(t)

a(t)
,

ä(t)

a(t)
= −q(t)H2(t). (26)

“ ˙ ” indicates time derivative. H is negative and q
is greater than 1/2 for a closed, collapsing universe.
Present day values are denoted by Ho and qo.
α, the constant in equations (8), may be written

(Narlikar 1983, p 114)

α =
2qo

(2qo − 1)3/2
c

|Ho|
. (27)

Solving for ψ2 and ψ1 in terms of ζ and qo and substi-
tuting into equation (24) gives

r1 =
(2qo − 1)

1/2

qo

[
ζ − (1 + ζ)(1 − qo)

qo

]
+

(1 − qo)

qo

{
1 −

[
ζ − (1 + ζ)(1 − qo)

qo

]2}1/2

.

(28)

The flux f of photons is related to the luminosity L
of the source and to its luminosity distance DL by the
equation

f =
L

4πD2
L

. (29)

DL is determined in the following way. Calculate the
observed flux f by noting that L, the actual luminosity
of the source, is changed by a factor of a(t2)/a(t1) be-
cause of the apparent change of the photon’s energy and
changed by another factor of a(t2)/a(t1) because of the
changes in time in the local metric, equation (10). The
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distance to the source is r1 a(t2). This gives an observed
flux of

f =

L
a2(t2)

a2(t1)

4πr21a
2(t2)

. (30)

Combining equations (29) and (30) using (21) gives

DL = r1 a(t2) (1 + ζ). (31)

a(t2) is (Narlikar 1983, p 114)

a(t2) =
−c
Ho

1

(2qo − 1)1/2
. (32)

Substituting equations (28) and (32) into (31) gives

DL =
−c
Ho

(1 + ζ)

qo

{[
ζ − (1 + ζ)(1− qo)

qo

]
+

(1− qo)
(2qo − 1)1/2

(
1−

[
ζ − (1 + ζ)(1− qo)

qo

]2)1/2}
.

(33)

The relationship between distance modulus (the dif-
ference between the apparent magnitude m and absolute
magnitude M of a celestial object) and luminosity dis-
tance, DL, is

m−M = 5 log10

(
DL

10 parsecs

)
. (34)

The Hubble constant Ho (negative for the contract-
ing half of the curve) and the deceleration parameter qo
(which must be > 1/2 characterizing a closed Friedmann
universe) are then varied to find best least-squared fits
to Hubble redshift observations of ζ and m −M using
equations (33) and (34).

4. FIT TO PANTHEON SN REDSHIFT DATA

The Pantheon redshift data of 1048 supernovas (Scol-
nic 2018) were analyzed assuming that both atoms and
photons change. The Hubble constant and deceleration
parameter were the only variables, see Figure 3.

Since this Friedmann universe is closed, qo > 1/2.
Every search conducted found a lower standard devi-
ation when qo was closer to 1/2. No lower limit for
δ = (qo − 1/2) was found and the upper limit 0.51 was
chosen because there is little change in the quality of fit
with smaller qo, hence 1/2 < qo < 0.51.

This is illustrated in Figure 4.

5. OUR UNIVERSE

2
3 |Ho|−1 estimates the time until collapse, tc, of the

Friedmann universe when qo is this close to 1/2. For
Ho = −72.10 kms−1Mpc−1, tc = 9.05 billion years.

The age of the universe, tA, can be estimated from the
magnitude-redshift data (Narlikar 1983, p 114) (with
two signs changed to reflect contraction),

tA =
−1

Ho

[
1

2qo − 1
+

qo

(2qo − 1)
3/2

cos−1 1− qo
qo

]
. (35)

A value for cos−1 corresponding to the fourth quadrant
must be used. For Ho = −72.10 kms−1Mpc−1 and qo =
0.51, tA = 1.54× 104 billion years.
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Figure 3. The solid line is the fit to the Pantheon redshift data
with the parameters Ho = -72.10± 0.75 km s−1 Mpc−1 and 1/2 <
qo < 0.51. The dotted straight line is included to visually clarify
the upward curve (or “acceleration”) of the data and fit. The
average data error is 0.1418. The standard deviation for this fit is
0.1515.
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Figure 4. Standard deviation for fits at smaller values of δ =
(qo − 1/2). The values of Ho on the top axis are the best fits for
the δ values on the bottom axis. No minimum for δ was found.

For qo = 1/2, equation 35 gives an age of tA = ∞
as it should for a flat universe. While the Pantheon
data makes a persuasive case that our universe is closed,
nearly flat, and very old, it does not give definitive an-
swers to the questions “How flat is the universe?” and
“How old is the universe?”

6. VELOCITY OF LIGHT

Einstein (1907)3 concluded that the velocity of light
in special relativity, c, is reduced in an uniformly ac-
celerated coordinate system to c∗, the local coordinate
velocity of light. The ratio c/c∗ is relative vacuum per-
mittivity ε, equation 3.

3 English translation (Einstein 1989, p 252)
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For Friedmann geometry ε(t) = a(t). Equation 3 gives

c∗(t)a(t) = c∗(to)a(to), (36)

where a(to) is the radius of the universe when the velocity
of light is c∗(to) = c = 2.998 × 1010 cm/sec.

At the Big Bang (when a(t) = 0), the local coordinate
velocity c∗(t) was infinite before dropping to its current
value c at 9.05 × 109 years, before reaching a minimum at
full expansion, and then increasing back toward infinity
again at collapse.

The symmetry of the Friedmann cycloid is used to
equate the velocity and radius during the expansion pe-
riod to the current collapsing data forHo, qo, and to = tc
derived from Ho. Equations 8 then give ψo, a(to) and
α.

7. MATHEMATICS AND PHYSICS

The mathematics of general relativity isn’t a physi-
cal theory until mathematical concepts such as gµν and
xµ are linked by axioms to specific physical measure-
ments. Albert Einstein took this step, just as he did for
special relativity, by asserting that measurements made
with rigid meter sticks and balance clocks are equiva-
lent to the mathematical distances and times of general
relativity. Assuming a rigid meter stick is equivalent to
assuming that atoms never change. Even as he did this
Einstein had qualms about his choices.

From Einstein’s 1921 Nobel Lecture:

. . . it would be logically more correct to be-
gin with the whole of the laws and . . . to
put the unambiguous relation to the world
of experience last instead of already fulfill-
ing it in an imperfect form for an artificially
isolated part, namely the space-time metric.
We are not, however, sufficiently advanced in
our knowledge of Nature’s elementary laws to
adopt this more perfect method without go-
ing out of our depth. (Einstein 1967, p 483)

It is intriguing that it was Einstein who discovered vac-
uum permittivity depends on gravity. In 1907, there was
no general relativity, no Bohr atom, and no clear un-
derstanding of photons. When these theories were later
in place, the connection provided by vacuum permittiv-
ity between spacetime curvature and atomic structure
was overlooked. Einstein (1949, p 685) knew that the
“tools for measurement do not lead an independent ex-
istence alongside of the objects implicated by the field-
equations.” What he did not realize was that the solu-
tion was already in his 1907 paper and that there was
no need of “going out of our depth” to create the more
complete general relativity he wanted, where the “tools
for measurement” depend on spacetime exactly as “other
objects implicated by the field-equations.”

Schrödinger (1939) published his seminal discovery
that every quantum wavelength expands and contracts
in proportion to the radius of a closed Friedmann uni-
verse. Schrödinger argued that if spacetime is curved
as general relativity requires, then its effects on quan-
tum processes must not be dismissed without careful in-
vestigation. Using the equations of relativistic quantum
mechanics, Schrödinger found that the plane-wave eigen-
functions characteristic of flat spacetimes are replaced in

the curved spacetime of the closed Friedmann universe
by wave functions with wavelengths that are directly pro-
portional to the Friedmann radius.

This means that every eigenfunction changes wave-
length as the radius of the universe changes. The quan-
tum systems they describe change as well. In an expand-
ing universe quantum systems expand. In a contracting
universe they contract. The assumption is often made
that small quantum systems are isolated and that their
properties remain constant as the Friedmann universe
evolves. This assumption is incompatible with relativis-
tic quantum mechanics and with the curved spacetime
of general relativity as Schrödinger proved (Sumner &
Sumner 2000).

These changes in quantum systems may equivalently
be viewed as a logical consequence of the fact that the
energy and momentum of “isolated systems” are not
conserved. Energy and momentum change when the
spacetime curvature of the universe changes. Schrödinger
(1956, p 58) wrote:

In an expanding space all momenta decrease
. . . for bodies acted on by no other forces than
gravitation . . . This simple law has an even
simpler interpretation in wave mechanics: all
wavelengths, being inversely proportional to
the momenta, simply expand with space. 4

In a contracting space, the opposite is true. All mo-
menta increase and all wavelengths, being inversely pro-
portional to the momenta, simply contract with space.

Schrödinger had a deep understanding of both wave
mechanics and general relativity. Like most physicists,
Schrödinger “knew” Hubble redshift meant that the uni-
verse is expanding, a hangover from the pre-relativistic
interpretations of redshifts originally made by Slipher
(1917) and Hubble (1929) who tentatively assumed that
all galactic redshifts are solely Doppler shifted photons.
It is interesting to speculate how long it would have taken
Schrödinger to correctly interpret Hubble redshift if he
had asked himself the question: “Would the changes in
atoms and photons that I found change my interpreta-
tion of Hubble redshift?”

Feynman (1967, p 55) was correct when he observed
that “Physics is not mathematics, and mathematics is
not physics . . . mathematicians prepare abstract reason-
ing that’s ready to be used if you will only have a set
of axioms about the real world . . . ” Assuming that me-
ter sticks are made of atoms that never change does not
belong in that set, nor does assuming that the speed of
light is a constant.

8. CONCLUSIONS

Vacuum permittivity, a measure of the strength of
electric fields and light velocity in a vacuum, changes
with the spacetime curvature of general relativity. This
changes atomic energy levels, photon wavelengths, and
the velocity of light. For Friedmann geometry a com-
parison of photons emitted long ago to those emitted
today predicts that Hubble redshifts result from a uni-
verse accelerating in collapse. This is confirmed by the
Pantheon redshift data where no modifications to gen-
eral relativity or to Friedmann’s 1922 assumptions are

4 Pauli (1958, p 220) made the same observation.
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necessary to explain Hubble redshift. Assuming changes
in both atomic emissions and photon wavelengths and
varying only Ho and qo gives Ho = -72.10± 0.75 km s−1

Mpc−1 and 1/2 < qo < 0.51. The average data error
is 0.1418. For these fit parameters the standard devia-
tion is 0.1515. The changes in atoms and photons derived
here agree with Schrödinger’s 1939 conclusion that quan-
tum wave functions expand and contract with the radius
of a closed Friedmann universe. The velocity of light
is inversely proportional to vacuum permittivity which
is proportional to the radius of the Friedmann universe.
Light velocity was infinite at the Big Bang, dropped to
its current value c at 9.05 × 109 years on its way to a
minimum at full expansion. c will be infinite again in
9.05 × 109 years. The estimated age of the universe is
tA = 1.54× 104 billion years.
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