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Abstract: We present a method of minimizing an objective function subject

to an inequality constraint. It enables us to minimize the sum of squares of

deviations in linear regression under inequality restrictions. We demonstrate

how to calculate the coefficients of cubic function under the restriction that it

is increasing, we also mention how to fit a convex quartic polynomial.

We use such results for interpolation as a method for calculation of starting

values for iterative methods of fitting some specific functions, such as four-

parameter logistic, positive bi-exponential, or Gomperz functions. Curvature-

driven interpolation enables such calculations for otherwise solutions to inter-

polation equations may not exist or may not be unique.

We also present examples to illustrate how it works and compare our ap-

proach with that of Zhang (2020).

1. Introduction

This paper deals mostly with S-functions, also known as sigmoid functions

due to their shape. They are typically nonlinear in parameters. If the data are

given, the calculation of optimal parameters typically ends up as an iterative

process to minimize the residual sum of squares.

To start iterations, we have to use some initial values. Initial values are

essential because, in the case of nonlinear regression, there may be more than

one local minimum or, on the other hand, we have to consider a warning that

1



the parameters that would minimize the sum of squares may not even exist,

Bukac (2001) or Nievergelt (2013).

Since there might be difficulties in using iterations when applying the least-

squares method, we advocate the use of all the available methods of obtaining

initial estimates. Some methods of calculating initial values do not work when

the number of data points is small or the variability is too big. We present an

interpolation approach that may work even for a small number of data points.

There are two ways to do this.

1) It is easy to fit a polynomial function to datapoints and, consequently,

interpolate this polynomial function by a nonlinear function.

2) Another way is to apply this approach to the inverse of the nonlinear

function. We swap the dependent and independent variables, calculate a poly-

nomial by the least-squares method, and use interpolation as a means to find

the parameters of the inverse of the nonlinear function in question.

In some cases, we can try each of the approaches and pick a better one accord-

ing to the residual sum of squares. Especially in a case like an exponential func-

tion, depending on how the parameters are set, the function y = a + b exp(cx)

may be increasing or decreasing, convex or concave.

We suggest that, once some function presents a good fit, we may use in-

terpolation to obtain parameters of another type of function. Obviously, the

easiest functions to use in regression are the polynomial functions because they

are linear in parameters.

In the following, we present a theorem that allows us to calculate the pa-

rameters of a cubic polynomial function so that this function is increasing.

2. Minimization with one minimum subject to one inequality

It is well known that, if the variance-covariance matrix is full rank, it is

positive definite, the minimum of the sum of squares is strict and unique. It is

the minimum of a strictly convex function. We use this as an assumption in the

following theorem 2.1, which is a bit more general.
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Theorem 2.1. Let b = (b1,b2, . . .bM)′. We assume f(b) is a function defined

on RM posessing a unique strict global minimum and no other local minima.

We assume g(b) is a continuous function on RM . The value of b that minimizes

f(b) subject to inequality g(b) ≥ 0 may

A) either be the value bg that yields the global minimum of f(b) and satisfies

g(bg) ≥ 0 or

B) if A is not true and if some br that minimizes f(b) restricted by the inequality

g(bg) ≥ 0 exists, then this br satisfies the equality g(br) = 0.

Proof.

Case A: If bg is the value at which f(b) takes on its global minimum and

g(bg) ≥ 0, we are done.

Case B: Let bg minimize f(b) under no restriction and let g(bg) < 0. Let d

denote the distance in RM with which the continuity of g is defined. We obtain

a contradiction by assuming there is a br with g(br) > 0 that minimizes f(b)

restricted by g(b) ≥ 0. Let ε = g(br)/2. Since g is continuous, there is a δ > 0

such that for all b satisfying d(b,br) < δ we get |g(b) − g(br)| < ε. It means

that f has a local minimum at br 6= bg contradicting our assumpption about

one minimum.

Sometimes we can show that some br minimizes f(b) subject to the con-

straint g(b) = 0. In this case, slightly different wording of theorem 2.1 may be

useful. The proof would be the same.

Theorem 2.1A. Let b = (b1,b2, . . .bM)′. We assume f(b) is a function defined

on RM posessing a unique strict global minimum and no other local minima.

We assume g(b) is a continuous function on RM . The value of b that minimizes

f(b) subject to inequality g(b) ≥ 0 may

A) either be the value bg that yields the global minimum of f(b) and satisfies

g(bg) ≥ 0 or

B) if A is not true and if some br that minimizes f(b) restricted by the equality

g(b) = 0 exists, then this br minimizes f(b) subject to the inequality g(br) ≥ 0.
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Note. Here we have used a counting argument in our proof assuming the

objective function f has precisely one local minimum. By the same token, if we

knew the objective function has no local minimum, we can use the same idea.

Some examples of applications are:

1) We may change a linear inequality restriction an equality restriction.

2) If we want a quadratic function to be a product of two affine functions, we

want the discriminant to be nonnegative, b2 − 4ac ≥ 0.

3) We may want a cubic function to be increasing. We may write this require-

ment in the form of an inequality.

4) We may want a quartic polynomial function to be convex. This case may be

resolved in a way similar to the case of a monotone cubic function.

5) The theorem may be generalized for metric spaces instead just for RM . Per-

haps such a generalization could be used in the calculus of variations.

An increasing cubic function, in particular, may be used to calculate the

initial parameters for the logistic function: Consider the inverse, calculate a

monotone cubic fit, use interpolation.

The question that should not be left open-ended is the one about the exis-

tence of the minimal solution as a condition for the application of theorem 2.1.

Here we show the answer is easy in the case of linear regression. We use the

notation that is usual in regression analysis. We assume that X is a T by n

matrix of rank n of independent variables and y is the T by 1 vector of response

variables. Let b be an n by 1 vector of regression coefficients. The sum of

squares to be minimized may be written as (b′X′ − y′)(Xb− y).

Definition. The set of regression coefficients for which (b′X′−y′)(Xb−y) ≤ K

is called a level set and is denoted by L(K) = {b : (b′X′ − y′)(Xb− y) ≤ K}.

A level set L(K) is closed because (b′X ′−y′)(Xb−y) is a continuous function

specifically of b and a level set is nothing but an inverse image of (−∞,K] which

is a closed set.
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A level set L(K) is bounded if it is a subset of another bounded set. In the

following theorem, we will find a bounded set containing a level set and it will

mean the level set is bounded.

Theorem 2.2. Given any constant K, the level set of those b for which the

sum of squares (b′X′ − y′)(Xb− y) is less than or equal to K is either empty

or bounded.

Proof.

It is well known that if the matrix X is of rank n, the unique least squares

solution to the minimization problem is given by bls = (X′X)−1Xy. Any n by

1 vector c 6= b may be written as c = bls + td, where d is a unit n by 1 vector

and t is a scalar. We write td = (c− bls)/||c− bls|| and take t = ||d||.

We get (c′X′−y′)(Xc−y) = (b′lsX
′+ td′X′−y′)(Xbls + tXd−y) = S +

t2d′X′Xd+2td′X′(Xbls−y) where S = (b′lsX
′−y′)(Xbls−y) is independent

of the choice of c.

Since d′X′Xd is continuous on the compact set given by ||d|| = 1, we may

define

A = min
||d||=1

d′X′Xd.

If d′X′Xd is minimal at d1, with ||d1|| = 1, then d′1X
′Xd1 > 0 because the

matrix X′X is positive definite. Consequently A > 0. If there is another, say d2,

for which d′X′Xd is minimal then obviously d′1X
′Xd1 = d′2X

′Xd2, therefore

A is well defined.

Since the sign of d′X′(Xbls − y) may vary depending on d, ||d|| = 1, we

investigate the absolute value of d′X′(Xbls − y) and define

B = max
||d||=1

|d′X′(Xbls − y)|.

It is clear that B ≥ 0 is finite because |d′X′(Xbls−y)| is a continuous function

of d defined on a compact set.

Now we can write S + t2d′X′Xd + 2td′X′(Xbls − y) ≥ t2A − 2tB + S for
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any d satisfying ||d|| = 1. Since A is positive, there exists a t0 such that for any

t > t0 we have K < t2A− 2tB + S ≤ S + t2d′X′Xd + 2td′X′(Xbls − y).

The closed ball centered at bls with a radius t0 is certainly bounded and

contains the level set L(K). Therefore, the level set L(K) is bounded.

Application: We minimize the sum of squares (b′X′−y′)(Xb−y) subject to

g(b) = 0 using theorem 2.1 conclusion B. We assume not only the continuity of

g but also the existence of some solution bt, perhaps just temporary, that is,

g(bt) = 0. Since g(b) is continuous, the inverse image of the single point {0} is

a closed set. Now we set K = (b′tX
′ − y′)(Xbt − y) and due to theorem 2.2

the level set L(K) = {b : (b′X′ − y′)(Xb − y) ≤ K} is closed and bounded.

The intersection of the two closed nonempty sets, L(K) ∩ {b : g(b) = 0}, is

bounded, closed and not empty. It follows the minimum of the sum of squares

subject to g(b) = 0 exists.

Note: There might be other theorems that characterize precisely what the

level sets of (b′X′ − y′)(Xb − y) look like. We have presented our theorem

only because we need to know that level sets are bounded and since (b′X′ −

y′)(Xb − y) is continuous as a function of b, the level sets are also closed,

therefore compact.

3. Minimization with no local minimum subject to one inequality

We will not use the following theorem 3.1 in our paper except for an example.

It is just an example of another application of the counting argument in the case

that there is no local minimum.

Theorem 3.1. Let b = (b1,b2, . . .bM)′. Let f(b) be a function defined on

RM posessing no local minimum. We assume g(b) is a continuous function on

RM . The value of b that minimizes f(b) subject to the inequality constraint

g(b) ≥ 0 is the value br that minimizes f(b) subject to the equality constraint

g(b) = 0 if such br exists.
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Proof.

To obtain a contradiction we may assume that f(b) takes on its minimum value

subject to g(b) > 0 at br with g(br) > 0.

Let ε = g(br)/2. Since g is continuous, there exists a δ > 0 such that for all

b satisfying d(b,br) < δ we have |g(b)− g(br)| < ε. It means that f has a local

minimum at br, which contradicts our assumpption about no local minimum.

Example. Minimize S(x1, . . . , xN ) =
∑N
i=1 1/x2i on a closed unit ball, that

is, subject to
∑N
i=1 x

2
i ≤ 1. We modify the function S to make it bounded

and continuous thus defined on the whole closed ball while not having a local

minimum. We pick a small value of M for which
∑N
i=1M

2 = NM2 < 1.

We construct a function f̂ such that f̂(x) = M + 1/M2 − |x| for |x| ≤ M but

f̂(x) = 1/x2 otherwise. We may plot the graph of the function f̂(x) and see why

we use the hat notation. Thus 1/x2 may be replaced by f̂(x) and we minimize

Ŝ(x1, x2, . . . , xN ) =
∑N
i=1 f̂(xi) which would give us the same minimum at the

same point but Ŝ is defined and continuous even if xi = 0 for some i.

Now that we can apply theorem 3.1 and minimize Ŝ subject to the equality

constraint
∑N
i=1 x

2
i = 1, we use the substitution x21 = 1−

∑N
i=2 x

2
i and minimize

the function

f = (1−
N∑
i=2

x2i )
−1 +

N∑
i=2

x−2i

by setting the numerators of partial derivatives equal to zero, δf/δxj = 0,

for j = 2, . . . , N to get equations xj − (1 −
∑N
i=2 x

2
i )

2x−3j = 0. We substitute

x21 = (1 −
∑2
i=2)2 and obtain x21 = x2j for j = 2, . . . , N. We conclude that the

desired stationary points are |xi| = 1/
√
N.

Harmonic mean. We use an example of N capacitors in series with unknown

capacities Li > 0. Under the condition that
∑N
i=1 Li ≤ 1, what values of Li

minimize
∑N
i=1 1/Li so the resulting total capacity LT =

(∑N
i=1 1/Li

)−1
is

maximal? We use the substitution xi =
√
Li and apply the above example to

obtain Li = 1/N for i = 1, 2, . . . , N. An analogous formula could be used for

resistors connected in parallel and, generally, in the case of harmonic mean.
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Counterexample. Minimize S(x1, . . . , xN ) =
∑N
i=1 1/x2i outside an open unit

ball, that is, subject to 1 ≤
∑N
i=1 x

2
i or

∑N
i=1 x

2
i − 1 ≥ 0. No local minimum

exists at x1, x2, . . . , xN for which
∑N
i=1 x

2
i − 1 ≥ 0 because we might consider

2x1, 2x2, . . . , 2xN and obtain a smaller value
∑N
i=1 1/(2xi)

2.

4. Fitting a monotone cubic function

A cubic function has the form f(x) = ax3 + bx2 + cx+ d, the first derivative

is f ′(x) = 3ax2 + 2bx+ c, the second one is f ′′(x) = 6ax+ 2b.

To derive a condition under which the cubic function is increasing assuming

a > 0, we solve for x in f ′′(x) = 6ax+ 2b = 0 and obtain the point of inflexion

xinfl = −b/(3a). The derivative at the point of inflexion is obtained by substi-

tuting −b/(3a). We get f ′(xinfl) = −b2/(3a) + c, which should be nonnegative,

3ac− b2 ≥ 0.

We use theorem 2.1 and minimize
∑T
i=1(ax3i + bx2i + cxi + d− yi)2 under no

restrictions and denote the minimal solution as als, bls, cls, dls. If 3alscls−b2ls ≥ 0,

we are done.

If 3alscls−b2ls < 0, we could pick any a, b, d, but why not als, bls, dls, assuming

als > 0. We substitute c = b2ls/(3als).

Now we imagine that K =
∑T
i=1(alsx

3
i + blsx

2
i + b2lsa

−1
ls xi/3 +dls−yi)2. Due

to theorem 2.2 we know the level set L(K) of the sum of squares
∑T
i=1(ax3i +

bx2i + cxi + d − yi)
2 is nonempty and compact. From the definition of K it

follows that the intersection of the level set L(K) and the preimage of the closed

halfline [0,∞) under a continuous mapping 3ac − b2 is not empty, it is closed

and bounded, thus compact, and that all means the optimal solution exists. We

can now use theorem 1 to help us find it.

We will substitute for c = b2/(3a) when we minimize the residual sum∑T
i=1(ax3i + bx2i + cxi + d − yi)

2 subject to b2 = 3ac which will enable us

to minimize a function of only three variables S(a, b, d) =
∑T
i=1(ax3i + bx2i +

b2a−1xi/3 + d− yi)2 with no restriction.

When we use the following notation
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Mx1 =

T∑
i=1

xi, Mx2 =

T∑
i=1

x2i , . . . ,Mx6 =

T∑
i=1

x6i , My1 =

T∑
i=1

yi,

My2 =

T∑
i=1

y2i , C1 =

T∑
i=1

xiyi, C2 =

T∑
i=1

x2i yi, C3 =

T∑
i=1

x3i yi,

the residual sum of squares is

S =

T∑
i=1

(ax3i + bx2i + cxi + d− yi)2 =

a2Mx6 + b2Mx4 + c2Mx2 + Td2 +My2 + 2abMx5 + 2acMx4 + 2adMx3

−2aC3 + 2bcMx3 + 2bdMx2 − 2bC2 + 2cdMx1 − 2cC1 − 2dMy1.

It may be calculated without any further retrieval of the data points once the

moments and covariances have been calculated. The formulas for partial deriva-

tives may be simplified in such a way that the original data points are not

required either.

We may use the Gauss-Newton method or the gradient method. Unfortu-

nately, we found out that, when we use these methods, overshooting happens

slowing down the iterative process.

4. Application to logistic functions

An ordered four-tuple of equidistant points may be written as xi = F + Si,

where i = 0, 1, 2, 3, F = x0 is the value of the first of them, S > 0 is the length

of each step. Thus S = x1 − x0 = x2 − x1 = x3 − x2.

Let y0, y1, y2, y3 be four values corresponding to x0, x1, x2, x3. We are look-

ing for parameters A0, B0, C0, and D0 of the logistic function for which the

equations

D0 +
C0

1 +B0 exp(A0xi)
= yi for i = 0, 1, 2, 3

are satisfied.
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We prefer a different notation

D0 +
C0

1 +B0 exp(A0F ) exp(A0Si)
= D +

C

1 +BRi
= yi

where B = B0 exp(A0F ) and R = exp(A0S).

Theorem 4.1. (Quadratic equation) Let B,C,D,R be given, R > 0. The

system of equations

D +
C

1 +BRi
= yi for i = 0, 1, 2, 3

for some y0, y1, y2, y3 has a solution with a positive R if and only if there is a

positive solution of the quadratic equation

(y3−y2)(y1−y0)R2+((y2−y1)(y0−y3)+(y3−y2)(y1−y0))R+(y3−y2)(y1−y0) = 0

Proof. We multiply each equation by the denominator 1 +BRi to obtain

D +DBRi + C = yi +ByiR
i for i = 0, 1, 2, 3.

We subtract the equation number zero, D + DB + C = y0 + By0, from the

remaining equations to obtain

DB(Ri − 1) = yi − y0 +B(yiR
i − y0) for i = 1, 2, 3.

We let i = 1 and obtain

DB =
y1 − y0 +By1R−By0

R− 1
or DB(R− 1) = y1 − y0 +By1R−By0

If we let i=2, the LHS of the equation is DB(R2−1) = DB(R−1)(R+1) we

use the equation for i = 1 and obtain DB(R2−1) = (R+1)(y1−y0+By1R−By0)
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so the equation for i = 2 yields

(y1 − y0 +By1R−By0)(R+ 1) = y2 − y0 +B(y2R
2 − y0)

and we express B as

B =
−(y1 − y0)R+ y2 − y1

(y1 − y2)R2 + (y1 − y0)R
.

In the equation for i = 3 we substitute for DB using equation for i = 1 to

obtain

y1 − y0 +By1R−By0
R− 1

(R3 − 1) = (y3 − y0 +B(y3R
3 − y0))

which enables us to write

B =
(y3 − y0)(R− 1)− (y1 − y0)(R3 − 1)

(y1R− y0)(R3 − 1)− (y3R3 − y0)(R− 1)

When we use substitution for B we obtained from the equation for i = 2,

we obtain the following equation

−(y1 − y0)R+ y2 − y1
(y1 − y2)R2 + (y1 − y0)R

(
(y1R− y0)(R3 − 1)− (y3R

3 − y0)(R− 1)
)

=

(y3 − y0)(R− 1)− (y1 − y0)(R3 − 1).

Writing this equation as a quintic algebraic equation in R is a routine task but

finding roots of such an equation is not a routing programming job. That was

why we investigated the polynomial a bit more and found out that it is divisible

by R(R− 1)2. Once we know it, the equation we are interested in is quadratic.

Note 1: If a quadratic equation has a solution R, we may calculate

B =
−(y1 − y0)R+ y2 − y1

(y1 − y2)R2 + (y1 − y0)R
,
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D =
y1 − y0 +B(y1R− y0)

B(R− 1)
,

C = (y0 −D)(1 +B)

To be able to use the formula for B, we have to guarantee that the denom-

inator is not zero. We assume it is equal to zero, (y1 − y2)R + (y1 − y0) = 0,

to obtain R = (y1 − y0)/(y2 − y1). This expression is plugged in the quadratic

equation in theorem 4.1. We, of course, want to get rid of division and multiply

the expression by (y2 − y1)2. Finally, after factorization, we obtain a test of

feasibility

(y1 − y0)(y2 − y0)(y0y2 − y0y3 − y21 + y1y2 + y1y3 − y22) = 0.

If this equality is true, there is no logistic function satisfiying the interpolation

problem.

For the formua for D to be meaningful the numerator in the formula for B

has to be nonzero, thus −(y1 − y0)R + y2 − y1 = 0 is not allowed. R may be

written as R = (y2− y1)/(y1− y0). Now we plug it in the quadratic equation in

theorem 4.1, multiply the equation by (y1 − y0) to avoid division and, finally,

after factorization we obtain

(y2 − y0)(y0y2 − y0y3 − y21 + y1y2 + y1y3 − y22) = 0.

It is good to notice the coincidence that the left hand side of this equality is

contained in the expression for the test of feasibility of the denominator in the

formula for B.

When we put together the quadratic equation in theorem 4.1 and the notes

following it, we are lead to the following conclusion.

Theorem 4.2. (Logistic Interpolation) Let y0, y1, y2, y3 be given and let

the following hold:

1) y0 < y1 < y2 < y3,
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2) y0y2 − y0y3 − y21 + y1y2 + y1y3 − y22 6= 0,

3) The discriminant of the quadratic equation

(y3−y2)(y1−y0)R2+((y2−y1)(y0−y3)+(y3−y2)(y1−y0))R+(y3−y2)(y1−y0) = 0

is positive.

Then there is a logistic function D + C/(1 +BRx) such that

D +
C

1 +BRi
= yi for i = 0, 1, 2, 3.

Note The above theorem 4.1 is oneway by which we mean that the quadratic

equation has to be satisfied for any logistic function. It is not true, that for

any y0, . . . , y3 we get a logistic function. If, for example, y0 = y1 or y2 = y3,

the leading coefficient is zero and so is the constant term and it follows that

the solution of such an equation is R = 0 which is useless. We also check the

expression for D in note 1 to see that B = 0 does not make sense either. One

reason is the division by 0, the other reason is that D +C/(1 + 0×Ri) cannot

be a logistic function. One has to check for such special cases because it would

be so easy to get a nonsense value as the output.

Counterexample: Let y0 = 0, y1 = 4, y2 = 6, and y3 = 7. The quadratic

equation for R, theorem 4.1, is 4R2 − 10R + 4 = 0, its discriminant is 36, thus

R1 = (10−6)/8 = 0.5. The numerator of the expression for B is −(y1−y0)R1 +

y2 − y1 = −4 × 0.5 + 2 = 0. It means that y0, . . . , y3 do not come from any

four-parametric logistic function.

When writing and debugging a program, we should be very carefull when

using exponential functions because it is so easy to get an overflow but it is

much more dangerous to get an unreported underflow. That is why writing the

logistic function as

d+
c

1 + b exp(mx)
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is more convenient.

Theorem 4.3. (Uniqueness of logistic function) If a logistic function of x is

given, f(x) = D1 +C1/(1 +B1R
x
1), with 0 < R1 6= 1, then there is presicely one

more distintinct set of paramaters C2 = −C1, D2 = D1 + C1, B2 = 1/B1, and

R2 = 1/R1 such that the two logistic functions are identical as functions,

D1 +
C1

1 +B1Rx1
= D2 +

C2

1 +B2Rx2
for all x.

Proof. (Existence) We set R2 = 1/R1 and write the two expressions as

(D1 + C1) +D1B1

1 +B1Rx1
=

(D2 + C2) +D2B2/R
x
1

1 +B2/Rx1
=

(D2 + C2)Rx1 +D2B2

Rx1 +B2
,

thus
(D1 + C1) +D1B1

1 +B1Rx1
=

(D2 + C2)Rx1/B2 +D2

1 +Rx1/B2
.

We can see that if we further set C2 = −C1, D2 = D1 + C1, B2 = 1/B1, the

desired equality holds true.

(Uniqueness) Let a logistic function be given with parameters D1, C1, B1, R1

be given and pick any four equidistant points x0, x1, x2, x3. Our interpolation

theorem guarantees that there are precisely two parameters R1 and R2 that

allow interpolation at these equidistant points. There is no third option, which

finishes the proof.

Interpretation of parameters is the criterion we apply in deciding which of the

two ways of presenting the logistic function to use. If we choose 0 < R < 1, and

some D,C > 0, B > 0 to define F (x) = D + C/(1 + BRx), then limF (x) = D

for x → −∞, limF (x) = D + C for x → ∞, F (x) taking on values between D

and D + C. This choice is clearly the better one.

The motivation of the following is to determine the sign of the discriminant

in the case that the sequence y0, y1, y2, y3 is increasing and concave. There are

α and β such that y1 = α+ 1β and y2 = α+ 2β. We can write y0 = α+ 0β − y
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for some y and y3 = α+ 3β− x for some x. Now it is obvious that the sequence

of yi, for i = 0, . . . , 3 is convex if and only if both 0 ≤ x and 0 ≤ y.

Since yi appears only in the form of differences yi − yj , the parameter α is

always cancelled. We can write the discriminant as

((2β−β)(−βy−β(3−x))+(β(3−x)−2β)(β+βy))2−4(β(3−x)−2β)2(β+βy)2 =

= β4(2− x)(y + 2)(3xy + 2x− 2y)

It is easy to check that under the condition the sequence yi, i = 0, . . . , 3, is

increasing and x > 0, y > 0, the factors (2 − x) and (y + 2) are positive. Thus

the sign of the discriminant depends only on the single term (3xy+ 2x− 2y). It

is also useful to substitute y0 = α− y, y1 = αβ , y2 = α+ 2β, and α+ 3β − x in

the expression y0y2 − y0y3 − y21 − y22 + y1y2 + y1y3 obtaining βy − βx− xy = 0

as a condition for feasibility of the formula for B.

We also mention a special case of y = 0. Then the discriminant is β44x(2−x).

It follows that for a positive x the discriminant is positive. The feasibility of

the formula for B is checked for y = 0 as −βx = 0 which does not happen if

β > 0 and x > 0.

It is now much easier to see that in the practical situations, such as the

use of the inverse of the increasing cubic function the nterpolation with the

logistic function will sometimes work but sometimes it won’t. If we have a set of

datapoints, we flip them and calculate the increasing cubic function minimizing

the sum of squares. We then take the inverse and try the interpolation by

the logistic function using four equidistant points somehow derived from the

datapoints. It would look like using the minimum and maximum and two more

points in the middle while all the points being equidistant. We call this approach

a data-driven interpolation. It may work or or it may not work because the

discriminant of the quadratic equation in theorem 4.1 may not be positive or

the feasibility of the formula for B may not be satisfied.

If the data-driven interpolation does not work, we use another approach we
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call a curvature-driven interpolation. This approach is related to the increasing

cubic function without any reference to the datapoints it was calculated from.

Our first try will be the point of inflection. When the coefficients of a cubic

polynomial ax3 + bx2 + cx + d are given, we take the second derivative, set it

equal to zero and obtain xinfl = −b/(3a).

The other point independent of the datapoints directly seems difficult to find

but we will see it is not. We checked the behavior of the second derivative of the

inverse of the cubic function but the trouble appeared because the denominator

could be zero. We concluded that the best choice could be the use of the notion

of the radius of curvature

Rc =
(1 + f ′2)3/2

|f ′′|
but we use

1

R2
c

=
f ′′2

(1 + f ′2)3
,

the denominator of which is always positive, thus the expression is defined cor-

rectly. The numerator is zero at the point of inflexion. If we find the point xRc

of a local maximum of 1/R2
c , this xRc is also the point of local minimum of R2

c .

Such a point will be another point obtained from the shape of the cubic

function not dependent on the datapoints directly. If we define an increasing

f(x) = ax3 + bx2 + cx + d, we are interested more in its inverse f−1. In this

case the difference S = |f−1(xRc) − f−1(xinflex)| will be used as the length

S. As a result, the points at which we interpolate the logistic function may

be determined as x0 = f−1(xinflex) − S, x1 = f−1(xinflex), x2 = f−1(xRc),

x3 = f−1(xRc) + S.

If the interpolation does not work even in this setup, we may try to replace y0

in such a way that y0, y1, y2 are on a line going through y1, y2 which guarantees

the existence of logistic interpolation.

We derive the formula for the minimal point of curvature.

1

R2
c

=
f ′′2

(1 + f ′2)3
=

(6ax+ 2b)2

(1 + (3ax2 + 2bx+ c)2)3
=

4(3ax+ b)2

(1 + (3ax2 + 2bx+ c)2)3

by using the substitution 3ax + b = y or x = (y − b)/(3a) making a seemingly
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hard problem easy

1

4R2
c

=
y2

(1 + (3a (y−b)2
(3a)2 + 2by−b3a + c)2)3

=
y2

(1 + 1
9a2 (y2 + 3ac− b2)2)3

.

The second substitution is y2 = z. To simplify the formula we introduce Q =

3ac− b2 so the function to minimize for z ≥ 0 is

z

(1 + 1
9a2 (z + 3ac− b2)2)3

=
z

(1 + 1
9a2 (z +Q)2)3

.

We calculate the derivative with respect to z and set its numerator equal to zero

to obtain the equation for z

5z2 + 4Qz − (9a2 +Q2) = 0.

The discriminant is 36(Q2 + 5a2) > 0 which means there are two solutions. It

is easy to show that one of the solutions is always negative and the another

one is always positive. It makes sense to consider only the positive solution

z = (3
√

(Q2 + 5a2) − 2Q)/5, calculate two solutions of y2 = z, and finally

calculate x.

5. Fitting positive bi-exponential through convex quartic function

Positive bi-exponential interpolation problem can be solved if and only if

the four values defined at four equidistant points are strictly logarithmically

convex as was pointed out in Bukac (2013). If some data points are given, we

take the logarithm of the dependent variables values and proceed by fitting a

strictly convex quartic polynomial function f(x). The bi-exponential function

may be obtained by the way of interpolation at four equidistant points and values

yi = exp(f(xi)) because they are obviously strictly logarithmically convex for

any four equidistant points xi.

A quartic function has the form f(x) = ax4 + bx3 + cx2 + dx + e, the first

derivative is f ′(x) = 4ax3 + 3bx2 + cx + d, and the second one is f ′′(x) =
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12ax2 + 6bx+ c.

A quadratic function f ′′(x) = 12ax2+6bx+c should be nonnegative if f(x) is

to be convex. Let us write g(x) = f ′′(x) = 12ax2+6bx+c and g′(x) = 24ax+6b.

The function g(x) takes on its extreme value if 24ax + 6b = 0 which is at the

point x0 = −6b/24a = −b/4a. At this point we have to have g(x0) ≥ 0 to make

f(x) convex, that is, 12ax20 + 6bx0 + c ≥ 0 and when we substitute for x0, we

get 12a(−b/4a)2 + 6b(−b/4a) + c ≥ 0 as a condition for f(x) to be convex. We

simplify this condition as 4ac − 3b2 ≥ 0. Since this condition implies that the

point x0 = −b/(4a) at which f ′′(x) is zero is unique and f ′′(x) > 0 for x 6= x0,

the function f(x) is strictly convex even if 4ac− 3b2 = 0.

First we minimize
∑T
i=1(ax4i +bx3i +cx2i +dxi+e−yi)2 with no restrictions.

We denote the optimal solution as als, bls, cls, dls, els. If 4ac − 3b2 ≥ 0, we are

done.

If 4alscls − 3b2ls < 0, we could pick any a, b, d, e but why not als, bls, dls, els

assuming als > 0. We substitute cls = 3b2ls/(4als).

Now we take K =
∑T
i=1(alsx

4
i + blsx

3
i + 3b2ls/(4als)x

2
i + dlsxi + els − yi)2.

Theorem 2.2 says the level set L(K) of the sum of squares
∑T
i=1(ax4i + bx3i +

cx2i + dxi + e− yi)2 is compact. The intersection of the level set L(K) and the

preimage of the closed halfline [0,∞) under a mapping 4ac− 3b2 is not empty.

It is closed and bounded and it follows it is compact and the optimal solution

exists. We may now use teorem 2.1 and proceed in the same way as above in

the case of the increasing cubic function.

The interpolation by a positive bi-exponential function a exp(bx)+c exp(dx),

a > 0, c > 0 is studied in Bukac (2013). It exists if and only if the four values

at equidistant points are logarithmically convex. It means that the condition

4ac− 3b2 > 0 is of course sufficient but if 4ac− 3b2 = 0, we rely on the fact that

if the second derivative is positive except for one point at which it is zero, the

function is strictly convex.

6. Application to Gomperz function
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An ordered four-tuple of equidistant points may be written as xi = F + Si,

where i = 0, 1, 2, 3, F = x0 is the value of the first of them, S is the length of

each step, S = x1 − x0 = x2 − x1 = x3 − x2,

Let y0, y1, y2, y3 be four values corresponding to x0, x1, x2, x3. We are looking

for parameters D, C, A, and B of the Gomperz function.

Theorem 6.1. (Gomperz Interpolation) If y0, y1, y2, y3 are given, parameters

D,C,A, and B for which D + CAB
i

= yi for i = 0, 1, 2, 3 hold true, then

(
ln (y2−D)

(y0−D)

ln (y1−D)
(y0−D)

)2

−
ln (y2−D)

(y0−D)

ln (y1−D)
(y0−D)

−
ln (y3−D)

(y0−D)

ln (y1−D)
(y0−D)

+ 1 = 0

Proof. We write down the equations as

CA = y0 −D, CAB = y1 −D, CAB
2

= y2 −D, CAB
3

= y3 −D

and take the logarithms

lnC + ln(A) = ln(y0 −D), lnC +B ln(A) = ln(y1 −D),

lnC +B2 ln(A) = ln(y2 −D), lnC +B3 ln(A) = ln(y3 −D).

We calculate the differences to get rid of C,

B ln(A)− ln(A) = ln(y1 −D)− ln(y0 −D) = ln
(y1 −D)

(y0 −D)

B2 ln(A)− ln(A) = ln(y2 −D)− ln(y0 −D) = ln
(y2 −D)

(y0 −D)

B3 ln(A)− ln(A) = ln(y3 −D)− ln(y0 −D) = ln
(y3 −D)

(y0 −D)

Now we calculate the ratios to eliminate A,

B2 ln(A)− ln(A)

B ln(A)− ln(A)
=

ln (y2−D)
(y0−D)

ln (y1−D)
(y0−D)

and
B3 ln(A)− ln(A)

B ln(A)− ln(A)
=

ln (y3−D)
(y0−D)

ln (y1−D)
(y0−D)

which may be rewritten as

B =
ln (y2−D)

(y0−D)

ln (y1−D)
(y0−D)

− 1 and B2 +B + 1 =
ln (y3−D)

(y0−D)

ln (y1−D)
(y0−D)
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Substitution leads us to

(
ln (y2−D)

(y0−D)

ln (y1−D)
(y0−D)

− 1

)2

+
ln (y2−D)

(y0−D)

ln (y1−D)
(y0−D)

=
ln (y3−D)

(y0−D)

ln (y1−D)
(y0−D)

.

Such a theorem shows that the solution of interpolation equations may be

obtained if we can find a point at which a function of one variable is zero but it

does not give us any answer as to when the solution exists or not or how many

solutions there are. There are examples in which the equation has two solutions

but we don’t care about such cases leaving such questions open.

We write the equation as

(
ln y2−y0+y0−D

y0−D

ln y1−y0+y0−D
y0−D

)2

−
ln y2−y0+y0−D

y0−D

ln y1−y0+y0−D
y0−D

−
ln y3−y0+y0−D

y0−D

ln y1−y0+y0−D
y0−D

+ 1 = 0

to make it convenient for a substitution z0 = 0, z1 = y1 − y0, z2 = y2 − y0,

z3 = y3 − y0, x = y0 −D leading to an equivalent equation

(
ln z2+x

x

ln z1+x
x

)2

−
ln z2+x

x

ln z1+x
x

−
ln z3+x

x

ln z1+x
x

+ 1 = 0.

Finding roots of such an equation seems to be beyond our ability and, as a

consequence, we try to study a case in which the values of zi are increasing and

convex and the first three values, z0, z1, z2 are on a line, z3 is below that line.

It is the same as setting z0 = 0, z1 = b, z2 = 2b, z3 = 3b − q and solve for x.

Our assumption is that b > 0 and z3 = 3b− q > 2b = z2.

We can imagine an s-function, such as a four-parametric logistic function, for

which z1 corresponds to its value at an inflection point, z2 > z1 may correspond

to the point at which the third derivative of the logistic function is zero. The

point of maximal curvature would be difficult to calculate. z0 is equal to z1 −

(z2 − z1), and z3 is the value that makes the sequence increasing and convex.

The assumption about z0 = z1− (z2−z1) may be satisfied by simply defining z0

that way. It obviously means some kind of symmetry that may also be achieved

when using the four-parametric logistic function.
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We can now write the equation as

(
ln 2b+x

x

ln b+x
x

)2

−
ln 2b+x

x

ln b+x
x

−
ln 3b−q+x

x

ln b+x
x

+ 1 = 0,

(
ln 2+x/b

x/b

ln 1+x/b
x/b

)2

−
ln 2+x/b

x/b

ln 1+x/b
x/b

−
ln 3−q/b+x/b

x/b

ln 1+x/b
x/b

+ 1 = 0.

We substitute R = x/b and Q = q/b to obtain a formula for Q.

(
ln 2+R

R

ln 1+R
R

)2

−
ln 2+R

R

ln 1+R
R

−
ln 3−Q+R

R

ln 1+R
R

+ 1 = 0,

Q = 3 +R−R exp(
(ln 2+R

R )2

ln 1+R
R

− ln
2 +R

R
+ ln

1 +R

R
),

Q = 3 +R− 1 +R

2 +R
R exp

(
ln2(1 + 2/R)

ln(1 + 1/R)

)
.

It is not our assignment to calculate Q as a function Q(R) of R, because we

want to calculate the inverse of Q(R), that is, some Q0 ∈ (0, 1) is given and we

want to determine which R0, if any, satisfies the equation above.

To show that for any Q ∈ (0, 1) an R ∈ (0,∞) exists satisfying the above

equations we calculate two limits. One for R→ 0+ and one for R→∞.

Theorem 6.2.

lim
R→0+

Q(R) = lim
R→0+

3 +R− 1 +R

2 +R
R exp

(
ln2(1 + 2/R)

ln(1 + 1/R)

)
= 1.

Proof. Substitution S = 1/R and the continuity of exponential function imply

lim
S→∞

exp

(
(ln(1 + 2S))2

ln(1 + S)
− ln(S)

)

exp

(
lim
S→∞

(
(ln(1 + 2S))2 − ln(S) ln(1 + S)

ln(1 + S)

)
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To show that the limit of the expression in the big parentheses is finite as S

goes to ∞ we use the formula ab− cd = a(b− d) + d(a− c)

(ln(1 + 2S))2 − ln(S) ln(1 + S)

ln(1 + S)
=

ln(1 + 2S)(ln(1 + 2S)− ln(1 + S)) + ln(1 + S)(ln(1 + 2S)− ln(S))

ln(1 + S)
=

ln(1 + 2S)

ln(1 + S)
ln

1 + 2S

1 + S
+

ln(1 + S)

ln(1 + S)
ln

1 + 2S

S
→ ln 4

Thus

lim
R→0+

Q(R) = 3 + lim
R→0+

(
R− 1 +R

2 +R
exp(ln 4)

)
= 3− 1

2
× 4 = 1.

This result coincides with the fact that the values of Q have to be less than

zero. The next step is to show that the limit of Q(R) is zero as R→∞.

Theorem 6.3.

lim
R→∞

Q(R) = lim
R→∞

(
3 +R− 1 +R

2 +R
R exp

(
ln2(1 + 2/R)

ln(1 + 1/R)

))
= 0.

Proof. The calculation of this limit is more tedious. First we apply the sub-

stitution S = 1/R to be able to use a power series representation of the functions

involved.

lim
R→∞

(
3 +R− 1 +R

2 +R
R exp

(
ln2(1 + 2/R)

ln(1 + 1/R)

))
=

lim
S→0+

(
3 +

1

S
− 1 + S

S(2S + 1)
exp

(
ln2(1 + 2S)

ln(1 + S)

))
=

We calculate the Taylor series

1 + S

(2S + 1)
exp

(
ln2(1 + 2S)

ln(1 + S)

)
= 1 + 3S − S3 + (5S4)/2 + . . . ,
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divide it by S and subtract from 3 + 1/S to obtain

S2 − 5S3/2 + 55S4/12 + . . .

The calculations would be tedious if it were not for symbolic computations.

We would have to use the power series representation of ln(1 + S) and several

theorems about products of series, e.g. the Cauchy product definition and his

theorem on the product convergence, the theorem on composition of power series

which includes the division of series.

Theorem 6.2 together with theorem 6.3 together not only imply that for any

Q0 ∈ (0, 1) there exists a solution of the equation Q(R) = 0, they can be used

to calculate it. Theorem 6.2 says that for R0 = 0 Q(R0) > Q0. Now, due to

theorem 6.3, we can find an R1 for which Q0 > Q(R1) numerically. This can

be done by taking just the first term in the series representation in Theorem

6.3 and a reasonable upper bound is obtained as SL =
√
Q0 or Ru = 1/

√
Q0.

We may continue by using the method of bisection starting with the interval

(0, Ru).

7. Two examples

One example is from Kennedy (2020), figure 2, where the horizontal axis

indicates the time, vertical axis indiates the number of infected. The time starts

at zero and increases by one, the number of infected is 4 times 1, 7 times 2, 4, 5,

6, 6, 7, 7, 8, 8, 8, 9, 10, 10, 10, 11, 12, 13, 14, 14, 15, 16, 17, 15 times 18, 19 times 19,

and 13 times 20. In the very beginning we consider the inverse and fit the cubic

function. The parameters are a = 0.0468, b = −1.293, c = 11.223, d = −9.815,

yelding the sum of squares of deviation SS = 2072. When we minimize the

cubic function under the restriction c = b2/(3a), the starting parameters are

a = 0.0468, b = −1.293, c = 11.918, d = −9.815 yielding SS = 11413. After

several iterations we obtain a = 0.0377, b = −1.0185, c = 9.169, d = −7.6195,

SS = 2208. This is an increasing cubic function and we can define its inverse. We

use the inflection point and a point at which the curvature is maximal to define
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the four equidistant nodes needed for interpolation. x0 = 10.522, x1 = 19.895,

x2 = 29.267, and x3 = 38.639. We now calculate the inverse of the increasing

cubic funtion to give us the values at those nodes y0 = 2.715, y1 = 9.002,

y2 = 15.289, and y3 = 16.924. The discriminant of the quadratic equation in

theorem 4.1 is D = 5827, therefore the interpolation problem has a solution

D = 0.7990, C = 16.4065, B = 73.3015, and A = −0.21587, SS = 231.8.

for parameters of the interpolating logistic function D + C/(1 + B exp(Ax)).

After several iterations we obtain the minimal sum of square SS = 28.8 for

D = 0.1271, C = 19.3340, B = 27.2096, and A = −0.14542.

We proceed to calculate the parameters of the Gomperz function by way

of interpolation. We take the inflection point x1 = 22.7176, add the points at

which the third derivative is zero, that is, x0 = 13.6613 and x2 = 31.7738. We

also get x3 = x2 + (x2 − x1) = 40.8301. The values of the minimizing logistic

function at these points are respectively y0 = 4.213, y1 = 9.794, y2 = 15.375,

and y3 = 18.166. The requirements for the equation in theorems 6.1, 6.2, 6.3

are satisfied and its solution yields D = 3.101, C = 16.724, B = 0.887, and

A = 8.87e − 7, with SS = 63.2. After several iterations we get parameters

D = 1.8711, C = 17.6756 B = 0.8871, and A = 2.67e − 6 of the function

D + CA(Bx), SS = 42.4.

This second example is about heart rate depending on exercize. The time as

an independent variable starts from one, increases by one and ends at fifteen.

The corresponding heart rates are 70, 70, 70, 71, 85, 105, 115, 120, 125, 127, 130,

133, 135, 137, 136. We formally swap the dependent and independent variables

and use the least squares method to calculate the best fitting cubic function.

The resulting cubic function is increasing and its inverse is well defined. The

inflection point is x1 = 5.766, but the point of maximal curavature is at −156.24.

This is way lower than the minimum xmin = 1 of all the values of independent

variable. Practicioners know that polynomials are very flexible when we use

them for approximations but at the price of being no good for extrapolation.

That is why we prefer to use a value within the interval (xmin, xmax). This way
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we set the distance between the interpolation nodes to be d = 3(x1 − xmin)/4,

thus x0 = x1−d, x2 = x1+d, and x3 = x1+2d. In our case those are x0 = 2.1914,

x1 = 5.7657, x2 = 9.3400, and x3 = 12.9143. The corresponding values of

the inverse cubic function are y0 = 69.350, y1 = 97.451, y2 = 125.552, and

y3 = 134.152. We are now ready to calculate the parameters of the interpolating

logistic function D = 58.901, C = 77.101, B = 19.866, and A = −0.5184,

giving SS = 239.4 But after several iterations we get D = 65.904, C = 68.101,

B = 90.772, and A = −0.7608 as parameters of D + C exp(exp(x ln(B)) ln(A))

giving SS = 158.4.

The reader may be encouraged to plot the graphs of all these functions to

see the data points and compare them with their approximations.

8. On a method of Zhang

We will discuss the application of the method of Zhang (2020) to finding

initial parameters of the logistic function. We will use theorem 4.1 and the

remarks that follow it. The basic idea suggests picking all the possible quadru-

ples of the independent variable, but theorem 4.1 provides us with a method to

facilitate solving the interpolation problem only for equally spaced nodes, not

for arbitrary nodes.

In the first example, we generated all 1008 quadruples. Each quadruple

was tested for feasibility, unfeasible quadruple was discarded. In the 260 cases

of feasibility, we calculated the required parameters. When this was done, we

calculated the means as D̄ = 0.2678, C̄ = 18.6812, B̄ = 92.006e + 9, Ā =

−0, 20679. One can easily see that B̄ would not be the right choice as an initial

parameter because we can say that now that we know what the approximate

values of such initial estimates should look like. The reason for what happened

is that in some cases the values of B were extremely high, which makes the

value of B̄ very high too. Even though the method of Zhang is appreciated, this

is generally a serious drawback.

We avoid this kind of trouble by using the median because it is less sensitive
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to outliers, D̃ = 0.7789, C̃ = 18.1423, B̃ = 47.086, Ã = −0.1655. Not only

do such initial values look reasonable, but these values give the sum of squares

equal to 40.0, less than SS = 231.8 which is what our initial values based on

the inverse of the increasing cubic yield.

In the second example, we generated 32 quadruples but only 17 of them were

feasible. We got the means D̄ = 104.48, C̄ = 27.078, B̄ = 695785, Ā = −1.07

giving us SS = 7399. It is obvius that such parameters are way off. The medians

are D̃ = 69.991, C̃ = 50.202, B̃ = 733.7, Ã = −0.9624 giving us SS = 2176.

Initial values obtained with the inverse of inreasing cubic give SS = 158.4 which

happens to be lower than the sum of squares with initial values obtained by the

Zhang method.

The method of Zhang is general in the sense that we can try to apply it

to any type of nonlinear regression. Unfortunately, our ability to solve the

equations defined by the interpolation problem is very limited. We have to be

able to decide if the solution exists or not and how many solutions we have. If

the unique solution does exist, it may be, in some cases, very far from the initial

value we are looking for and may affect the resulting mean.

We believe that our approach is more stable and visually pleasing because

we can easily see how the approximation by the inverse of the increasing cubic

function works in the case that something perhaps went wrong.

Our approach is based on moving from one S-function to another one or

moving from one convex function to another convex function. It is us who

chooses the nodes for interpolation in such a way that the equations we obtain

have precisely one solution. The use of this idea is limited in this sense.

9. Conclusion

An interpolation approach serves only the purpose of finding initial values

of parameters in nonlinear regression. Various approaches are sometimes used,

but other times no other method is available. The cost of extra calculations of

coefficients of polynomials is negligible with the exception of an iterative process
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when we want to use an increasing cubic function or convex quartic function but

the least squares method alone does not suffice. We have presented the four-

parameter logistic, positive bi-exponential, and Gomperz functions just because

we have shown how to handle such situations.

The days when textbooks offered guessing the initial values of parameters by

a fluke belong to the past. Especially when measurements are fully automated

and guessing the parameters would be prohibitive.

There are, of course, methods of random search that are able to deliver

optimal solutions, but they have to start somewhere anyway.

We have presented only several types of functions. Of course, there could be

many more types of functions for which a polynomial regression and interpola-

tion could be used to estimate initial values of parameters but we do not discuss

those because they do not require the use of our minimization method. Those

could be, as an example, Michaelis-Menten function bx/(1 + ax), generalized

as c + bx/(1 + ax), sum of linear and exponential functions c + b exp(ax) or

d+ cx+ b exp(ax), and many other types of functions for which the solution of

interpolation equations is not straightforward.
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