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Summary 

A solution is proposed for the so-called Collatz hypothesis, it is also a "problem 3𝑛 + 1". The idea of 

the proof is to represent the operation of the algorithm as an infinite sequence of numbers, for which 

hypotheses about convergence or divergence are considered, corresponding to hypotheses about the 

output values of the algorithm. 

In a separate section, other possibilities for constructing a proof are presented. 
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Introduction 

There is a well-known problem in the mathematical community for quite a long time, commonly called 

the "Collatz conjecture" or "3𝑛 + 1 problem". The problem statement is attributed to Lothar Collatz; 

it was not published by him, since he could not provide its solution, however, it was voiced by him 

many times [1]. A full review of the problem and related problems, including existing approaches to 

analysis and solution, can be found in the works of D. Lagarias [1-3]. 

This conjecture has become widely known in mathematical circles due to the fact that, despite its 

elementary formulation, it is still considered unsolved [4]. This circumstance is also of interest to a 

wider audience, including through the popularization of mathematics on specialized YouTube channels 

[5]. 

In this paper, we want to propose an approach to proving this conjecture. It is quite obvious that the 

problem itself is not trivial, and therefore verification of the proof is also a task, including for the 

author. Thus, we point out that the work can only contain a proof of the conjecture. 

Actually, let's formulate the problem itself: the well-known algorithm, presented here as a recursive 

function 𝑓(𝑛), is applied to any natural number 𝑛, while the process will come to the unit, regardless 

of which natural number was originally chosen; if the number is odd, then a transformation is 

performed on it 3𝑛 + 1, and if it is even, then 𝑛 2⁄ : 

𝑓(𝑛) = {
3𝑛 + 1 if 𝑛 ≡ 1 (mod 2),
𝑛 2⁄  if 𝑛 ≡ 0 (mod 2).

  

 

 

Discussion 

1. Algorithm presentation form 

The purpose of this section is to formulate the area of interpretation in the context of which 

subsequent logical statements will be evaluated. 

We denote the operations of the algorithm as follows: 

𝑛1
   3𝑛+1    
→     3𝑛1 + 1, 

𝑛2
       

1

2
𝑛      

→     
1

2
𝑛2;           ( 1.1) 
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where 𝑛 is a natural number at any iteration of the algorithm, 𝑛 ∈ ℕ[1;∞); 𝑛1 – the same, only it is 

noted that the number is odd; 𝑛2- an even number. It is quite obvious that the number expressed as 

3𝑛1 + 1 is even, while it 
1

2
𝑛2can be either even or odd. 

Any initial even number, based on the properties of the algorithm, will be reduced to the 

corresponding odd number, so the algorithm can only be considered in the context of odd numbers. 

 

Definition 1.1 

Any initial odd natural number can be expressed by the following formula: 

𝑛0 = 𝑎2
𝑚0;            (1.2) 

where 𝑎 is a rational positive number, 𝑎 ∈ ℚ(
1

2
; 1]; 𝑚0is a natural number corresponding to the 

proposed formula, 𝑚0 ∈ ℕ[0;∞). For example, 5 =
5

8
∙ 23, 27 =

27

32
∙ 25, 1 = 1 ∙ 20etc. 

If the initial number is even, it can be represented as: 

𝑛0 = 𝑎2
𝑚0+𝑘; 

where 𝑘is a natural number corresponding to the number of initial operations 
1

2
𝑛2leading to an odd 

number expressed by the formula 𝑎2𝑚0. 

To uniquely determine the transformation of a number to the form (1.2), we define the recursive 

functions 𝐴and 𝑀; the representation of these functions is given in a way different from the classical 

representation of recursive functions. The initial number is passed as a parameter 𝑛for the zero 

iteration, then at some iteration of the 𝑥desired value is obtained: 

𝑎 = 𝐴(𝑛, 0), 𝐴(𝑛, 𝑥 + 1) = {
𝐴(𝑛 2⁄ , 𝑥)  if 𝑛 > 1,

𝑛  if 𝑛 ≤ 1.
      (1.3) 

𝑚0 = 𝑀(𝑛, 0), 𝑀(𝑛, 𝑥 + 1) = {
𝑀(𝑛 2⁄ , 𝑥)  if 𝑛 > 1,

𝑥  if 𝑛 ≤ 1.
      (1. 4) 

For example, 𝑎(5) = 𝐴(5,0) = 𝐴 (
5

2
, 1) = 𝐴 (

5

4
, 2) = 𝐴 (

5

8
, 3) =

5

8
; 𝑚0(5) = 𝑀(5,0) = 𝑀 (

5

2
, 1) =

𝑀 (
5

4
, 2) = 𝑀 (

5

8
, 3) = 3. 

 

Consider the result of applying the operation 3𝑛 + 1 to the original number: 
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𝑎2𝑚0
   3𝑛+1    
→     3𝑎2𝑚0 + 1 =

3

4
𝑎2𝑚0+2 + 1 = 2𝑚0+2 [

3

4
𝑎 +

1

2𝑚0+2
].     (1.5) 

In the proposed wording, the expression in square brackets does not exceed one: [
3

4
𝑎 +

1

2𝑚0+2
] ≤ 1, 

which corresponds to the applied restrictions for the parameters: 𝑎 ∈ ℚ(
1

2
; 1], 𝑚0 ∈ ℕ[0;∞). 

After the implementation of operation (1.5), proceeding from the definition of the algorithm, the 

operation of division follows. We will consider it in the form of the following representation: 

2𝑚0+2 [
3

4
𝑎 +

1

2𝑚0+2
]
       

1

2
𝑛      

→     2𝑚0+1 [
3

4
𝑎 +

1

2𝑚0+2
].       (1.6) 

For an arbitrary number, we cannot say how many divisions will be required to obtain an odd number, 

so we will say that the number two in formula (1.6) acquires a certain power 𝑚1. Let's estimate this 

number: 0 ≤ 𝑚1 ≤ 𝑚0 + 1, – and at an arbitrary step of the algorithm: 0 ≤ 𝑚𝑖+1 ≤ 𝑚𝑖 + 1, by 

induction. 

We will say that the execution of operations (1.5) and subsequent (1.6) until the next odd number is 

obtained corresponds to the cycle of the algorithm. Thus, the lower index of the parameter 𝑚 

corresponds to the number of implemented cycles of the algorithm. 

 

Definition 1.2 

Let us introduce a function 𝑐 that, when an arbitrary odd number is passed to it, produces an odd 

number obtained as a result of the implementation of one cycle of the algorithm under study, so that: 

𝑐(𝑛0) = 2
𝑚1 [

3

4
𝑎 +

1

2𝑚0+2
].          (1.7) 

We will use the generally accepted notation for the corresponding recursive transformations: 

𝑐1(𝑛0) = 𝑐(𝑛0), 𝑐
𝑘+1(𝑛0) = 𝑐 (𝑐

𝑘(𝑛0)).        (1.8) 

Successive application of a function 𝑐 to a number we consider as a mathematical sequence. Thus, the 

successive application 𝑘 of the cycles of the algorithm under study to the initial number 𝑛0 will give 

the corresponding sequence of odd numbers {𝑐𝑘(𝑛0)}. 

 

Example 1.1 

For the initial number, 𝑛0 = 19 we get the following sequence: 𝑐1(19) = 29, 𝑐2(19) = 𝑐1(29) = 11, 

𝑐3(19) = 𝑐2(29) = 𝑐1(11) = 17, 𝑐4(19) = 13, 𝑐5(19) = 5, 𝑐6(19) = 1, 𝑐7(19) = 1 etc. Thus, 
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starting from the sixth member of the sequence, {𝑐𝑘(19)} all subsequent members are equal to the 

unit. 

 

Definition 1.3 

We introduce a function 𝐶(𝑛0) that outputs the value of the limit of the sequence {𝑐𝑘(𝑛0)} when the 

number of cycles of the algorithm tends to infinity, so that: 

𝐶(𝑛0) = lim
𝑘→∞

𝑐𝑘(𝑛0).           (1.9) 

 

To explicitly express the function 𝐶, we first consider the sequential application of the cycles of the 

algorithm to an arbitrary number: 

𝑐2(𝑛0) = 2
𝑚2 [(

3

4
)
2
𝑎 +

3

4
(

1

2𝑚0+2
+ (

3

4
)
−1 1

2𝑚1+2
)]; 

and then: 

𝑐3(𝑛0) = 2
𝑚3 [(

3

4
)
3
𝑎 + (

3

4
)
2
(

1

2𝑚0+2
+ (

3

4
)
−1 1

2𝑚1+2
+ (

3

4
)
−2 1

2𝑚2+2
)]. 

As a result, we express an arbitrary 𝑘th member of the sequence: 

𝑐𝑘(𝑛0) = 2
𝑚𝑘 [

(
3

4
)
𝑘
𝑎 + (

3

4
)
𝑘−1

(
1

2𝑚0+2
+ (

3

4
)
−1 1

2𝑚1+2
+⋯

…+ (
3

4
)
−𝑘+0 1

2𝑚𝑘−2+2
+ (

3

4
)
−𝑘+1 1

2𝑚𝑘−1+2
)
].      (1.10) 

This formula (1.10) can be written as containing a number series: 

𝑐𝑘(𝑛0) = 2
𝑚𝑘 [(

3

4
)
𝑘
𝑎 + (

3

4
)
𝑘−1

∑ (
3

4
)
−𝑖+1 1

2𝑚𝑖−1+2
𝑘
𝑖=1 ].       (1.11) 

 

Example 1.2 

The sixth member of the sequence from example 1.1 using formula (1.10) can be expressed as follows: 

𝑐6(19) = 23 [(
3

4
)
6 19

32
+ (

3

4
)
6−1

(
1

25+2
+ (

3

4
)
−2+1 1

26+2
+ (

3

4
)
−3+1 1

25+2
+ (

3

4
)
−4+1 1

26+2
+ (

3

4
)
−5+1 1

26+2
+

(
3

4
)
−6+1 1

25+2
)] = 1.  

 



6 
 

It follows from this representation that the study of the Collatz algorithm is identical to the study of 

possible values of the function 𝐶(𝑛0), which is the limit of the sequence: 

𝐶(𝑛0) = lim
𝑘→∞

2𝑚𝑘 [(
3

4
)
𝑘
𝑎 + (

3

4
)
𝑘−1

∑ (
3

4
)
−𝑖+1 1

2𝑚𝑖−1+2
𝑘
𝑖=1 ].      (1.12) 

The propositional form of the hypothesis in the context of the described model can be expressed as 

follows: ∀𝑛0(𝐶(𝑛0) = 1). Note that the proposed formulation applies only to all odd numbers, 

meanwhile, we indicated earlier that the proof of this statement implies the truth of the statement for 

all even numbers according to the scheme ∀𝑛0(𝐶(𝑛0) = 1) ⊃ (𝐶(𝑛02
𝑘) = 1): 𝑘 ∈ ℕ[1;∞). 

 

Remark 1.1 

Let us determine the value of the limit of the sequence expressed by formula (1.12) by stating the 

following theorem on the limit of the sequence: if all members of the sequence are equal to the same 

number, then the sequence converges to this number [6]. Thus, the statement 𝐶(𝑛0) = 1 means that 

for a sequence defined as {𝑐𝑘(𝑛0)} there are segments of this sequence, all members of which are 

equal to one. This argument allows us to consider the result of the Collatz algorithm in terms of the 

formal definitions of sequence theory. 

 

 

 

2. Proof by examining the range of possible values of the function 𝑪 

 

Proposition 2.1 

Th statement ∀𝑛0(𝐶(𝑛0) = 1) that is equivalent to ¬∃𝑛0(𝐶(𝑛0) ≠ 1) using the law of the excluded 

middle, so that we are going to exclude the truth of the statement ∃𝑛0(𝐶(𝑛0) ≠ 1). The last 

statement, which is a counterhypothesis, is equivalent to the following subject statements and only to 

them (recall that the domain of definition and the range of values of a function 𝐶 are given on the set 

of natural numbers; odd, to be more precise): (1) one can find such 𝑛0 for which the sequence {𝑐𝑘(𝑛0)} 

is bounded, but at the same time the limit does not exist; (2) it is possible to find such 𝑛0 for which the 

sequence {𝑐𝑘(𝑛0)} converges to a number different from one, or ∃𝑛0(𝐶(𝑛0) = 𝑔), 𝑔 ∈ ℕ[3;∞); (3) 
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one can find such 𝑛0 for which the sequence {𝑐𝑘(𝑛0)} is divergent and unbounded, or 

∃𝑛0(𝐶(𝑛0) = ∞). 

 

The sequence of numbers {𝑐𝑘(𝑛0)}, according to the theorems of sequence theory, can be 

represented as follows: 

{𝑐𝑘(𝑛0)} = {2
𝑚𝑘} [{(

3

4
)
𝑘
𝑎} + {(

3

4
)
𝑘−1

∑ (
3

4
)
−𝑖+1 1

2𝑚𝑖−1+2
𝑘
𝑖=1 }].      (2.1) 

Consider the sequence {2𝑚𝑘}: by itself, it can converge or diverge, while being both limited and 

unlimited. 

The sequence {(
3

4
)
𝑘
𝑎} has a unique limit: 

lim
𝑘→∞

(
3

4
)
𝑘
𝑎 = 0.           (2.2) 

The number series ∑ (
3

4
)
−𝑖+1 1

2𝑚𝑖−1+2
∞
𝑖=1  can be both convergent and divergent, depending on what 

values the parameter takes 𝑚𝑖−1; accordingly, nothing concrete can be said about the limit of the 

sequence {(
3

4
)
𝑘−1

∑ (
3

4
)
−𝑖+1 1

2𝑚𝑖−1+2
𝑘
𝑖=1 } either. 

 

Hypotheses 1 and 2 

Suppose the sequence {2𝑚𝑘} limited. This assumption satisfies the conditions of hypotheses (1) and 

(2) and, in fact, is identical to them, because there are no other subject options that satisfy the 

fulfillment of these hypotheses. In this case, we can evaluate the parameter 𝑚as follows: 0 ≤ 𝑚𝑖+1 ≤

𝑚𝑖, which can also be interpreted as 𝑚 not exceeding some number 𝑗: 𝑗 ∈ ℕ. 

In this case, we get a divergent numerical series, since the necessary condition for this is met: 

lim
𝑖→∞

(
3

4
)
−𝑖+1 1

2𝑚𝑖−1+2
= lim
𝑖→∞

(
4

3
)
𝑖−1
(
1

2
)
𝑗+2

= ∞.        (2.3) 

To estimate the limit of the sequence, {(
3

4
)
𝑘−1

∑ (
3

4
)
−𝑖+1 1

2𝑚𝑖−1+2
𝑘
𝑖=1 }we write the partial sum of the 

series, according to the formula for the partial sum of the geometric series: 

𝑠𝑘 = (
1

2
)
𝑗+2 1−(4 3⁄ )

𝑘

1−(4 3⁄ )
,           (2.4) 
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Then the limit of the considered sequence can be expressed as follows: 

lim
𝑘→∞

(
3

4
)
𝑘−1

𝑠𝑘 = lim
𝑘→∞

(
3

4
)
𝑘−1

(
1

2
)
𝑗+2 1−(4 3⁄ )

𝑘

1−(4 3⁄ )
= lim
𝑘→∞

(
1

2
)
𝑗
(1 − (3 4⁄ )

𝑘
) = (

1

2
)
𝑗
,   (2.5) 

which means the convergence of the considered sequence. 

It turns out, under the conditions of hypotheses 1 and 2, we can consider the value of the function 𝐶 

on the basis of general theorems on the limits of sequences as follows: 

𝐶(𝑛0) = lim
𝑘→∞

2𝑚𝑘 [ lim
𝑘→∞

(
3

4
)
𝑘
𝑎 + lim

𝑘→∞
(
3

4
)
𝑘−1

𝑠𝑘] = lim
𝑘→∞

2𝑚𝑘 [0 + (
1

2
)
𝑗
] = (

1

2
)
𝑗
lim
𝑘→∞

2𝑚𝑘.  (2.6) 

It is quite obvious that for any natural bounded, based on the requirements of hypotheses 1 and 2, 

values 𝑗 and 𝑚𝑘 the value of the function 𝐶 is unique and equals to one. But this leads to a 

contradiction, since conjectures 1 and 2 are stated for cases where the Collatz conjecture is refuted. It 

follows from this that hypotheses 1 and 2 are not applicable. 

 

Remark 2.1 

Let us admit the following objection: the sequence {𝑐𝑘(𝑛0)} infinitely approximates the limit (2.6), but 

there are no terms equal to the unit. Such an assumption is not admissible, since the function is defined 

on natural numbers. The sequences in square brackets, namely {(
3

4
)
𝑘
𝑎} and 

{(
3

4
)
𝑘−1

∑ (
3

4
)
−𝑖+1 1

2𝑚𝑖−1+2
𝑘
𝑖=1 }, converge and decrease monotonically, despite the fact that the 

sequence {2𝑚𝑘} is limited, according to the requirements of hypotheses 1 and 2. This mathematical 

construction describes some finite natural odd number, therefore, to infinitely approximate the limit, 

while not reaching it, a monotone decreasing sequence defined on the natural numbers cannot. 

 

Hypothesis 3 

The condition of hypothesis 3 assumes the existence of such a number, let's call it 𝑛0
∞, the sequence 

{𝑐𝑘(𝑛0
∞)} formed by which is monotonically increasing; likewise, 𝐶(𝑛0

∞) = ∞. 

It is quite obvious that such a number, when the operation is applied to it, 𝑐also forms a number with 

the same property, so that 𝑐𝑘+1(𝑛0
∞) > 𝑐𝑘(𝑛0

∞), and: 

𝑐𝑘+1(𝑛0
∞) =

3

2
𝑐𝑘(𝑛0

∞) +
1

2
,          (2.7) 
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since in this case the cycle of the algorithm consists of an operation 3𝑛 + 1 and only one operation 

𝑛 2⁄ , which is the condition for the fulfillment of hypothesis 3. 

The operation on such a number is uniquely defined, therefore, we can define the inverse to the 𝑐 

operation. 

 

Definition 2.1 

Let us express the operation inverse to 𝑐 in the context of hypothesis 3 explicitly: 

𝑐−1(𝑐(𝑛0
∞)) = 𝑛0

∞,           (2.8) 

𝑐𝑘−1(𝑛0
∞) =

2

3
(𝑐𝑘(𝑛0

∞) −
1

2
).          (2.9) 

 

Now we apply the inverse operation to the hypothetical number corresponding to hypothesis 3 and 

consider the result: 𝑐−1(𝑛0
∞). If the operation 𝑐−1 is not applicable to a given number, then it was not 

obtained by formula (2.7), which entails: 𝑐−1(𝑛0
∞) > 𝑛0

∞, - but this contradicts the property of the 

number 𝑛0
∞, since it is assumed that 𝑛0

∞we can take any arbitrarily large number 𝑐𝑘(𝑛0
∞) exceeding 

𝑐−1(𝑛0
∞). If the operation 𝑐−1 is applicable to a number, this means that for any finite number 𝑛0

∞ we 

can propose a sequence {𝑐−𝑘(𝑛0
∞)}, which must be monotonically decreasing. This sequence, as well 

as all considered operations on it, are defined on the set of odd numbers. Accordingly, we can define 

the limit of this sequence: 

lim
𝑘→∞

𝑐−𝑘(𝑛0
∞) = 1,           (2.10) 

which also leads to a contradiction, since the unit does not have the hypothetical number property of 

𝑛0
∞. 

Thus, the conditions of hypothesis 3 are not feasible. 

 

All hypotheses that could justify the statement ∃𝑛0(𝐶(𝑛0) ≠ 1) lead to a contradiction in the context 

of the interpretation under consideration, therefore, it is false. The statement is confirmed 

∀𝑛0(𝐶(𝑛0) = 1), which proves the Collatz conjecture. Q. E. D. 
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3. Proof by examining the properties of numbers obtained by applying the algorithm to an arbitrary 

number 

 

The approach to the proof of the conjecture presented below is intended to logically supplement the 

idea of the previous section outside of sequence theory. In particular, the very idea of the proof is 

similar to the trick realized by formula (2.10). 

 

Definition 3.1 

Let there be an expressive function 𝐶 applied to an object variable 𝑛 denoting some natural number. 

Thus, the formula 𝐶(𝑛) will mean that the number 𝑛 fulfills the Collatz algorithm, i.e. sequential 

implementation of the algorithm for a finite number of iterations leads to the unit. The number 𝑛 may 

be odd; in this case we will use the term 𝑛1, or even, 𝑛2, respectively. The term 𝑛2 is defined as follows: 

𝑛2 = 𝑛1 + 1, i.e. for an arbitrary odd number, one can put in a one-to-one correspondence some even 

number, moreover, 𝑛1 = 𝑛2 − 1. 

 

Let us define some initial statements that are valid in the context of the interpretation under 

consideration: 

∀𝑛1 ((𝐶(𝑛1) ≡ 𝐶(3𝑛1 + 1)) ∧ (𝐶(𝑛1) ≡ 𝐶(2𝑛1))),       (3.1) 

which means if 𝑛1 the algorithm executes, then and only then 3𝑛1 + 1 and 2𝑛1 also execute, which is 

obvious; 

∀𝑛2 ((𝐶(𝑛2) ≡ 𝐶 (
1

2
𝑛2)) ∧ (𝐶(𝑛2) ≡ 𝐶(2𝑛2))),       (3.2) 

which means if 𝑛2 the algorithm executes, then and only if  
1

2
𝑛2 and 2𝑛2 also execute. 

𝐶(1) identically true.           (3.3) 

These formulas are essentially axioms in the interpretation under consideration. 

Transformations of a term inside an expressive function obey elementary arithmetic rules. 

Further reasoning will go, considered as hypotheses. 

∀𝑛 (𝐶(𝑛) ≡ (𝐶(𝑛1) ∨ 𝐶(𝑛2))),         (3.4) 
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which means that by 𝑛 we simultaneously mean a pair of adjacent natural numbers such that at least 

one of these numbers executes the algorithm. This formula defines an arbitrary 𝑛, convenient for 

applying reasoning by induction. For the second part of the formula, we assume the corresponding 

closure according to the generalization rule: ∀𝑛1∀(𝑛1 + 1)(𝐶(𝑛1) ∨ 𝐶(𝑛1 + 1)). 

Since the formula is ∀𝑛(𝐶(𝑛) ≡ 𝐶(3𝑛 + 1)) derivable, we assume that the following formulas are also 

derivable: 

∀𝑛(𝐶(𝑛 + 1) ≡ 𝐶(3𝑛 + 4)), ∀𝑛(𝐶(𝑛 + 2) ≡ 𝐶(3𝑛 + 7)), ∀𝑛(𝐶(𝑛 + 3) ≡ 𝐶(3𝑛 + 10))… etc. 

At the same time, we also derive: 

∀𝑛(𝐶(𝑛 − 1) ≡ 𝐶(3𝑛 − 2)), ∀𝑛(𝐶(𝑛 − 2) ≡ 𝐶(3𝑛 − 5)), ∀𝑛(𝐶(𝑛 − 3) ≡ 𝐶(3𝑛 − 8))… etc. 

Let's continue with the last line of reasoning: 

… ∀𝑛 (𝐶(𝑛 − (𝑛 − 2)) ≡ 𝐶((3𝑛 − 3𝑛) + 7)), ∀𝑛 (𝐶(𝑛 − (𝑛 − 1)) ≡ 𝐶((3𝑛 − 3𝑛) + 4)). 

Of particular interest is the statement ∀𝑛𝐶(𝑛) ≡ 𝐶(3𝑛 + 1) and its corresponding ∀𝑛𝐶(𝑛 − 𝑛) ≡

𝐶((3𝑛 − 3𝑛) + 1), however, we will refuse to consider this case for the time being, since the 

expression 𝐶(0) deserves special attention. 

By the deduction theorem, we adopt the following formulas: 

∀𝑛(𝐶(𝑛 + 1) ≡ 𝐶(3𝑛 + 4)) ⊃ ∀𝑛 (𝐶(𝑛 − (𝑛 − 1)) ≡ 𝐶((3𝑛 − 3𝑛) + 4)),    

∀𝑛(𝐶(𝑛 + 2) ≡ 𝐶(3𝑛 + 7)) ⊃ ∀𝑛 (𝐶(𝑛 − (𝑛 − 2)) ≡ 𝐶((3𝑛 − 3𝑛) + 7));    (3.5) 

the conclusions in the presented implications are true, since 𝐶(7) ≡ 𝐶(4) ≡ 𝐶(1) the premises must 

also be true. It means: 

∀𝑛(𝐶(𝑛 + 1) ∧ 𝐶(𝑛 + 2) ⊃ 𝐶(1)),         (3.6) 

which, in essence, completes the proof, since it means that for any natural pair of numbers (𝑛 + 1) 

consisting of a natural number and its successor, the Collatz algorithm is performed for at least one 

number, and the Collatz algorithm is performed for the successor of this number; by the distributivity 

property, we obtain for an even or odd number, respectively: 

(𝐶(𝑛1) ∨ 𝐶(𝑛1 + 1)) ∧ (𝐶(𝑛1 + 1) ∨ 𝐶(𝑛1 + 2)) ≡ 𝐶(𝑛1 + 1) ∨ (𝐶(𝑛1) ∧ 𝐶(𝑛1 + 2)), 

(𝐶(𝑛1 + 1) ∨ 𝐶(𝑛1 + 2)) ∧ (𝐶(𝑛1 + 2) ∨ 𝐶(𝑛1 + 3)) ≡ 𝐶(𝑛1 + 2) ∨ (𝐶(𝑛1 + 1) ∧ 𝐶(𝑛1 + 3)); (3.7) 

which confirms (3.6), Q.E.D. 
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Remark 3.1 

For any formula of the form 𝐶(𝑛 + 𝑘) within the framework of the Collatz algorithm, or the 

interpretation used, the formula is derivable 𝐶(3𝑘 + 1), or: 𝐶(𝑛 + 𝑘) ⊢ 𝐶(3𝑘 + 1), which allows 

deriving ⊢ 𝐶(𝑛 + 𝑘) ⊃ 𝐶(3𝑘 + 1). We do not have to consider the entire set of formulas 𝐶(3𝑘 + 1), 

but only those in which 𝑘 = 1 and 𝑘 = 2, which corresponds to a pair of any consecutive natural 

numbers with their followers 𝑛 + 1 and 𝑛 + 2. 

 

Remark 3.2 

Consider the expression separately ∀𝑛 (𝐶(𝑛 − 𝑛) ≡ 𝐶((3𝑛 − 3𝑛) + 1)). It gives the formula 𝐶(0), 

and also confirms it, since 𝐶(0) ≡ 𝐶(1). The condition of the problem does not provide for the 

application of the algorithm to the number zero, however, if we apply the operation 3𝑛 + 1 for 𝑛 = 0, 

we will obtain an identity. On the other hand, in the modern interpretation of Peano's axiomatics, but 

not in the original one, we note [6], the unit - an odd number - is a follower of zero, considered as a 

natural number, so the operation 3𝑛 + 1 is not applicable to zero. But, again, on the other hand, if we 

apply the operation 
1

2
𝑛 to zero, we get a constant function. We believe that it will not be superfluous 

to consider the interpretation of the zero argument of a function in the context of the problem under 

consideration. 

 

 

4. About missing function argument 

In this section, we will conduct arguments based on a constructive approach. We will check the 

resulting definitions for consistency using generally accepted logical methods and interpretation in the 

context of mathematical analysis. The following arguments are directly related to the Collatz 

conjecture, since can serve as a basis for the proof, which will be demonstrated. 

 

Definition 4.1 

To simplify the reasoning, we will consider only real arguments of ranges and function definitions. 



13 
 

Let some one-place function be given 𝑦 = 𝑓1(𝑥). We will say that this function is identical to some 

two-place function such that 𝑦 = 𝑓2(𝑥, ∅), respectively ∀𝑥(𝑓1(𝑥) = 𝑓2(𝑥, ∅)). Here we use the 

symbol " ∅" to denote zero in the interpretation of the absence of something, and we do not use the 

symbol " 0" in order to avoid confusion associated with the interpretation of zero as the value of an 

argument, for example, 𝑦(0) = 𝑓(𝑥) | 𝑥 = 0. 

A trivial example could be as follows: 𝑦 = 2𝑥 is equal with 𝑦 = 2𝑥 + 0𝑧. 

Similarly for 𝑛-place and 𝑛 + 1-place functions: 

𝑓𝑛(𝑥1, … , 𝑥𝑛) = 𝑓
𝑛+1(𝑥1, … , 𝑥𝑛, ∅).         (4.1) 

By 𝑓(∅) we will, accordingly, understand some constant function. 

 

Let's also assume that: 

𝑓𝑛+1(𝑥1, … , 𝑥𝑛, ∅) = 𝑓
𝑛+1(𝑥1, … , 𝑥𝑛, 𝑥𝑛+1).        (4.2) 

Denote the formula for the identity relation of terms (4.1) and (4.2) as 𝒜 and ℬ, respectively. 

According to the axiom ∀𝑥(𝒜 ⊃ ℬ) ⊃ (𝒜 ⊃ ∀𝑥ℬ), under the condition that 𝒜 does not contain free 

occurrences 𝑥, we get: 

∀𝑥𝑛+1(𝑓
𝑛+1(𝑥1, … , 𝑥𝑛, ∅) = 𝑓

𝑛+1(𝑥1, … , 𝑥𝑛, 𝑥𝑛+1));       (4.3) 

while from formula (4.1) by the generalization rule (Gen) we can get: 

∀𝑥𝑛+1(𝑓
𝑛(𝑥1, … , 𝑥𝑛) = 𝑓

𝑛+1(𝑥1, … , 𝑥𝑛, ∅)).        (4.4) 

The last equalities allow us to make a conclusion about the property of the function: 

∀𝑥𝑛+1(𝑓
𝑛(𝑥1, … , 𝑥𝑛) = 𝑓

𝑛+1(𝑥1, … , 𝑥𝑛, 𝑥𝑛+1)).       (4.5) 

This formula can be interpreted as follows: for an arbitrary given function, we can introduce an 

additional argument that does not affect the value of the function itself; the converse is also true, if 

the values of some argument do not affect the value of the function for all values of the remaining 

arguments, then it can be discarded. The last sentence can be expressed: 

∀𝑥𝑛+1∀𝑥𝑛…∀𝑥1(𝑓
𝑛+1(𝑥1, … , 𝑥𝑛, 𝑥𝑛+1) = 𝑓

𝑛+1(𝑥1, … , 𝑥𝑛, 0)) ⊃ (𝑓
𝑛+1(𝑥1, … , 𝑥𝑛 , 𝑥𝑛+1) =

𝑓𝑛(𝑥1, … , 𝑥𝑛)).           ( 4.6) 

For a one-place function, we thus obtain the axiomatically true relation: 
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∀𝑥1(𝑓
1(𝑥1) = 𝑎) ⊃ (𝑓

1(𝑥1) = 𝑎),         (4.7) 

where 𝑎 is some subject constant. 𝑓1(𝑥1)in this case, it is a constant function. 

 

Example 4.1 

Let some function be given, such that 𝑦 = 𝑓1(𝑥). Obviously, it can be represented as 𝑓2(𝑥, 𝑦) =

𝑐𝑜𝑛𝑠𝑡. Let's add an arbitrary variable to this function: ∀𝑥∀𝑦∀𝑧(𝑓3(𝑥, 𝑦, 𝑧) = 𝑓2(𝑥, 𝑦)). The last 

equality also has a simple geometric interpretation: if a set of points is formed by adding an additional 

coordinate to a point located in a space of lower dimension, then this point is a projection of all new 

points formed from it in this way in a space of higher dimension. 

 

Building a proof of the Collatz conjecture 

The function defined by formula (1.12) can also be expressed as follows: 𝐶(𝑛0) = 𝐶(𝑎,𝑚0(𝑎)). Here 

the parameters 𝑎 and 𝑚0 are obtained from the initial number 𝑛0by the above formulas (1.3) and 

(1.4), and the parameter is 𝑚0assumed to be obtained from 𝑎so that 𝑛0 = 𝑎2
𝑚0by (1.2). Analyzing 

formula (1.12) by methods of sequence theory, it can be reduced to an analysis of formula (2.1). 

Moreover, the only sequence associated with the parameter 𝑎has a unique limit by (2.2), i.e. does not 

depend on the parameter itself 𝑎, while the parameter 𝑚0 can be excluded as being defined through 

the parameter 𝑎, i.e. 𝐶(𝑎,𝑚0(𝑎)) = 𝐶(𝑎). Next we have: 

∀𝑎(𝐶(𝑛0) = 𝐶(𝑎)), 

∀𝑎(𝐶(𝑛0) = 𝐶(𝑎)) ⊃ (𝐶(𝑛0) = 𝑐𝑜𝑛𝑠𝑡), (according to formula 4.7)     ( 4.8) 

which essentially leads to a proof by the generalization rule 𝐶(𝑛0) ⊃ ∀𝑛0𝐶(𝑛0). 
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