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Abstract

Deep-learning models estimate values using backpropagation. The activation function
within hidden layers is a critical component to minimizing loss in deep neural-networks. Recti-
fied Linear (ReLU) has been the dominant activation function for the past decade. Swish and
Mish are newer activation functions that have shown to yield better results than ReLU given
specific circumstances. Phish is a novel activation function proposed here. It is a composite
function defined as f(x) = xTanH(GELU(x)), where no discontinuities are apparent in the
differentiated graph on the domain observed. Generalized networks were constructed using
different activation functions. SoftMax was the output function. Using images from MNIST
and CIFAR-10 databanks, these networks were trained to minimize sparse categorical crossen-
tropy. A large scale cross-validation was simulated using stochastic Markov chains to account
for the law of large numbers for the probability values. Statistical tests support the research
hypothesis stating Phish could outperform other activation functions in classification. Future
experiments would involve testing Phish in unsupervised learning algorithms and comparing
it to more activation functions.

1 Introduction
Deep-learning algorithms are capable of solving complex problems. They use a series of synaptic

weights and perceptrons to mimic the human thinking process. The success of training deep neural-
networks (DNN) relies much on the activation function used in them. In each perceptron, two
phases occur: a summation and transformation. In the summation, the inputs are multiplied with
synaptic weights, which are initially generated at random, with a Hadamard product (Silaparasetty,
2020). The transformation step consists of the summated vector being parsed through an activation
function in addition to an optional bias (Sharma, Sharma, and Athaiya, 2020). Early architectures
used TanH and Sigmoid extensively. However, the more complex DNNs required better activation
functions.

The most commonly used activation function in DNNs is Rectified Linear (ReLU) (Agarap,
2018). It is a less probability inspired piecewise function with no discontinuities. It has a jump
discontinuity when differentiated due to the sharp turn at the origin. Experiments demonstrated
that ReLU increased the performance in DNNs, outperforming TanH (Abdelouahab, Pelcat, and
Berry, 2017) and Sigmoid (Pratiwi, Windarto, Susliansyah, Aria, Susilowati, Rahayu, Fitriani,
Merdekawati, and Rahadjeng, 2020). However, ReLU has some faults. One of the biggest ones
is the dying ReLU issue, but luckily leaky ReLU partially solved this issue via augmenting the
negative domain of the function (Dubey and Jain, 2019).

Swish and Mish are newer activation functions that have recently gained traction (Ramachan-
dran, Zoph, and Le, 2017). They are both composite and comprise at least one existing activation
function. Unlike ReLU, these functions are non-linear, and their derivatives are void of disconti-
nuities. They both perpetually increase and pass through the origin (0, 0). The new activation
function created here would follow the parameters of Swish and Mish (Misra, 2020).

A new activation function named Phish is proposed here. Phish is defined as f(x) = xTanH(GELU(x)).
Phish is non-monotonic, unlike other activation functions where the slope is completely positive.
On the interval from [0, ∞], it is completely positive and passes through the origin (0, 0). Phish
estimates updates in backpropagation using the concepts of continuity, differentiability, and non-
monotonicity.

An experimental simulation to compare Phish to existing functions will be conducted. The levels
of independent variable will be GELU, Swish, TanH, Sigmoid, ReLU, Mish, and Phish. There was
no control. The dependent variable was the minimization of sparse categorical crossentropy (SCC),
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which is one of the most common loss functions in classification. Several constants variables will
be held, such as the DNN layers, optimizer, output function, and learning rate.

2 Phish Activation Function

2.1 Backpropagation and Update Gradients
To calculate the update gradient, the rate of change in loss L must be determined. Theoretically,

though impractical, this can be determined via calculating the slope between two datapoints with
an infinitesimal distance. The standard error can be approximated via finding the instantaneous
rate of change in loss (eg. determining a partial derivative in respect to z). When
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the calculated error can be propagated to every weight in the neural-network. Using the weighted
input, loss derivative, and activation function derivative, the update gradient can be calculated
using basic algebra such that
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across many iterations. Due to space constraints, optimization and further analysis of partial
derivatives has been omitted. As can be seen, the activation function and its derivative are critical
in the training of deep neural-networks (DNNs) in supervised classification, or in unsupervised clas-
sification (eg. discriminators in generative adversarial networks). Substituting various activation
functions can vastly alter the minimization of loss.

2.2 Derivation and Implementation
Much like Mish, Phish is a composite function. It comprises two existing activation functions,

those being TanH and GELU. The inner function GELU 1, is defined as
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to approximate ReLU

ReLU(x) = x+ = max(0, x) =

{
x if x > 0

0 if x < 0
(4)

such that no discontinuities occur on the differentiated graph. ReLU is perhaps the most used
activation function in DNNs. It has shown to be effective in large-scale classification problems,
often used in image classification.

The outer activation function TanH2, is is defined by

TanH(x) =
ex − e−x

e−x + ex
(5)

Since Phish is expressed in terms of other equations and variables, the true form of the equation
can be determined. Therefore, through substituting variables and rearranging the terms, the Phish
equation in the most pure form can be defined as
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1GELU is an approximation of the ReLU activation function defined as The main implementation of such a
function is to avoid the large jump discontinuity apparent in ReLU, which occurs at the origin (0, 0) on the
Cartesian coordinate system. The non-linear function seems to outperform ReLU and ELU in certain tasks in
language processing and classification.

2TanH is the analogue hyperbolic tangent function often used throughout trigonometry. Similar in concept to
Sigmoid, it has two horizontal asymptotes. However, these exist at y=±1, which indicates that the domain is half
negative. Therefore, TanH+ exists only rightward of the origin (0, 0), which it crosses.
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Using the backpropagation equation derived in the introduction, the activation function A(x) can
be substituted with any activation function to simulate the calculation of update gradients. Such
gradients for Phish require its derivative. Update gradient calculation can be formulated via
substituting the Phish derivative yielded from equation 9 using the chain rule.

∴
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Based on the assumption that
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2

π
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0
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where z is any complex number, the derivative can be calculated by substituting integrals from
equation 8, rearranging the terms, and applying the chain rule and fundamental theorem of calculus
onto all sides in equation 9.
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For the purpose of conciseness, the full algebra of the Phish derivative was omitted from this paper.
However, in terms of itself, it exists as

Phish′(z[l−1]) =
Phish(z[l−1])

z[l−1]
+ z[l−1] TanH′(GELU(z[l−1]))GELU′(z[l−1]) (10)

3 Evaluation
A simulation was conducted to compare activation functions. The levels of independent variable

were GELU, Swish, TanH, Sigmoid, ReLU, Mish, and Phish. The minimization of loss was studied
using DNNs.

One Intel i7 computer was obtained. Python3 was installed onto the machine with machine-
learning and linear algebra dependencies. Custom computer code was developed to test and com-
pare Phish. For the procedure, 170,000 training and 50,000 testing images were gathered. The
images were preprocessing via normalization and cropping. The preprocessing was limited to gen-
eralize the training process.

A generic neural-network was fabricated for testing. The parameters, matrix multiplication,
and training dynamics are located in the appendix.

J(w) =
−1

n

n∑
j=1

[yj log(ŷj) + (1− yj) log(1− ŷj)] (11)

was substituted with SCC.

∴ J(w) = −
n∑

j=1

yj log(ŷj) (12)

where w represents the arbitrary parameters of a given network with the y values representing the
predicted and true labels. This was done so the network would assume correct classifications can
only be a single prediction.

SoftMax was used for the output layer. It is a deep-learning probability distribution function
used in multi-class identification problems. It is

σ (−→z )i =
ezi∑K
j=1 e

zj
(13)

where the input and output functions of the network calculate for the input vector. During testing,
K=10 was constant because each of the databanks used had ten possible labels.
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The levels of independent variable were tested. This was done twenty-five separate times for
each activation function. The minimization of SCC was recorded.

This project was conducted on a laptop without graphics processing units or cloud servers.
Therefore, a large scale cross-validation was not reasonable. A memoryless stochastic model was
more favorable for such a purpose. Thus a Markov chain was developed to simulate the process.
The combination of the two methods calculated the loss.
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Graph 1: The Effect of Activation Functions on Minimizing Sparse Categorical Crossentropy
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The effect of activation functions on minimizing the loss in classification for DNNs was tested.
Various datasets were used to simulate classification backpropagation. GELU, Swish, TanH, Sig-
moid, ReLU, Mish, and Phish can be seen in graph 1.

This particular graph shows the trend when training on MNIST fashion. The graph was the
average loss across epochs calculated from twenty-five trials. Across the various epochs, it can be
seen that Phish and Swish had a similar minimization of SCC. TanH and Sigmoid had significantly
lower reduction of loss compared to Swish and Phish. From the data collected it could be inferred
that

Similar patterns were apparent when the networks trained on MNIST numbers and CIFAR-10
image databanks. Phish consistently outperformed TanH and Sigmoid. It was either on-par or
slightly superior to Swish .It also showed similar training patterns to GELU. The results of the
experiment show that Phish is a promising alternative activation function.

Table 1: Table 1: Statistical Analysis at 0.05 Significance Level under 48 Degrees of Freedom

T-Test Calculated Value Table Value Result
Phish vs. GELU 3.336 2.011 Significant
Phish vs. Swish 1.996 2.011 Not Significant
Phish vs. TanH 56.331 2.011 Significant
Phish vs. Sigmoid 35.088 2.011 Significant
Phish vs. ReLU 4.281 2.011 Significant
Phish vs. Mish 1.782 2.011 Not Significant

This data table shows some of the compared levels of independent variable. Independent
parametric t-tests 3 were calculated to determine the significance of the data collected. The value

3T-tests were a favorable method to testing for significance in this dataset. Traditionally, a one way ANOVA
test could imply significance. However, that is suitable for identifying differences and patterns holistically. This
experiment sought to determine whether Phish is more or less effective at loss minimization. Therefore, comparing
pairs of activation functions using independent t-tests was more ideal.
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of significance was at 0.05, and was granted 48 degrees of freedom. A table value of 2.011 was
used. A null hypothesis was generated. It stated that there would be no difference between any of
the tested activation functions when given the task of minimizing SCC.

The majority of comparisons relating to Phish were significant. In each case of significance,
Phish outperformed the competing activation function. Phish showed to outperform Swish and
Mish as well, but the difference was not notable such that a t-test could identify significance.
Experiments with larger datasets and deeper models could be used to further investigate the
relationships between Swish, Mish, and Phish in the future.

4 Discussion

4.1 Procedural Flaws
There were many sources for error in the experimentation done to determine the properties of

Phish. The first was that Phish was only compared to three other activation functions. Another
flaw was that only one architecture was tested for classification, where many could have been tested.
Other combinations of optimizers, metrics, losses, and layers may result in different findings.In
addition, a true simulation of the loss was never conducted. The simulations were partially cross-
validation, but the other component simulated sequences of predictions using stochastic markov
chains.

To remedy these errors in the future, various types of classification algorithms could be tested
using the activation functions. More functions could be compared as well. Lastly, better computers
and cloud servers could be used to conduct the advanced simulations required to test Phish, that
would otherwise impractical on a laptop.

4.2 Future Applications
Future applications of the activation function proposed in this research may vary. The first

application would be further testing on types of datasets. MNIST and CIFAR-10 were used in this
research. MNIST is a relatively simple dataset that most deep-learning models could solve (Xiao,
Rasul, and Vollgraf, 2017). CIFAR-10 consists of RGB images, which requires better models
to solve (Pandit and Kumar, 2020). Still, testing Phish on MNIST and CIFAR-10 only would
limit knowledge on its properties. ImageNet is a public databank consisting of RGB images with
an average resolution of 469×387 pixels (Russakovsky, Deng, Su, Krause, Satheesh, Ma, Huang,
Karpathy, Khosla, Bernstein, Berg, and Fei-Fei, 2015). It is organized according to the WordNet
hierarchy, and is often used when to test pretrained convolutional neural-networks.

Specialized layers in the networks used for testing were omitted throughout evaluation. Further
testing could determine the effect of Phish on such models. Specific examples would include re-
current neural-networks. These networks were engineered to solve the vanishing gradient problem
(Zaremba, Sutskever, and Vinyals, 2014). Gated recovery unit and long-short term memory al-
gorithms are extensions of recurrent neural-networks (Hochreiter and Schmidhuber, 1997). When
testing time series data, Phish could be implemented in these algorithms via substituting Sigmoid
layers.

Another example of a future study would be utilizing Phish in generative adversarial networks.
These algorithms comprise of two models, often multilayer perceptrons, engaging in a minimax
game. The first model is the generator, which captures the distribution of a given dataset. The
second one is the discriminator, which differentiates samples from the dataset and ones generated
by the generator. Ideally, the loss of the discriminator would be maximized with the accuracy
yielding 1

2 everywhere. Testing Phish in a model with the purpose of maximizing loss would be an
interesting future study (Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville,
and Bengio, 2014). Lastly, Phish could be tested without the assumption that the aforementioned
loss would be defined as in equations 13 and 14.

5 Conclusion
Phish is a novel non-monotonic activation function. It delivered higher performance in MNIST

and CIFAR-10 image classification than Sigmoid and and TanH. It rivals Swish in loss minimization.
Its derivative is always positive rightward from the origin (0, 0). Phish evaluates calculations that
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increase the speed of loss minimization. Unlike ReLU, Phish is fully differentiable. Future studies
could involve training generative adversarial networks with Phish and examining the performance.
This project was conducted under adult approval with antivirus software. TensorFlow-Keras,
PyTorch, and MXNet applications of the function can be found at the link: https://github.
com/PhilipNaveen/Phish-A-Novel-Hyper-Optimizable-Activation-Function
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6 Appendix

6.1 Markov Chains
A Markov chain is a stochastic graph model based in probability. They are favorable for

simulating large networks of events because they are memoryless. Each chain yeilds a stochastic
transition matrix (STM) (Meyn and Tweedie, 1993).

The Markov model on Ω results in the stochastic process (X0, X1, X2, ... Xt) in which the
transition state between x and y complies with the properties

Xt ∈ Ω,∀t (14)

and

P[Xt+1 = y|Xt = x,Xt−1 = xt−1, ...X0 = x0] = P[Xt+1 = y|Xt = x] =: P (x, y) (15)

In addition, the STM exists with non-negativity

∀x, y ∈ Ω, P (x, y) ≥ 0 (16)

and stochasticity ∑
y∈Ω

= P (x, y) = 1,∀x ∈ Ω (17)

where each row converges to 1 (of Auckland, 2018). This Markov model is continuous, with no
termination node with 100% probability of returning to itself on the graph, and a 0% chance of
transferring to any other stage. In addition, there is technically an appropriate start node in this
graph. However, since this Markov model will be ran for extended periods of time, the law of large
numbers states that the probability of the event occurring will be affected minimally from the first
event, especially since there are only two possible stages in this model. Therefore, the chance of
starting at either stage was 50% always (Meyn and Tweedie, 1993).

Figure 1: Markov Chain Model used for Simulating Cross-Validations for Deep Neural-Networks

The Markov chain utilized here is a two stage graph with four global locations and two local
ones for each stage. An minimalistic representation of the adjacency matrix could be fabricated
accordingly with 4×4 dimensions. The probability values were guaranteed using the STM

ωij = Ω =

[
P1(T ) P2(T )
P2(F ) P1(F )

]
(18)

The Markov simulation was conducted where the P1(T ), P1(F ), P2(T ), and P2(F ) were retrieved
from a cross-validation. For each activation function, a DNN was trained across ten epochs. The
prediction ratios were implanted into four graphs. Each graph was simulated for 10,000 iterations
twenty-five times to follow the ideal experimental design.

6.2 Deep Neural-Networks
Activation functions are derived with the purpose of generating non-linearity to the inherently

linear data transformed from the input layer of a neural-network. Backpropagation is the process
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where each synaptic weight in deep-learning algorithms are iteratevely finetuned to complete a
task using loss calculated between the expected and actual outcomes. Suppose there is a multilayer
perceptron with with weights, and biases adjusted through an arbitrary activation function A(x).
In this multilayer perceptron, as with most, the weights are defined the simple matrix

w[l] =



w
[l]
1,1 w

[l]
1,2 w

[l]
1,3 ... w

[l]
1,n

w
[l]
2,1 w

[l]
2,2 w

[l]
2,3 ... w

[l]
2,n

w
[l]
3,1 w

[l]
3,2 w

[l]
3,3 ... w

[l]
3,n

w
[l]

n[l],1
w

[l]

n[l],2
w

[l]

n[l],3
... w

[l]

n[l],n[l−1]


∈ Rn[l]×n[l−1]

(19)

to represent the baseline values, which are usually randomly generated within a [-1, 1] interval.
The less complex bias vectors can be represented by a one dimensional version of the matrix seen
above. In addition, the weighted sum (aka. the values parsed through the activation function) is

z =

n∑
i=1

xiwi + b (20)

The weighted input can be obtained and parsed through A(x) for the intermediate column vector

z[l] =



z
[l]
1

z
[l]
2

z
[l]
3

.

.

.

z
[l]
n


∈ Rn[l]

(21)

The testing model comprised an initial flattening layer, six hidden layers, and one output layer.
The flattening layer manipulated the image data into a one-dimensional array for the next layer.
The six hidden layers used one of the four activation functions tested and contained between 32-128
layers each. The output layer was always ten neurons, because MNIST, and CIFAR-10 both have
ten classes. It used SoftMax instead of a Sigmoid, as probability of classification was distributed
between more than two classes. The models trained using SCC loss and the Adam optimizer, which
combines aspects of the previously engineered AdaGrad and RMSProp methods.
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