
Knowledge Graph based Query Processing

by matching words to entities using Wikipedia
CSE 373 Project Retrospective

Guanxuan Wu

University of Washington

guanxw@uw.edu

December 16, 2021

Abstract

The thirty-years development of Search Engines could never set apart the fundamental problem: to
improve relativity for the page rankings with the given query. As the NLP is now widely used, this paper
discusses a data abstraction via knowledge graph (KG) for NLP models that could be applied in relating
keywords to entities with a higher probability.

1 Introduction to Knowledge Graphs

Knowledge graphs have long been used in Natural Language Processing, with previous works such as a
convolution with k-means [3] are widely applied in the data industry, for instance, creating a thesis search
engine [4] and preservation of Chinese cultural heritages [6].
In the previous definitions for knowledge graphs [10], those data structures are usually defined as some
directed graphs with “labels” on each edge, which requires a further abstraction to make it applicable in
practical algorithms. In this paper, we will define a new abstraction for the relational data that is related
to such keywords. To begin with, here is a simple, abstract definition that is derived from a previous
construction that was applied in deep NLP [12]:

Definition 1. A knowledge graph (KG) is a directed graph G(V,E,w : E → [0, 1]) such that:
1. Each vertex corresponds to a keyword, that is a “word” or “phrase”;
2. Each edge have a weight that is defined by the number and authority values of the sources that connected
two items with; as each vertex that sends at least one edge out sends a limited number of directed edges, it
can be normalized with wi =

Wi∑
j Wj

with W being the originally calculated value.

Such skeleton definition is shared by all such applications with knowledge graphs, however, with such an
obscurely defined weight function w, we are not able to conclude anything. So in the rest of this paper, we
will focus on constructing and improving such a knowledge graph for our given applications.

2 Construct a Wikipedia Entry Graph

2.1 Simple Case

Here we first discuss a simple example about the query analysis for Wikipedia, which could be inspiring
since Wikipedia is a structured semantic knowledge base [14]. To decrease complexity, we consider each of
the entry titles as an atomic keyword (vertex) and then we can roughly divide the entries of Wikipedia into
three categories:
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(a) Without Interpolatory Vertices (b) With Interpolatory Vertices 3.11, 3.12

Fig. 1: An incomplete graph representation of pages “UW”(2.1), “University of Washington”(1.1),
“Udub”(3.1), “Ana Mari Cauce”(1.11), “Seattle”(1.12)

Definition 2. Entity pages, which are usually long, complete pages with a full description of some entity
(such as a person, organization, event, etc.) for human and machines for reference, and having plenty of
links to other pages; the weight of edges from this kind of pages to other pages could be determined by article
semantics and count of links. [8] (Example: “University of Washington”)

Definition 3. Disambiguation pages, which are short pages with a list of links corresponding to entity pages;
such pages usually have entry titles as an acronym of entities, we can just set the weights to each page equally
1/n in our naive approach, where n is the total number of entities that the acronym could refer to. (Example:
UW)

Definition 4. Redirection pages simply redirect to entity pages, which can be denoted as vertices that have
only one edge connecting with the redirected page with weight 1. (Example: Udub).

By this construction, for each vi ∈ V , we have a set of wvi functions. So by this, we can also get the relativity
of any two vertices: consider the maximum s− t flow fmax(s, t) [7] of the network that constructed by letting
each of the weights of edges being the capacity of such edge. Then fmax is an indicator for co-relativity
between some pair of vertices.
Besides, there is an acquirable and strictly well-defined pseudoquasimetric space on V :

Theorem 1. Let dE : E → [0,∞) be defined as dE((i, j)) = 1/w(i, j) − 1, then the minimum path d(s, t)
for any s, t ∈ V forms a pseudoquasimetric on V . That is, for any s, t, v ∈ V , d(s, s) = 0 and d(s, t) ≤
d(s, v) + d(v, k)

Also, by trivial eliminations of Redirection pages (i.e. combining nodes) indiscernibility axiom also holds
(d(s, t) = 0 =⇒ t = s), which results in a quasimetric, have an even stronger property for the reduced
topological space. Such grants advanced algorithms such as Locality Sensitive Hashing [2] available on any
of such defined graphs, and thus we can do some improvements over the original definition in Section 2.3.
With these techniques, we can simply construct a knowledge graph connecting Wikipedia pages, which
resolving the problems by acronym users that drew the attention of Wiki editors; however, in the application,
such relationships are far from enough, so we introduce the “interpolatory vertices” that constructed via a
combination of keywords.

2.2 Interpolatory Vertices by Infobox and Semantics

By the method above (see Fig. 1(a)), we can easily find that there exists some connection between “University
of Washington” and “Ana Mari Cauce”, however, as there are so many links in the page, the weight of such
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keyword will likely be underestimated. In a non-stub, informatively worthy Wikipedia page, there is usually
an infobox that provides a quick mapping with different entry titles. Also, in the context some of the
sentences are highly indicative of a relationship; for these cases, we create a “interpolatory vertex” between
the two titles, which can be regarded as a redirection vertex that has a unique outgoing edge. For example,
3.11 in Fig. 1(b) can be regarded as the vertex created as an identifier as the combination of page “University
of Washington” and text key “president”, then directly connected to “Ana Mari Cauce” with probability 1;
such strongly indicative semantics could also form an edge between the original page to the interpolatory
vertex, which increases the weight and decreases the relative distance between the original page to the
important attributes of it.

2.3 Further Adjustments

2.3.1 LSH for User Defined Parameters

In the commercial practices for any system, it is necessary to reinforce the model by inputs from users. One
example here is an adjustment for the disambiguation pages.
In Definition 3, when we initialize our data within our server without knowing the states of each individual
user or the frequency of each page being used, we should have a uniform weight for each item; however, user
states can introduce more parameters for our model. Consider the term “UW”, it can refer to University
of Washington, Wisconsin, Waterloo, Warsaw, or Wyoming, which are all officially using “UW” as their
acronyms, yet they are completely different institutions, and for a resident in Washington state their desired
result for querying “UW” must be “University of Washington”. To prevent ambiguity and also consider
efficiency, we cannot just change our back-end model each time when a user from a different region logged
into our system, so there must be a data preprocessing. Here we introduce the method of Locality Sensitive
Hashing (LSH) to cluster keywords and thus reduce the range of disambiguation for individual users. [1][11]

Definition 5 (Locality Sensitive Hash Functions). Suppose we have a family a functions H = {h : P → Z}
of maps from our points P to the set of integers Z; we say H is (c, cr, p1, p2)-LSH if: for all p, q ∈ P :

d(p, q) ≤ r =⇒ P[h(p) = h(q)] ≥ p1

d(p, q) ≥ cr =⇒ P[h(p) = h(q)] ≤ p2

Algorithm 1 (LSH Algorithm). Let H be a family of such LSH, then we have the algorithm below to find
the clusters of entries

Preprocessing:

Choose k * l functions uniformly random from H, denote as h_{1,1}, ..., h_{l,k};

Construct l hash tables;

for all 1<=i<=l store f_i(v)=(h_{i,1}(v), ..., h_{i, k}(v)) for all v in V in the i-th table;

for all i, sort {f_i(v)}.

Given KeyNode v_0:

for i = 1 to l:

Compute f_i(v_0);

Find all vertices v where f_i(v)=f_i(v_0) by binary search on table i;

then if d(v_0,v)<=cr, output p.

end for.

Theorem 2. Let p1 = pρ2, let l ∈ Θ(|V |ρ ln |V |), k = logp2
(1/|V |), then Algorithm 1 boosts the probability of

outputting v as d(v0, v) ≤ r to 1− 1/|V | within space of

O(l · |V | · k) = O(|V |1+ρ log |V |
log 1

p2

)

and time of

O(nρ(d+
log |V |
log 1

p2

) + |O|d)

let |O| be the output size |d| be the time of calculating distance (for Dijkstra, d ∈ Θ(|E|+ |V | log |V |)).
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Fig. 2: P is “President”, W is “Washington”, U is “UW”, and B is “Biden”; even without any externally
defined weights, we can still go with either left or right branch only if the second keyword is defined.

By this algorithm and feeding some “pivot nodes” (such as “Seattle”, “Madison” and “Warsaw”) to the
algorithm, it can cluster the graph effectively, thus we can cluster the items only having the same hash value
in a disambiguation page and present them to our users at a certain location.

2.3.2 Distance away from the similarly named titles

In another direction, sometimes we have a bunch of queries and keywords that are similar in spelling but
completely different in references, such as “President UW”, “President Washington” and “President” There
are a bunch of solutions to this problem: The first one is creating additional alias vertices (redirections),
which is what Wikipedia currently uses for “President Washington” (and usually just redirect the isolated
word “president” to POTUS, which is Biden); another way is by creating a special class of vertices that
stores “attributes” (Job or personal titles, classes, categories, etc) and get the distance of the next keyword
of such vertices and the choices of entities, as illustrated in Fig. 2.

3 Ethics and Next Steps

3.1 Affordance Analysis

However, in real life, Wikipedia is not the only authority on the Internet. Usually, we determine the sources’
authority and set some kind of weight vector before training a model. Now consider otherwise:
Suppose we try to aggregate ideas across sources using the following rule: if there are multiple sources for an
idea, choose the idea that appears the most often amongst the sources because it represents consensus. This
obviously reduces our costs of preprocessing data, yet it could disastrously harm the reliability of our model.
Firstly, there is plenty of fake news, conspiracy theory, and hate speech on the Internet, and the self-cleaning
capabilities are never enough to put all of them away. Many individuals are living in their information
cocoons [9], propagating and spreading ideas that contradict the facts. Also, contents are not necessarily
created by human beings. Some “bots” do nothing but copy some low-effort contents everywhere, sometimes
as lipsum to cover the sites only created for advertisements. Other cases are intentionally spreading their
beliefs over other voices. Both possibilities could make the trained model with this kind of unqualified data
lose its reliability for any usage; there were AI chatbots known for extensively using racist slurs and cursing
languages.
To solve such a problem, the amelioration of our algorithm, especially increasing the training weights of
the authoritative, reliable sources (from highest to lower, peer-reviewed journals, government documents,
Wikipedia, mainstream media, well-moderated social networks), is vital. Either way, escaping from building
the experimental features cannot accumulate experience for later works, and reducing social risks is usually
just a technical issue that responsible developers should care about.
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3.2 Next Steps

The algorithm defined in this paper requires an evaluation of shortest paths over an extensive graph, and
introducing a parallel algorithm [5] will significantly improve performance. Also, the algorithm has a vast
scale of data to process, so to reduce the parameters used, some neural network compression [13] helps it to
proceed on lower-spec systems. As work in this paper was done individually with limited time to submit,
there is also a lack of experimental data, which should be supplemented later.
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