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Introduction 

This is a well-known problem in the mathematical community, usually referred to as the "Collatz 

conjecture" or "3n+1" (and sometimes by other names: Kakutani's, Ulam's, Syracuse problem or 

conjecture). The formulation of the problem is attributed to Lothar Collatz, but the exact origin is not 

clearly known [1, 2]. The full-fledged problematic discussion, as well as analysis and solution 

approaches, could be found in the works by Jeffrey Lagarias [3-5]. 

The problem is so famous because it is still considered unsolved [6] despite a very simple formulation. 

We believe that the popularization of science on YouTube channels [7] has sparked the interest of a 

wider audience and drawn attention to the problem. 

In this particular work, we would like to propose a representation of the algorithm that can be analyzed 

through a sequence convergence process. 

First, we recall the conjecture to be proved: we apply the known algorithm 𝑓(𝑛) to any positive integer; 

the process will eventually reach the number 1, regardless of which positive integer was initially 

chosen: 

𝑓(𝑛) = {
3𝑛 + 1 if 𝑛 ≡ 1 (mod 2),
𝑛 2⁄  if 𝑛 ≡ 0 (mod 2).

  

 

Discussion 

1. Algorithm representation form 

For the explanation purpose we will use the following operational notation: 

𝑛1
   3𝑛+1    
→     3𝑛1 + 1, 

𝑛2
       

1

2
𝑛      

→     
1

2
𝑛2;           (1.1) 

where 𝑛 – the integer number at each iteration step the particular operation to be applied, 𝑛 ∈

ℕ[1;∞), 𝑛1 – an odd number, 𝑛2 – even number. Obviously, 3𝑛1 + 1 – even number, as the operation 

is applied to the odd number only, according to the algorithm rule, while 
1

2
𝑛2 could be odd or even as 

well. 
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Any given even number could be reduced to the lesser odd number by consequent application of the 

1

2
𝑛2 operations; as evidently from the number theory. Thus, we start discussion for the odd number 

𝑛0, which was given initially or was produced from the initial even number. 

 

Definition 1 

Assume that any positive odd integer 𝑛0 can be initially represented in the following form: 

𝑛0 = 𝑎2
𝑚0;           (1.2) 

where 𝑎 – rational positive number, 𝑎 ∈ ℚ(
1

2
; 1], the numerator of 𝑎 is an odd integer; 𝑚0 – integer 

number satisfying the representation form, 𝑚0 ∈ ℕ[0;∞). Examples: 5 =
5

8
∙ 23, 27 =

27

32
∙ 25, 1 = 1 ∙

20 etc. 

The parameters 𝑎 and 𝑚0 we assume to achieve through the realization of the following recursive 

functions 𝐴 and 𝑀, respectively: 

𝐴(𝑛, 0) = 𝑛, 𝐴(𝑛, 𝑥 + 1) = {
𝐴(𝑛 2⁄ , 𝑥)  if 𝑛 > 1,

𝑛  if 𝑛 ≤ 1.
      (1.3) 

𝑀(𝑛, 0) = 0, 𝑀(𝑛, 𝑥 + 1) = {
𝑀(𝑛, 𝑥)  if 2𝑥 < 𝑛,
𝑥  if 2𝑥 ≥ 𝑛.

      (1.4) 

 

Then we will consider the result of applying 3𝑛 + 1 operation: 

𝑎2𝑚0
   3𝑛+1    
→     3𝑎2𝑚0 + 1 =

3

4
𝑎2𝑚0+2 + 1 = 2𝑚0+2 [

3

4
𝑎 +

1

2𝑚0+2
].    (1.5) 

From this notation, we can see that the expression under the brackets is less than or equal to 1 for any 

positive initial number: [
3

4
𝑎 +

1

2𝑚0+2
] ≤ 1, that corresponds to the applied constraints: 𝑎 ∈ ℚ(

1

2
; 1], 

𝑚0 ∈ ℕ[0;∞). 

After operation (1.5), we must necessarily perform a division operation. We represent this in the 

following notation, reducing only the power of two while leaving the expression under the brackets 

unchanged: 

2𝑚0+2 [
3

4
𝑎 +

1

2𝑚0+2
]
       

1

2
𝑛      

→     2𝑚0+1 [
3

4
𝑎 +

1

2𝑚0+2
].      (1.6) 
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We cannot know how many times we need to apply the division operation before we get an odd 

number, so we call the power of two reached as 𝑚1; we can say with certainty that 0 ≤ 𝑚1 ≤ 𝑚0 + 1, 

or through induction 0 ≤ 𝑚𝑖+1 ≤ 𝑚𝑖 + 1. We will say, that we had performed the algorithm cycle, 

where the index of 𝑚 refers to the number of applied cycles. 

 

Definition 2 

Introduce the function 𝑐, which applies the explored algorithm (1.1) for the any odd number 𝑛0 until 

the output result becomes an odd number. According to the formulae (1.5) and (1.6) this operation is 

expressed as follows: 

𝑐(𝑛0) = 2
𝑚1 [

3

4
𝑎 +

1

2𝑚0+2
].         (1.7) 

Let us define a recursive application of the operation 𝑐 to an odd number through the recursive 

superposition notation: 

𝑐1(𝑛0) = 𝑐(𝑛0), 𝑐
𝑘+1(𝑛0) = 𝑐 (𝑐

𝑘(𝑛0)).       (1.8) 

The consequent application of the function 𝑐 we will consider as a mathematical sequence. Thus, 𝑘 

applications of the operation 𝑐 to the initial odd number 𝑛0 results the sequence {𝑐𝑘(𝑛0)}. 

 

Example 1 

We can consider the application of the algorithm under study as the result of applying the 𝑐 operation 

to an odd number. For the 𝑛0 = 19 we receive the following sequence: 𝑐1(19) = 29, 𝑐2(19) =

𝑐1(29) = 11, 𝑐3(19) = 𝑐2(29) = 𝑐1(11) = 17, 𝑐4(19) = 13, 𝑐5(19) = 5, 𝑐6(19) = 1, 𝑐7(19) = 1 

and etc. Therefore, starting from the sixth term of the sequence the following numbers are units. 

 

Definition 3 

Introduce the limit 𝐶 which is defined as a limit of the sequence {𝑐𝑘(𝑛0)}: 

𝐶(𝑛0) = lim
𝑘→∞

𝑐𝑘(𝑛0).          (1.9) 

 

To achieve explicit expression of the operation 𝑐 we apply it to the result (1.7): 
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𝑐2(𝑛0) = 2
𝑚2 [(

3

4
)
2
𝑎 +

3

4
(

1

2𝑚0+2
+ (

3

4
)
−1 1

2𝑚1+2
)]; 

and to the produced result as well: 

𝑐3(𝑛0) = 2
𝑚3 [(

3

4
)
3
𝑎 + (

3

4
)
2
(

1

2𝑚0+2
+ (

3

4
)
−1 1

2𝑚1+2
+ (

3

4
)
−2 1

2𝑚2+2
)]. 

Finally, we are able to formulate the 𝑘 member of the sequence: 

𝑐𝑘(𝑛0) = 2
𝑚𝑘 [

(
3

4
)
𝑘
𝑎 + (

3

4
)
𝑘−1

(
1

2𝑚0+2
+ (

3

4
)
−1 1

2𝑚1+2
+⋯

…+ (
3

4
)
−𝑘+0 1

2𝑚𝑘−2+2
+ (

3

4
)
−𝑘+1 1

2𝑚𝑘−1+2
)
].     (1.10) 

The formula (1.10) could be interpreted as consisting a series: 

𝑐𝑘(𝑛0) = 2
𝑚𝑘 [(

3

4
)
𝑘
𝑎 + (

3

4
)
𝑘−1

∑ (
3

4
)
−𝑖+1 1

2𝑚𝑖−1+2
𝑘
𝑖=1 ].      (1.11) 

 

Example 2 

The sixth member of the sequence in the Example 1 could be expressed through the formula (1.10) as 

follows: 

𝑐6(19) = 23 [(
3

4
)
6 19

32
+ (

3

4
)
6−1

(
1

25+2
+ (

3

4
)
−2+1 1

26+2
+ (

3

4
)
−3+1 1

25+2
+ (

3

4
)
−4+1 1

26+2
+ (

3

4
)
−5+1 1

26+2
+

(
3

4
)
−6+1 1

25+2
)] = 1.  

 

The conjecture problem overall we will reformulate as exploration of possible results of the following 

limit: 

𝐶(𝑛0) = lim
𝑘→∞

2𝑚𝑘 [(
3

4
)
𝑘
𝑎 + (

3

4
)
𝑘−1

∑ (
3

4
)
−𝑖+1 1

2𝑚𝑖−1+2
𝑘
𝑖=1 ].     (1.12) 

The proposed formulation of the conjecture should be considered as equal to the original: 

∀𝑛0(𝐶(𝑛0) = 1). While the proposed formulation is for odd numbers, the validity for all natural 

numbers quite obvious: if ∀𝑛0(𝐶(𝑛0) = 1), therefore, Collatz conjecture satisfies all 2𝑛0 numbers as 

well. 
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Note 1 

To define the formal possibility of the limit of the sequence (1.12) to be equal to unit we use the 

following theorem: if all terms of a sequence are equal to the same number, then the sequence 

converges to that number [8]. Thus, the proposition 𝐶(𝑛0) = 1 means there exist segments of the 

sequence {𝑐𝑘(𝑛0)} which all terms are equal to the unit. These arguments allow us to apply the 

theorems of sequences limit according to the formal definition. 

 

 

2. Limit analysis 

Theorem 1 

The result of the limit 𝐶 is totally defined through the parameter 𝑎 and does not depend from the 

parameter 𝑚0, which define number 𝑛 to the conformity of the conjecture. 

Indeed, for any initial odd number 𝑛0(𝑎,𝑚0) we are able to construct sequence of the corresponding 

even numbers through the parameter 𝑖, according to the formula (1.2): 

2𝑖𝑛0 = 𝑎2
𝑚0+𝑖, 𝑖 ∈ ℕ[1;∞).         (2.1) 

Let us pick some numbers 𝑛0
𝑐 for that the Collatz conjecture is fulfilled, obviously, this proposition is 

true [9]: 

∃𝑛0
𝑐: 𝑛0

𝑐 ⊆ 𝑛0, 𝐶(𝑛0
𝑐) = 1.         (2.2) 

That allows us to construct infinite sequence of even numbers, for which the conjecture is fulfilled, 

according to the (2.1) we receive 𝐶(𝑛0
𝑐(𝑎𝑐 ,𝑚0

𝑐 + 𝑖)) = 1. 

The same argumentation line could be applicated for the hypothetical number 𝑛0
¬𝑐 for that the Collatz 

conjecture is not fulfilled: 𝐶(𝑛0
¬𝑐(𝑎¬𝑐 ,𝑚0

¬𝑐 + 𝑖)) ≠ 1. 

According to the excluded third rule: (𝐶(𝑛0) = 1) ∨ (𝐶(𝑛0) ≠ 1), or equally (𝐶(𝑛0(𝑎
𝑐 ,𝑚0

𝑐 + 𝑖)) =

1) ∨ (𝐶(𝑛0(𝑎
¬𝑐 ,𝑚0

¬𝑐 + 𝑖)) ≠ 1). 

If ∃𝑛0(𝐶(𝑛0(𝑎
¬𝑐,𝑚0

¬𝑐)) ≠ 1) is true, there could be approved proposition ∃𝑛0(𝐶(𝑛0(𝑎
𝑐 ,𝑚0

¬𝑐)) =

1). E.g., 𝐶(𝑛0(1,0)) = 1 and 𝐶(𝑛0(1,0 + 𝑖)) = 1, where 𝑖 ∈ ℕ[1;∞) corresponds to the domain of 

𝑚0. We conclude: 

¬∃𝑚0
¬𝑐: (𝑚0

𝑐 ⊆ 𝑚0) ∧ (𝑚0
¬𝑐 ⊆ 𝑚0), 𝐶(𝑛0(𝑎,𝑚0

𝑐)) = 1 ∧  𝐶(𝑛0(𝑎,𝑚0
¬𝑐)) ≠ 1.   (2.3) 
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The above argumentation allows us to make an intermediate conclusion on dependency of the 

propositional function (𝐶(𝑛0(𝑎,𝑚0)) = 1) result on parameter 𝑎 exclusively, thus, (𝐶(𝑛0(𝑎)) = 1) 

is an equal form. 

 

Note 2 

It was supposed by the author to exclude the interference of parameter 𝑎 to the limit result by 

concerning the limit of the parameter associated sequence {(
3

4
)
𝑘
𝑎}, and consequently exclude the 

particular number 𝑛0 interference to the Collatz algorithm, such as result of the limit 𝐶 does not 

depend from the number as it does not depend from the parameters, which define the number. Alas, 

such as logical pass was not convincing enough; obviously, the more thorough analysis is required. 

 

Proposition 1 

To confirm the ∀𝑛0(𝐶(𝑛0) = 1) we equally can exclude the following hypotheses, which reflect the 

proposition ∃𝑛0(𝐶(𝑛0) ≠ 1): (1) it could be picked such number 𝑛0 for which the sequence {𝑐𝑘(𝑛0)} 

is unbounded, or ∃𝑛0(𝐶(𝑛0) = ∞); (2) it could be picked such number 𝑛0 for which the sequence 

{𝑐𝑘(𝑛0)} is divergent, or 𝐶(𝑛0) is not exist; (3) it could be picked such number 𝑛0 for which the 

sequence {𝑐𝑘(𝑛0)} converges to a number different from the unit, or ∃𝑛0(𝐶(𝑛0) = 𝑔), 𝑔 ∈ ℕ[2;∞). 

According to the previous conclusions (Theorem 1), we are able to reformulate all these conditions 

relative to the parameter 𝑎 instead of 𝑛0. 

 

The sequence {𝑐𝑘(𝑛0)} according to the affordable operations over sequences, could be represented 

as follows: 

{𝑐𝑘(𝑛0)} = {2
𝑚𝑘} [{(

3

4
)
𝑘
𝑎} + {(

3

4
)
𝑘−1

∑ (
3

4
)
−𝑖+1 1

2𝑚𝑖−1+2
𝑘
𝑖=1 }].     (2.4) 

Consider the sequence {2𝑚𝑘}: it could be unbounded, divergent or could converge. 

The sequence {(
3

4
)
𝑘
𝑎} has a limit without another option: 

lim
𝑘→∞

(
3

4
)
𝑘
𝑎 = 0.          (2.5) 
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The series ∑ (
3

4
)
−𝑖+1 1

2𝑚𝑖−1+2
∞
𝑖=1  could be convergent or divergent, depending on the 𝑚𝑖−1 parameter 

values. 

 

Hypotheses 2 and 3 

Suppose, the {2𝑚𝑘} is bounded. This case corresponds to the approbation of the conjecture, but and 

for the hypotheses 2 and 3 as well. For this case the parameter 𝑚 is defined as follows: 0 ≤ 𝑚𝑖+1 ≤

𝑚𝑖, which means equally that it does not exceed certain number 𝑗: 𝑗 ∈ ℕ. The series diverges according 

to the necessary condition: 

lim
𝑖→∞

(
3

4
)
−𝑖+1 1

2𝑚𝑖−1+2
= lim
𝑖→∞

(
4

3
)
𝑖−1
(
1

2
)
𝑗+2

= ∞.       (2.6) 

To evaluate the limit of the sequence {(
3

4
)
𝑘−1

∑ (
3

4
)
−𝑖+1 1

2𝑚𝑖−1+2
𝑘
𝑖=1 } consider the partial sum: 

𝑠𝑘 = (
1

2
)
𝑗+2 1−(4 3⁄ )

𝑘

1−(4 3⁄ )
,          (2.7) 

according to the formula for the geometric series sum. The associated limit takes the following form: 

lim
𝑘→∞

(
3

4
)
𝑘−1

𝑠𝑘 = lim
𝑘→∞

(
3

4
)
𝑘−1

(
1

2
)
𝑗+2 1−(4 3⁄ )

𝑘

1−(4 3⁄ )
= lim
𝑘→∞

(
1

2
)
𝑗
(1 − (3 4⁄ )

𝑘
) = (

1

2
)
𝑗
.  (2.8) 

The desired limit in this case could be formulated as follows: 

𝐶(𝑛0) = lim
𝑘→∞

2𝑚𝑘 [ lim
𝑘→∞

(
3

4
)
𝑘
𝑎 + lim

𝑘→∞
(
3

4
)
𝑘−1

𝑠𝑘] = lim
𝑘→∞

2𝑚𝑘 [0 + (
1

2
)
𝑗
] = (

1

2
)
𝑗
lim
𝑘→∞

2𝑚𝑘. (2.9) 

This means whatever the number 𝑛0 is taken, if {2𝑚𝑘} is bounded assumed, the sequence associated 

with Collatz conjecture converges to the above form. But this leads to unambiguous resolution the 

Collatz algorithm on the unit, which proves the conjecture. The final result (
1

2
)
𝑗
lim
𝑘→∞

2𝑚𝑘 represents 

the number two in the certain natural number power; according to the conjecture formulation that 

follows application of corresponding quantity of  
1

2
𝑛 operations, 𝑚𝑘 − 𝑗, specifically, that results unit. 

Concluding, assuming the necessary condition for the hypotheses 2 and 3 fulfilment results 

confirmation of the conjecture. 
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Note 3 

One might argue, that the sequence could infinitely approach the limit (2.9) and does not take the 

value of the limit. According to the formulation of the limit (1.12) the series takes exactly the value of 

the limit (see note 1). This approved by the discrete nature of the natural number sequence. The 

{(
3

4
)
𝑘
𝑎} decreases monotonically as well as {(

3

4
)
𝑘−1

∑ (
3

4
)
−𝑖+1 1

2𝑚𝑖−1+2
𝑘
𝑖=1 } in case of the bounded 

{2𝑚𝑘}. This form represents finite natural number with finite quantity of associated intervals, to which 

are applied infinite operations associated with the conjecture. As we consider the result of the 

operation 𝑐 can take only odd numbers, the only possible number for 𝑚𝑘 − 𝑗 is equal zero, which 

results only possible odd result of the power of two. 

 

 

Hypothesis 1 

Suppose, the {2𝑚𝑘} is unbounded, that corresponds the hypothesis 1. In this case we are able to 

estimate the 𝑚𝑖−1 value as follows: 𝑚𝑖−1 = max(𝑚𝑖). According to the definitively applied condition 

0 ≤ 𝑚𝑖+1 ≤ 𝑚𝑖 + 1 we provide 𝑚𝑖−1 = 𝑖 − 1. The series in this case converges, because satisfies 

necessary condition: 

lim
𝑖→∞

(
3

4
)
−𝑖+1 1

2(𝑖−1)+2
= lim
𝑖→∞

(
4

3
)
𝑖−1
(
1

2
)
𝑖−1+2

= lim
𝑖→∞

(
2

3
)
𝑖−1
(
1

2
)
2
= 0.    (2.10) 

According this, we can provide sum of the series: 

∑ (
3

4
)
−𝑖+1 1

2(𝑖−1)+2
∞
𝑖=1 = ∑ (

2

3
)∞

𝑖=1

𝑖−1
(
1

2
)
2
= (

1

2
)
2 1

1−2 3⁄
=
3

4
.     (2.11) 

Thus, the concerning limit of the sequence {𝑐𝑘(𝑛0)} results uncertainty of type ∞[0 + 0], that in first 

sight does not contradict the acceptance of the hypothesis. 

In our current representation from the condition for the expression in the brackets consists not to 

exceed the unit. Let introduce the following operation on the form: if the expression in the brackets 

less or equal to 
1

2
 we double the expression, thus, it is stabilized in the interval (

1

2
; 1] as the parameter 

𝑎. That allows to interpret operation over some natural number 𝑛0(𝑎0,𝑚0) which results another 

number 𝑛1(𝑎1,𝑚1 − 𝑧) as follows: 

𝑐(2𝑚0[𝑎0]) = 2
𝑚12−𝑧 [2𝑧 (

3

4
𝑎0 +

1

2𝑚0+2
)] = 2𝑚1−𝑧[𝑎1];     (2.12) 
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where 𝑧 ∈ ℕ. In this case the operation representation form becomes identical with the initial natural 

number interpretation according to the formula (1.2). 

We continue hypothesis consideration, where every consequent number exceeds previous: 

{𝑐𝑘(𝑛0)} = {2
𝑚𝑘−𝑧𝑘} [2𝑧𝑘 ({(

3

4
)
𝑘
𝑎} + {(

3

4
)
𝑘−1

∑ (
3

4
)
−𝑖+1 1

2𝑚𝑖−1+2
𝑘
𝑖=1 })] = {2𝑚𝑘−𝑧𝑘}[{𝑎𝑘}]. (2.13) 

This condition as well corresponds to the unbounded sequence {2𝑚𝑘−𝑧}, while the expression in 

brackets corresponds to the interval (
1

2
; 1]. We do not know the value of 𝑧, because have not 

estimated the conditions of doubling the expression in brackets yet. We will consider the arbitrarily 

chosen very high numbers to find out the 𝑧 estimation. The relation 𝑛𝑘 𝑛0⁄  in this case could be 

expressed as follows: 

lim
𝑛𝑘→∞
𝑘→∞

𝑛𝑘

𝑛0
= lim
𝑚𝑘→∞
𝑘→∞

2𝑚0+𝑘∙2−𝑧𝑘[2𝑧𝑘((
3

4
)
𝑘
𝑎0+(

3

4
)
𝑘−1

∑ (
3

4
)
−𝑖+1 1

2𝑚𝑖−1+2
𝑘
𝑖=1 )]

2𝑚0[𝑎0]
= lim
𝑘→∞

2𝑘−𝑧𝑘 [2𝑧𝑘 (
3

4
)
𝑘
]. (2.14) 

Last expression (2.14) gives the following estimation of the parameter: 

𝑘 log2
4

3
− 1 < 𝑧𝑘 < 𝑘 log2

4

3
,         (2.15) 

which gives the following approximate relation at high numbers: 𝑧𝑘 𝑘⁄ ≈ 0.415. 

The provided transformations still do not obviously contradict the hypothesis; however, we have 

changed the uncertainty ∞[0 + 0] to consideration to another uncertainty, which could be defined as 

∞[{𝑎𝑘}], or ∞[∞ ∙ 0], where {𝑎𝑘} is a sequence of numbers satisfying demands for the parameter 𝑎 

in the Definition 1. 

Thus, we continue: from the admittance of the hypothesis 1, there is a number, say 𝑎0
∞, starting from 

all the produced consequent numbers {𝑎𝑘
∞} satisfy the hypothesis 1. If there is such 𝑎𝑖

∞ from {𝑎𝑘
∞} 

which does not satisfy the hypothesis 1, that leads to contradiction, because 𝑎𝑖
∞ was produced from 

𝑎0
∞ by applying the Collatz algorithm, while 𝑎0

∞ should be kept satisfying the hypothesis 1. 

In case of unbounded {2𝑚𝑘}, the operation 𝑐 is totally defined, such as parameter in the series takes 

following values: 𝑚𝑖 = 𝑖. 

 

Definition 4 

Suppose we construct reversive to 𝑐 operation, the operation 𝑐−1, which generates parameters before 

𝑎0
∞, such as: 
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𝑐−1 (𝑐(𝑛0
∞(𝑎0

∞))) = 𝑛0
∞(𝑎0

∞), 𝑐−𝑘−1(𝑛0) = 𝑐
−1 (𝑐−𝑘(𝑛0

∞(𝑎0
∞))) = 𝑛−𝑘−1

∞ (𝑎−𝑘−1
∞ ).  (2.16) 

 

Obviously, 𝑛𝑖−1
∞ < 𝑛𝑖

∞. But that means we cannot generate infinite quantity of numbers 𝑛−𝑘
∞ , because 

𝑛0
∞ is a finite natural number. That means there should be such 𝑛𝑖

∞ and the corresponding 𝑎𝑖
∞ that do 

not produce numbers 𝑛𝑖−1
∞  and 𝑎𝑖−1

∞  which should give the disproof of the Collatz conjecture. But this 

leads to the contradiction: we cannot produce that number, because cannot satisfy condition 𝑛𝑖−1
∞ <

𝑛𝑖
∞ for the infinite sequence for the natural number domain. If we assume existence of the number 

𝑐−1(𝑛𝑖
∞) it should be such, that approve the conjecture, but that consequently means approving 

conjecture by the 𝑛𝑖
∞ as well. 

Thus, the assumption of existence such number 𝑛0
∞ leads to contradiction. 

 

Finally, it is shown that all the possible hypotheses of disproving the Collatz conjecture result the 

contradiction, that proves the conjecture. Q.E.D. 

 

 

3. Summary 

1. Any initial integer number can be represented through the form (1.2). 

2. The infinite process of the Collatz algorithm application could be presented through the limit 

of the sequence (1.12). 

3. According to the Proposition 1 we can propose Hypotheses 1–3 which only disprove the 

conjecture. 

4. Acceptance of the necessary condition for the hypotheses 2 and 3 and for the approving the 

conjecture leads to the limit result (2.9) which can only approve the conjecture. The 

hypotheses 2 and 3, therefore, are not applicable. 

5. Acceptance of the hypothesis 1 through the (2.13) leads to acceptance of infinite quantity of 

numbers satisfying the hypothesis. 

6. The definition 4 along with (2.16) allow us to generate numbers prior to the assumed one 

according to the hypothesis 1. 

7. This process cannot be infinite, thus cannot produce infinite quantity, satisfying the hypothesis 

1. The hypothesis causes contradiction. 

8. Along with denying of the possible disproving hypotheses, the Collatz conjecture is proved. 
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4. Constructivistic approach 

Here we will use the following interpretation: 𝐶(𝑛0) is a propositional function of the conformity of 

the natural number 𝑛0 to the Collatz algorithm. 

 

Proposition 1 

If the odd number 𝑛0 conforms the algorithm, then the following numbers also conform: 

∀𝑛0𝐶(𝑛0) → 𝐶(3𝑛0 + 1) ∧ 𝐶(2𝑛0). 

It is easy to prove: if 𝑛0 is odd and is known to converge, then through the application of the algorithm 

the following operation will be 𝑛1 = 3𝑛0 + 1 with the resulting number; this number 𝑛1 must 

converge, because 𝑛0 converges. If we start with 2𝑛0, the following operation will be dividing by two 

with the resulting 𝑛0, which converges. 

 

Proposition 2 

Suppose we can find such odd 𝑛0
′ , that number 3𝑛0

′  converges: 

∃𝑛0
′ (𝐶(𝑛0

′ ) ∧ 𝐶(3𝑛0
′ )). 

This proposition is true, such numbers exist. 

 

For this number we can as well say, that 𝐶(3𝑛0
′ + 1) ∧ 𝐶(2𝑛0

′ ) according to the proposition 1. 

Then, we can provide algebraic transformations for the propositional functions objects to provide: 

𝐶(3(2𝑛0
′ ) + 1) ∧ 𝐶(2(3𝑛0

′ )) or 𝐶(6𝑛0
′ + 1) ∧ 𝐶(6𝑛0

′ ), 

which allows us to consider 𝑛0
′  to be an even as well. The last formula allows to conclude 𝐶(𝑛0

′ + 1) ∧

𝐶(𝑛0
′ ). 

 

Proposition 3 

Consider the unit as 𝑛0
′ : 𝑛0

′ = 1. This is the induction base. 

The 𝑛0
′ + 1 is an induction step. 
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This means through the induction process we can construct all the numbers, that satisfy the Collatz 

conjecture. But this is as well a construction scheme for the natural numbers without zero. The set of 

the natural numbers satisfying the conjecture coincide with natural numbers set without zero. 

Q.E.D. (x2) 
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