Analyzing a fundamental equation concerning the "Ramanujan's Letter to Hardy on 16.1.1913". New possible mathematical connections with the Cosmological Constant in Quantum Space-Time and with some topics of String Theory

Michele Nardelli ${ }^{1}$, Antonio Nardelli ${ }^{2}$

Abstract

In this paper, we analyze a fundamental equation concerning the "Ramanujan's Letter to Hardy on 16.1.1913". We describe the new possible mathematical connections with the Cosmological Constant in Quantum Space-Time and with some topics of String Theory.

[^0]
From:

The man who new infinity: a life of the genius Ramanujan - Robert Kanigel Copyright © 1991

In this paper, we study the following equation:

$$
\int_{0}^{\infty} \frac{1+\left(\frac{x}{b+1}\right)^{2}}{1+\left(\frac{x}{a}\right)^{2}} \cdot \frac{1+\left(\frac{x}{b+2}\right)^{2}}{1+\left(\frac{x}{a+1}\right)^{2}} \ldots d x=1 / 2 \pi^{1 / 2} \frac{\Gamma(a+1 / 2) \Gamma(b+1) \Gamma(b-a+1 / 2)}{\Gamma(a) \Gamma(b+1 / 2) \Gamma(b-a+1)}
$$

We calculate the integral:
integrate $\left(\left(1+(x /(b+1))^{\wedge} 2\right) /\left(1+(x / a)^{\wedge} 2\right) *\left(1+(x /(b+2))^{\wedge} 2\right) /\left(1+(x /(a+1))^{\wedge} 2\right)\right) d x$
Indefinite integral

$$
\begin{aligned}
& \int \frac{\left(1+\left(\frac{x}{b+1}\right)^{2}\right)\left(1+\left(\frac{x}{b+2}\right)^{2}\right)}{\left(1+\left(\frac{x}{a}\right)^{2}\right)\left(1+\left(\frac{x}{a+1}\right)^{2}\right)} d x= \\
& \left(a (a + 1) \left((a+1)\left(a^{4}-a^{2}\left(2 b^{2}+6 b+5\right)+\left(b^{2}+3 b+2\right)^{2}\right) \tan ^{-1}\left(\frac{x}{a}\right)+\right.\right. \\
& a\left(\left(2 a^{2}+3 a+1\right) x-\left(a^{4}+4 a^{3}+a^{2}\left(-2 b^{2}-6 b+1\right)-\right.\right. \\
& \left.2 a\left(2 b^{2}+6 b+3\right)+b\left(b^{3}+6 b^{2}+11 b+6\right)\right) \\
& \left.\left.\tan ^{-1}\left(\frac{x}{a+1}\right)\right)\right) /\left((2 a+1)\left(b^{2}+3 b+2\right)^{2}\right)+\text { constant }
\end{aligned}
$$

The study of this function provides the following representations:

Alternate forms of the integral

$$
\begin{aligned}
& \left(a (a + 1) \left((a - b - 1) (a + b + 2) \left((a+1)(a-b-2)(a+b+1) \tan ^{-1}\left(\frac{x}{a}\right)-a(a-b)\right.\right.\right. \\
& \left.\left.\left.(a+b+3) \tan ^{-1}\left(\frac{x}{a+1}\right)\right)+a(a+1)(2 a+1) x\right)\right) /\left((2 a+1)(b+1)^{2}(b+2)^{2}\right)+
\end{aligned}
$$

constant

$$
\begin{aligned}
& \left(a (a + 1) \left(\frac { 1 } { 2 } i (a + 1) (a ^ { 4 } - a ^ { 2 } (2 b ^ { 2 } + 6 b + 5) + (b ^ { 2 } + 3 b + 2) ^ { 2 }) \left(\log \left(1-\frac{i x}{a}\right)-\log (\right.\right.\right. \\
& \left.\left.1+\frac{i x}{a}\right)\right)+a\left(\left(2 a^{2}+3 a+1\right) x-\frac{1}{2} i\left(a^{4}+4 a^{3}+a^{2}\left(-2 b^{2}-6 b+1\right)-2 a\left(2 b^{2}+6\right.\right.\right. \\
& \left.\left.\left.\left.b+3)+b\left(b^{3}+6 b^{2}+11 b+6\right)\right)\left(\log \left(1-\frac{i x}{a+1}\right)-\log \left(1+\frac{i x}{a+1}\right)\right)\right)\right)\right) /((2 a+1) \\
& \left.\left(b^{2}+3 b+2\right)^{2}\right)+ \text { constant }
\end{aligned}
$$

$$
\begin{aligned}
& \left(a (a + 1) \left(\left(a^{5}+a^{4}+\left(a^{3}+a^{2}\right)\left(-2 b^{2}-6 b-5\right)+a\left(b^{4}+6 b^{3}+13 b^{2}+12 b+4\right)+\right.\right.\right. \\
& \left.b^{4}+6 b^{3}+13 b^{2}+12 b+4\right) \tan ^{-1}\left(\frac{x}{a}\right)-a\left(a ^ { 2 } \left(\left(-2 b^{2}-6 b+1\right) \tan ^{-1}\left(\frac{x}{a+1}\right)-2\right.\right. \\
& x)+\left(a^{4}+4 a^{3}+b^{4}+6 b^{3}+11 b^{2}+6 b\right) \tan ^{-1}\left(\frac{x}{a+1}\right)+a\left(\left(-4 b^{2}-12 b\right) \tan ^{-1}(\right. \\
& \left.\left.\left.\left.\left.\frac{x}{a+1}\right)-3\left(2 \tan ^{-1}\left(\frac{x}{a+1}\right)+x\right)\right)-x\right)\right)\right) /\left((2 a+1)\left(b^{2}+3 b+2\right)^{2}\right)+\text { constant }
\end{aligned}
$$

$\log (x)$ is the natural logarithm

Expanded form of the integral

$$
\begin{aligned}
& \frac{\tan ^{-1}\left(\frac{x}{a}\right) a^{7}}{(2 a+1)\left(b^{2}+3 b+2\right)^{2}}-\frac{\tan ^{-1}\left(\frac{x}{a+1}\right) a^{7}}{(2 a+1)\left(b^{2}+3 b+2\right)^{2}}+\frac{2 \tan ^{-1}\left(\frac{x}{a}\right) a^{6}}{(2 a+1)\left(b^{2}+3 b+2\right)^{2}}- \\
& \frac{5 \tan ^{-1}\left(\frac{x}{a+1}\right) a^{6}}{(2 a+1)\left(b^{2}+3 b+2\right)^{2}}+\frac{2 x a^{5}}{(2 a+1)\left(b^{2}+3 b+2\right)^{2}}-\frac{2 b^{2} \tan ^{-1}\left(\frac{x}{a}\right) a^{5}}{(2 a+1)\left(b^{2}+3 b+2\right)^{2}}- \\
& \frac{6 b \tan ^{-1}\left(\frac{x}{a}\right) a^{5}}{(2 a+1)\left(b^{2}+3 b+2\right)^{2}}-\frac{4 \tan ^{-1}\left(\frac{x}{a}\right) a^{5}}{(2 a+1)\left(b^{2}+3 b+2\right)^{2}}+\frac{2 b^{2} \tan ^{-1}\left(\frac{x}{a+1}\right) a^{5}}{(2 a+1)\left(b^{2}+3 b+2\right)^{2}}+ \\
& \frac{6 b \tan ^{-1}\left(\frac{x}{a+1}\right) a^{5}}{(2 a+1)\left(b^{2}+3 b+2\right)^{2}}-\frac{5 \tan ^{-1}\left(\frac{x}{a+1}\right) a^{5}}{(2 a+1)\left(b^{2}+3 b+2\right)^{2}}+\frac{5 x a^{4}}{(2 a+1)\left(b^{2}+3 b+2\right)^{2}}- \\
& \frac{4 b^{2} \tan ^{-1}\left(\frac{x}{a}\right) a^{4}}{(2 a+1)\left(b^{2}+3 b+2\right)^{2}}-\frac{12 b \tan ^{-1}\left(\frac{x}{a}\right) a^{4}}{(2 a+1)\left(b^{2}+3 b+2\right)^{2}}-\frac{10 \tan ^{-1}\left(\frac{x}{a}\right) a^{4}}{(2 a+1)\left(b^{2}+3 b+2\right)^{2}}+ \\
& \frac{6 b^{2} \tan ^{-1}\left(\frac{x}{a+1}\right) a^{4}}{(2 a+1)\left(b^{2}+3 b+2\right)^{2}}+\frac{18 b \tan ^{-1}\left(\frac{x}{a+1}\right) a^{4}}{(2 a+1)\left(b^{2}+3 b+2\right)^{2}}+\frac{5 \tan ^{-1}\left(\frac{x}{a+1}\right) a^{4}}{(2 a+1)\left(b^{2}+3 b+2\right)^{2}}+ \\
& \frac{4 x a^{3}}{(2 a+1)\left(b^{2}+3 b+2\right)^{2}}+\frac{b^{4} \tan ^{-1}\left(\frac{x}{a}\right) a^{3}}{(2 a+1)\left(b^{2}+3 b+2\right)^{2}}+\frac{6 b^{3} \tan ^{-1}\left(\frac{x}{a}\right) a^{3}}{(2 a+1)\left(b^{2}+3 b+2\right)^{2}}+ \\
& \frac{11 b^{2} \tan ^{-1}\left(\frac{x}{a}\right) a^{3}}{(2 a+1)\left(b^{2}+3 b+2\right)^{2}}+\frac{6 b \tan ^{-1}\left(\frac{x}{a}\right) a^{3}}{(2 a+1)\left(b^{2}+3 b+2\right)^{2}}-\frac{\tan ^{-1}\left(\frac{x}{a}\right) a^{3}}{(2 a+1)\left(b^{2}+3 b+2\right)^{2}}- \\
& \frac{b^{4} \tan ^{-1}\left(\frac{x}{a+1}\right) a^{3}}{(2 a+1)\left(b^{2}+3 b+2\right)^{2}}-\frac{6 b^{3} \tan ^{-1}\left(\frac{x}{a+1}\right) a^{3}}{(2 a+1)\left(b^{2}+3 b+2\right)^{2}}-\frac{7 b^{2} \tan ^{-1}\left(\frac{x}{a+1}\right) a^{3}}{(2 a+1)\left(b^{2}+3 b+2\right)^{2}}+ \\
& \frac{6 b \tan ^{-1}\left(\frac{x}{a+1}\right) a^{3}}{(2 a+1)\left(b^{2}+3 b+2\right)^{2}}+\frac{6 \tan ^{-1}\left(\frac{x}{a+1}\right) a^{3}}{(2 a+1)\left(b^{2}+3 b+2\right)^{2}}+\frac{x a^{2}}{(2 a+1)\left(b^{2}+3 b+2\right)^{2}}+ \\
& \frac{2 b^{4} \tan ^{-1}\left(\frac{x}{a}\right) a^{2}}{(2 a+1)\left(b^{2}+3 b+2\right)^{2}}+\frac{12 b^{3} \tan ^{-1}\left(\frac{x}{a}\right) a^{2}}{(2 a+1)\left(b^{2}+3 b+2\right)^{2}}+\frac{26 b^{2} \tan ^{-1}\left(\frac{x}{a}\right) a^{2}}{(2 a+1)\left(b^{2}+3 b+2\right)^{2}}+ \\
& \frac{24 b \tan ^{-1}\left(\frac{x}{a}\right) a^{2}}{(2 a+1)\left(b^{2}+3 b+2\right)^{2}}+\frac{8 \tan ^{-1}\left(\frac{x}{a}\right) a^{2}}{(2 a+1)\left(b^{2}+3 b+2\right)^{2}}-\frac{b^{4} \tan ^{-1}\left(\frac{x}{a+1}\right) a^{2}}{(2 a+1)\left(b^{2}+3 b+2\right)^{2}}- \\
& \frac{6 b^{3} \tan ^{-1}\left(\frac{x}{a+1}\right) a^{2}}{(2 a+1)\left(b^{2}+3 b+2\right)^{2}}-\frac{11 b^{2} \tan ^{-1}\left(\frac{x}{a+1}\right) a^{2}}{(2 a+1)\left(b^{2}+3 b+2\right)^{2}}-\frac{6 b \tan ^{-1}\left(\frac{x}{a+1}\right) a^{2}}{(2 a+1)\left(b^{2}+3 b+2\right)^{2}}+ \\
& \frac{b^{4} \tan ^{-1}\left(\frac{x}{a}\right) a}{(2 a+1)\left(b^{2}+3 b+2\right)^{2}}+\frac{6 b^{3} \tan ^{-1}\left(\frac{x}{a}\right) a}{(2 a+1)\left(b^{2}+3 b+2\right)^{2}}+\frac{13 b^{2} \tan ^{-1}\left(\frac{x}{a}\right) a}{(2 a+1)\left(b^{2}+3 b+2\right)^{2}}+ \\
& \frac{12 b \tan ^{-1}\left(\frac{x}{a}\right) a}{(2 a+1)\left(b^{2}+3 b+2\right)^{2}}+\frac{4 \tan ^{-1}\left(\frac{x}{a}\right) a}{(2 a+1)\left(b^{2}+3 b+2\right)^{2}}+\text { constant }
\end{aligned}
$$

Series expansion of the integral at $x=0$

$$
\begin{aligned}
& x-\left(x ^ { 3 } \left(a^{4}\left(-\left(2 b^{2}+6 b+5\right)\right)-2 a^{3}\left(2 b^{2}+6 b+5\right)+\right.\right. \\
& a^{2}\left(2 b^{4}+12 b^{3}+24 b^{2}+18 b+3\right)+2 a\left(b^{2}+3 b+2\right)^{2}+ \\
& \left.\left.\left(b^{2}+3 b+2\right)^{2}\right)\right) /\left(3\left(a^{2}(a+1)^{2}\left(b^{2}+3 b+2\right)^{2}\right)\right)+ \\
& \left(a (a + 1) x ^ { 5 } \left(\frac{(a+1)\left(a^{4}-a^{2}\left(2 b^{2}+6 b+5\right)+\left(b^{2}+3 b+2\right)^{2}\right)}{5 a^{5}}-\frac{1}{5(a+1)^{5}}\right.\right. \\
& a\left(a^{4}+4 a^{3}+a^{2}\left(-2 b^{2}-6 b+1\right)-2 a\left(2 b^{2}+6 b+3\right)+\right. \\
& \left.\left.\left.\quad b\left(b^{3}+6 b^{2}+11 b+6\right)\right)\right)\right) /\left((2 a+1)\left(b^{2}+3 b+2\right)^{2}\right)+O\left(x^{6}\right)
\end{aligned}
$$

(Taylor series)

Series expansion of the integral at $x=\infty$

$$
\begin{aligned}
& \frac{a^{2}(a+1)^{2} x}{\left(b^{2}+3 b+2\right)^{2}}+ \\
& \left(\begin{array}{l}
\pi a^{2}(a+1)^{2}\left(\sqrt{\frac{1}{a^{2}}}\left(a^{4}-a^{2}\left(2 b^{2}+6 b+5\right)+\left(b^{2}+3 b+2\right)^{2}\right)-\sqrt{\frac{1}{(a+1)^{2}}}\right. \\
\left(a^{4}+4 a^{3}+a^{2}\left(-2 b^{2}-6 b+1\right)-\right. \\
\left.\left.\quad 2 a\left(2 b^{2}+6 b+3\right)+b\left(b^{3}+6 b^{2}+11 b+6\right)\right)\right) / \\
\left(2(2 a+1)\left(b^{2}+3 b+2\right)^{2}\right)+\frac{2 a^{2}(a+1)^{2}\left(a^{2}+a-b^{2}-3 b-2\right)}{\left(b^{2}+3 b+2\right)^{2} x}+O(\\
\left.\left(\frac{1}{x}\right)^{3}\right)
\end{array}\right.
\end{aligned}
$$

(Laurent series)

Now, we calculate the expression containing the gamma functions in the right-hand side:
$1 / 2 * \operatorname{Pi}^{\wedge} 0.5(((\operatorname{gamma}(\mathrm{a}+1 / 2) \operatorname{gamma}(\mathrm{b}+1) \operatorname{gamma}(\mathrm{b}-\mathrm{a}+1 / 2)))) /(((\operatorname{gamma}(\mathrm{a})$ $\operatorname{gamma}(b+1 / 2) \operatorname{gamma}(b-a+1))))$

Input

$$
\frac{1}{2} \sqrt{\pi} \times \frac{\Gamma\left(a+\frac{1}{2}\right) \Gamma(b+1) \Gamma\left(b-a+\frac{1}{2}\right)}{\Gamma(a) \Gamma\left(b+\frac{1}{2}\right) \Gamma(b-a+1)}
$$

Exact result

$\underline{\sqrt{\pi} \Gamma\left(a+\frac{1}{2}\right) \Gamma(b+1) \Gamma\left(-a+b+\frac{1}{2}\right)}$
$2 \Gamma(a) \Gamma\left(b+\frac{1}{2}\right) \Gamma(-a+b+1)$

The study of this function provides the following representations:

3D plot

Contour plot

Roots

(no roots exist)

Series expansion at $\mathbf{a}=0$

$$
\begin{aligned}
& \frac{\pi a}{2}+\frac{1}{2} \pi a^{2}\left(-\psi^{(0)}\left(b+\frac{1}{2}\right)+\psi^{(0)}(b+1)+\gamma+\psi^{(0)}\left(\frac{1}{2}\right)\right)+ \\
& \frac{1}{12} \pi a^{3}\left(3 \psi^{(0)}\left(b+\frac{1}{2}\right)^{2}-6\left(\psi^{(0)}(b+1)+\gamma+\psi^{(0)}\left(\frac{1}{2}\right)\right) \psi^{(0)}\left(b+\frac{1}{2}\right)+\right. \\
& 3 \psi^{(0)}(b+1)^{2}+6\left(\gamma+\psi^{(0)}\left(\frac{1}{2}\right)\right) \psi^{(0)}(b+1)+3 \psi^{(1)}\left(b+\frac{1}{2}\right)- \\
& \left.3 \psi^{(1)}(b+1)+\pi^{2}+3 \gamma^{2}+3 \psi^{(0)}\left(\frac{1}{2}\right)^{2}+6 \gamma \psi^{(0)}\left(\frac{1}{2}\right)\right)+ \\
& \frac{1}{12} \pi a^{4}\left(-\psi^{(0)}\left(b+\frac{1}{2}\right)^{3}+3\left(\psi^{(0)}(b+1)+\gamma+\psi^{(0)}\left(\frac{1}{2}\right)\right) \psi^{(0)}\left(b+\frac{1}{2}\right)^{2}-\right. \\
& \left(3 \psi^{(0)}(b+1)^{2}+6\left(\gamma+\psi^{(0)}\left(\frac{1}{2}\right)\right) \psi^{(0)}(b+1)+3 \psi^{(1)}\left(b+\frac{1}{2}\right)-\right. \\
& \left.3 \psi^{(1)}(b+1)+\pi^{2}+3 \gamma^{2}+3 \psi^{(0)}\left(\frac{1}{2}\right)^{2}+6 \gamma \psi^{(0)}\left(\frac{1}{2}\right)\right) \psi^{(0)}\left(b+\frac{1}{2}\right)+ \\
& \psi^{(0)}(b+1)^{3}+3\left(\gamma+\psi^{(0)}\left(\frac{1}{2}\right)\right) \psi^{(0)}(b+1)^{2}+3 \psi^{(0)}\left(\frac{1}{2}\right) \psi^{(1)}\left(b+\frac{1}{2}\right)+ \\
& 3 \gamma \psi^{(1)}\left(b+\frac{1}{2}\right)+\psi^{(0)}(b+1) \\
& \left(3 \psi^{(1)}\left(b+\frac{1}{2}\right)-3 \psi^{(1)}(b+1)+\pi^{2}+3 \gamma^{2}+3 \psi^{(0)}\left(\frac{1}{2}\right)^{2}+6 \gamma \psi^{(0)}\left(\frac{1}{2}\right)\right)- \\
& 3 \psi^{(0)}\left(\frac{1}{2}\right) \psi^{(1)}(b+1)-3 \gamma \psi^{(1)}(b+1)-\psi^{(2)}\left(b+\frac{1}{2}\right)+ \\
& \psi^{(2)}(b+1)+\gamma \pi^{2}+\gamma^{3}-\psi^{(2)}(1)+\psi^{(2)}\left(\frac{1}{2}\right)+ \\
& \left.\psi^{(0)}\left(\frac{1}{2}\right)^{3}+3 \gamma \psi^{(0)}\left(\frac{1}{2}\right)^{2}+\pi^{2} \psi^{(0)}\left(\frac{1}{2}\right)+3 \gamma^{2} \psi^{(0)}\left(\frac{1}{2}\right)\right)+ \\
& \frac{1}{720} \pi\left(15 \psi^{(0)}\left(b+\frac{1}{2}\right)^{4}-60\left(\psi^{(0)}(b+1)+\psi^{(0)}\left(\frac{1}{2}\right)+\gamma\right) \psi^{(0)}\left(b+\frac{1}{2}\right)^{3}+\right. \\
& 30\left(3 \psi^{(0)}(b+1)^{2}+6\left(\gamma+\psi^{(0)}\left(\frac{1}{2}\right)\right) \psi^{(0)}(b+1)+3 \psi^{(1)}\left(b+\frac{1}{2}\right)-\right. \\
& \left.3 \psi^{(1)}(b+1)+3 \psi^{(0)}\left(\frac{1}{2}\right)^{2}+6 \gamma \psi^{(0)}\left(\frac{1}{2}\right)+\pi^{2}+3 \gamma^{2}\right) \psi^{(0)}\left(b+\frac{1}{2}\right)^{2}- \\
& 60\left(\psi^{(0)}(b+1)^{3}+3\left(\gamma+\psi^{(0)}\left(\frac{1}{2}\right)\right) \psi^{(0)}(b+1)^{2}+\right. \\
& \left(3 \psi^{(1)}\left(b+\frac{1}{2}\right)-3 \psi^{(1)}(b+1)+3 \psi^{(0)}\left(\frac{1}{2}\right)^{2}+6 \gamma \psi^{(0)}\left(\frac{1}{2}\right)+\pi^{2}+3 \gamma^{2}\right) \\
& \psi^{(0)}(b+1)+3\left(\gamma+\psi^{(0)}\left(\frac{1}{2}\right)\right) \psi^{(1)}\left(b+\frac{1}{2}\right)-3 \psi^{(0)}\left(\frac{1}{2}\right) \psi^{(1)}(b+1)- \\
& 3 \gamma \psi^{(1)}(b+1)-\psi^{(2)}\left(b+\frac{1}{2}\right)+\psi^{(2)}(b+1)-\psi^{(2)}(1)+\psi^{(2)}\left(\frac{1}{2}\right)+ \\
& \left.\psi^{(0)}\left(\frac{1}{2}\right)^{3}+3 \gamma \psi^{(0)}\left(\frac{1}{2}\right)^{2}+\pi^{2} \psi^{(0)}\left(\frac{1}{2}\right)+3 \gamma^{2} \psi^{(0)}\left(\frac{1}{2}\right)+\gamma \pi^{2}+\gamma^{3}\right) \\
& \psi^{(0)}\left(b+\frac{1}{2}\right)+15 \psi^{(0)}(b+1)^{4}+60\left(\gamma+\psi^{(0)}\left(\frac{1}{2}\right)\right) \psi^{(0)}(b+1)^{3}+ \\
& 45 \psi^{(1)}\left(b+\frac{1}{2}\right)^{2}+45 \psi^{(1)}(b+1)^{2}+90 \psi^{(0)}\left(\frac{1}{2}\right)^{2} \psi^{(1)}\left(b+\frac{1}{2}\right)+ \\
& 180 \gamma \psi^{(0)}\left(\frac{1}{2}\right) \psi^{(1)}\left(b+\frac{1}{2}\right)+30 \pi^{2} \psi^{(1)}\left(b+\frac{1}{2}\right)+ \\
& 90 \gamma^{2} \psi^{(1)}\left(b+\frac{1}{2}\right)+30 \psi^{(0)}(b+1)^{2} \\
& \left(3 \psi^{(1)}\left(b+\frac{1}{2}\right)-3 \psi^{(1)}(b+1)+3 \psi^{(0)}\left(\frac{1}{2}\right)^{2}+6 \gamma \psi^{(0)}\left(\frac{1}{2}\right)+\pi^{2}+3 \gamma^{2}\right)- \\
& 90 \psi^{(1)}\left(b+\frac{1}{2}\right) \psi^{(1)}(b+1)-90 \psi^{(0)}\left(\frac{1}{2}\right)^{2} \psi^{(1)}(b+1)- \\
& 180 \gamma \psi^{(0)}\left(\frac{1}{2}\right) \psi^{(1)}(b+1)-30 \pi^{2} \psi^{(1)}(b+1)- \\
& 90 \gamma^{2} \psi^{(1)}(b+1)-60 \psi^{(0)}\left(\frac{1}{2}\right) \psi^{(2)}\left(b+\frac{1}{2}\right)- \\
& 60 \gamma \psi^{(2)}\left(b+\frac{1}{2}\right)+60 \psi^{(0)}\left(\frac{1}{2}\right) \psi^{(2)}(b+1)+60 \gamma \psi^{(2)}(b+1)+ \\
& 60 \psi^{(0)}(b+1)\left(3\left(\gamma+\psi^{(0)}\left(\frac{1}{2}\right)\right) \psi^{(1)}\left(b+\frac{1}{2}\right)-3\left(\gamma+\psi^{(0)}\left(\frac{1}{2}\right)\right) \psi^{(1)}(b+1)-\right. \\
& \psi^{(2)}\left(b+\frac{1}{2}\right)+\psi^{(2)}(b+1)-\psi^{(2)}(1)+\psi^{(2)}\left(\frac{1}{2}\right)+\psi^{(0)}\left(\frac{1}{2}\right)^{3}+ \\
& \left.3 \gamma \psi^{(0)}\left(\frac{1}{2}\right)^{2}+\pi^{2} \psi^{(0)}\left(\frac{1}{2}\right)+3 \gamma^{2} \psi^{(0)}\left(\frac{1}{2}\right)+\gamma \pi^{2}+\gamma^{3}\right)+ \\
& 15 \psi^{(3)}\left(b+\frac{1}{2}\right)-15 \psi^{(3)}(b+1)-60 \psi^{(0)}\left(\frac{1}{2}\right) \psi^{(2)}(1)-60 \gamma \psi^{(2)}(1)+ \\
& 60 \psi^{(0)}\left(\frac{1}{2}\right) \psi^{(2)}\left(\frac{1}{2}\right)+60 \gamma \psi^{(2)}\left(\frac{1}{2}\right)+15 \psi^{(0)}\left(\frac{1}{2}\right)^{4}+60 \gamma \psi^{(0)}\left(\frac{1}{2}\right)^{3}+ \\
& 30 \pi^{2} \psi^{(0)}\left(\frac{1}{2}\right)^{2}+90 \gamma^{2} \psi^{(0)}\left(\frac{1}{2}\right)^{2}+60 \gamma \pi^{2} \psi^{(0)}\left(\frac{1}{2}\right)+ \\
& \left.60 \gamma^{3} \psi^{(0)}\left(\frac{1}{2}\right)+19 \pi^{4}+30 \gamma^{2} \pi^{2}+15 \gamma^{4}\right) a^{5}+O\left(a^{6}\right)
\end{aligned}
$$

Derivative

$$
\begin{aligned}
& \frac{\partial}{\partial a}\left(\frac{\sqrt{\pi}\left(\Gamma\left(a+\frac{1}{2}\right) \Gamma(b+1) \Gamma\left(b-a+\frac{1}{2}\right)\right)}{2\left(\Gamma(a) \Gamma\left(b+\frac{1}{2}\right) \Gamma(b-a+1)\right)}\right)= \\
& \left(\sqrt { \pi } \Gamma (a + \frac { 1 } { 2 }) \Gamma (b + 1) \Gamma (- a + b + \frac { 1 } { 2 }) \left(-\psi^{(0)}\left(-a+b+\frac{1}{2}\right)+\psi^{(0)}(-a+b+1)-\right.\right. \\
& \left.\left.\psi^{(0)}(a)+\psi^{(0)}\left(a+\frac{1}{2}\right)\right)\right) /\left(2 \Gamma(a) \Gamma\left(b+\frac{1}{2}\right) \Gamma(-a+b+1)\right)
\end{aligned}
$$

For $\mathrm{a}=2$ and $\mathrm{b}=3$, we obtain from the initial expression :
integrate $\left(\left(1+(x /(3+1))^{\wedge} 2\right) /\left(1+(x / 2)^{\wedge} 2\right) *\left(1+(x /(3+2))^{\wedge} 2\right) /\left(1+(x /(2+1))^{\wedge} 2\right)\right) \mathrm{dx}$

Indefinite integral

$$
\begin{aligned}
& \int \frac{\left(1+\left(\frac{x}{3+1}\right)^{2}\right)\left(1+\left(\frac{x}{3+2}\right)^{2}\right)}{\left(1+\left(\frac{x}{2}\right)^{2}\right)\left(1+\left(\frac{x}{2+1}\right)^{2}\right)} d x= \\
& \frac{3}{500}\left(15 x-112 \tan ^{-1}\left(\frac{x}{3}\right)+378 \tan ^{-1}\left(\frac{x}{2}\right)\right)+\text { constant }
\end{aligned}
$$

The study of this function provides the following representations:

Plots of the integral
(figures that can be related to the open strings)

Alternate forms of the integral

$\frac{3}{500}\left(15 x-14\left(8 \tan ^{-1}\left(\frac{x}{3}\right)-27 \tan ^{-1}\left(\frac{x}{2}\right)\right)\right)+$ constant
$\frac{9 x}{100}-\frac{42}{125} i \log \left(1-\frac{i x}{3}\right)+\frac{42}{125} i \log \left(1+\frac{i x}{3}\right)+\frac{567}{500} i \log \left(1-\frac{i x}{2}\right)-\frac{567}{500} i \log (1+$ $\left.\frac{i x}{2}\right)+$ constant

Expanded form of the integral

$$
\frac{9 x}{100}-\frac{84}{125} \tan ^{-1}\left(\frac{x}{3}\right)+\frac{567}{250} \tan ^{-1}\left(\frac{x}{2}\right)+\text { constant }
$$

Series expansion of the integral at $x=0$

$$
x-\frac{931 x^{3}}{10800}+\frac{8827 x^{5}}{648000}+O\left(x^{6}\right)
$$

(Taylor series)
Series expansion of the integral at $\mathbf{x}=-2 \mathrm{i}$

$$
\begin{aligned}
& \frac{1}{250}\left(\left(\frac{3}{4}\left(378 i \log (x+2 i)+4 i\left(56 \tanh ^{-1}\left(\frac{2}{3}\right)-3(5+63 \log (2))\right)+189 \pi\right)-\right.\right. \\
& \frac{297}{40}(x+2 i)-\frac{78687 i(x+2 i)^{2}}{1600}+\frac{427959(x+2 i)^{3}}{16000}+ \\
& \frac{27191367 i(x+2 i)^{4}}{1280000}-\frac{536000157(x+2 i)^{5}}{32000000}+ \\
&\left.\left.O\left((x+2 i)^{6}\right)\right)-567 \pi\left\lfloor\frac{3}{4}-\frac{\arg (x+2 i)}{2 \pi}\right\rfloor\right)
\end{aligned}
$$

Series expansion of the integral at $\mathrm{x}=2 \mathrm{i}$

$$
\begin{aligned}
& \frac{1}{250}\left(\left(\frac{3}{4}\left(-378 i \log (x-2 i)+756 i \log (2)-224 i \tanh ^{-1}\left(\frac{2}{3}\right)+189 \pi+60 i\right)-\right.\right. \\
& \quad \frac{297}{40}(x-2 i)+\frac{78687 i(x-2 i)^{2}}{1600}+\frac{427959(x-2 i)^{3}}{16000}- \\
& \frac{27191367 i(x-2 i)^{4}}{1280000}-\frac{536000157(x-2 i)^{5}}{32000000}+ \\
& \left.\left.O\left((x-2 i)^{6}\right)\right)+567 \pi\left\lfloor\frac{\pi-2 \arg (x-2 i)}{4 \pi}\right\rfloor\right)
\end{aligned}
$$

Series expansion of the integral at $x=-3 i$

$$
\begin{aligned}
& \frac{1}{250} \\
& \qquad\left(\left(\left(-84 i \log (x+3 i)-\frac{3}{2} i\left(45+378 \tanh ^{-1}\left(\frac{3}{2}\right)-56 \log (2)-56 \log (3)\right)+525 \pi\right)-\right.\right. \\
& \quad \frac{2183}{10}(x+3 i)+\frac{20587}{150} i(x+3 i)^{2}+\frac{633647(x+3 i)^{3}}{6750}- \\
& \left.\quad \frac{19110007 i(x+3 i)^{4}}{270000}-\frac{573925667(x+3 i)^{5}}{10125000}+O\left((x+3 i)^{6}\right)\right)- \\
& \left.399 \pi\left\lfloor\frac{3}{4}-\frac{\arg (x+3 i)}{2 \pi}\right\rfloor-567 \pi\left\lfloor\frac{\arg (x+3 i)}{2 \pi}+\frac{3}{4}\right\rfloor\right)
\end{aligned}
$$

Series expansion of the integral at $x=3 i$

$$
\begin{aligned}
& \frac{1}{250}\left(\left(\left(84 i \log (x-3 i)+\frac{3}{2} i\left(45+378 \tanh ^{-1}\left(\frac{3}{2}\right)-56 \log (2)-56 \log (3)\right)-42 \pi\right)-\right.\right. \\
& \frac{2183}{10}(x-3 i)-\frac{20587}{150} i(x-3 i)^{2}+\frac{633647(x-3 i)^{3}}{6750}+ \\
& \left.\frac{19110007 i(x-3 i)^{4}}{270000}-\frac{573925667(x-3 i)^{5}}{10125000}+O\left((x-3 i)^{6}\right)\right)+ \\
& \left.399 \pi\left\lfloor\frac{\pi-2 \arg (x-3 i)}{4 \pi}\right\rfloor+567 \pi\left[\frac{2 \arg (x-3 i)+\pi}{4 \pi}\right]\right)
\end{aligned}
$$

Series expansion of the integral at $x=\infty$
$\frac{9 x}{100}+\frac{399 \pi}{500}-\frac{63}{25 x}+\frac{2268}{125 x^{5}}+O\left(\left(\frac{1}{x}\right)^{6}\right)$
(Laurent series)

Definite integral after subtraction of diverging parts

$$
\int_{0}^{\infty}\left(\frac{\left(1+\frac{x^{2}}{25}\right)\left(1+\frac{x^{2}}{16}\right)}{\left(1+\frac{x^{2}}{9}\right)\left(1+\frac{x^{2}}{4}\right)}-\frac{9}{100}\right) d x=\frac{399 \pi}{500} \approx 2.50699
$$

From the solution of

$$
\begin{aligned}
& \int \frac{\left(1+\left(\frac{x}{3+1}\right)^{2}\right)\left(1+\left(\frac{x}{3+2}\right)^{2}\right)}{\left(1+\left(\frac{x}{2}\right)^{2}\right)\left(1+\left(\frac{x}{2+1}\right)^{2}\right)} d x= \\
& \frac{3}{500}\left(15 x-112 \tan ^{-1}\left(\frac{x}{3}\right)+378 \tan ^{-1}\left(\frac{x}{2}\right)\right)+\text { constant }
\end{aligned}
$$

we obtain:
$3 / 500\left(15 x-112 \tan ^{\wedge}(-1)(x / 3)+378 \tan ^{\wedge}(-1)(x / 2)\right)$

Input

$$
\frac{3}{500}\left(15 x-112 \tan ^{-1}\left(\frac{x}{3}\right)+378 \tan ^{-1}\left(\frac{x}{2}\right)\right)
$$

$\tan ^{-1}(x)$ is the inverse tangent function

The study of this function provides the following representations:

Plots

 (figures that can be related to the open strings)

Alternate forms
$\frac{3}{500}\left(15 x-14\left(8 \tan ^{-1}\left(\frac{x}{3}\right)-27 \tan ^{-1}\left(\frac{x}{2}\right)\right)\right)$

$$
\begin{aligned}
& \frac{9 x}{100}-\frac{42}{125} i \log \left(1-\frac{i x}{3}\right)+\frac{42}{125} i \log \left(1+\frac{i x}{3}\right)+ \\
& \frac{567}{500} i \log \left(1-\frac{i x}{2}\right)-\frac{567}{500} i \log \left(1+\frac{i x}{2}\right)
\end{aligned}
$$

$\log (x)$ is the natural logarithm

Expanded form

$\frac{9 x}{100}-\frac{84}{125} \tan ^{-1}\left(\frac{x}{3}\right)+\frac{567}{250} \tan ^{-1}\left(\frac{x}{2}\right)$

Integer root

$$
x=0
$$

Properties as a real function Domain

\mathbf{R} (all real numbers)

Range

\mathbb{R} (all real numbers)

Bijectivity

bijective from its domain to \mathbb{R}

Parity

odd
Series expansion at $x=0$

$$
x-\frac{931 x^{3}}{10800}+\frac{8827 x^{5}}{648000}+O\left(x^{6}\right)
$$

Series expansion at $\mathbf{x}=-2 \mathbf{i}$

$$
\begin{aligned}
& \frac{1}{250}\left(\left(\frac{3}{4}\left(378 i \log (x+2 i)+4 i\left(56 \tanh ^{-1}\left(\frac{2}{3}\right)-3(5+63 \log (2))\right)+189 \pi\right)-\right.\right. \\
& \frac{297}{40}(x+2 i)-\frac{78687 i(x+2 i)^{2}}{1600}+\frac{427959(x+2 i)^{3}}{16000}+ \\
& \frac{27191367 i(x+2 i)^{4}}{1280000}-\frac{536000157(x+2 i)^{5}}{32000000}+ \\
&\left.\left.O\left((x+2 i)^{6}\right)\right)-567 \pi\left\lfloor\frac{3}{4}-\frac{\arg (x+2 i)}{2 \pi}\right\rfloor\right)
\end{aligned}
$$

Series expansion at $\mathbf{x}=\mathbf{2} \mathbf{i}$

$$
\begin{aligned}
& \frac{1}{250}\left(\left(\frac{3}{4}\left(-378 i \log (x-2 i)+756 i \log (2)-224 i \tanh ^{-1}\left(\frac{2}{3}\right)+189 \pi+60 i\right)-\right.\right. \\
& \quad \frac{297}{40}(x-2 i)+\frac{78687 i(x-2 i)^{2}}{1600}+\frac{427959(x-2 i)^{3}}{16000}- \\
& \\
& \frac{27191367 i(x-2 i)^{4}}{1280000}-\frac{536000157(x-2 i)^{5}}{32000000}+ \\
& \left.\left.O\left((x-2 i)^{6}\right)\right)+567 \pi\left\lfloor\frac{\pi-2 \arg (x-2 i)}{4 \pi}\right\rfloor\right)
\end{aligned}
$$

Series expansion at $\mathbf{x}=-3 \mathrm{i}$

$$
\begin{aligned}
& \frac{1}{250} \\
& \qquad\left(\left(\left(-84 i \log (x+3 i)-\frac{3}{2} i\left(45+378 \tanh ^{-1}\left(\frac{3}{2}\right)-56 \log (2)-56 \log (3)\right)+525 \pi\right)-\right.\right. \\
& \quad \frac{2183}{10}(x+3 i)+\frac{20587}{150} i(x+3 i)^{2}+\frac{633647(x+3 i)^{3}}{6750}- \\
& \left.\frac{19110007 i(x+3 i)^{4}}{270000}-\frac{573925667(x+3 i)^{5}}{10125000}+O\left((x+3 i)^{6}\right)\right)- \\
& \left.399 \pi\left\lfloor\frac{3}{4}-\frac{\arg (x+3 i)}{2 \pi}\right\rfloor-567 \pi\left\lfloor\frac{\arg (x+3 i)}{2 \pi}+\frac{3}{4}\right\rfloor\right)
\end{aligned}
$$

Series expansion at $\mathbf{x}=\mathbf{3 i}$

$$
\begin{aligned}
& \frac{1}{250}\left(\left(\left(84 i \log (x-3 i)+\frac{3}{2} i\left(45+378 \tanh ^{-1}\left(\frac{3}{2}\right)-56 \log (2)-56 \log (3)\right)-42 \pi\right)-\right.\right. \\
& \frac{2183}{10}(x-3 i)-\frac{20587}{150} i(x-3 i)^{2}+\frac{633647(x-3 i)^{3}}{6750}+ \\
& \left.\frac{19110007 i(x-3 i)^{4}}{270000}-\frac{573925667(x-3 i)^{5}}{10125000}+O\left((x-3 i)^{6}\right)\right)+ \\
& \left.399 \pi\left\lfloor\frac{\pi-2 \arg (x-3 i)}{4 \pi}\right\rfloor+567 \pi\left\lfloor\frac{2 \arg (x-3 i)+\pi}{4 \pi}\right]\right)
\end{aligned}
$$

Series expansion at $\mathbf{x}=\infty$

$$
\frac{9 x}{100}+\frac{399 \pi}{500}-\frac{63}{25 x}+\frac{2268}{125 x^{5}}+O\left(\left(\frac{1}{x}\right)^{6}\right)
$$

(Laurent series)

Derivative

$$
\frac{d}{d x}\left(\frac{3}{500}\left(15 x-112 \tan ^{-1}\left(\frac{x}{3}\right)+378 \tan ^{-1}\left(\frac{x}{2}\right)\right)\right)=\frac{9\left(x^{4}+41 x^{2}+400\right)}{100\left(x^{2}+4\right)\left(x^{2}+9\right)}
$$

Indefinite integral

$$
\begin{aligned}
& \int \frac{3}{500}\left(15 x-112 \tan ^{-1}\left(\frac{x}{3}\right)+378 \tan ^{-1}\left(\frac{x}{2}\right)\right) d x= \\
& \frac{3\left(15 x^{2}-756 \log \left(x^{2}+4\right)+336 \log \left(x^{2}+9\right)-224 x \tan ^{-1}\left(\frac{x}{3}\right)+756 x \tan ^{-1}\left(\frac{x}{2}\right)\right)}{1000}+
\end{aligned}
$$

constant

From
$\frac{3}{500}\left(15 x-112 \tan ^{-1}\left(\frac{x}{3}\right)+378 \tan ^{-1}\left(\frac{x}{2}\right)\right)$
For $\mathrm{x}=1.6579679871623^{2}$, we obtain:
$3 / 500\left(15^{*}\left(1.6579679871623^{\wedge} 2\right)-112 \tan ^{\wedge}(-1)\left(\left(1.6579679871623^{\wedge} 2\right) / 3\right)+378 \tan ^{\wedge}(-\right.$ 1)((1.6579679871623^2)/2))

Input interpretation

$\frac{3}{500}\left(15 \times 1.6579679871623^{2}-\right.$
$\left.112 \tan ^{-1}\left(\frac{1.6579679871623^{2}}{3}\right)+378 \tan ^{-1}\left(\frac{1.6579679871623^{2}}{2}\right)\right)$
$\tan ^{-1}(x)$ is the inverse tangent function

Result

1.8849555921538...
(result in radians)
1.8849555921538....

The study of this function provides the following representations:

Alternative representations

$$
\begin{aligned}
& \frac{1}{500}\left(15 \times 1.65796798716230000^{2}-112 \tan ^{-1}\left(\frac{1.65796798716230000^{2}}{3}\right)+\right. \\
& \left.378 \tan ^{-1}\left(\frac{1.65796798716230000^{2}}{2}\right)\right) 3= \\
& \frac{3}{500}\left(-112 \mathrm{sc}^{-1}\left(\left.\frac{1.65796798716230000^{2}}{3} \right\rvert\, 0\right)+\right. \\
& \left.378 \mathrm{sc}^{-1}\left(\left.\frac{1.65796798716230000^{2}}{2} \right\rvert\, 0\right)+15 \times 1.65796798716230000^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{500}\left(15 \times 1.65796798716230000^{2}-112 \tan ^{-1}\left(\frac{1.65796798716230000^{2}}{3}\right)+\right. \\
& \left.378 \tan ^{-1}\left(\frac{1.65796798716230000^{2}}{2}\right)\right) 3= \\
& \frac{3}{500}\left(-112 \tan ^{-1}\left(1, \frac{1.65796798716230000^{2}}{3}\right)+\right. \\
& \left.378 \tan ^{-1}\left(1, \frac{1.65796798716230000^{2}}{2}\right)+15 \times 1.65796798716230000^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{500}\left(15 \times 1.65796798716230000^{2}-112 \tan ^{-1}\left(\frac{1.65796798716230000^{2}}{3}\right)+\right. \\
& \left.378 \tan ^{-1}\left(\frac{1.65796798716230000^{2}}{2}\right)\right) 3= \\
& \frac{3}{500}\left(112 i \tanh ^{-1}\left(\frac{i 1.65796798716230000^{2}}{3}\right)-\right. \\
& \left.378 i \tanh ^{-1}\left(\frac{i 1.65796798716230000^{2}}{2}\right)+15 \times 1.65796798716230000^{2}\right)
\end{aligned}
$$

$\mathrm{sc}^{-1}(x \mid m)$ is the inverse of the Jacobi elliptic function sc

 $\tan ^{-1}(x, y)$ is the inverse tangent function $\tanh ^{-1}(x)$ is the inverse hyperbolic tangent function
Series representations

$$
\begin{aligned}
& \frac{1}{500}\left(15 \times 1.65796798716230000^{2}-112 \tan ^{-1}\left(\frac{1.65796798716230000^{2}}{3}\right)+\right. \\
& \left.378 \tan ^{-1}\left(\frac{1.65796798716230000^{2}}{2}\right)\right) 3= \\
& 0.247397206180950772+0.79800000000000000 i \log (2)- \\
& 1.1340000000000000 i \\
& \log (-1.00000000000000000(-1.37442892322750429+i) i)+ \\
& 0.3360000000000000 i \\
& \log (-1.00000000000000000(-0.91628594881833619+i) i)+ \\
& \sum_{k=1}^{\infty}-\frac{1}{k} 1.134000000000000 \times 0.500000000000000000^{k} i \\
& (1.000000000000000(-1.00000000000000000 \\
& (-1.37442892322750429+i) i)^{k}-0.296296296296296 \\
& \left.(-1.00000000000000000(-0.91628594881833619+i) i)^{k}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{500}\left(15 \times 1.65796798716230000^{2}-112 \tan ^{-1}\left(\frac{1.65796798716230000^{2}}{3}\right)+\right. \\
& \left.378 \tan ^{-1}\left(\frac{1.65796798716230000^{2}}{2}\right)\right) 3= \\
& 0.247397206180950772-0.79800000000000000 i \log (2)- \\
& 0.33600000000000000 i \\
& \log (-1.00000000000000000 i(0.91628594881833619+i))+ \\
& 1.1340000000000000 i \\
& \log (-1.00000000000000000 i(1.37442892322750429+i))+ \\
& \sum_{k=1}^{\infty}-\frac{1}{k} 0.336000000000000 \times 0.500000000000000000^{k} i \\
& (1.000000000000000(-1.00000000000000000 i \\
& (0.91628594881833619+i))^{k}-3.37500000000000 \\
& \left.(-1.00000000000000000 i(1.37442892322750429+i))^{k}\right)
\end{aligned}
$$

$$
\begin{array}{r}
\frac{1}{500}\left(15 \times 1.65796798716230000^{2}-112 \tan ^{-1}\left(\frac{1.65796798716230000^{2}}{3}\right)+\right. \\
\left.378 \tan ^{-1}\left(\frac{1.65796798716230000^{2}}{2}\right)\right) 3=0.247397206180950772+ \\
\sum_{k=0}^{\infty} \frac{1}{1+2 k}\left(-\frac{1}{5}\right)^{k} F_{1+2 k}\left(-1.23148831521184384 e^{1.21144077747140964 k}\right. \\
\left(\frac{1}{1+\sqrt{1.67166395200153489}}\right)^{1+2 k}+6.2344095957599595 \\
\left.e^{2.02237099368773840 k}\left(\frac{1}{1+\sqrt{2.51124389200345350}}\right)^{1+2 k}\right)
\end{array}
$$

$\log (x)$ is the natural logarithm F_{n} is the $n^{\text {th }}$ Fibonacci number

Integral representations

$$
\begin{gathered}
\frac{1}{500}\left(15 \times 1.65796798716230000^{2}-112 \tan ^{-1}\left(\frac{1.65796798716230000^{2}}{3}\right)+\right. \\
\left.378 \tan ^{-1}\left(\frac{1.65796798716230000^{2}}{2}\right)\right) 3=0.2473972061809508+ \\
\int_{0}^{1} \frac{1.5772010179756+0.9167443864912 t^{2}}{0.630512026686442+1.72043706099165 t^{2}+1.00000000000000 t^{4}} d t
\end{gathered}
$$

$$
\begin{aligned}
& \frac{1}{500}\left(15 \times 1.65796798716230000^{2}-112 \tan ^{-1}\left(\frac{1.65796798716230000^{2}}{3}\right)+\right. \\
& \left.378 \tan ^{-1}\left(\frac{1.65796798716230000^{2}}{2}\right)\right) 3= \\
& 0.2473972061809508+\int_{-i \infty+\gamma}^{i \infty 0+\gamma}-\frac{1}{\pi^{3 / 2}} 0.779301199469995 e^{-1.67046666438636529 s} \\
& \left(1.000000000000000 e^{0.6053725208075350 s}-0.1975308641975309\right. \\
& \left.e^{1.06092941230561179 s}\right) i \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)^{2} d s \text { for } 0<\gamma<\frac{1}{2}
\end{aligned}
$$

$$
\begin{gathered}
\frac{1}{500}\left(15 \times 1.65796798716230000^{2}-112 \tan ^{-1}\left(\frac{1.65796798716230000^{2}}{3}\right)+\right. \\
\left.378 \tan ^{-1}\left(\frac{1.65796798716230000^{2}}{2}\right)\right) 3=0.247397206180951+ \\
\int_{-i \infty+\gamma}^{i \infty+\gamma}-\frac{1}{i \pi \Gamma\left(\frac{3}{2}-s\right)} 0.1539360394014805 e^{-0.63607663256784778 s}
\end{gathered}
$$

$$
\left(-5.06250000000000+1.000000000000000 e^{0.81093021621632876 s}\right)
$$

$$
\Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s) d s \text { for } 0<\gamma<\frac{1}{2}
$$

Continued fraction representations

$$
\left.\begin{array}{l}
\frac{1}{500}\left(15 \times 1.65796798716230000^{2}-112 \tan ^{-1}\left(\frac{1.65796798716230000^{2}}{3}\right)+\right. \\
\left.378 \tan ^{-1}\left(\frac{1.65796798716230000^{2}}{2}\right)\right) 3= \\
0.247397206180950772-\frac{0.61574415760592192}{1+\mathrm{K}_{k=1}^{\infty} \frac{0.83957994000191861 k^{2}}{1+2 k}}+ \\
\frac{3.11720479787997973}{1+\mathrm{K}_{k=1}^{\infty} \frac{1.88905486500431688 k^{2}}{1+2 k}}= \\
0.247397206180950772-\frac{0.61574415760592192}{1+\frac{0.83957994000191861}{3.3583197600076745}}+ \\
\frac{7.5562194600172675}{7+\frac{13.4332790400306978}{9+\ldots}}
\end{array}\right)
$$

$$
\left.\begin{array}{l}
\frac{1}{500}\left(15 \times 1.65796798716230000^{2}-112 \tan ^{-1}\left(\frac{1.65796798716230000^{2}}{3}\right)+\right. \\
\frac{\left.378 \tan ^{-1}\left(\frac{1.65796798716230000^{2}}{2}\right)\right) 3=0.247397206180950772-}{0.61574415760592192}+ \\
\frac{1.00000000000000000+\mathrm{K}_{k=1}^{\infty} \frac{0.83957994000191861(1-2 k)^{2}}{1.8395994009199+0.3208401199961628 k}}{3.1172049787997973}+ \\
1.00000000000000000+\mathrm{K}_{k=1}^{\infty} \frac{1.88905486500431688(1-2 k)^{2}}{2.889054865004317-1.77810973008634 k}
\end{array}\right)
$$

$\frac{1}{500}\left(15 \times 1.65796798716230000^{2}-112 \tan ^{-1}\left(\frac{1.65796798716230000^{2}}{3}\right)+\right.$ $\left.378 \tan ^{-1}\left(\frac{1.65796798716230000^{2}}{2}\right)\right) 3=$
$2.74885784645500858+\frac{0.51696644289931184}{3+\mathrm{K}_{k=1}^{\infty} \frac{0.83957994000191861\left(1+(-1)^{1+k}+k\right)^{2}}{3+2 k}}-$
5.8885708886499740
$\overline{3+\mathrm{K}_{k=1}^{\infty} \frac{1.88905486500431688\left(1+(-1)^{1+k}+k\right)^{2}}{3+2 k}}=$
$2.74885784645500858+\frac{0.51696644289931184}{3+\frac{7.5562194600172675}{5+\frac{3.3583197600076745}{7+\frac{20.9899985000479653}{9+\frac{13.4332790400306978}{11+\ldots}}}}}-$
5.8885708886499740
$3+\frac{17.0014937850388519}{5+\frac{7.5562194600172675}{7+\frac{47.226371625107922}{9+\frac{30.224877840069070}{11+\ldots}}}}$

$$
\begin{aligned}
& \frac{1}{500}\left(15 \times 1.65796798716230000^{2}-112 \tan ^{-1}\left(\frac{1.65796798716230000^{2}}{3}\right)+\right. \\
& \left.378 \tan ^{-1}\left(\frac{1.65796798716230000^{2}}{2}\right)\right) 3=0.247397206180950772- \\
& 0.61574415760592192 \\
& 1.83957994000191861+\mathrm{K}_{k=1}^{\infty} \frac{1.67915988000383723\left(1-2\left\lfloor\frac{1+k}{2}\right\rfloor\right)\left\lfloor\frac{1+k}{2}\right\rfloor}{\left(1.41978997000095931+0.41978997000095931(-1)^{k}\right)(1+2 k)}+ \\
& 3.11720479787997973 \\
& 2.88905486500431688+\mathrm{K}_{k=1}^{\infty} \frac{\left.\left.3.7781097300086338\left(1-2\left|\frac{1+k}{2}\right|\right) \right\rvert\, \frac{1+k}{2}\right\rfloor}{\left(1.94452743250215844+0.94452743250215844(-1)^{k}\right)(1+2 k)} \\
& 0.247397206180950772-0.61574415760592192 /(1.83957994000191861+ \\
& 1.67915988000383723 / \text { (9.1978997000095931 - } \\
& 10.0749592800230234 \\
& \left.\left.\overline{7.0000000000000000-\frac{10.0749592800230234}{16.5562194600172675+\ldots}}\right) \mid\right) \\
& +3.11720479787997973 /(2.88905486500431688+ \\
& -(3.7781097300086338 /(3.0000000000000000- \\
& 3.7781097300086338 /(14.4452743250215844- \\
& 22.6686583800518025 \\
& \left.\left.\overline{7.0000000000000000-\frac{22.6686583800518025}{26.0014937850388519+\ldots}}\right) \mid\right)
\end{aligned}
$$

We note that the value 1.6579679871623 is very near to the 14th root of the following Ramanujan's class invariant $Q=\left(G_{505} / G_{101 / 5}\right)^{3}=1164.2696$ i.e. 1.65578...

Indeed, from:

$$
\begin{aligned}
G_{505}=P^{-1 / 4} Q^{1 / 6}= & (\sqrt{5}+2)^{1 / 2}\left(\frac{\sqrt{5}+1}{2}\right)^{1 / 4}(\sqrt{101}+10)^{1 / 4} \\
& \times((130 \sqrt{5}+29 \sqrt{101})+\sqrt{169440+7540 \sqrt{505}})^{1 / 6} .
\end{aligned}
$$

Thus, it remains to show that

$$
(130 \sqrt{5}+29 \sqrt{101})+\sqrt{169440+7540 \sqrt{505}}=\left(\sqrt{\frac{113+5 \sqrt{505}}{8}}+\sqrt{\frac{105+5 \sqrt{505}}{8}}\right)^{3},
$$

which is straightforward.

$$
\sqrt[14]{\left(\sqrt{\frac{113+5 \sqrt{505}}{8}}+\sqrt{\frac{105+5 \sqrt{505}}{8}}\right)^{3}}=1,65578 \ldots
$$

Now, for $\mathrm{a}=2$ and $\mathrm{b}=3$, from the previous expression containing the gamma functions, we obtain:
$(\operatorname{sqrt}(\pi) \Gamma(2+1 / 2) \Gamma(3+1) \Gamma(-2+3+1 / 2)) /(2 \Gamma(2) \Gamma(3+1 / 2) \Gamma(-2+3+1))$

Input

$\underline{\sqrt{\pi} \Gamma\left(2+\frac{1}{2}\right) \Gamma(3+1) \Gamma\left(-2+3+\frac{1}{2}\right)}$
$2 \Gamma(2) \Gamma\left(3+\frac{1}{2}\right) \Gamma(-2+3+1)$

Exact result

$\frac{3 \pi}{5}$

Decimal approximation

1.8849555921538759430775860299677017305183016396250634925849667553
1.8849555921....

Property

$\frac{3 \pi}{5}$ is a transcendental number
The study of this function provides the following representations:

Alternative representations

$\frac{\sqrt{\pi}\left(\Gamma\left(2+\frac{1}{2}\right) \Gamma(3+1) \Gamma\left(-2+3+\frac{1}{2}\right)\right)}{2 \Gamma(2) \Gamma\left(3+\frac{1}{2}\right) \Gamma(-2+3+1)}=\frac{\frac{1}{2}!\times \frac{3}{2}!\times 3!\sqrt{\pi}}{2(1!)^{2} \frac{5}{2}!}$

$$
\begin{aligned}
& \frac{\sqrt{\pi}\left(\Gamma\left(2+\frac{1}{2}\right) \Gamma(3+1) \Gamma\left(-2+3+\frac{1}{2}\right)\right)}{2 \Gamma(2) \Gamma\left(3+\frac{1}{2}\right) \Gamma(-2+3+1)}= \\
& \frac{e^{-\log (2)+\log (12)} e^{-\log \mathrm{G}(3 / 2)+\log (5 / 2)} e^{-\log \mathrm{G}(5 / 2)+\log \mathrm{G}(7 / 2)} \sqrt{\pi}}{2\left(e^{0}\right)^{2} e^{-\log \mathrm{G}(7 / 2)+\log \mathrm{G}(9 / 2)}}
\end{aligned}
$$

$\frac{\sqrt{\pi}\left(\Gamma\left(2+\frac{1}{2}\right) \Gamma(3+1) \Gamma\left(-2+3+\frac{1}{2}\right)\right)}{2 \Gamma(2) \Gamma\left(3+\frac{1}{2}\right) \Gamma(-2+3+1)}=\frac{\Gamma\left(\frac{3}{2}, 0\right) \Gamma\left(\frac{5}{2}, 0\right) \Gamma(4,0) \sqrt{\pi}}{2 \Gamma(2,0)^{2} \Gamma\left(\frac{7}{2}, 0\right)}$

Series representations

$\frac{\sqrt{\pi}\left(\Gamma\left(2+\frac{1}{2}\right) \Gamma(3+1) \Gamma\left(-2+3+\frac{1}{2}\right)\right)}{2 \Gamma(2) \Gamma\left(3+\frac{1}{2}\right) \Gamma(-2+3+1)}=\frac{12}{5} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k}$
$\frac{\sqrt{\pi}\left(\Gamma\left(2+\frac{1}{2}\right) \Gamma(3+1) \Gamma\left(-2+3+\frac{1}{2}\right)\right)}{2 \Gamma(2) \Gamma\left(3+\frac{1}{2}\right) \Gamma(-2+3+1)}=\sum_{k=0}^{\infty} \frac{12(-1)^{k}\left(956 \times 5^{-2 k}-5 \times 239^{-2 k}\right)}{5975(1+2 k)}$
$\frac{\sqrt{\pi}\left(\Gamma\left(2+\frac{1}{2}\right) \Gamma(3+1) \Gamma\left(-2+3+\frac{1}{2}\right)\right)}{2 \Gamma(2) \Gamma\left(3+\frac{1}{2}\right) \Gamma(-2+3+1)}=\frac{3}{5} \sum_{k=0}^{\infty}\left(-\frac{1}{4}\right)^{k}\left(\frac{1}{1+2 k}+\frac{2}{1+4 k}+\frac{1}{3+4 k}\right)$

Integral representations

$\frac{\sqrt{\pi}\left(\Gamma\left(2+\frac{1}{2}\right) \Gamma(3+1) \Gamma\left(-2+3+\frac{1}{2}\right)\right)}{2 \Gamma(2) \Gamma\left(3+\frac{1}{2}\right) \Gamma(-2+3+1)}=\frac{12}{5} \int_{0}^{1} \sqrt{1-t^{2}} d t$
$\frac{\sqrt{\pi}\left(\Gamma\left(2+\frac{1}{2}\right) \Gamma(3+1) \Gamma\left(-2+3+\frac{1}{2}\right)\right)}{2 \Gamma(2) \Gamma\left(3+\frac{1}{2}\right) \Gamma(-2+3+1)}=\frac{6}{5} \int_{0}^{1} \frac{1}{\sqrt{1-t^{2}}} d t$
$\frac{\sqrt{\pi}\left(\Gamma\left(2+\frac{1}{2}\right) \Gamma(3+1) \Gamma\left(-2+3+\frac{1}{2}\right)\right)}{2 \Gamma(2) \Gamma\left(3+\frac{1}{2}\right) \Gamma(-2+3+1)}=\frac{6}{5} \int_{0}^{\infty} \frac{1}{1+t^{2}} d t$

Now, we calculate the whole equation:
$1 / 2 * \operatorname{Pi}^{\wedge} 0.5(((\operatorname{gamma}(\mathrm{a}+1 / 2) \operatorname{gamma}(\mathrm{b}+1) \operatorname{gamma}(\mathrm{b}-\mathrm{a}+1 / 2)))) /(((\operatorname{gamma}(\mathrm{a})$ $\operatorname{gamma}(b+1 / 2) \operatorname{gamma}(b-a+1))))=$ integrate $\left(\left(1+(x /(b+1))^{\wedge} 2\right) /\left(1+(x / a)^{\wedge} 2\right) *\right.$ $\left.\left(1+(x /(b+2))^{\wedge} 2\right) /\left(1+(x /(a+1))^{\wedge} 2\right)\right) d x$

Input

$$
\frac{1}{2} \sqrt{\pi} \times \frac{\Gamma\left(a+\frac{1}{2}\right) \Gamma(b+1) \Gamma\left(b-a+\frac{1}{2}\right)}{\Gamma(a) \Gamma\left(b+\frac{1}{2}\right) \Gamma(b-a+1)}=\int \frac{1+\left(\frac{x}{b+1}\right)^{2}}{1+\left(\frac{x}{a}\right)^{2}} \times \frac{1+\left(\frac{x}{b+2}\right)^{2}}{1+\left(\frac{x}{a+1}\right)^{2}} d x
$$

$\Gamma(x)$ is the gamma function

Result

$$
\begin{gathered}
\frac{\sqrt{\pi} \Gamma\left(a+\frac{1}{2}\right) \Gamma(b+1) \Gamma\left(-a+b+\frac{1}{2}\right)}{2 \Gamma(a) \Gamma\left(b+\frac{1}{2}\right) \Gamma(-a+b+1)}= \\
\left(a (a + 1) \left((a+1)\left(a^{4}-a^{2}\left(2 b^{2}+6 b+5\right)+\left(b^{2}+3 b+2\right)^{2}\right) \tan ^{-1}\left(\frac{x}{a}\right)+\right.\right. \\
a\left(\left(2 a^{2}+3 a+1\right) x-\left(a^{4}+4 a^{3}+a^{2}\left(-2 b^{2}-6 b+1\right)-\right.\right. \\
\left.2 a\left(2 b^{2}+6 b+3\right)+b\left(b^{3}+6 b^{2}+11 b+6\right)\right) \\
\left.\left.\left.\tan ^{-1}\left(\frac{x}{a+1}\right)\right)\right)\right) /\left((2 a+1)\left(b^{2}+3 b+2\right)^{2}\right)
\end{gathered}
$$

From:
$\left(a(a+1)\left((a+1)\left(a^{\wedge} 4-a^{\wedge} 2\left(2 b^{\wedge} 2+6 b+5\right)+\left(b^{\wedge} 2+3 b+2\right)^{\wedge} 2\right) \tan (-1)(x / a)+a\right.\right.$ $\left(\left(2 a^{\wedge} 2+3 a+1\right) x-\left(a^{\wedge} 4+4 a^{\wedge} 3+a^{\wedge} 2\left(-2 b^{\wedge} 2-6 b+1\right)-2 a\left(2 b^{\wedge} 2+6 b+3\right)+b\right.\right.$ $\left.\left.\left.\left.\left(b^{\wedge} 3+6 b^{\wedge} 2+11 b+6\right)\right) \tan \wedge(-1)(x /(a+1))\right)\right)\right) /\left((2 a+1)\left(b^{\wedge} 2+3 b+2\right)^{\wedge} 2\right)$

For $\mathrm{a}=2$ and $\mathrm{b}=3$, simplifying, we obtain:
(2 (3) ((3) (16-4 (2*9 +6*3+5)+(9+9+2)^2) $\tan ^{\wedge}(-1)(\mathrm{x} / 2)+2((8+3 * 2+1) \mathrm{x}-$ $(16+32+4(-2 * 9-6 * 3+1)-2 * 2(2 * 9+6 * 3+3)+3(3 \wedge 3+6 * 9+11 * 3+6))$ $\left.\left.\left.\tan ^{\wedge}(-1)(\mathrm{x} /(2+1))\right)\right)\right) /\left((4+1)(9+9+2)^{\wedge} 2\right)$

Input

$$
\begin{aligned}
& \frac{1}{(4+1)(9+9+2)^{2}} \\
& 2 \times 3\left(3\left(16-4(2 \times 9+6 \times 3+5)+(9+9+2)^{2}\right) \tan ^{-1}\left(\frac{x}{2}\right)+2((8+3 \times 2+1) x-\right. \\
& \quad(16+32+4(-2 \times 9-6 \times 3+1)-2 \times 2(2 \times 9+6 \times 3+3)+ \\
& \left.\left.\left.\quad 3\left(3^{3}+6 \times 9+11 \times 3+6\right)\right) \tan ^{-1}\left(\frac{x}{2+1}\right)\right)\right)
\end{aligned}
$$

$\tan ^{-1}(x)$ is the inverse tangent function

Result

$$
\frac{3\left(2\left(15 x-112 \tan ^{-1}\left(\frac{x}{3}\right)\right)+756 \tan ^{-1}\left(\frac{x}{2}\right)\right)}{1000}
$$

The study of this function provides the following representations:

Plots

 (figures that can be related to the open strings)

Alternate forms
$\frac{3}{500}\left(15 x-112 \tan ^{-1}\left(\frac{x}{3}\right)+378 \tan ^{-1}\left(\frac{x}{2}\right)\right)$
$\frac{3}{500}\left(15 x-14\left(8 \tan ^{-1}\left(\frac{x}{3}\right)-27 \tan ^{-1}\left(\frac{x}{2}\right)\right)\right)$

$$
\begin{aligned}
& \frac{9 x}{100}-\frac{42}{125} i \log \left(1-\frac{i x}{3}\right)+\frac{42}{125} i \log \left(1+\frac{i x}{3}\right)+ \\
& \frac{567}{500} i \log \left(1-\frac{i x}{2}\right)-\frac{567}{500} i \log \left(1+\frac{i x}{2}\right)
\end{aligned}
$$

$\log (x)$ is the natural logarithm

Expanded form

$$
\frac{9 x}{100}-\frac{84}{125} \tan ^{-1}\left(\frac{x}{3}\right)+\frac{567}{250} \tan ^{-1}\left(\frac{x}{2}\right)
$$

Integer root

$$
x=0
$$

Properties as a real function

Domain
\mathbf{R} (all real numbers)

Range

R (all real numbers)

Bijectivity

Parity

odd
\mathbb{R} is the set of real numbers

Series expansion at $\mathbf{x}=\mathbf{0}$

$$
x-\frac{931 x^{3}}{10800}+\frac{8827 x^{5}}{648000}+O\left(x^{6}\right)
$$

(Taylor series)

Series expansion at $\mathbf{x}=-2 \mathbf{i}$

$$
\begin{aligned}
& \frac{1}{250}\left(\left(\frac{3}{4}\left(378 i \log (x+2 i)+4 i\left(56 \tanh ^{-1}\left(\frac{2}{3}\right)-3(5+63 \log (2))\right)+189 \pi\right)-\right.\right. \\
& \frac{297}{40}(x+2 i)-\frac{78687 i(x+2 i)^{2}}{1600}+\frac{427959(x+2 i)^{3}}{16000}+ \\
& \frac{27191367 i(x+2 i)^{4}}{1280000}-\frac{53000157(x+2 i)^{5}}{32000000}+ \\
&\left.\left.O\left((x+2 i)^{6}\right)\right)-567 \pi\left\lfloor\frac{3}{4}-\frac{\arg (x+2 i)}{2 \pi}\right\rfloor\right)
\end{aligned}
$$

Series expansion at $\mathbf{x = 2} \mathbf{i}$

$$
\begin{aligned}
& \frac{1}{250}\left(\left(\frac{3}{4}\left(-378 i \log (x-2 i)+756 i \log (2)-224 i \tanh ^{-1}\left(\frac{2}{3}\right)+189 \pi+60 i\right)-\right.\right. \\
& \\
& \quad \frac{297}{40}(x-2 i)+\frac{78687 i(x-2 i)^{2}}{1600}+\frac{427959(x-2 i)^{3}}{16000}- \\
& \\
& \frac{27191367 i(x-2 i)^{4}}{1280000}-\frac{536000157(x-2 i)^{5}}{32000000}+ \\
& \left.\left.O\left((x-2 i)^{6}\right)\right)+567 \pi\left\lfloor\frac{\pi-2 \arg (x-2 i)}{4 \pi}\right\rfloor\right)
\end{aligned}
$$

Series expansion at $\mathbf{x}=\mathbf{- 3 i}$

$$
\begin{aligned}
& \frac{1}{250} \\
& \left(\left(\left(-84 i \log (x+3 i)-\frac{3}{2} i\left(45+378 \tanh ^{-1}\left(\frac{3}{2}\right)-56 \log (2)-56 \log (3)\right)+525 \pi\right)-\right.\right. \\
& \quad \frac{2183}{10}(x+3 i)+\frac{20587}{150} i(x+3 i)^{2}+\frac{633647(x+3 i)^{3}}{6750}- \\
& \left.\quad \frac{19110007 i(x+3 i)^{4}}{270000}-\frac{573925667(x+3 i)^{5}}{10125000}+O\left((x+3 i)^{6}\right)\right)- \\
& \left.399 \pi\left\lfloor\frac{3}{4}-\frac{\arg (x+3 i)}{2 \pi}\right\rfloor-567 \pi\left\lfloor\frac{\arg (x+3 i)}{2 \pi}+\frac{3}{4}\right\rfloor\right)
\end{aligned}
$$

Series expansion at $\mathbf{x}=\mathbf{3} \mathbf{i}$

$$
\begin{aligned}
& \frac{1}{250}\left(\left(\left(84 i \log (x-3 i)+\frac{3}{2} i\left(45+378 \tanh ^{-1}\left(\frac{3}{2}\right)-56 \log (2)-56 \log (3)\right)-42 \pi\right)-\right.\right. \\
& \frac{2183}{10}(x-3 i)-\frac{20587}{150} i(x-3 i)^{2}+\frac{633647(x-3 i)^{3}}{6750}+ \\
& \left.\frac{19110007 i(x-3 i)^{4}}{270000}-\frac{573925667(x-3 i)^{5}}{10125000}+O\left((x-3 i)^{6}\right)\right)+ \\
& \left.399 \pi\left\lfloor\frac{\pi-2 \arg (x-3 i)}{4 \pi}\right\rfloor+567 \pi\left\lfloor\frac{2 \arg (x-3 i)+\pi}{4 \pi}\right\rfloor\right)
\end{aligned}
$$

Series expansion at $\mathbf{x}=\infty$

$$
\frac{9 x}{100}+\frac{399 \pi}{500}-\frac{63}{25 x}+\frac{2268}{125 x^{5}}+O\left(\left(\frac{1}{x}\right)^{6}\right)
$$

(Laurent series)

Derivative

$$
\begin{gathered}
\frac{d}{d x}\left(\frac{1}{(4+1)(9+9+2)^{2}} 2 \times 3\left(3\left(16-4(2 \times 9+6 \times 3+5)+(9+9+2)^{2}\right) \tan ^{-1}\left(\frac{x}{2}\right)+\right.\right. \\
2((8+3 \times 2+1) x-(16+32+4(-2 \times 9-6 \times 3+1)- \\
\left.2 \times 2(2 \times 9+6 \times 3+3)+3\left(3^{3}+6 \times 9+11 \times 3+6\right)\right) \\
\left.\left.\left.\tan ^{-1}\left(\frac{x}{2+1}\right)\right)\right)\right)=\frac{9\left(x^{4}+41 x^{2}+400\right)}{100\left(x^{2}+4\right)\left(x^{2}+9\right)}
\end{gathered}
$$

Indefinite integral

$$
\begin{aligned}
& \int \frac{3\left(2\left(15 x-112 \tan ^{-1}\left(\frac{x}{3}\right)\right)+756 \tan ^{-1}\left(\frac{x}{2}\right)\right)}{1000} d x= \\
& \frac{3\left(15 x^{2}-756 \log \left(x^{2}+4\right)+336 \log \left(x^{2}+9\right)-224 x \tan ^{-1}\left(\frac{x}{3}\right)+756 x \tan ^{-1}\left(\frac{x}{2}\right)\right)}{1000}+
\end{aligned}
$$

constant

From the above solution

$$
\frac{3\left(2\left(15 x-112 \tan ^{-1}\left(\frac{x}{3}\right)\right)+756 \tan ^{-1}\left(\frac{x}{2}\right)\right)}{1000}
$$

for $\mathrm{x}=1.6579679871623^{2}$, we obtain:
(3 (2 (15 (1.6579679871623^2) - $\left.112 \tan ^{\wedge}(-1)\left(\left(1.6579679871623^{\wedge} 2\right) / 3\right)\right)+756 \tan ^{\wedge}(-$ 1)((1.6579679871623^2)/2)))/1000

Input interpretation

$$
\begin{aligned}
& \frac{1}{1000} 3\left(2\left(15 \times 1.6579679871623^{2}-112 \tan ^{-1}\left(\frac{1.6579679871623^{2}}{3}\right)\right)+\right. \\
& \left.\quad 756 \tan ^{-1}\left(\frac{1.6579679871623^{2}}{2}\right)\right)
\end{aligned}
$$

$\tan ^{-1}(x)$ is the inverse tangent function

Result

1.8849555921538...
(result in radians)
1.8849555921538....

The study of this function provides the following representations:

Alternative representations

$$
\begin{aligned}
& \frac{1}{1000} 3\left(2\left(15 \times 1.65796798716230000^{2}-112 \tan ^{-1}\left(\frac{1.65796798716230000^{2}}{3}\right)\right)+\right. \\
& \left.756 \tan ^{-1}\left(\frac{1.65796798716230000^{2}}{2}\right)\right)= \\
& \frac{1}{1000} \times 3\left(756 \mathrm{sc}^{-1}\left(\left.\frac{1.65796798716230000^{2}}{2} \right\rvert\, 0\right)+\right. \\
& \left.2\left(-112 \mathrm{sc}^{-1}\left(\left.\frac{1.65796798716230000^{2}}{3} \right\rvert\, 0\right)+15 \times 1.65796798716230000^{2}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{1000} 3\left(2\left(15 \times 1.65796798716230000^{2}-112 \tan ^{-1}\left(\frac{1.65796798716230000^{2}}{3}\right)\right)+\right. \\
& \left.756 \tan ^{-1}\left(\frac{1.65796798716230000^{2}}{2}\right)\right)= \\
& \frac{1}{1000} 3\left(756 \tan ^{-1}\left(1, \frac{1.65796798716230000^{2}}{2}\right)+\right. \\
& \left.2\left(-112 \tan ^{-1}\left(1, \frac{1.65796798716230000^{2}}{3}\right)+15 \times 1.65796798716230000^{2}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{1000} 3\left(2\left(15 \times 1.65796798716230000^{2}-112 \tan ^{-1}\left(\frac{1.65796798716230000^{2}}{3}\right)\right)+\right. \\
& \left.756 \tan ^{-1}\left(\frac{1.65796798716230000^{2}}{2}\right)\right)= \\
& \frac{1}{1000} 3\left(-756 i \tanh ^{-1}\left(\frac{i 1.65796798716230000^{2}}{2}\right)+\right. \\
& \left.2\left(112 i \tanh ^{-1}\left(\frac{i 1.65796798716230000^{2}}{3}\right)+15 \times 1.65796798716230000^{2}\right)\right)
\end{aligned}
$$

Series representations

$$
\begin{aligned}
& \frac{1}{1000} 3\left(2\left(15 \times 1.65796798716230000^{2}-112 \tan ^{-1}\left(\frac{1.65796798716230000^{2}}{3}\right)\right)+\right. \\
& \left.756 \tan ^{-1}\left(\frac{1.65796798716230000^{2}}{2}\right)\right)= \\
& 0.247397206180950772-0.79800000000000000 i \log (2)- \\
& 0.3360000000000000 i \\
& \log (-1.00000000000000000 i(0.91628594881833619+i))+ \\
& 1.13400000000000000 i \\
& \log (-1.0000000000000000 i(1.37442892322750429+i))+ \\
& \sum_{k=1}^{\infty}-\frac{1}{k} 0.336000000000000 \times 0.500000000000000000^{k} i \\
& (1.000000000000000(-1.00000000000000000 i \\
& (0.91628594881833619+i))^{k}-3.37500000000000 \\
& \left.(-1.0000000000000000 i(1.37442892322750429+i))^{k}\right)
\end{aligned}
$$

$$
\begin{gathered}
\frac{1}{1000} 3\left(2\left(15 \times 1.65796798716230000^{2}-112 \tan ^{-1}\left(\frac{1.65796798716230000^{2}}{3}\right)\right)+\right. \\
\left.756 \tan ^{-1}\left(\frac{1.65796798716230000^{2}}{2}\right)\right)=0.247397206180950772+ \\
\sum_{k=0}^{\infty} \frac{1}{1+2 k}\left(-\frac{1}{5}\right)^{k} F_{1+2 k}\left(-1.23148831521184384 e^{1.21144077747140964 k}\right. \\
\left(\frac{1}{1+\sqrt{1.67166395200153489}}\right)^{1+2 k}+6.2344095957599595 \\
\left.e^{2.02237099368773840 k}\left(\frac{1}{1+\sqrt{2.51124389200345350}}\right)^{1+2 k}\right)
\end{gathered}
$$

$$
\begin{aligned}
& \frac{1}{1000} 3\left(2\left(15 \times 1.65796798716230000^{2}-112 \tan ^{-1}\left(\frac{1.65796798716230000^{2}}{3}\right)\right)+\right. \\
& \left.756 \tan ^{-1}\left(\frac{1.65796798716230000^{2}}{2}\right)\right)= \\
& 0.247397206180950772+1.59600000000000000 \tan ^{-1}(x)- \\
& 2.26800000000000000 \pi\left[\left.\frac{\arg (i(-1.37442892322750429+x))}{2 \pi} \right\rvert\,+\right. \\
& 0.67200000000000000 \pi\left|\frac{\arg (i(-0.91628594881833619+x))}{2 \pi}\right|+ \\
& \sum_{k=1}^{\infty}-\frac{1}{k} 0.336000000000000 i \\
& \quad\left(1.000000000000000(0.91628594881833619-x)^{k}-\right. \\
& \left.3.37500000000000(1.37442892322750429-x)^{k}\right) \\
& \left((-i-x)^{k}-1.000000000000000(i-x)^{k}\right)(-i-x)^{-k} \\
& (i-x)^{-k} \text { for }(i x \in \mathbb{R} \text { and } i x>1)
\end{aligned}
$$

$\log (x)$ is the natural logarithm
F_{n} is the $n^{\text {th }}$ Fibonacci number

Integral representations

$$
\begin{array}{r}
\frac{1}{1000} 3\left(2\left(15 \times 1.65796798716230000^{2}-112 \tan ^{-1}\left(\frac{1.65796798716230000^{2}}{3}\right)\right)+\right. \\
\left.756 \tan ^{-1}\left(\frac{1.65796798716230000^{2}}{2}\right)\right)=0.2473972061809508+ \\
\int_{0}^{1} \frac{1.5772010179756+0.9167443864912 t^{2}}{0.630512026686442+1.72043706099165 t^{2}+1.00000000000000 t^{4}} d t
\end{array}
$$

$$
\frac{1}{1000} 3\left(2\left(15 \times 1.65796798716230000^{2}-112 \tan ^{-1}\left(\frac{1.65796798716230000^{2}}{3}\right)\right)+\right.
$$

$$
\left.756 \tan ^{-1}\left(\frac{1.65796798716230000^{2}}{2}\right)\right)=
$$

$$
0.247397206180951+\int_{-i \infty+\gamma}^{i \infty+\gamma}-\frac{1}{\pi^{3 / 2}} 0.77930119946999 e^{-1.67046666438636529 s}
$$

$$
\left(1.00000000000000 e^{0.60953725208075350 s}-0.197530864197531\right.
$$

$$
\left.e^{1.06092941230561179 s}\right) i \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)^{2} d s \text { for } 0<\gamma<\frac{1}{2}
$$

$$
\begin{gathered}
\frac{1}{1000} 3\left(2\left(15 \times 1.65796798716230000^{2}-112 \tan ^{-1}\left(\frac{1.65796798716230000^{2}}{3}\right)\right)+\right. \\
\left.756 \tan ^{-1}\left(\frac{1.65796798716230000^{2}}{2}\right)\right)=0.247397206180951+ \\
\int_{-i \infty+\gamma}^{i \infty+\gamma}-\frac{1}{i \pi \Gamma\left(\frac{3}{2}-s\right)} 0.153936039401480 e^{-0.63607663256784778 s} \\
\left(-5.06250000000000+1.00000000000000 e^{0.81093021621632876 s}\right) \\
\Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s) d s \text { for } 0<\gamma<\frac{1}{2}
\end{gathered}
$$

Continued fraction representations

$$
\begin{aligned}
& \frac{1}{1000} 3\left(2\left(15 \times 1.65796798716230000^{2}-112 \tan ^{-1}\left(\frac{1.65796798716230000^{2}}{3}\right)\right)+\right. \\
& \left.756 \tan ^{-1}\left(\frac{1.65796798716230000^{2}}{2}\right)\right)= \\
& 0.247397206180950772-\frac{0.61574415760592192}{1+\mathrm{K}_{k=1}^{\infty} \frac{0.83957994000191861 k^{2}}{1+2 k}}+ \\
& \frac{3.11720479787997973}{1+\mathrm{K}_{k=1}^{\infty} \frac{1.88905486500431688 k^{2}}{1+2 k}=} \\
& 0.247397206180950772-\frac{0.61574415760592192}{1+\frac{0.83957994000191861}{3.3583197600076745}}+ \\
& \frac{3+\frac{7.5562194600172675}{7}}{1+\frac{13.4332790400306978}{9+\ldots}} \\
& 1+\frac{3.11720479787997973}{3+\frac{1.88905486500431688}{7.5562194600172675}} 5+\frac{17.0014937850388519}{7+\frac{30.224877840069070}{9+\ldots}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{1000} 3\left(2\left(15 \times 1.65796798716230000^{2}-112 \tan ^{-1}\left(\frac{1.65796798716230000^{2}}{3}\right)\right)+\right. \\
& \left.756 \tan ^{-1}\left(\frac{1.65796798716230000^{2}}{2}\right)\right)=0.247397206180950772 \text { - } \\
& 0.61574415760592192 \\
& 1.00000000000000000+\mathrm{K}_{k=1}^{\infty} \frac{0.83957994000191861(1-2 k)^{2}}{1.839579940001919+0.3208401199961628 k} \\
& 3.11720479787997973 \\
& 1.00000000000000000+\mathrm{K}_{k=1}^{\infty} \frac{1.88905486500431688(1-2 k)^{2}}{2.889054865004317-1.778109730008634 k} \\
& 0.247397206180950772-0.61574415760592192 /
\end{aligned}
$$

$$
\frac{1}{1000} 3\left(2\left(15 \times 1.65796798716230000^{2}-112 \tan ^{-1}\left(\frac{1.65796798716230000^{2}}{3}\right)\right)+\right.
$$

$\left.756 \tan ^{-1}\left(\frac{1.65796798716230000^{2}}{2}\right)\right)=$
$2.74885784645500858+\frac{0.51696644289931184}{3+\mathrm{K}_{k=1}^{\infty} \frac{0.83957994000191861\left(1+(-1)^{1+k}+k\right)^{2}}{3+2 k}}-$
5.8885708886499740

$2.74885784645500858+\frac{0.51696644289931184}{3+\frac{7.5562194600172675}{5+\frac{3.3583197600076745}{7+\frac{20.989495000479653}{9+\frac{13.4332790400306978}{11+\ldots}}}}}-$
5.8885708886499740
$3+\frac{17.0014937850388519}{5+\frac{7.5562194600172675}{7+\frac{47.22631625107922}{9+\frac{3.224877840069070}{11+\ldots}}}}$

$$
\begin{aligned}
& \frac{1}{1000} 3\left(2\left(15 \times 1.65796798716230000^{2}-112 \tan ^{-1}\left(\frac{1.65796798716230000^{2}}{3}\right)\right)+\right. \\
& \left.756 \tan ^{-1}\left(\frac{1.65796798716230000^{2}}{2}\right)\right)=0.247397206180950772- \\
& 0.61574415760592192 \\
& 1.83957994000191861+\mathrm{K}_{k=1}^{\infty} \frac{1.67915988000383723\left(1-2\left\lfloor\frac{1+\mathrm{k}}{2}\right)\right)\left\lfloor\frac{1+\mathrm{k}}{2}\right\rfloor}{\left(1.41978997000095931+0.41978997000095931(-1)^{k}\right)(1+2 k)} \\
& 3.11720479787997973 \\
& 2.88905486500431688+\mathrm{K}_{k=1}^{\infty} \frac{\left.3.7781097300086338\left(1-2 \left\lvert\, \frac{1+k}{2}\right.\right\rfloor\right)\left\lfloor\frac{1+k}{2}\right\rfloor}{\left(1.94452743250215844+0.94452743250215844(-1)^{k}\right)(1+2 k)} \\
& 0.247397206180950772-0.61574415760592192 /(1.83957994000191861+ \\
& -(1.67915988000383723 /(3.0000000000000000- \\
& 1.67915988000383723 \text { / } 9.1978997000095931 \text { - } \\
& 10.0749592800230234 \\
& \left.\left.\overline{7.0000000000000000-\frac{10.0749592800230234}{16.5562194600172675+\ldots}}\right) \mid\right) \\
& +3.11720479787997973 /(2.88905486500431688+ \\
& -(3.7781097300086338 /(3.0000000000000000- \\
& 3.7781097300086338 /(14.4452743250215844 \text { - } \\
& 22.6686583800518025 \\
& \left.\left.\overline{7.0000000000000000-\frac{22.6686583800518025}{26.0014937850388519+\ldots}}\right) \mid\right)
\end{aligned}
$$

From which:
$\left(\left(\left((3)(2)\left(15.6579679871623^{\wedge} 2\right)-112 \tan ^{\wedge}(-1)\left(\left(1.6579679871623^{\wedge} 2\right) / 3\right)\right)+756\right.\right.$ $\left.\left.\left.\left.\left.\tan ^{\wedge}(-1)\left(\left(1.6579679871623^{\wedge} 2\right) / 2\right)\right)\right) / 1000\right)\right)\right)^{\wedge} 12-233-55+5$

Input interpretation

$$
\begin{gathered}
\left(\frac { 1 } { 1 0 0 0 } 3 \left(2\left(15 \times 1.6579679871623^{2}-112 \tan ^{-1}\left(\frac{1.6579679871623^{2}}{3}\right)\right)+\right.\right. \\
\left.\left.756 \tan ^{-1}\left(\frac{1.6579679871623^{2}}{2}\right)\right)\right)^{12}-233-55+5
\end{gathered}
$$

$\tan ^{-1}(x)$ is the inverse tangent function

Result

1728.932828049...
(result in radians)
$1728.932828049 \ldots \approx 1729$
This result is very near to the mass of candidate glueball $\mathbf{f}_{\mathbf{0}}(\mathbf{1 7 1 0})$ scalar meson. Furthermore, 1728 occurs in the algebraic formula for the j-invariant of an elliptic curve. $\left(1728=8^{2} * 3^{3}\right)$ The number 1728 is one less than the Hardy-Ramanujan number 1729 (taxicab number)

The study of this function provides the following representations:

Alternative representations

$$
\begin{gathered}
\left(\frac { 1 } { 1 0 0 0 } 3 \left(2\left(15 \times 1.65796798716230000^{2}-112 \tan ^{-1}\left(\frac{1.65796798716230000^{2}}{3}\right)\right)+\right.\right. \\
\left.\left.756 \tan ^{-1}\left(\frac{1.65796798716230000^{2}}{2}\right)\right)\right)^{12}-233-55+5= \\
-283+\left(\frac{1}{1000} \times 3\left(756 \mathrm{sc}^{-1}\left(\left.\frac{1.65796798716230000^{2}}{2} \right\rvert\, 0\right)+\right.\right. \\
2\left(-112 \mathrm{sc}^{-1}\left(\left.\frac{1.65796798716230000^{2}}{3} \right\rvert\, 0\right)+\right. \\
\left.\left.\left.15 \times 1.65796798716230000^{2}\right)\right)\right)^{12}
\end{gathered}
$$

$$
\begin{gathered}
\left(\frac { 1 } { 1 0 0 0 } 3 \left(2\left(15 \times 1.65796798716230000^{2}-112 \tan ^{-1}\left(\frac{1.65796798716230000^{2}}{3}\right)\right)+\right.\right. \\
\left.\left.756 \tan ^{-1}\left(\frac{1.65796798716230000^{2}}{2}\right)\right)\right)^{12}-233-55+5= \\
-283+\left(\frac { 1 } { 1 0 0 0 } 3 \left(756 \tan ^{-1}\left(1, \frac{1.65796798716230000^{2}}{2}\right)+\right.\right. \\
2\left(-112 \tan ^{-1}\left(1, \frac{1.65796798716230000^{2}}{3}\right)+\right. \\
\left.\left.\left.15 \times 1.65796798716230000^{2}\right)\right)\right)^{12}
\end{gathered}
$$

$$
\begin{gathered}
\left(\frac { 1 } { 1 0 0 0 } 3 \left(2\left(15 \times 1.65796798716230000^{2}-112 \tan ^{-1}\left(\frac{1.65796798716230000^{2}}{3}\right)\right)+\right.\right. \\
\left.\left.756 \tan ^{-1}\left(\frac{1.65796798716230000^{2}}{2}\right)\right)\right)^{12}-233-55+5= \\
-283+\left(\frac { 1 } { 1 0 0 0 } 3 \left(-756 i \tanh ^{-1}\left(\frac{i 1.65796798716230000^{2}}{2}\right)+\right.\right. \\
2\left(112 i \tanh ^{-1}\left(\frac{i 1.65796798716230000^{2}}{3}\right)+\right. \\
\left.\left.\left.15 \times 1.65796798716230000^{2}\right)\right)\right)^{12}
\end{gathered}
$$

$$
\mathrm{sc}^{-1}(x \mid m) \text { is the inverse of the Jacobi elliptic function sc }
$$ $\tan ^{-1}(x, y)$ is the inverse tangent function $\tanh ^{-1}(x)$ is the inverse hyperbolic tangent function i is the imaginary unit

Series representations

$$
\begin{aligned}
& \left(\frac { 1 } { 1 0 0 0 } 3 \left(2\left(15 \times 1.65796798716230000^{2}-112 \tan ^{-1}\left(\frac{1.65796798716230000^{2}}{3}\right)\right)+\right.\right. \\
& \left.\left.756 \tan ^{-1}\left(\frac{1.65796798716230000^{2}}{2}\right)\right)\right)^{12}- \\
& 233-55+5=-283+(531441(2(41.2328676968251287- \\
& 56 i(-\log (2)+\log (-i(0.91628594881833619+i))+ \\
& \left.\left.\sum_{k=1}^{\infty} \frac{2^{-k}(-i)^{k}(0.91628594881833619+i)^{k}}{k}\right)\right)+ \\
& 378 i(-\log (2)+\log (-i(1.37442892322750429+i))+ \\
& \left.\left.\left.\sum_{k=1}^{\infty} \frac{2^{-k}(-i)^{k}(1.37442892322750429+i)^{k}}{k}\right)\right)^{12}\right) /
\end{aligned}
$$

1000000000000000000000000000000000000

$$
\begin{gathered}
\left(\frac { 1 } { 1 0 0 0 } 3 \left(2\left(15 \times 1.65796798716230000^{2}-112 \tan ^{-1}\left(\frac{1.65796798716230000^{2}}{3}\right)\right)+\right.\right. \\
\left.\left.756 \tan ^{-1}\left(\frac{1.65796798716230000^{2}}{2}\right)\right)\right)^{12}- \\
233-55+5=-283+(531441(2(41.2328676968251287- \\
112 \sum_{k=0}^{\infty} \frac{1}{1+2 k}\left(-\frac{1}{5}\right)^{k} 1.83257189763667239^{1+2 k} \\
756 \sum_{k=0}^{\infty} \frac{1}{1+2 k}\left(-\frac{1}{5}\right)^{k} 2.74885784645500858^{1+2 k} \\
\left.F_{1+2 k}\left(\frac{1}{1+\sqrt{1.67166395200153489}}\right)^{1+2 k}\right)+ \\
\left.\left.F_{1+2 k}\left(\frac{1}{1+\sqrt{2.51124389200345350}}\right)^{1+2 k}\right)^{12}\right) /
\end{gathered}
$$

1000000000000000000000000000000000000

$$
\begin{gathered}
\left(\frac { 1 } { 1 0 0 0 } 3 \left(2\left(15 \times 1.65796798716230000^{2}-112 \tan ^{-1}\left(\frac{1.65796798716230000^{2}}{3}\right)\right)+\right.\right. \\
\left.\left.756 \tan ^{-1}\left(\frac{1.65796798716230000^{2}}{2}\right)\right)\right)^{12}- \\
233-55+5=-283+(531441(2(41.2328676968251287- \\
112\left(\tan ^{-1}(x)+\pi \left\lvert\, \frac{\arg (i(0.91628594881833619-x))}{2 \pi}\right.\right)+ \\
\frac{1}{2} i \sum_{k=1}^{\infty} \frac{1}{k}\left(-(-i-x)^{-k}+(i-x)^{-k}\right) \\
756\left(\tan ^{-1}(x)+\pi\left|\frac{\arg (i(1.37442892322750429-x))}{2 \pi}\right|+\right. \\
\frac{1}{2} i \sum_{k=1}^{\infty} \frac{1}{k}\left(-(-i-x)^{-k}+(i-x)^{-k}\right) \\
\left.\left.2.91628594881833619-x)^{k}\right)\right)+ \\
\left.\left.\left.(1.37442892322750429-x)^{k}\right)\right)^{12}\right) /
\end{gathered}
$$

1000000000000000000000000000000000000
for ($i x \in \mathbb{R}$ and $i x<-1$)
$\log (x)$ is the natural logarithm
F_{n} is the $n^{\text {th }}$ Fibonacci number

Integral representations

$$
\begin{gathered}
\left(\frac { 1 } { 1 0 0 0 } 3 \left(2\left(15 \times 1.65796798716230000^{2}-112 \tan ^{-1}\left(\frac{1.65796798716230000^{2}}{3}\right)\right)+\right.\right. \\
\left.\left.\left.756 \tan ^{-1}\left(\frac{1.65796798716230000^{2}}{2}\right)\right)\right)\right)^{12}- \\
233-55+5=-283+0.00297032244892597 \\
\left(0.401785714285714+\int_{0}^{1}\left(\left(2.56145510841367+1.48883976431969 t^{2}\right) /\right.\right. \\
\left(0.630512026686442+1.72043706099165 t^{2}+\right. \\
\left.\left.\left.1.000000000000000 t^{4}\right)\right) d t\right)^{12}
\end{gathered}
$$

$$
\begin{gathered}
\left(\frac { 1 } { 1 0 0 0 } 3 \left(2\left(15 \times 1.65796798716230000^{2}-112 \tan ^{-1}\left(\frac{1.65796798716230000^{2}}{3}\right)\right)+\right.\right. \\
\left.\left.756 \tan ^{-1}\left(\frac{1.65796798716230000^{2}}{2}\right)\right)\right)^{12}-233-55+5= \\
-283+\left(5 3 1 4 4 1 \left(2 \left(41.2328676968251287+\frac{25.6560065669134134 i}{\pi^{3 / 2}}\right.\right.\right. \\
\int_{-i \infty+\gamma}^{i \infty+\gamma} 1.83957994000191861^{-s} \\
\left.\Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)^{2} d s\right)- \\
\frac{259.767066489998311 i}{\pi^{3 / 2}} \int_{-i \infty 0+\gamma}^{i \infty} 2.88905486500431688^{-s} \\
\left.\left.\Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)^{2} d s\right)^{12}\right) / \\
1000000000000000000000000000000000000 \text { for } 0<
\end{gathered}
$$

$$
\begin{gathered}
\left(\frac { 1 } { 1 0 0 0 } 3 \left(2\left(15 \times 1.65796798716230000^{2}-112 \tan ^{-1}\left(\frac{1.65796798716230000^{2}}{3}\right)\right)+\right.\right. \\
\left.\left.756 \tan ^{-1}\left(\frac{1.65796798716230000^{2}}{2}\right)\right)\right)^{12}-233-55+5= \\
-283+\left(5 3 1 4 4 1 \left(2 \left(41.2328676968251287-\frac{25.6560065669134134}{i \pi}\right.\right.\right. \\
\int_{-i \infty+\gamma}^{i \infty+\gamma} 0.83957994000191861^{-s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s) \\
\Gamma\left(\frac{3}{2}-s\right) \\
d s)+\frac{259.767066489998311}{i \pi} \\
\int_{-i \infty+\gamma}^{i \infty+\gamma} 1.88905486500431688^{-s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s) \\
\Gamma\left(\frac{3}{2}-s\right)
\end{gathered}
$$

1000000000000000000000000000000000000 for $0<\gamma<\frac{1}{2}$

Continued fraction representations

$$
\begin{aligned}
& \left(\frac { 1 } { 1 0 0 0 } 3 \left(2\left(15 \times 1.65796798716230000^{2}-112 \tan ^{-1}\left(\frac{1.65796798716230000^{2}}{3}\right)\right)+\right.\right. \\
& \left.\left.756 \tan ^{-1}\left(\frac{1.65796798716230000^{2}}{2}\right)\right)\right)^{12}-233-55+5= \\
& -283+\left(5 3 1 4 4 1 \left(2\left(41.2328676968251287-\frac{102.624026267653654}{1+\stackrel{\aleph}{k}=1_{\infty} \frac{0.83957994000191861 k^{2}}{1+2 k}}\right)+\right.\right. \\
& \left.\left.\frac{1039.06826595999324}{1+\mathrm{K}_{k=1}^{\infty} \frac{1.88905486500431688 k^{2}}{1+2 k}}\right)^{12}\right) / \\
& 1000000000000000000000000000000000000=-283+
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1039.06826595999324}{\left.1+\frac{1.88905486500431688}{3+\frac{7.5562194600172675}{5+\frac{17.0014937850388519}{7+\frac{30.224877840069070}{9+\ldots}}}}\right)^{12}} / / \\
& 1000000000000000000000000000000000000
\end{aligned}
$$

$$
\begin{aligned}
& \left(\frac { 1 } { 1 0 0 0 } 3 \left(2\left(15 \times 1.65796798716230000^{2}-112 \tan ^{-1}\left(\frac{1.65796798716230000^{2}}{3}\right)\right)+\right.\right. \\
& \left.\left.756 \tan ^{-1}\left(\frac{1.65796798716230000^{2}}{2}\right)\right)\right)^{12}-233-55+5=-283+ \\
& \left(5 3 1 4 4 1 \left(2\left(41.2328676968251287-\frac{102.624026267653654}{1+\mathrm{K}_{k=1}^{\infty} \frac{0.83957994000191861(-1+2 k)^{2}}{1+2 k-0.83957994000191861(-1+2 k)}}\right)+\right.\right. \\
& \left.\left.\frac{1039.06826595999324}{1+{\underset{k}{k}}_{\infty}^{K} \frac{1.88905486500431688(-1+2 k)^{2}}{1+2 k-1.88905486500431688(-1+2 k)}}\right)^{12}\right) / \\
& 1000000000000000000000000000000000000= \\
& -283+531441 \text { (2 (41.2328676968251287 - } \\
& 102.624026267653654 /(1+0.83957994000191861 / \\
& (2.16042005999808139+7.5562194600172675 / \\
& \text { (2.4812601799942442 + } \\
& 20.9894985000479653 \text { / } \\
& \text { (2.8021002999904069 + } \\
& \left.\left.\left.\left.\left.\frac{41.139417060094012}{3.1229404199865697+\ldots}\right)\right)\right)\right)\right)+ \\
& 1039.06826595999324 /(1+1.88905486500431688 / \\
& (1.11094513499568312+17.0014937850388519) \\
& (-0.6671645950129506+47.226371625107922 / \\
& (-2.4452743250215844+ \\
& \left.\left.\left.\left.\left.\frac{92.563688385211527}{-4.2233840550302181+\ldots}\right)\right)\right)\right)^{12}\right) /
\end{aligned}
$$

1000000000000000000000000000000000000

$$
\begin{aligned}
& \left(\frac { 1 } { 1 0 0 0 } 3 \left(2\left(15 \times 1.65796798716230000^{2}-112 \tan ^{-1}\left(\frac{1.65796798716230000^{2}}{3}\right)\right)+\right.\right. \\
& \left.\left.756 \tan ^{-1}\left(\frac{1.65796798716230000^{2}}{2}\right)\right)\right)^{12}- \\
& 233-55+5=-283+(531441(2(41.2328676968251287- \\
& 102.624026267653654 /(1.83957994000191861+\underset{k=1}{\infty} \\
& \left.\left.\frac{1.67915988000383723\left(1-2\left\lfloor\frac{1+k}{2}\right\rfloor\right)\left\lfloor\frac{1+k}{2}\right\rfloor}{\left(1+0.41978997000095931\left(1+(-1)^{k}\right)\right)(1+2 k)}\right)\right) \\
& \left.+\frac{1039.06826595999324}{\left.2.88905486500431688+\varliminf_{k=1}^{\infty} \frac{3.7781097300086338\left(1-2\left\lfloor\frac{1+k}{2}\right\rfloor\right)\left\lfloor\frac{1+k}{2}\right\rfloor}{\left(1+0.94452743250215844\left(1+(-1)^{k}\right)\right)(1+2 k)}\right)}\right)^{12} / \\
& 1000000000000000000000000000000000000= \\
& -283+(531441(2(41.2328676968251287-102.624026267653654) \\
& (1.83957994000191861+-(1.67915988000383723 / \\
& (3-1.67915988000383723 / \\
& \text { (9.1978997000095931 - } \\
& \left.\left.\left.\left(\frac{10.0749592800230234}{7-\frac{10.0749592800230234}{16.5562194600172675+\ldots}}\right)\right)\right)\right) \mid+ \\
& 1039.06826595999324 /(2.88905486500431688+ \\
& -(3.7781097300086338 /(3-3.7781097300086338 / \\
& \text { (14.4452743250215844 - } \\
& \left.\left.\left.\left.\frac{22.6686583800518025}{7-\frac{22.6686583800518025}{26.0014937850388519+\ldots .}}\right)\right)\right) \text {)) }\right)^{12} / \\
& 1000000000000000000000000000000000000
\end{aligned}
$$

$$
\underset{k=k_{1}}{k_{2}} a_{k} / b_{k} \text { is a continued fraction }
$$

and we obtain also:
$\left(\left(\left(\left((3)(2)\left(15.6579679871623^{\wedge} 2\right)-112 \tan ^{\wedge}(-1)\left(\left(1.6579679871623^{\wedge} 2\right) / 3\right)\right)+756\right.\right.\right.$ $\left.\left.\left.\left.\left.\left.\tan ^{\wedge}(-1)\left(\left(1.6579679871623^{\wedge} 2\right) / 2\right)\right)\right) / 1000\right)\right)\right)^{\wedge} 12-233-55+5\right)^{\wedge} 1 / 15$

Input interpretation

$$
\begin{aligned}
& \left(\left(\frac { 1 } { 1 0 0 0 } 3 \left(2\left(15 \times 1.6579679871623^{2}-112 \tan ^{-1}\left(\frac{1.6579679871623^{2}}{3}\right)\right)+\right.\right.\right. \\
& \left.\left.\left.756 \tan ^{-1}\left(\frac{1.6579679871623^{2}}{2}\right)\right)\right)^{12}-233-55+5\right) \wedge(1 / 15) \\
& \tan ^{-1}(x) \text { is the inverse tangent function }
\end{aligned}
$$

Result

1.6438109711710...
(result in radians)
$1.6438109711710 \ldots \approx \zeta(2)=\frac{\pi^{2}}{6}=1.644934 \ldots($ trace of the instanton shape $)$
$\left(1 / 27\left(\left(\left(\left((3)(2)\left(156579679871623^{\wedge} 2\right)-112 \tan ^{\wedge}(-1)\left(\left(1.6579679871623^{\wedge} 2\right) / 3\right)\right)+\right.\right.\right.\right.$ $\left.\left.\left.\left.\left.\left.\left.756 \tan ^{\wedge}(-1)((1.6579679871623 \wedge 2) / 2)\right)\right) / 1000\right)\right)\right)^{\wedge} 12-233-55+5\right)\right)^{\wedge} 2-5+\Phi$

Input interpretation

$$
\begin{aligned}
& \left(\frac { 1 } { 2 7 } \left(\left(\frac { 1 } { 1 0 0 0 } 3 \left(2\left(15 \times 1.6579679871623^{2}-112 \tan ^{-1}\left(\frac{1.6579679871623^{2}}{3}\right)\right)+\right.\right.\right.\right. \\
& \left.\left.756 \tan ^{-1}\left(\frac{1.6579679871623^{2}}{2}\right)\right)\right)^{12}- \\
& 233-55+5))^{2}-5+\Phi
\end{aligned}
$$

$\tan ^{-1}(x)$ is the inverse tangent function Φ is the golden ratio conjugate

Result

4096.04152357...
(result in radians)
$4096.04152357 \ldots \approx 4096=64^{2}$

And in conclusion:
$\left(\left(\left(1 / 27\left(\left(\left(\left((3)(2)\left(15.6579679871623^{\wedge} 2\right)-112 \tan ^{\wedge}(-1)\left(\left(1.6579679871623^{\wedge} 2\right) / 3\right)\right)+\right.\right.\right.\right.\right.\right.$ $\left.\left.\left.\left.\left.\left.\left.\left.\left.756 \tan ^{\wedge}(-1)((1.6579679871623 \wedge 2) / 2)\right)\right) / 1000\right)\right)\right)^{\wedge} 12-233-55+5\right)\right)^{\wedge} 2-5+\Phi\right)\right)^{\wedge} 34 *\left(\left(-\mathrm{e}^{\wedge}(-3\right.\right.$ $\left.\left.+\mathrm{e}+1 / \pi-2 \pi) \pi^{\wedge} \mathrm{e} \tan (\mathrm{e} \pi)\right)\right)$
where

$$
-e^{-3+e+1 / \pi-2 \pi} \pi^{e} \tan (e \pi) \approx 0.05316943713
$$

Input interpretation

$$
\begin{gathered}
\left(\left(\frac { 1 } { 2 7 } \left(\left(\frac { 1 } { 1 0 0 0 } 3 \left(2\left(15 \times 1.6579679871623^{2}-112 \tan ^{-1}\left(\frac{1.6579679871623^{2}}{3}\right)\right)+\right.\right.\right.\right.\right. \\
\left.\left.756 \tan ^{-1}\left(\frac{1.6579679871623^{2}}{2}\right)\right)\right)^{12}-233- \\
\left.55+5))^{2}-5+\Phi\right)^{34}\left(-e^{-3+e+1 / \pi-2 \pi} \pi^{e} \tan (e \pi)\right)
\end{gathered}
$$

$\tan ^{-1}(x)$ is the inverse tangent function Ф is the golden ratio conjugate

Result

$3.5160090537 \ldots \times 10^{121}$
(result in radians)
$0.35160090537 \ldots \cdot 10^{122} \approx \Lambda_{\mathrm{Q}}$
The observed value of ρ_{Λ} or Λ today is precisely the classical dual of its quantum precursor values $\rho_{\mathrm{Q}}, \quad \Lambda_{\mathrm{Q}}$ in the quantum very early precursor vacuum U_{Q} as determined by our dual equations

We note that from the above analyzed expression, dividing by 3 , multiplying by 10 and in conclusion, dividing by 2 , we obtain:

1/2((1/3 ((3 (2 (15 (1.6579679871623^2) - $\left.112 \tan ^{\wedge}(-1)\left(\left(1.6579679871623^{\wedge} 2\right) / 3\right)\right)+$ $\left.\left.\left.\left.\left.756 \tan ^{\wedge}(-1)\left(\left(1.6579679871623^{\wedge} 2\right) / 2\right)\right)\right) / 1000\right)\right)^{*} 10\right)$

Input interpretation

$$
\begin{gathered}
\frac{1}{2}\left(\left(\frac{1}{3} \times \frac{1}{1000} 3\left(2\left(15 \times 1.6579679871623^{2}-112 \tan ^{-1}\left(\frac{1.6579679871623^{2}}{3}\right)\right)+\right.\right.\right. \\
\left.\left.\left.756 \tan ^{-1}\left(\frac{1.6579679871623^{2}}{2}\right)\right)\right) \times 10\right)
\end{gathered}
$$

$\tan ^{-1}(x)$ is the inverse tangent function

Result

3.1415926535897...
(result in radians)
$3.1415926535897 \ldots \approx \pi$

The study of this function provides the following representations:

Series representations

```
        1
(3\times1000)2
    (3(2(15\times1.65796798716230000 2 - 112 \mp@subsup{\operatorname{tan}}{}{-1}(\frac{1.65796798716230000}{}\mp@subsup{}{}{2}
        756 \mp@subsup{\operatorname{tan}}{}{-1}(\frac{1.65796798716230000}{}\mp@subsup{}{}{2}
    0.41232867696825129-1.33000000000000000 i log(2) - 0.56000000000000000
        i log(-1.00000000000000000 i(0.91628594881833619 +i)) +
    1.89000000000000000 i
        log(-1.00000000000000000 i (1.37442892322750429 +i)) +
        \sum < - - 
        (1.000000000000000 (-1.00000000000000000 i
        (0.91628594881833619+i) )
        (-1.00000000000000000 i(1.37442892322750429+i)\mp@subsup{)}{}{k})
```

$$
\begin{array}{r}
\left(3 \left(2\left(15 \times 1.65796798716230000^{2}-112 \tan ^{-1}\left(\frac{1.65796798716230000^{2}}{3}\right)\right)+\right.\right. \\
\left.\left.756 \tan ^{-1}\left(\frac{1.65796798716230000^{2}}{2}\right)\right)\right) 10=0.41232867696825129+
\end{array}
$$

$$
\sum_{k=0}^{\infty} \frac{1}{1+2 k}\left(-\frac{1}{5}\right)^{k} F_{1+2 k}\left(-2.05248052535307307 e^{1.21144077747140964 k}\right.
$$

$$
\left(\frac{1}{1+\sqrt{1.67166395200153489}}\right)^{1+2 k}+10.3906826595999324
$$

$$
\left.e^{2.02237099368773840 k}\left(\frac{1}{1+\sqrt{2.51124389200345350}}\right)^{1+2 k}\right)
$$

$$
\begin{aligned}
& \frac{1}{(3 \times 1000) 2} \\
& \left(3 \left(2\left(15 \times 1.65796798716230000^{2}-112 \tan ^{-1}\left(\frac{1.65796798716230000^{2}}{3}\right)\right)+\right.\right. \\
& \left.\left.\quad 756 \tan ^{-1}\left(\frac{1.65796798716230000^{2}}{2}\right)\right)\right) 10= \\
& 0.41232867696825129+2.66000000000000000 \tan ^{-1}(x)- \\
& 3.7800000000000000 \pi\left\lfloor\frac{\arg (i(-1.37442892322750429+x))}{2 \pi}\right]+ \\
& \left.1.12000000000000000 \pi \left\lvert\, \frac{\arg (i(-0.91628594881833619+x))}{2 \pi}\right.\right]+ \\
& \sum_{k=1}^{\infty}-\frac{1}{k} 0.560000000000000 i \\
& \quad\left(1.000000000000000(0.91628594881833619-x)^{k}-\right. \\
& \left.3.37500000000000(1.37442892322750429-x)^{k}\right) \\
& \quad\left((-i-x)^{k}-1.000000000000000(i-x)^{k}\right)(-i-x)^{-k} \\
& \quad(i-x)^{-k} \text { for }(i x \in \mathbb{R} \text { and } i x>1)
\end{aligned}
$$

$\log (x)$ is the natural logarithm
F_{n} is the $n^{\text {th }}$ Fibonacci number

Continued fraction representations

```
        1
\((3 \times 1000) 2\)
    \(\left(3\left(2\left(15 \times 1.65796798716230000^{2}-112 \tan ^{-1}\left(\frac{1.65796798716230000^{2}}{3}\right)\right)+\right.\right.\)
        \(\left.\left.756 \tan ^{-1}\left(\frac{1.65796798716230000^{2}}{2}\right)\right)\right) 10=\)
\(0.412328676968251287-\frac{1.02624026267653654}{1+\mathrm{K}_{k=1}^{\infty} \frac{0.83957994000191861 k^{2}}{1+2 k}}+\)
        5.1953413297999662
    \(\overline{1+\mathrm{K}_{k=1}^{\infty} \frac{1.88905486500431688 k^{2}}{1+2 k}}=\)
\(0.412328676968251287-\frac{1.02624026267653654}{1+\frac{0.83957994000191861}{3+\frac{3.3583197600076745}{5+\frac{7.5562194600172675}{7+\frac{13.4332790400306978}{9+\ldots}}}}}+\)
    \(\frac{5.1953413297999662}{1+\frac{1.88905486500431688}{3+\frac{7.5562194600172675}{5+\frac{17.0014937850388519}{7+\frac{30.224877840069070}{9+\ldots}}}}}\)
```

$(3 \times 1000) 2$

```
```

$$
\begin{aligned}
& \left(3 \left(2\left(15 \times 1.65796798716230000^{2}-112 \tan ^{-1}\left(\frac{1.65796798716230000^{2}}{3}\right)\right)+\right.\right. \\
& \left.\left.756 \tan ^{-1}\left(\frac{1.65796798716230000^{2}}{2}\right)\right)\right) 10=0.412328676968251287- \\
& 1.02624026267653654 \\
& 1.00000000000000000+{\underset{k=1}{\infty} \frac{0.83957994000191861(1-2 k)^{2}}{1.839579940001919+0.3208401199961628 k}}_{+}^{+} \\
& 5.1953413297999662 \\
& 1.00000000000000000+K_{k=1}^{\infty} \frac{1.88905486500431688(1-2 k)^{2}}{2.889054865004317-1.778109730008634 k} \\
& 0.412328676968251287-1.02624026267653654 \text { / } \\
& (1.00000000000000000+0.83957994000191861 / \\
& (2.160420059998081+7.5562194600172675 /(2.481260179994244+ \\
& \left.\left.\left.\frac{20.9894985000479653}{2.802100299990407+\frac{41.139417060094012}{3.122940419986570+\ldots}}\right)\right)\right)+
\end{aligned}
$$

$5.1953413297999662 /(1.00000000000000000+$ $1.88905486500431688 /(1.110945134995683+$ $17.0014937850388519 /(-0.667164595012951+$
47.226371625107922
$\left.-2.445274325021584+\frac{92.563688385211527}{-4.223384055030218+\ldots}\right) \mid$

```
\((3 \times 1000) 2\)
\[
\begin{aligned}
& \left(3 \left(2\left(15 \times 1.65796798716230000^{2}-112 \tan ^{-1}\left(\frac{1.65796798716230000^{2}}{3}\right)\right)+\right.\right. \\
& \left.\left.756 \tan ^{-1}\left(\frac{1.65796798716230000^{2}}{2}\right)\right)\right) 10= \\
& 4.5814297440916810+\frac{0.86161073816551974}{3+\mathrm{K}_{k=1}^{\infty} \frac{0.83957994000191861\left(1+(-1)^{1+k}+k\right)^{2}}{3+2 k}}- \\
& 9.8142848144166233
\end{aligned}
\]


9.8142848144166233
\[
3+\frac{17.0014937850388519}{5+\frac{7.5562194600172675}{7+\frac{47.226371625107922}{9+\frac{30.224877840069070}{11+\ldots}}}}
\]
\((3 \times 1000) 2\)
```



```
\(0.412328676968251287-1.02624026267653654\)

``` \(1.67915988000383723 /(9.1978997000095931\) 10.0749592800230234 \(\left.\left.7.0000000000000000-\frac{10.0749592800230234}{16.5562194600172675+\ldots}\right) \int\right)\)
\(+5.1953413297999662 /(2.88905486500431688+\) \(-\{3.7781097300086338 /(3.0000000000000000-\) \(3.7781097300086338 /(14.4452743250215844\) 22.6686583800518025
\[
\left.7.0000000000000000-\frac{22.6686583800518025}{26.0014937850388519+\ldots}\right) \int|\mid
\]

From which:

1/6(1/2((1/3((3 (2 (15 (1.6579679871623^2) - \(\left.112 \tan ^{\wedge}(-1)\left(\left(1.65796798716233^{\wedge} 2\right) / 3\right)\right)\) \(\left.\left.\left.\left.\left.\left.+756 \tan ^{\wedge}(-1)\left(\left(1.6579679871623^{\wedge} 2\right) / 2\right)\right)\right) / 1000\right)\right)^{*} 10\right)\right)^{\wedge} 2\)

\section*{Input interpretation}
\[
\begin{gathered}
\frac{1}{6}\left(\frac { 1 } { 2 } \left(\left(\frac{1}{3} \times \frac{1}{1000} 3\left(2\left(15 \times 1.6579679871623^{2}-112 \tan ^{-1}\left(\frac{1.6579679871623^{2}}{3}\right)\right)+\right.\right.\right.\right. \\
\left.\left.\left.\left.756 \tan ^{-1}\left(\frac{1.6579679871623^{2}}{2}\right)\right)\right) \times 10\right)\right)^{2}
\end{gathered}
\]
\(\tan ^{-1}(x)\) is the inverse tangent function

\section*{Result}
1.644934066848...
(result in radians)
\(1.644934066848 \ldots=\zeta(2)=\frac{\pi^{2}}{6}(\) trace of the instanton shape \()\)

The study of this function provides the following representations:

\section*{Alternative representations}
\[
\begin{gathered}
\frac{1}{6}\left(\frac { 1 } { 2 (3 \times 1 0 0 0) } \left(3 \left(2 \left(15 \times 1.65796798716230000^{2}-\right.\right.\right.\right. \\
\left.112 \tan ^{-1}\left(\frac{1.65796798716230000^{2}}{3}\right)\right)+ \\
\left.\left.\left.756 \tan ^{-1}\left(\frac{1.65796798716230000^{2}}{2}\right)\right)\right) 10\right)^{2}= \\
\frac{1}{6}\left(\frac{1}{1000} \times 5\left(756 \mathrm{sc}^{-1}\left(\left.\frac{1.65796798716230000^{2}}{2} \right\rvert\, 0\right)+\right.\right. \\
2\left(-112 \mathrm{sc}^{-1}\left(\left.\frac{1.65796798716230000^{2}}{3} \right\rvert\, 0\right)+\right. \\
\left.\left.\left.15 \times 1.65796798716230000^{2}\right)\right)\right)^{2}
\end{gathered}
\]
\[
\begin{array}{r}
\frac{1}{6}\left(\frac { 1 } { 2 (3 \times 1 0 0 0) } \left(3 \left(2 \left(15 \times 1.65796798716230000^{2}-\right.\right.\right.\right. \\
\left.112 \tan ^{-1}\left(\frac{1.65796798716230000^{2}}{3}\right)\right)+ \\
\left.\left.\left.756 \tan ^{-1}\left(\frac{1.65796798716230000^{2}}{2}\right)\right)\right) 10\right)^{2}= \\
\frac{1}{6}\left(\frac { 1 } { 1 0 0 0 } 5 \left(756 \tan ^{-1}\left(1, \frac{1.65796798716230000^{2}}{2}\right)+\right.\right. \\
2\left(-112 \tan ^{-1}\left(1, \frac{1.65796798716230000^{2}}{3}\right)+\right. \\
\left.\left.\left.15 \times 1.65796798716230000^{2}\right)\right)\right)^{2}
\end{array}
\]
\[
\frac{1}{6}\left(\frac { 1 } { 2 (3 \times 1 0 0 0) } \int 3 \left(2 \left(15 \times 1.65796798716230000^{2}-\right.\right.\right.
\]
\[
\left.112 \tan ^{-1}\left(\frac{1.65796798716230000^{2}}{3}\right)\right)+
\]
\[
\left.\left.\left.756 \tan ^{-1}\left(\frac{1.65796798716230000^{2}}{2}\right)\right)\right) 10\right)^{2}=
\]
\[
\frac{1}{6}\left(\frac { 1 } { 1 0 0 0 } 5 \left(-756 i \tanh ^{-1}\left(\frac{i 1.65796798716230000^{2}}{2}\right)+\right.\right.
\]
\[
2\left(112 i \tanh ^{-1}\left(\frac{i 1.65796798716230000^{2}}{3}\right)+\right.
\]
\[
\left.\left.\left.15 \times 1.65796798716230000^{2}\right)\right)\right)^{2}
\]
\(\tanh ^{-1}(x)\) is the inverse hyperbolic tangent function

\section*{Series representations}
\[
\frac{1}{6}\left(\frac { 1 } { 2 (3 \times 1 0 0 0) } \int 3 \left(2 \left(15 \times 1.65796798716230000^{2}-\right.\right.\right.
\]
\[
\left.112 \tan ^{-1}\left(\frac{1.65796798716230000^{2}}{3}\right)\right)+
\]
\[
\left.\left.\left.756 \tan ^{-1}\left(\frac{1.65796798716230000^{2}}{2}\right)\right)\right) 10\right)^{2}=
\]
\(0.209066666666666667(-0.368150604435938649+\)
\[
\begin{aligned}
\sum_{k=0}^{\infty} \frac{1}{1+2 k} & \left(-\frac{1}{5}\right)^{k} F_{1+2 k}\left(1.83257189763667239^{1+2 k}\right. \\
& \left(\frac{1}{1+\sqrt{1.67166395200153489}}\right)^{1+2 k}-9.2773952317856539 \\
& \left.\left.e^{2.02237099368773840 k}\left(\frac{1}{1+\sqrt{2.51124389200345350}}\right)^{1+2 k}\right)\right)^{2}
\end{aligned}
\]
\[
\begin{aligned}
& \frac{1}{6}\left(\frac { 1 } { 2 (3 \times 1 0 0 0) } \left(3 \left(2 \left(15 \times 1.65796798716230000^{2}-\right.\right.\right.\right. \\
& \left.112 \tan ^{-1}\left(\frac{1.65796798716230000^{2}}{3}\right)\right)+ \\
& \left.\left.\left.756 \tan ^{-1}\left(\frac{1.65796798716230000^{2}}{2}\right)\right)\right) 10\right)^{2}=
\end{aligned}
\]
\[
0.294816666666666667(0.310021561630264125+i \log (2)-
\]
\[
1.42105263157894737 i
\]
\[
\log (-1.00000000000000000(-1.37442892322750429+i) i)+
\]
\[
0.421052631578947368 i
\]
\[
\begin{aligned}
& \log (-1.00000000000000000(-0.91628594881833619+i) i)+ \\
& \sum_{k=1}^{\infty}-\frac{1}{k} 1.421052631578947 \times 0.500000000000000000^{k} i
\end{aligned}
\]
\[
(1.000000000000000(-1.00000000000000000
\]
\[
(-1.37442892322750429+i) i)^{k}-
\]
\[
0.296296296296296(-1.00000000000000000
\]
\[
\left.\left.(-0.91628594881833619+i) i)^{k}\right)\right)^{2}
\]
\[
\begin{gathered}
\frac{1}{6}\left(\frac { 1 } { 2 (3 \times 1 0 0 0) } \left(3 \left(2 \left(15 \times 1.65796798716230000^{2}-\right.\right.\right.\right. \\
\left.112 \tan ^{-1}\left(\frac{1.65796798716230000^{2}}{3}\right)\right)+ \\
\left.\left.\left.756 \tan ^{-1}\left(\frac{1.65796798716230000^{2}}{2}\right)\right)\right) 10\right)^{2}= \\
0.294816666666666667(-0.310021561630264125+i \log (2)+ \\
0.421052631578947368 i \\
\log (-1.0000000000000000 i(0.91628594881833619+i))- \\
1.42105263157894737 i \\
\log (-1.00000000000000000 i(1.37442892322750429+i))+ \\
\sum_{k=1}^{\infty} \frac{1}{k} 0.421052631578947 \times 0.500000000000000000^{k} i \\
(1.000000000000000(-1.00000000000000000 i \\
(0.91628594881833619+i))^{k}-3.37500000000000 \\
\left.\left.(-1.00000000000000000 i(1.37442892322750429+i))^{k}\right)\right)^{2}
\end{gathered}
\]

\section*{Continued fraction representations}
\[
\begin{aligned}
& \frac{1}{6}\left(\frac { 1 } { 2 (3 \times 1 0 0 0) } \int 3 \left(2 \left(15 \times 1.65796798716230000^{2}-\right.\right.\right. \\
& \left.112 \tan ^{-1}\left(\frac{1.65796798716230000^{2}}{3}\right)\right)+ \\
& \left.\left.\left.756 \tan ^{-1}\left(\frac{1.65796798716230000^{2}}{2}\right)\right)\right) 10\right)^{2}=
\end{aligned}
\]
\[
\begin{aligned}
& 240000 \\
& \frac{1039.06826595999324}{1+\frac{1.88905486500431688}{3+\frac{7.5562194600172675}{5+\frac{17.0014937850388519}{7+\frac{30.224877840069070}{9+\ldots}}}}}
\end{aligned}
\]
\[
\begin{aligned}
& \frac{1}{6}\left(\frac { 1 } { 2 (3 \times 1 0 0 0) } \int 3 \left(2 \left(15 \times 1.65796798716230000^{2}-\right.\right.\right. \\
& \left.112 \tan ^{-1}\left(\frac{1.65796798716230000^{2}}{3}\right)\right)+ \\
& \left.\left.756 \tan ^{-1}\left(\frac{1.65796798716230000^{2}}{2}\right)\right)\right) \\
& 10)^{2}=\frac{1}{240000}(82.465735393650257- \\
& 1.00000000000000000+\mathrm{K}_{k=1}^{\infty} \frac{0.83957994000191861(1-2 k)^{2}}{1.839579940001919+0.3208401199961628 k} \\
& \left.\frac{1039.06826595999324}{1.00000000000000000+\mathrm{K}_{k=1}^{\infty} \frac{1.88905486500431688(1-2 k)^{2}}{2.889054865004317-1.778109730008634 k}}\right)^{2}= \\
& \frac{1}{240000}(82.465735393650257-205.248052535307307 / \\
& 1.00000000000000000+ \\
& 7.5562194600172675 /(2.481260179994244+ \\
& 20.9894985000479653 \\
& 1039.06826595999324 /(1.00000000000000000+ \\
& 1.88905486500431688 / \\
& 1.110945134995683+17.0014937850388519 / \\
& \left.\left.\left.\left(-0.667164595012951+\frac{47.226371625107922}{-2.445274325021584+\frac{92.563688385211527}{-4.223384055030218+\ldots}}\right)\right)\right)\right)^{2}
\end{aligned}
\]
\[
\begin{aligned}
& \frac{1}{6}\left(\frac { 1 } { 2 (3 \times 1 0 0 0) } \int 3 \left(2 \left(15 \times 1.65796798716230000^{2}-\right.\right.\right. \\
& \left.112 \tan ^{-1}\left(\frac{1.65796798716230000^{2}}{3}\right)\right)+ \\
& \left.\left.\left.756 \tan ^{-1}\left(\frac{1.65796798716230000^{2}}{2}\right)\right)\right)^{2}\right)^{2}=\frac{1}{240000} \\
& \left(916.28594881833619+\frac{172.32214763310395}{3+{\underset{k=1}{\infty}}_{\frac{0.83957994000191861\left(1+(-1)^{1+k}+k\right)^{2}}{3+2 k}}-}\right. \\
& \left.\frac{1962.8569628833247}{3+\mathrm{K}_{k=1}^{\infty} \frac{1.88905486500431688\left(1+(-1)^{1+k}+k\right)^{2}}{3+2 k}}\right)^{2}=\frac{1}{240000} \\
& \left(916.28594881833619+\frac{172.32214763310395}{3+\frac{7.5562194600172675}{5+\frac{3.3583197600076745}{7+\frac{20.9894985000479533}{9+\frac{13.4332790400306978}{11+\ldots}}}}}-\right. \\
& \left.\frac{1962.8569628833247}{3+\frac{17.0014937850388519}{5+\frac{7.5562194600172675}{7+\frac{47.22371625107922}{9+\frac{30.224877840069070}{11+\ldots}}}}}\right)^{2}
\end{aligned}
\]
\(\frac{1}{6}\left(\frac{1}{2(3 \times 1000)} \int 3\left(2\left(15 \times 1.65796798716230000^{2}-\right.\right.\right.\)
\(\left.112 \tan ^{-1}\left(\frac{1.65796798716230000^{2}}{3}\right)\right)+\)
\(\left.\left.\left.756 \tan ^{-1}\left(\frac{1.65796798716230000^{2}}{2}\right)\right)\right) 10\right)^{2}=\)
\(\frac{1}{240000}(82.465735393650257-205.248052535307307 /\)
\(\left(1.83957994000191861+{\underset{K}{K}}_{\infty}^{\infty}((1.67915988000383723\right.\)
\(\left.\left(1-2\left\lfloor\frac{1+k}{2}\right\rfloor\right)\left\lfloor\frac{1+k}{2}\right\rfloor\right) /((1.41978997000095931+\)
\(\left.\left.\left.\left.0.41978997000095931(-1)^{k}\right)(1+2 k)\right)\right)\right)+\)
\(1039.06826595999324 /(2.88905486500431688+\)
\(K_{k=1}^{\infty}\left(\left(3.7781097300086338\left(1-2\left\lfloor\frac{1+k}{2}\right\rfloor\right)\left\lfloor\frac{1+k}{2}\right\rfloor\right) /\right.\)
\(\left(\left(1.94452743250215844+0.94452743250215844(-1)^{k}\right)\right.\)
\((1+2 k))))^{2}=\)
\(\frac{1}{240000}(82.465735393650257-205.248052535307307 /\)
(\(1.83957994000191861+\)
\(-(1.67915988000383723 /(3.0000000000000000-\)
1.67915988000383723 / (9.1978997000095931 -
10.0749592800230234 / (7.0000000000000000 -
\(\left.\left.\left.\left.\left.\frac{10.0749592800230234}{16.5562194600172675+\ldots}\right)\right)\right)\right)\right)+\)
1039.06826595999324 / \(2.88905486500431688+\)
\(\begin{array}{r}-(3.7781097300086338 /(3.0000000000000000- \\ 3.7781097300086338 /(14.4452743250215844-\end{array}\)
\(22.6686583800518025 /(7.0000000000000000-\)
\(\left.\left.\left.\left.\left.\left.\frac{22.6686583800518025}{26.0014937850388519+\ldots}\right)\right)\right)\right)\right)\right)^{2}\) \(\underset{k=k_{1}}{\mathrm{~K}_{2}} a_{k} / b_{k}\) is a continued fraction

\section*{Appendix}

\section*{From:}

\section*{Modular equations and approximations to \(\boldsymbol{\pi}\) - Srinivasa Ramanujan}

Quarterly Journal of Mathematics, XLV, 1914, 350-372
We have that:

Hence
\[
\begin{array}{rrr}
64 g_{22}^{24} & = & e^{\pi \sqrt{22}}-24+276 e^{-\pi \sqrt{22}}-\cdots \\
64 g_{22}^{-24} & = & 4096 e^{-\pi \sqrt{22}}+\cdots
\end{array}
\]
so that
\[
64\left(g_{22}^{24}+g_{22}^{-24}\right)=e^{\pi \sqrt{22}}-24+4372 e^{-\pi \sqrt{22}}+\cdots=64\left\{(1+\sqrt{2})^{12}+(1-\sqrt{2})^{12}\right\}
\]

Hence
\[
e^{\pi \sqrt{22}}=2508951.9982 \ldots
\]

Again
\[
\begin{array}{cc}
G_{37}=(6+\sqrt{37})^{\frac{1}{4}} \\
64 G_{37}^{24}= & e^{\pi \sqrt{37}}+24+276 e^{-\pi \sqrt{37}}+\cdots, \\
64 G_{37}^{-24}= & 4096 e^{-\pi \sqrt{37}}-\cdots,
\end{array}
\]
so that
\[
64\left(G_{37}^{24}+G_{37}^{-24}\right)=e^{\pi \sqrt{37}}+24+4372 e^{-\pi \sqrt{37}}-\cdots=64\left\{(6+\sqrt{37})^{6}+(6-\sqrt{37})^{6}\right\}
\]

Hence
\[
e^{\pi \sqrt{37}}=199148647.999978 \ldots
\]

Similarly, from
\[
g_{58}=\sqrt{\left(\frac{5+\sqrt{29}}{2}\right)}
\]
we obtain
\[
64\left(g_{58}^{24}+g_{58}^{-24}\right)=e^{\pi \sqrt{58}}-24+4372 e^{-\pi \sqrt{58}}+\cdots=64\left\{\left(\frac{5+\sqrt{29}}{2}\right)^{12}+\left(\frac{5-\sqrt{29}}{2}\right)^{12}\right\}
\]

Hence
\[
e^{\pi \sqrt{58}}=24591257751.99999982 \ldots
\]

From:

\section*{An Update on Brane Supersymmetry Breaking}
J. Mourad and A. Sagnotti - arXiv:1711.11494v1 [hep-th] 30 Nov 2017

From the following vacuum equations:
\[
\begin{aligned}
T e^{\gamma_{E} \phi} & =-\frac{\beta_{E}^{(p)} h^{2}}{\gamma_{E}} e^{-2(8-p) C+2 \beta_{E}^{(p)} \phi} \\
16 k^{\prime} e^{-2 C} & =\frac{h^{2}\left(p+1-\frac{2 \beta_{E}^{(p)}}{\gamma_{E}}\right) e^{-2(8-p) C+2 \beta_{E}^{(p)} \phi}}{(7-p)} \\
\left(A^{\prime}\right)^{2} & =k e^{-2 A}+\frac{h^{2}}{16(p+1)}\left(7-p+\frac{2 \beta_{E}^{(p)}}{\gamma_{E}}\right) e^{-2(8-p) C+2 \beta_{E}^{(p)} \phi}
\end{aligned}
\]
we have obtained, from the results almost equals of the equations, putting
\(4096 e^{-\pi \sqrt{18}}\) instead of
\[
e^{-2(8-p) C+2 \beta_{E}^{(p)} \phi}
\]
a new possible mathematical connection between the two exponentials. Thence, also the values concerning \(p, C, \beta_{E}\) and \(\phi\) correspond to the exponents of \(e\) (i.e. of exp). Thence we obtain for \(\mathrm{p}=5\) and \(\beta_{E}=1 / 2\) :
\[
e^{-6 C+\phi}=4096 e^{-\pi \sqrt{18}}
\]

Therefore, with respect to the exponentials of the vacuum equations, the Ramanujan's exponential has a coefficient of 4096 which is equal to \(64^{2}\), while \(-6 \mathrm{C}+\phi\) is equal to \(\pi \sqrt{18}\). From this it follows that it is possible to establish mathematically, the dilaton value.

For
\(\exp \left(\left(-\mathrm{Pi}^{*} \operatorname{sqrt}(18)\right)\right.\) we obtain:

\section*{Input:}
\(\exp (-\pi \sqrt{18})\)

\section*{Exact result:}
\(e^{-3 \sqrt{2} \pi}\)

\section*{Decimal approximation:}
\(1.6272016226072509292942156739117979541838581136954016 \ldots \times 10^{-6}\)
\(1.6272016 \ldots * 10^{-6}\)

\section*{Property:}
\(e^{-3 \sqrt{2} \pi}\) is a transcendental number

Series representations:
\(e^{-\pi \sqrt{18}}=e^{-\pi \sqrt{17} \sum_{k=0}^{\infty} 17^{-k}\binom{1 / 2}{k}}\)
\(e^{-\pi \sqrt{18}}=\exp \left(-\pi \sqrt{17} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{17}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)\)
\(e^{-\pi \sqrt{18}}=\exp \left(-\frac{\pi \sum_{j=0}^{\infty} \operatorname{Res}_{s=-\frac{1}{2}+j} 17^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)}{2 \sqrt{\pi}}\right)\)

Now, we have the following calculations:
\[
\begin{gathered}
e^{-6 C+\phi}=4096 e^{-\pi \sqrt{18}} \\
e^{-\pi \sqrt{18}}=1.6272016 \ldots *^{*} 10^{\wedge}-6
\end{gathered}
\]
from which:
\[
\begin{gathered}
\frac{1}{4096} e^{-6 C+\phi}=1.6272016 \ldots * 10^{\wedge}-6 \\
0.000244140625 e^{-6 C+\phi}=e^{-\pi \sqrt{18}}=1.6272016 \ldots * 10^{\wedge}-6
\end{gathered}
\]

Now:
\[
\ln \left(e^{-\pi \sqrt{18}}\right)=-13.328648814475=-\pi \sqrt{18}
\]

And:
\(\left(1.6272016 * 10^{\wedge}-6\right) * 1 /(0.000244140625)\)

\section*{Input interpretation:}
\(\frac{1.6272016}{10^{6}} \times \frac{1}{0.000244140625}\)

\section*{Result:}
0.0066650177536
0.006665017...

Thence:
\[
0.000244140625 e^{-6 C+\phi}=e^{-\pi \sqrt{18}}
\]

Dividing both sides by 0.000244140625 , we obtain:
\[
\begin{aligned}
& \frac{0.000244140625}{0.000244140625} e^{-6 C+\phi}=\frac{1}{0.000244140625} e^{-\pi \sqrt{18}} \\
& e^{-6 C+\phi}=0.0066650177536
\end{aligned}
\]
\(\left.\left(\left(\left(\left(\exp \left(\left(-\mathrm{Pi}^{*} \operatorname{sqrt}(18)\right)\right)\right)\right)\right)\right)\right)^{*} 1 / 0.000244140625\)

\section*{Input interpretation:}
\(\exp (-\pi \sqrt{18}) \times \frac{1}{0.000244140625}\)

\section*{Result:}
\(0.00666501785 \ldots\)
\(0.00666501785 \ldots\)

\section*{Series representations:}
\[
\begin{aligned}
& \frac{\exp (-\pi \sqrt{18})}{0.000244141}=4096 \exp \left(-\pi \sqrt{17} \sum_{k=0}^{\infty} 17^{-k}\binom{\frac{1}{2}}{k}\right) \\
& \frac{\exp (-\pi \sqrt{18})}{0.000244141}=4096 \exp \left(-\pi \sqrt{17} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{17}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right) \\
& \frac{\exp (-\pi \sqrt{18})}{0.000244141}=4096 \exp \left(-\frac{\pi \sum_{j=0}^{\infty} \text { Res }_{s=-\frac{1}{2}+j} 17^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)}{2 \sqrt{\pi}}\right)
\end{aligned}
\]

Now:
\[
\begin{aligned}
& e^{-6 C+\phi}=0.0066650177536 \\
& \exp (-\pi \sqrt{18}) \times \frac{1}{0.000244140625}= \\
& e^{-\pi \sqrt{18}} \times \frac{1}{0.000244140625} \\
& =0.00666501785 \ldots
\end{aligned}
\]

From:
\(\ln (0.00666501784619)\)

\section*{Input interpretation:}
\(\log (0.00666501784619)\)

\section*{Result:}
-5.010882647757...
\(-5.010882647757 \ldots\)

\section*{Alternative representations:}
\(\log (0.006665017846190000)=\log _{e}(0.006665017846190000)\)
\(\log (0.006665017846190000)=\log (a) \log _{a}(0.006665017846190000)\)
\(\log (0.006665017846190000)=-\mathrm{Li}_{1}(0.993334982153810000)\)

\section*{Series representations:}
\[
\begin{aligned}
& \log (0.006665017846190000)=-\sum_{k=1}^{\infty} \frac{(-1)^{k}(-0.993334982153810000)^{k}}{k} \\
& \log (0.006665017846190000)=2 i \pi\left|\frac{\arg (0.006665017846190000-x)}{2 \pi}\right|+ \\
& \quad \log (x)-\sum_{k=1}^{\infty} \frac{(-1)^{k}(0.006665017846190000-x)^{k} x^{-k}}{k} \text { for } x<0 \\
& \left.\log (0.006665017846190000)=\left\lvert\, \frac{\arg \left(0.006665017846190000-z_{0}\right)}{2 \pi}\right.\right] \log \left(\frac{1}{z_{0}}\right)+ \\
& \quad \log \left(z_{0}\right)+\left\lfloor\left.\frac{\arg \left(0.006665017846190000-z_{0}\right)}{2 \pi} \right\rvert\, \log \left(z_{0}\right)-\right. \\
& \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(0.006665017846190000-z_{0}\right)^{k} z_{0}^{-k}}{k}
\end{aligned}
\]

\section*{Integral representation:}
\(\log (0.006665017846190000)=\int_{1}^{0.006665017846190000} \frac{1}{t} d t\)

In conclusion:
\[
-6 C+\phi=-5.010882647757 \ldots
\]
and for \(\mathrm{C}=1\), we obtain:
\(\phi=-5.010882647757+6=\mathbf{0 . 9 8 9 1 1 7 3 5 2 2 4 3}=\phi\)

Note that the values of \(\mathrm{n}_{\mathrm{s}}\) (spectral index) 0.965 , of the average of the Omega mesons Regge slope 0.987428571 and of the dilaton 0.989117352243 , are also connected to the following two Rogers-Ramanujan continued fractions:
\(\frac{\mathrm{e}^{-\frac{\pi}{5}}}{\sqrt{(\varphi-1) \sqrt{5}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi}}{1+\frac{\mathrm{e}^{-2 \pi}}{1+\frac{\mathrm{e}^{-3 \pi}}{1+\frac{\mathrm{e}^{-4 \pi}}{1+\ldots}}}} \approx 0.9568666373\)
\(\frac{\mathrm{e}^{-\frac{\pi}{\sqrt{5}}}}{\frac{\sqrt{5}}{1+\sqrt[5]{\sqrt{\varphi^{5} \sqrt[4]{5^{3}}}-1}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-2 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-3 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-4 \pi \sqrt{5}}}{1+\ldots}}}} \approx 0.9991104684\)
(http://www.bitman.name/math/article/102/109/)
Also performing the \(512^{\text {th }}\) root of the inverse value of the Pion meson rest mass 139.57, we obtain:
\(((1 /(139.57)))^{\wedge} 1 / 512\)

\section*{Input interpretation:}
\(\sqrt[512]{\frac{1}{139.57}}\)

\section*{Result:}
\(0.990400732708644027550973755713301415460732796178555551684 \ldots\)
\(0.99040073 \ldots\). result very near to the dilaton value \(\mathbf{0 . 9 8 9 1 1 7 3 5 2 2 4 3}=\boldsymbol{\phi}\) and to the value of the following Rogers-Ramanujan continued fraction:
\(\frac{\mathrm{e}^{-\frac{\pi}{\sqrt{5}}}}{\frac{\sqrt{5}}{1+\sqrt[5]{\sqrt{\varphi^{5} \sqrt[4]{5^{3}}}-1}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-2 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-3 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-4 \pi \sqrt{5}}}{1+\ldots}}}} \approx 0.9991104684\)

\section*{Acknowledgments}

We would like to thank Professor Augusto Sagnotti theoretical physicist at Scuola Normale Superiore (Pisa - Italy) for his very useful explanations and his availability

\section*{References}

The man who new infinity: a life of the genius Ramanujan - Robert Kanigel Copyright © 1991

Modular equations and approximations to \(\boldsymbol{\pi}\) - Srinivasa Ramanujan Quarterly Journal of Mathematics, XLV, 1914, 350-372

\author{
An Update on Brane Supersymmetry Breaking J. Mourad and A. Sagnotti - arXiv:1711.11494v1 [hep-th] 30 Nov 2017
}```

[^0]: ${ }^{1}$ M.Nardelli studied at Dipartimento di Scienze della Terra Università degli Studi di Napoli Federico II, Largo S. Marcellino, 10-80138 Napoli, Dipartimento di Matematica ed Applicazioni "R. Caccioppoli" Università degli Studi di Napoli "Federico II" - Polo delle Scienze e delle Tecnologie Monte S. Angelo, Via Cintia (Fuorigrotta), 80126 Napoli, Italy
 ${ }^{2}$ A. Nardelli studies at the Università degli Studi di Napoli Federico II - Dipartimento di Studi Umanistici Sezione Filosofia - scholar of Theoretical Philosophy

