Demonstration of a Technique to Construct a One-to-One Correspondence Between N and the Infinite Binary Decimals in (0,1)

Abstract

In this paper we will see how by varying the initial conditions of Cantor's Diagonal Argument we can use the method to produce a one-to-one correspondence between the set of natural numbers and the set of infinite binary decimals in the open interval $(0,1)$. We concede that the initial list of infinite binary decimals is, in fact, incomplete and that the diagonal method does produce a number not contained in the list. Also, we'll agree that there are an infinite number of binary decimal numbers in the interval that aren't in the list. We will see how using the same diagonal method we can create infinitely many binary decimal numbers not initially contained in the interval and that each number we so create will correspond with one and only one natural number.

I. Introduction

In 1891 Georg Cantor published his Diagonal Argument which, he asserted, proved that the real numbers cannot be put into a one-to-one correspondence with the natural numbers. Cantor's proof relies on the fact that a complete list of real numbers over a given interval say, $(0,1)$ cannot, in fact be realized. That is to say, the infinite set of real numbers in $(0,1)$ cannot be listed linearly in its entirety and thus is uncountable. Cantor's reasoning is that since the real number list must necessarily be incomplete then any attempt to put the numbers in $(0,1)$ in a one-to-one correspondence with the natural numbers is bound to fail. To demonstrate, we begin with a matched list of real infinite binary decimal numbers in $(0,1)$ which we assume is complete. Each number in the list is matched with a corresponding natural number. Then any real number found not to be contained in the list will have no natural number to pair with. Cantor's diagonal method produces numbers not contained in the list and from this he concludes that the set of real numbers in the interval $(0,1)$ must have more members than the set of all natural numbers.

In this paper we will see how by varying the initial conditions of Cantor's Diagonal Argument we can use the method to produce a one-to-one correspondence between the set of natural numbers and the set of infinite binary decimals in the open interval $(0,1)$. We concede that the initial list of infinite binary decimals is, in fact, incomplete and that the diagonal method does produce a number not contained in the list. Also, we'll agree that there are an infinite number of binary decimal numbers in the interval that aren't in the list. We will see how using the same diagonal method we can create infinitely many binary decimal numbers not initially contained in the interval and that each number we so create will correspond with one and only one natural number.

II. Initial Conditions, Cantor's 1891 Proof

1. The set B of infinite binary decimals on the interval $(0,1)$,

$$
\mathrm{B}=\{\mathrm{d} \mid 0<\mathrm{d}<1\}
$$

2. A list L, of the elements of B.

	B										
.	0	1	0	1	0	1	0	1	0	1	\ldots
.	1	0	1	0	1	0	1	0	1	0	\ldots
.	0	1	0	1	0	1	0	1	0	1	\ldots
.	0	0	1	0	0	1	0	0	1	0	\ldots
.	1	1	0	1	1	0	1	1	0	1	\ldots
.	0	0	0	1	0	0	0	1	0	0	\ldots

3. The set of natural numbers N .

$$
N=\{1,2,3, \ldots, n, \ldots\}
$$

4. The following arrangement matching each item in B with an element of N :

N	B											
1	.	0	1	0	1	0	1	0	1	0	1	\ldots
2	.	1	0	1	0	1	0	1	0	1	0	\ldots

3												
4	.	0	1	0	1	0	1	0	1	0	1	\ldots
5												
6	0	0	1	0	0	1	0	0	1	0	\ldots	
7	.	1	1	0	1	1	0	1	1	0	1	\ldots
8	0	0	0	1	0	0	0	1	0	0	\ldots	
9	.	1	1	1	0	1	1	1	0	1	1	\ldots
10	.	0	0	0	1	0	0	0	0	1	\ldots	
\ldots	1	1	1	0	1	1	1	1	0	\ldots		
\ldots	1	0	0	1	1	0	0	1	1	\ldots		

III. Construct a number, Y, not contained in L

Next, we will use the diagonal argument to construct a binary decimal number that is not in the list by flipping the first digit of the number in the first row, the second digit of the number in the second row, the third digit in the number in the third row and so on. The resulting table will appear as follows:

The number Y will differ at each $\mathrm{n}^{\text {th }}$ digit from the number in the $\mathrm{n}^{\text {th }}$ row of the table. Therefore, Y cannot be in L and cannot be matched with a natural number. Since Y cannot be paired with a natural number not already in L, Cantor reasoned that the set of numbers in $(0,1)$ must be larger than the set of natural numbers.

IV. An alternative arrangement to Cantor's

We will, in a finite number of steps, demonstrate that the real and natural numbers can be arranged in such a way as to match one natural number with one real number in the interval without exception.

Step 1 - Initial setup of the Construction
Given - The set N of natural numbers,

$$
\mathrm{N}=\{1,2,3, \ldots, \mathrm{n}, \ldots\}
$$

Given - The set B of infinite binary decimals in the interval (0,1),

$$
\mathrm{B}=\{\mathrm{d} \mid 0<\mathrm{d}<1\}
$$

Step 2 - List the elements of \mathbf{N} and \mathbf{B}
Arrange N and B in a list L as follows as follows:

N								B					
1		0	1	0	0	1	0	1	0	1	0	1	\ldots
2													
3		1	0	1	,	0	1	0	1	0	1	0	\ldots
4													
5		0	1	0		1	0	1	0	1	0	1	\ldots
6													
7		0	0	1		0	0	1	0	0	1	0	...
8													
9		1	1	0		1	1	0	1	1	0	1	...
10													
11		0	0	0	0	1	0	0	0	1	0	0	...
12													
13		0	1	1	,	1	0	0	1	1	1	1	...
14													
15		1	1	1	,	1	1	0	1	0	0	0	...
16													
17		0	1	0		1	0	0	0	1	1	1	...
18													
19		0	1	0		1	0	1	1	1	1	1	...
20													

Our list is constructed slightly differently than Cantor's in that we are matching each real number in L with an odd element of N .

Step 3 - Construct a number, Y in B, that is not in L
We now begin as Cantor did, by constructing a number Y in B that is not in L . as shown below:

N	B											
1	.	0	1	0	1	0	1	0	1	0	1	\ldots
2	.											
3	.	1	0	1	0	1	0	1	0	1	0	\ldots
4	.											
5	0	1	0	1	0	1	0	1	0	1	\ldots	
6												
8	0	0	1	0	0	1	0	0	1	0	\ldots	
9	.	1	1	0	1	1	0	1	1	0	1	\ldots

$$
\begin{array}{l|llllllllllll}
10 \\
11 \\
12 & . & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & \ldots \\
13 & . & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & \ldots \\
14 & & & & & & & & & & & & \\
15 & . & 1 & 1 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & \ldots \\
16 & & & & & & & & & & & \\
17 & . & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & \ldots \\
18 & & & & & & & & & & & \\
19 & . & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & \ldots \\
20 & & & & & & & & & & & & \\
\hline \mathrm{Y} & . & 1 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & \ldots
\end{array}
$$

Step 4 - Enter Y into L

As before, Y is not in L . The next step requires that we enter Y into L . Once Y is arrived at via applying the diagonal method over L , all members of L above the first empty even row are moved down one row in the list. That will leave row 1 empty and i will be entered there. This ensures that each new Y entered into L will have the reciprocal of the first digit of the number succeeding it in L . See below,

N	B														
1		1	1	1	1	0		1	0	1	0		0	0	...
2	.	0	1	0	1	0	1	1	0	1	0		1	1	...
3		1	0	1	0	1		0	1	0	1		0	0	...
4															
5		0	1	0	1	0		1	0	1	0		1	1	...
6															
7		0	0	1	0	0		1	0	0	1		0	0	...
8															
9		1	1	0	1	1		0	1	1	0		1	0	...
10															
11		0	0	0	1	0		0	0	1	0		0	0	...
12															
13		0	1	1	1	0		0	1	1	1		1	1	...
14															
15		1	1	1	1	1		0	1	0	0		0	1	...
16															
17		0	1	0	1	0		0	0	1	1		1	1	...
18															
19		0	1	0	1	0		1	1	1	1		1	1	...
20															
								...							

Step 5 - Loop thru Steps 3 and 4

We will repeat Steps 3 and 4 with the new number added to the list to create another number Y , also not in the list and match this number with the next even element of N and add it to the list.

N	B											
1	1	1	1	1	0	1	0	1	0	0	1	...
2	0	1	0	1	0	1	0	1	0	1	1	...
3	1	0	1	0	1	0	1	0	1	0	0	...
4												
5	0	1	0	1	0	1	0	1	0	1	1	...
6												
7	0	0	1	0	0	1	0	0	1	0	0	...
8												
9	1	1	0	1	1	0	1	1	0	1	0	...
10												
11	0	0	0	1	0	0	0	1	0	0	0	...
12												
13	0	1	1	1	0	0	1	1	1	1	1	...
14												
15	1	1	1	1	1	0	1	0	0	0	1	...
16												
17	0	1	0	1	0	0	0	1	1	1	1	...
18												
19	0	1	0	1	0	1	1	1	1	1	1	...
20												
						\ldots						
Y	0	0	0	0	1	1	1	0	1	0	0	...
N							B					
1	0	0	0	0	1	1	1	0	1	0	0	...
2	0	1	0	1	0	1	0	1	0	1	1	...
3	1	1	1	1	0	1	0	1	0	0	1	...
4	1	0	1	0	1	0	1	0	1	0	0	...
5	1	0	0	0	1	1	1	0	1	0	0	...
6	0	1	0	1	0	1	0	1	0	1	1	...
7	0	0	1	0	0	1	0	0	1	0	0	...
8												
9	1	1	0	1	1	0	1	1	0	1	0	...
10												
11	0	0	0	1	0	0	0	1	0	0	0	...
12												
13	0	1	1	1	0	0	1	1	1	1	1	...
14												
15	1	1	1	1	1	0	1	0	0	0	1	...
16												

17
18
19
20
:---
\ldots

Discussion -

We now have a situation where every binary decimal number, d of L , at any moment in time is matched with one and only one natural number. And going forward, no matter how many numbers Y are added to the list, each will be matched with one and only one natural number.

Let B_{1} be defined as a subset of B such that every element of B_{1} is a member of L before any number Y has been created and inserted into L ,

$$
\mathrm{B}_{1} \subseteq \mathrm{~B} \text { and } \mathrm{B}_{1}=\{\mathrm{d} \mid \mathrm{d} \in \mathrm{~L}\} .
$$

Since all d in B_{1} are already matched with natural numbers we can state that

$$
f: \mathrm{N} \rightarrow \mathrm{~B}_{1} \text { exists. }
$$

Let B_{2} be defined as a subset of B such that that every element of B_{2} is not a member of L before any number Y has been created and inserted into L ,

$$
\mathrm{B}_{2} \subseteq \mathrm{~B} \text { and } \mathrm{B}_{2}=\{\mathrm{d} \mid \mathrm{d} \notin \mathrm{~L}\} .
$$

The union of B_{1} and B_{2} is the set B,

$$
\mathrm{B}_{1} \cup \mathrm{~B}_{2}=\mathrm{B}
$$

Let $\mathrm{d} \in \mathrm{B}$, then:

1. $\mathrm{d} \in \mathrm{B}_{1}$ or
2. $d \in B_{2}$

There are no other possibilities.
If $d \in B_{1}$ then d is a member of list L and is paired with a natural number.
If $d \in B_{2}$ then d is not a member of list L and either d will or will not be identified by repeatedly applying the diagonal method over L . In the case where d is identified by the diagonal method, d can be added to L using the procedure defined above. Since diagonal method can be applied to L indefinitely, no matter how many $d \in B_{2}$ are found, there will never be a $d \in B_{2}$ that can't be added to the list and paired with a natural number.

Consider the possibility that there are numbers in B that can't be identified by using the diagonal method on L. That is, there exist numbers in B that will never appear as reciprocals of the diagonal number created during any iteration of applying the diagonal method over L. Any method that can be devised to identify numbers not in L will produce numbers not in L that can be subsequently entered into L . There will always be a natural number to pair with a number entered into L regardless of the method used to identify the number.

Since for every possible $d \in B_{2}$ we have one and only one corresponding $n \in L$ we can say that

$$
f: \mathrm{N} \rightarrow \mathrm{~B}_{2} \text { exists. }
$$

We have also established that

$$
f: \mathrm{N} \rightarrow \mathrm{~B}_{1} \text { exists. }
$$

Therefore we can state that

$$
f: \mathrm{N} \rightarrow\left(\mathrm{~B}_{1} \cup \mathrm{~B}_{2}\right) .
$$

But

$$
\mathrm{B}_{1} \cup \mathrm{~B}_{2}=\mathrm{B}
$$

so substituting B for $\left(B_{1} \cup B_{2}\right)$ in $f: N \rightarrow\left(B_{1} \cup B_{2}\right)$ we arrive at

$$
f: \mathrm{N} \rightarrow \mathrm{~B}
$$

and this completes the discussion.

