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Abstract

Observations of astronomical objects include vectors that are transverse, perpendicular to the direction to the objects themselves. If a 

set of transverse vectors are correlated, this information may reflect on the objects themselves or of the intervening medium through 

which the observations are made or otherwise. One measure of correlation made by the Hub Test determines how well transverse 

vectors on the sky align with the other points on the sky. Any such result must be accompanied by an estimate of its significance, i.e. 

how likely is it that randomly directed transverse vectors would be as well aligned. Generating random data and calculating the 

significance is a mathematical  exercise that can be done in many ways with varying degrees of reliability. Given a sample with 

observed transverse vectors, one can repeatedly replace the observed vectors with randomly directed vectors to build probability 

distributions of random data results. This method of finding significance is time consuming and computationally intensive. Two 

alternatives are presented here. A standard reference Library has been created by treating many simulated samples, organized by the 

number of sources and the size of the sample region. Assuming an observed sample has these properties in range of the Library’s 

resources, the significances of its results can be estimated by interpolating the Library data. Another method, easier but less reliable 

than the interpolations, fits the Library data with functions, so finding significance reduces to substituting the observed sample’s 

number of sources and region dimensions into formulas. An Appendix supplies computer software that can be used to apply the 

alternative methods to observed samples. Links to a ready-to-run, self-contained Mathematica notebook is provided in the references.

Keywords: Alignment;  Hub Test; Transverse Vectors; Polarization; Jets

*Department of Sciences, Wentworth Institute of Technology, 550 Huntington Avenue, Boston, MA, USA, 02115, 

orcid.org/0000-0001-5920-759X, e-mail addresses: shurtleffr@wit.edu, momentummatrix@yahoo.com 

0. Preface

The pdf version of this notebook is available online from the viXra archive. 

To find the ready-to-run notebook follow the link in Ref. 1. The notebooks in this series were created using Wolfram Mathematica, 

Version Number: 12.1, Ref. 2.

Note(s):

(1) Some numerical quantities in the pdf version may differ from the live ready-to-run version in Ref. 1 because the ready-to-run 

version may have been run after the pdf was produced. The ready-to-run version and the pdf version may be updated out-of-synch. 

      



CONTENTS

Part I the Article

0. Preface

1. Introduction

2. The Hub Test and Direct Method A

3.  Creating a Library of Random Run Results, Interpolation Method B

4. Fitting the Library and Formula Method C

5. Applying the Three Methods to Three Sets of Experimental Data

6. Concluding Remarks

References 

Part II the Appendix

00. Preface

A1. Introduction and Probability Distributions, Significance Formulas

A2  The Library

A2a.  Preliminary 

A2b. The Library data

A3. Interpolation Method B

A4. Fit the Library Data with Functions, Function Method C

A5. Compare the three methods for three previously studied samples

1. Introduction

Given a set of transverse vectors on the sky, one may ask if their directions are correlated. Applications include the polarization 

direction of electromagnetic radiation and the direction of asymmetries such as jets. One test of alignment, the Hub Test, extends the 

transverse directions, making Great Circle geodesics on the Celestial Sphere. The transverse directions are perfectly aligned if they 

intersect at some point H on the sphere. The directions are well-aligned when they converge in a small area near some point Hmin . 

The Hub Test can find correlations for samples with hubs Hmin that are near the sources as well as the distant Hubs of other alignment 

tests.

The basic quantity that measures the convergence of the Great Circles is a function of position on the Celestial Sphere, denoted  

η(H). The function η(H) is an acute angle defined at all points of the Celestial Sphere, except at the sources.  The smallest 

alignment angle  ηmin
obs and the largest avoidance angle  ηmax

obs  provide two independent measures of the correlation of the set of 

transverse vectors. This article concentrates on alignment,   ηmin
obs. The Appendix puts both measures of correlation on a equal 

footing. The Hub Test is described briefly in Sec. 2 and references made there. 

The problem is to determine the significance of the  ηmin
obs calculated for a given sample. By the significance of  the smallest 

alignment angle  ηmin
obs  we mean the liklihood that random transverse directions would deliver as good a result as is found with the 

observed data. For the Hub Test measure of transverse vector alignment, this means finding out how likely random directions would 

yield a value ηmin
random less than or equal to ηmin

obs.  The significance is sometimes called the “p-value”.

By its definition, the most direct process we consider is what we call the ‘direct’ method, “Direct Method A”. Make many 

random runs, i.e. duplicates of the calculations with randomly directed transverse vectors, and find a formula that fits the probability 

distribution of the smallest alignment angles ηmin
random from the random runs of data.  Assuming that the fitting formula is accurate 

along the ‘tail’ of the distribution, we can estimate the significance by integrating the probability distribution to find the likelihood 

that random results ηmin
random have values below the smallest observed alignment angle  ηmin

obs. Direct Method A is the most reliable 
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of the three methods considered in this article. It is discussed in Sec. 2 along with the brief description of the Hub Test.  

To avoid the time-consuming Direct Method A, we present two alternatives. We have constructed simulated samples and made 

many random runs for each sample. The probability distributions for random run results  ηmin
random have been calculated by applying 

Direct Method A, but here for random transverse vector samples. The process, discussed in Sec. 3. gives us a Library of probability 

distributions. The fitting functions are two-parameter fits, like Gaussians, with a probability distribution determined by the peak 

parameter η0
min and the half-width parameter σmin. In this way we only need to save two numbers to determine the probability 

distribution for each simulated sample. Oh, wait, each parameter has a standard error found when the distribution is fit, so four 

numbers are recorded for each simulation sample.

The Library consists of the relevant properties of the simulated samples and the four parameters needed to replicate the probabil-

ity distributions of the two measures of correlation  ηmin
random and  ηmax

random. The Library also includes the standard errors for these 

parameters, so that estimates of the accuracy of the process can be made.

Once the Library is constructed, an interpolation determines the probability distribution required for an observed sample. This  

method of estimating significance is termed “Interpolation Method B”. Method B is presented in Sec. 3 with the Library construction. 

Interpolation Method B is limited by the range of the collection of samples with random runs. For example, observed samples with 

more sources than any sample in the Library would require an extrapolation. Since extrapolation is less accurate than an interpolation 

between data points, best practice constrains the application of Method B to the range of samples in the Library.

Function Method C finds two functions that fit the Library data, the peak η0
min and half-width σmin. Similar remarks apply to the 

other measure of correlation, ηmax
obs. The two functions η0

min and σmin depend on a sample’s number of sources and its root-mean-

square radius. Once values of the two parameters are determined, the probability distribution can be constructed and integrated to find 

the chance that random runs have better, smaller values of ηmin
random than the observed sample’s ηmin

obs. The formulas needed for 

Function Method C are included in this article, in Sec. 4.

We have previously studied three samples. The significances in those studies were estimated with Direct Method A. The papers 

are accessible, already appearing in the on-line non-refereed literature. Two samples have 27 and 13 QSO radio sources and one 

sample has 99 stars from our Galaxy  with polarized visible starlight; see Refs. 3,4,5. 

In Sec. 5 of this article, the significances of the three samples are determined with Interpolation Method B and Formula Method 

C. In future work, the plan is to apply Interpolation Method B and/or Function Method C to catalogs, mapping the significances of 

Hub Test’s assessment of the correlations of cataloged data. 

Concluding remarks appear in Sec. 6.

 

 

2. The Hub Test and Direct Method A

The Hub Test, Ref. 6, is based on the alignment of transverse directions with directions toward other points on the Celestial 

Sphere. In Fig. 1, the “alignment angle” η  is the acute angle η between two great circles at S,  0° ≤  η  ≤  90° . The alignment angle η 

measures how well the polarization direction  vψ matches the direction vH toward the point H.  Perfect alignment occurs when η  =  0° 

and the two great circles overlap. Perpendicular great circles, η   =  90°, indicates maximum “avoidance” of the polarization direction 

v

ψ with the point H on the sphere. The halfway value, η   =  45°,  favors neither alignment nor avoidance.
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Figure 1: The Celestial sphere is pictured on the left and on the right is the plane tangent to the sphere at the source S. The linear 

polarization direction  vψ lies in the tangent plane and determines the purple great circle on the sphere. A point H on the sphere 

together with the point S determine a second great circle, the blue circle drawn on the sphere. Clearly, H and S must be distinct in 

order to determine a great circle. The angle η measures the alignment of the polarization direction ψ with the point H. 

With N sources Si, i  =  1, ..., N, there are N alignment angles ηiH at each point H . One can calculate an average alignment angle 

η at H,

η(H)  =  1
N
∑i=1

N ηiH , (1) 

where 

cos( ηiH ) = | vψ.vH |  . (2)

Each angle ηiH is taken to be the acute angle solving (2). Then the average alignment angle η(H) at the point H must also be acute. 

The alignment angle η(H) is a function of position H on the sphere. See Figs. 2 and 3. It is symmetric across diameters,  η(H)  =  

η(-H), because great circles are symmetric across diameters. 

For random polarization directions, the average  η(H) should be near 45°, since each alignment angle ηiH is acute, 0° ≤ ηiH ≤ 90°, 

and random polarization directions should not favor large values or small values of ηiH, and, therefore, average to about 45°. Points H 

where the average alignment angle  η(H)  is smaller than 45°, the great circles tend to converge and where  the angle η(H)  is larger 

than 45°, the great circles can be said to diverge. The extremes of the function  η(H)  measure extreme convergence and extreme 

divergence of the great circles determined by the polarization directions. 

In this article and notebook, we often use “min” to label the smallest alignment angle ηmin, the minimum value of the function 

η(H), Eq. (1). The associated points on the Celestial Sphere are the “hubs” Hmin and -Hmin. Thus “min” is associated with conver-

gence of the polarization directions. For divergence, the hubs  Hmax and -Hmax locate places where the polarization directions most 

avoid, as indicated by the largest alignment angle ηmax, the maximum value of the function η(H).  Thus, we very often label an 

avoidance related quantity with “max”.
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Figure 2: For the sample of 13 QSOs in Ref. 4, the alignment angle function η(H) mapped on the Celestial Sphere (Aitoff plot, 

centered on (α,δ)  =  (180°,0) , East to the right). The QSOs are shaded green . To guide the eye, two Great Circles are plotted in 

gray, one through the sources’ center point and the avoidance hubs Hmax and -Hmax while the other Great Circle runs through the 

sources’ enter and the alignment hubs  Hmin and -Hmin. The circles cross at an angle of 105°. The smallest alignment angle, ηmin =  

10.86°, is located at the hubs Hmin and -Hmin, where the polarization directions converge best. One alignment hub Hmin is located 

very close to the QSOs. 
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Figure 3: The region near the QSOs in Fig. 2. The QSOs are located at the green dots. The short black lines through the QSOs 

indicate the polarization directions. Two of the QSOs are so close to the hub Hmin that it is difficult to distinguish the “X” at the hub 

from the polarization direction lines. Measuring polarization directions ψ clockwise from North, one sees that the angles ψ range from 

more than ψ  =  90° for the northern-most QSOs to 45° or so for the southerly QSOs. The QSOs display parallax: all are in the general 

direction of the alignment hub Hmin, but their directions depend on where they are located.

The significance of the smallest alignment angle ηmin is defined as the likelihood that randomly directed polarization vectors 

would produce a smaller value of  ηmin . Therefore, by this definition, one way to determine significance is to repeat the process of 

making Great Circles from polarization directions, calculating the alignment function η(H), and finding ηmin, all for randomly directed 

vectors. One such process makes a “random run”.

The most reliable method of determining significance that we consider is called “Direct Method A”. Following the definition of 

significance, one  generates many random runs with randomly directed transverse vectors assigned to the sources. A histogram of the 
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random-based results  for ηmin is then approximated by a suitable fitting function. Aside from a scale factor that normalizes the 

distribution, the fitting function of the histogram is the probability distribution of the random results ηmin. Having found a function 

that approximates the probability distribution, one estimates the likelihood that random runs return better results than the observed 

ηmin
obs and that is the significance of  ηmin

obs. 

One of the samples we discuss here has 27 QSOs and has been treated elsewhere, Ref. 3. The significances of ηmin and ηmax for 

the 27 QSO sample were found by Direct Method A. The histograms are displayed in Fig. 4.  The histogram for the largest avoidance 

angle ηmax is on the right in Fig. 4. The symmetry between max and min extremes of the function η(H) both describe valid correla-

tions of the polarization directions. 

There is much in common between convergence and divergence, both are extremes of the alignment angle function η(H). For 

brevity and because mutual alignment is of central interest in the literature, only convergence is discussed in Part I the Article. Both 

are treated equally in Part II the Appendix.
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Figure 4: Direct Method A applied to a sample of 27 QSOs, Ref. 3. Histograms for both the smallest alignment angle ηmin and the 

largest avoidance angle ηmax are displayed. Adding the heights of the bars in a histogram yields the total number of random runs, here  

Σ ΔR  =  R  =  10,000 runs. The height ΔR of each bar is the number of runs with results in the indicated bin, so the fraction ΔR/R is 

the probability that values land in the bin. The observed polarization directions give the values indicated by the arrows.

3. Creating a Library of Random Run Results, Interpolation Method B

One way to avoid generating and analyzing thousands of randomly directed samples is to generate and analyze thousands of 

artificially created simulated samples beforehand and collect parameters sufficient to estimate the probability distribution for a wide 

range of samples by interpolation. The collection of parameters can be called a “Library”. The process is called “Interpolation Method 

B”.

To begin with, we must create a set of samples to analyze. Let us choose to arrange the sources in square arrays, so that they are 

spread out uniformly over the region. This forces the number of sources to be perfect squares.  Currently, the Library has nine values 

of N ranging from N  =  9  to N  =  225, in detail: N  =  9, 16, 25, 36, 49, 64, 81, 121, 225.

It is convenient to pretend that all samples can be approximated as circular regions with a “radius”.  Thus, to this end, we build 

the square arrays using a nominal radius, “ρNominal”. The size of each square is determined by averaging two squares, a large square 

with the nominal circle inscribed and a smaller square that has vertices on the nominal circle. The side of the square array for the 

simulated sample is the average of the inscribed and superscribed squares. Thus we choose values for the radii ρNominal and 

construct square arrays of samples. As of this writing, ρNominal  =  0.25°, 0.33°, 0.50°, 1.0°, 2.0°, 3.0°, 4.0°, 8.0°, 42°, ten values in 
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total.

For calculations and comparing the extent of different samples, the best “radius” measure may be the root-mean-square radius 

ρRMS. The RMS radius is a well-recognized measure of the size of the region containing the sources. 

We calculate the RMS radius of the square arrays built for the Library and use the RMS radii ρRMS in calculations, while we 

organize the samples by the number of sources N and the nominal radius ρNominal. In total, there are nine values for N and ten values 

of ρNominal, both sets are listed above. Each combination (N,ρNominal) has its own value for ρRMS, so there are 90 ρRMS values, 

one for each combination (N, ρNominal). Fig. 5 displays one sample constructed for the Library.

Figure 5:  A sample with N  =  25 sources and a nominal radius ρNominal  =  8°. The sample is rotated to avoid coincidences with 

coordinate axes. The length of the side of the square is set so that the square approximates a circle with the nominal radius. For 

calculations and comparison with any observed samples, the root-mean-square radius is found. Here, the root-mean-square radius is  

ρRMS  =  6.84°. 

Once the samples are created, the sources are given randomly directed transverse vectors. The function  η(H) , Eq. (1), is 

calculated and the smallest alignment angle  ηmin is determined. At the time of writing, there are 90 samples and each is processed 

with 10,000 random runs.  The histograms for the square array of N  =  25 sources are displayed in Fig. 6 and 7.
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Figure 6: Thumbnails of the ten histograms for the values of  ηmin from random runs with  N  =  25. The plots are labelled with the 

nominal radius ρNominal. Function that fit the distributions are plotted as blue lines. Note that all the distributions tilt and are 

distorted from a symmetric Gaussian shape. 

A glance at Fig. 6 above reveals that the distributions for ηmin are steeper on the high side toward η → 45°.  This behavior is 

repeated for all such distributions and appears to be an inherent property of the statistics.   
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Figure 7: Enlarged view of the histogram and fit for N  =  25  and  ρNominal  =  8°. The distribution of the R  = 10,000 values of the 

smallest alignment angle ηmin  from the random runs. As noted above with Fig. 4, the histogram approximates the shape of the 

probability distribution, aside from a normalizing scale factor. The distribution is fit by a Gaussian multiplied by a step function. The 

step function vanishes to the right of the peak and is unity on the more important left side where the smallest alignment angles ηmin 

for well-aligned samples are found.

A histogram of the smallest alignment angles ηmin from R  =  10,000 runs is enlarged from Fig. 6 and displayed in Fig. 7. The 

height of a bar in Fig. 7 is the number ΔR of the random runs that gave a value of ηmin in the interval δη, the width of a bin. Thus, the 

quantity ΔR/R is the likelihood that random runs give a value of  ηmin in the bin. The histogram has the shape of the probability 

distribution  Pmin(η) for ηmin.  The probability distribution is normalized, 1  =  ∫ Pmin ⅆη .  Since the sum Σ ΔR  =  R, it follows that 1  

=  Σ ΔR
Rδη

δη and that Pmin(η)  ≈ ΔR
Rδη

 . Therefore, by fitting the histogram, we obtain the probability distribution Pmin(η), within a 

numerical factor.

There is a complication. Look closely at the distribution in Fig. 7. The right side, the side toward  ηmin → π/4  ~ 0.79 , has a 

steeper slope than the left side, the side  toward  ηmin → 0. Thus, the low ηmin  side is favored and probability is pushed from the right 

side to the left side.  A simple, symmetrical Gaussian would not fit the data well. The fitting curve shown in blue in Fig. 7 combines a 

Gaussian with a unit step-function, that is unity to the left of the peak, and zero to the right. We have 

Pmin(η)  =   norm

σ (2 π)1/2
 1 + ⅇ4

(η-η0-σ)

σ 
-1

ⅇ-
1

2


η - η0

σ

2

, (3)

where “norm” is a scale factor that normalizes the probability density. One finds that norm  ≈ 1.22. There are two free variables that 

can be chosen to fit a random run histogram like the one shown in Fig. 7. We call η0 the ‘peak’ value and σ is the ‘half-width’. The 

presence of the step function  1 + ⅇ4
(η-η0-σ)

σ 
-1

 moves the peak and half-width a little from their Gaussian values, i.e. their values 

without the step function. 

It is remarkable that the fitting function has two parameters just like a Gaussian, namely the peak η0 and the half-width σ. The 

step function is introduced without an associated parameter. Given the form in Eq. (3), the problem of determining the significance of 

an observed ηmin reduces to estimating the values of two parameters,  η0 and σ, that determine the probability distribution Pmin(η). 

For small N one confronts an issue with distribution formulas. Gaussians and probability distributions like that in Eq. (3) 

return non-zero probabilities for unphysical values of the variables. The acute angle  ηmin can not be negative even though the 

probability distribution in Eq. (3) assigns a probability to negative values of  η. The problem is unimportant when there are a 
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sufficient number of sources because low values of  ηmin are unlikely. With more sources, the likelihood of alignment decreases, as is 

evident from the left plot in Fig. 8. Thus, valid statistics require a minimum number of sources; we take 7. The number of sources N  

must be at least 7, N  ≥  7  for the significance of negative  ηmin to be sufficiently small.

To find the significance, or p-value, of the smallest alignment angle ηmin, one finds the likelihood of smaller random run values 

by integrating Pmin(η) from below, 

p(ηmin)  =  ∫-∞
ηminPmin(η) ⅆη (4)

By Eqs. (3) and (4) the significance of the correlated behavior indicated by the smallest alignment angle ηmin rests on the two 

probability distribution parameters  η0
min and σmin.  

0 10 ° 20 ° 30 ° 40 °
25 °

30 °

35 °

40 °

45 °

ρ

η
0

η0
min vs ρRMS

0 10 ° 20 ° 30 ° 40 °
0

2 °

4 °

6 °

8 °

ρ

σ

σmin vs ρRMS

{N, color}  =  
{{9, }, {16, }, {25, }, {36, }, {49, }, {64, }, {81, }, {121, }, {225, }}

Figure 8: The Library data, 90 values each of η0 and σ in Eq. (3) for the random run distributions, as in Fig. 7, of the smallest 

alignment angle ηmin . Left. The parameter η0
min locates the peak of a random run distribution. For a given number of sources N, the 

parameter η0
min curves upward for ρRMS less than about ρRMS ≲ 4 °. The standard errors of the η0

min  are smaller than the dots and 

are not displayed. Right. Similar behavior is found for the half-width σmin, with constant values at large ρRMS and curving upward 

below about 4°. The standard errors for σmin are large enough to see. Here the standard errors are plotted for the column of dots near 

ρRMS  ≈  6° to 8°. For a given N, the other standard errors for the σmin  have similar magnitudes as those displayed.

As of this writing, the Library has 90 sets of η0 and σ  for 90 sets of source number N and root-mean-square radius ρRMS. See 

Fig. 8. Look at the data in the left plot in Fig. 8. Most of the change occurs in the first 5° of ρRMS, while the radii ρRMS go out all 

the way to 42°. It would be better, at least for appearances and possibly for the interpolation itself, to spread the data out more evenly. 

To do that, we replace the variables N and ρRMS with functions of N and ρRMS and use the functions of N and ρRMS as variables 

rather than N and ρRMS themselves. 

One motivation for changing variables is visible in Fig. 5: the N sources occupy a square array.  The quantity N is associated 

with a square patch of the Celestial Sphere, an area. By taking the square root, i.e.  N1/2,  one obtains a ‘linear’ quantity. Then, both 

N1/2 and ρRMS are associated with angular quantities. 

For a given number of sources, a glance at Fig. 8 shows that large radius samples, ρRMS ≫ 1°, show little variation in the values 
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of η0
min or σmin. Most of the variation occurs for small angles. By the operation of multiplicative inversion, one can define a new 

variable τRMS  ≡  1/ρRMS to replace ρRMS. Treating N1/2 similarly, we define w  ≡  1N1/2 and use w and τRMS as the variables 

for the fit. Fig. 9 plots the Library data in terms of the variables τRMS and w. The new, preferred variables are

w  ≡  N-1/2  and  τRMS  ≡  ρRMS-1 . (5) 

Clearly one can write any formula in terms of w and  τRMS as a formula in terms of  N  and ρRMS. However, the Library data 

spreads out better with w and τRMS than with N and ρRMS. See Fig. 9.
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Figure 9: A change in the preferred variables for the fits to probability distribution parameters η0
min and σmin. Left: The Library data 

in Fig. 8 displayed for the peak alignment angle η0
minas a function of τRMS  ≡  1/ρRMS, the inverse sample radius. Note that the data 

is spaced nicely when compared with  Fig. 8. The big gap from 8° to 42° in Fig. 6 is now a small gap from 0.125 deg-1 to 0.024 

deg-1. And the curved structure below  ρ  =  5° for the η0
min in Fig. 8 is spread out in Fig. 9 above  τ  =  0.2 deg-1. We prefer   w  =  

N-1/2  and   τRMS  =  ρRMS-1 as the variables for the fits to the parameters  η0
min and σmin. 

For Interpolation Method B, interpolation is the way to get values of  the peak η0 and the half-width σ in the probability 

distribution Eq. (3) that are appropriate for a given experimentally observed sample.  For an observed sample whose number of 

sources Nobs and RMS radius ρRMSobs are in the range of the Library’s resources, a quick conversion gives w  =  N-1/2 and τRMS  =  

ρRMS-1. Then interpolation of the data in Fig. 9 produces values of  η0 and σ. With Eq. (3), these values determine the probability 

distribution Pmin(η) for the observed sample. By integrating the distribution Pmin(η) over all η less that the observed sample’s  ηmin
obs, 

one finds the significance or p-value,  p(ηmin), of the smallest alignment angle  ηmin
obs calculated for the observed sample, as in Eq. 

(4). 

Method B may not give reliable parameters η0 and σ when the number of sources Nobs and/or the RMS radius ρRMSobs is/are 

outside the range of Library data. In such cases, the process is extrapolation. While extrapolation is much less reliable than interpola-

tion, it does yield values of   η0 and σ  allowing one to determine a probability distribution Pmin(η). However, it might be better to 

consider Formula Method C whenever the observed sample’s N and ρRMS leads to an extrapolation of the Library data to find η0 and 

σ. 
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4. Fitting the Library and Formula Method C

 “Function Method C”, like Interpolation Method B, is based on the Library data in Figs. 8 and 9. Both Methods B and C avoid 

the time-consuming random-runs needed with Direct Method A. Function Method C finds functions that fit the two parameters η0 and 

σ listed in Library data table. Then, with these two functions, one substitutes the N and ρRMS of the sample into the formulas and 

that gives values for the peak η0 and half-width σ. The two parameters are all that is needed by Eq. (3) to construct the probability 

function  Pmin and then find the significance of an observed smallest alignment angle ηmin
obs.  

Therefore, we need to find functions η0
min(w, τRMS) and σmin(w, τRMS) that fit the Library data. Recall that we prefer the 

variables τRMS  ≡  1/ρRMS and w  ≡  1N1/2  to the number of sources N and the root-mean-square radius ρRMS. The Library data 

is plotted in Fig. 9. Looking closely at the left graph in Fig. 9, one sees that η0
min is relatively flat for small τ and  η0

min is flat again 

for large τ. There is a ‘squiggle’  for middle values of τ from τ  =  0.2 deg-1 to  τ  =  1 deg-1. This behavior is reminiscent of the 

hyperbolic tangent, tanh(u)  = sinh(u) / cosh(u), displayed in Fig. 10.

-4 -2 0 2 4

-1.0

-0.5

0.0

0.5

1.0

u

ta
nh

(u
)

tanh(u)

Figure 10: The hyperbolic function tanh(u). The squiggle in the  η0
min data in Fig. 9  is most apparent with the N  =  9 values. By 

rescaling and translating the tanh(u) function displayed here, one can fit the Library data for  η0
min and σmin in Fig. 9 quite well. 

By contorting the tanh(u) with an application of polynomials and varying their coefficients to get a least squares fit, we get  the 

following functions: Ref. 7.   

η0
min(w, τ)  =  45.027 - w {47.39 + 7.32 w - 17.79 tanh[(0.710 - 0.349 w) (- 0.535 + τ)] }            (6)

σmin(w, τ)  =  0.25 w {73.57 - 8.29 w + (3.09 + 10.66 w) tanh[1.22 (-1.607 + τ)] }                           (7)

where w  =  N-1/2 and  τ  =  τRMS  =  1/ρRMS. The functions and the Library data are displayed in Fig. 11.

By eye, the fit to the Library values of  η0
min in the Left plot of Fig. 11 is better than the fit to the σmin on the Right.  In Part II 

the Appendix, it is found that the percent difference of the fit of η0
min(w, τ) in Eq. (6) to the Library data averages 0.16%, where by 

‘average’ we mean an arithmetic mean, and the % diff. is always better than 0.78% For σmin(w, τ), one finds that the functions fit the 

Library to 3.5% or better, with an average of 0.91%. Thus, the 7-parameter fit in Eq. (6) fits 90 Library data points of η0
min to a few 

tenths of a percent, while the 6-parameter function in Eq. (7) fits the 90 values of σmin to a percent or so. See Figs. A6 and A7 in Part 

II the Appendix.

Graphing the functions in Eqs. (6) and (7) along with the Library data that the functions fit, we 

have
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Figure 11: Fitting functions for the two alignment angle probability distribution parameters  η0
min (Left) and σmin(Right). Compare the 

purple and light brown curves, i.e. bottom and top for  η0
min and top and bottom for σmin. The curves flatten out for large N, i.e. small 

w. The dependence on the region radius decreases as N increases.

It is strange, but true, that the polynomials in Eqs. (6) and (7) are, in a sense, self-truncating. As shown in detail in Ref. 7, the 

polynomials blur and become fuzzy by the addition of a term with the next higher power. For example, consider the linear expression 

47.39 + 7.32 w in Eq. 6. The standard error for the coefficient 7.32 of w is about 18%. If we try instead to fit a quadratic, 

a + b w + c w2, then the new b and c have such huge standard errors that they are equivalent to zero, b ≈ 0 and c ≈ 0. We see that the 

linear fit gives a definite result while a quadratic fit does not give a definite result. One can say that adding cw2 makes the fit blurred 

and fuzzy, so the power series is self-truncating.

With Formula Method C, we now have three methods to determine the parameters η0
min and σmin for the probability distribution 

Eq. (3)  needed to determine significance or p-value in Eq. (4). Let us see how the three methods work in practice with three samples.

5. Applying the Three Methods to Three Sets of Experimental Data

In previous work, Refs. 3,4,5, the Direct Method A was used to find the significance of the alignment of polarization directions. 

Two of the samples involve radio QSOs and one sample has polarized light from Milky Way Galaxy stars. The data analyzed in the 

QSO studies are from a catalog JVAS1450, Ref. 8. The JVAS1450 catalog adds object-specific data to a subset of an earlier catalog 

JVAS/CLASS 8.4-GHz, Ref. 9. The observations of the 99 Stars sample are contained in two catalogs,  Heiles 2000 and Berdyugin 

2014, Refs. 10,11. 

In the previous work, all three samples had their significance determined by Direct Method A. For each sample, 10,000 random 

runs were generated with random polarization directions at the sites of the observed sources. The histogram distributions for the 

10,000 smallest alignment angle ηmin were fit with functions of the form in Eq. (3). This gave values for the two adjustable parame-

ters for the fitting function, the value of ηmin at the peak, η0
min, and the half-width σmin where the distribution is down by a factor of 

ⅇ-1/2from the peak value. The terminology is for Gaussian distributions; the presence of a step-function in Eq. (3) modifies the 

meaning slightly.  

Sample N ρRMS, deg ηmin, deg

27 QSOs 27 6.82492 21.094

13 QSOs 13 4.72812 10.865

99 Stars 99 6.83803 7.007

Sample η0
min, deg σmin, deg

27 QSOs 34.923 ±0.029 3.272 ±0.034

13 QSOs 30.26 ±0.17 4.64 ±0.20

99 Stars 39.947 ±0.018 1.737 ±0.021
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Table 1:  Three previously studied samples of observed polarizations, Refs. 3,4,5. Left: The number of sources N and the root-mean-

square radius of the sample ρRMS are the two properties of observed samples that Methods B and C need as input. These and the 

calculated smallest alignment angle ηmin depend on observations.  Right: This table contains results that do not depend on the 

observed polarizations. By calculations with random run simulations with Direct Method A, one obtains a random run distribution for 

each sample that is fit by a function in the form of Eq. (3). Each of the three fitting functions has two parameters, η0
min and σmin, 

which are listed in the table on the right. Recall that the alignment angle at the peak is η0
min and the half-width is σmin.  
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99 Stars: Histogram for ηmin, random runs
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Figure 12: Histograms and fits for random runs found with Direct Method A for all three samples, 27 QSOs, 13 QSOs, and 99 Stars. 

The Blue arrows mark the observed smallest alignment angles ηmin. The value of ηmin for the 99 Stars is off-scale at  ηmin  =  7.01°. 

The fraction of the random run results to the left of one of the Blue arrows indicates the significance of the observed smallest 

alignment angle ηmin. The significance of the alignments for the 27 QSOs and the 13 QSOs is apparent, while  ηmin  =  7.01° for the 

99 Stars is so far down the  ηmin-axis that the significance is exceptional. For the 99 Stars, the likelihood that random data would be 

better aligned is infinitesimal.

As discussed earlier, since Direct Method A uses the correct location of the sources and has the correct radius ρRMS with the 

correct number N of sources, Method A should be more reliable than Interpolation Method B or Formula Method C. Therefore, we 

interpret the following as comparing the inferior Methods B and C with the superior Method A. 

All three methods rely on the same probability distribution formula, Eq. (3). The methods differ in how the parameters for the 

location of the peak,  η0
min, and the half-width, σmin, are calculated. Therefore, let us compare the values of  η0

min and  σmin from B 

and C with the parameters from A. See Table 2.

(a) peak η0
min :

Sample A (degrees) B (degrees) C (degrees)

27 QSOs 34.923 ±0.029 34.796 ±0.016 34.80 ±0.19

13 QSOs 30.26 ±0.17 30.293 ±0.033 30.36 ±0.27

99 Stars 39.947 ±0.018 39.703 ±0.015 39.73 ±0.10

(b) half-width σmin :

Sample A (degrees) B (degrees) C (degrees)

27 QSOs 3.272 ±0.034 3.299 ±0.020 3.229 ±0.022

13 QSOs 4.64 ±0.20 4.59 ±0.04 4.55 ±0.04

99 Stars 1.737 ±0.021 1.700 ±0.018 1.729 ±0.009

Table 2: Distribution parameters  η0
min and σmin in the probability distribution formula Eq. (3). The ± values are the standard errors 

reported in fitting the data with the Mathematica command NonlinearModelFit. (a)  Compared with Method A, the values of η0
min 

from Methods B and C overlap with A except for the  B-value of η0
min for the 27 QSOs and the 99 Stars.  (b) The half-widths σmin, in 

degrees, for the three methods. The B and C  values for σmin are within the listed standard error of the Method A values. Also see the 

displays in Figs. 13 and 14, where these comments may be more apparent. 
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Figure 13: Compare parameter η0
min for the 3 methods. Method B has small standard errors, so it is precise, but it is not accurate for 

the 27 QSOs and 99 Stars when compared with A.
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Figure 14: Compare parameter σmin for the 3 methods with 3 samples. Methods B and C give values that overlap with A. The range 

of σmin is the same, Δσ  =  0.5°, in all three graphs, so the three samples can be compared with each other.

Finally, we display the significances of the alignments of the three samples with B and C and compare those with the signifi-

cances found by A. The calculations can be found in Part II the Appendix. Even though the distribution parameters η0 do not always 

agree within the error bars, the significances, p-values, for all three methods A,B,C, do agree within the tolerances. One effect to 

notice in Fig. 15 is the asymmetry of the plus and minus uncertainties and that is most evident for the 99 Stars.
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Figure 15: The significance of the smallest alignment angle ηmin for three samples as determined by Methods A, B, and C. The error 

bars are due to the standard errors of the parameters  η0
min and  σmin. For all three samples, the significances determined by the 

Interpolation Method B and the Formula Method C agree with the Direct Method A, within the error bars drawn here. 

6. Concluding Remarks

The article presents two methods, Interpolation Method B and Formula Method C, to calculate the significance of the smallest 

alignment angle ηmin in the Hub Test. Both methods, B and C, provide quick alternatives to the laborious process of analyzing 

thousands of random runs required with Direct Method A. 

The altered-Gaussian distribution form of the probability distributions of thousands of random runs appears to be universal. 

Adjusting the two parameters, the peak η0 and the half-width σ, provides excellent fits to the 90 Library samples and the 3 experimen-

tally observed samples considered in this article. Methods B and C give significances that are the same as the significance from 

Method A within standard errors of the distribution parameters for the three samples.
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One application of Interpolation Method B and Formula Method C might be mapping the significance of catalogued data, 

perhaps catalogs of polarized sources or jet directions. A possible strategy is to use Methods B or C to locate regions of interest. Once 

a sample is found to be significantly aligned by Methods B or C, one might apply Direct Method A to be more certain of the result. 

Or not. 

Whatever the project, having Methods B and C should make the Hub Test easier to apply. 
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Part II the Appendix

00. Preface

The problem of “significance” is to determine the likelihood that random polarizations directions would have better alignment or 

avoidance than the observed polarization directions. We make polarization directions the topic discussed. But, more generally, one 

can analyze observations of any transverse directions on the sky. 

Note that Part I the Article discusses the measure of alignment, the smallest alignment angle ηmin exclusively. However, the Hub 

Test also determines correlations of the transverse directions with points on the Celestial Sphere that the great circles avoid. In that 

case, the relevant quantity is the largest avoidance angle ηmax which is the maximum of the alignment function η(H). Both alignment 

and avoidance are treated equally in this part, Part II the Appendix.
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A1. Introduction and Probability Distributions, Significance Formulas

Given a sample whose sources have measured transverse directions, say electromagnetic polarization or physical features like 

jets, then the alignment angle function η(H), Eq. (1) and Figs. 2,3, can be produced defined at all point H on the sphere except at the 

sources themselves. The directions are best aligned with the points Hmin and  -Hmin where the smallest alignment angle occurs, ηmin. 

Thus  ηmin gauges alignment. The largest alignment angle ηmax is found at hubs   Hmax and  -Hmax and gauges a different correlation, 

avoidance. 

The probability distributions for alignment and avoidance of samples with randomly oriented polarization directions involve two 

parameters η0 and σ, one set for alignment,   η0
min and σmin,  and one set for avoidance,    η0

max and σmax. We choose

Pmin(η)  =   norm

σ (2 π)1/2
 1 + ⅇ4

(η-η0-σ)

σ 
-1

ⅇ-
1

2


η - η0

σ

2

, (A1)

and

Pmax(η)  =   norm

σ (2 π)1/2
 1 + ⅇ-4

(η-η0+σ)

σ 
-1

ⅇ-
1

2


η - η0

σ

2

, (A2)

where norm is the normalization constant, norm  =  1.22029 , so that the definite integral over all η of the probability distributions is 

equal to one.

To find the significance, or p-value, of the smallest alignment angle ηmin, one finds the likelihood of smaller random run values 

by integrating Pmin(η) from below, 

p(ηmin)  =  ∫-∞
ηminPmin(η) ⅆη (A3)

For avoidance, the largest avoidance angle ηmax is likely not as large as random runs with a significance of 

p(ηmax)  =  ∫ηmax
∞

Pmax(η) ⅆη . (A4)

By Eqs. (A1 - A4) the calculation of significances for a sample of correlated behavior indicated by the smallest alignment angle ηmin 

and the largest avoidance angle ηmax rests on obtaining values of  the four probability distribution parameters  η0
min, σmin,   η0

max, and 

σmax.

The Direct Method A finds the four needed parameters η0
min, σmin,   η0

max, and σmax by generating many, many random runs and 

analyzing the results. This notebook takes the four parameters from a wide selection of samples that have been analyzed elsewhere in 

other notebooks and estimates the four parameters for any given sample based on this “Library” of parameters from similar samples. 

Interpolation Method B makes an interpolation of the Library data, while Formula Method C employs a set of four functions that fit 

the Library data for the four needed parameters η0
min, σmin,   η0

max, and σmax.

Sec. A2 describes the Library.  Interpolation Method B is the topic of Sec. A3 and Sec. A4 has Formula Method C. The three 

previously studied samples are compared in Sec. A5.

A2  The Library

A2a.  Preliminary 

Definitions:

20211112InterpolateAndFormula2a.nb     19



homeDirectory location of this notebook and many associated files. Other directories are used also.

mean the arithmetic average of a set of numbers, 1
N
∑i=1
N ni

stanDev the standard deviation. Given a set of N numbers ni with mean value m, the standard deviation is  

 1

N
∑i=1
N (ni - m)2

1/2,  the square root of the average of the squares of the differences of the numbers with the mean. Note that we 

divide by N to get the average of the deviations squared.

norm a constant used to normalize the distribution so the integral of probability is 1. 

probMIN0, probMAX0 probability distributions for η, dependent on parameters η0, σ. [alignment (MIN) and avoidance (MAX)]

signiMIN0(ηmin, η0
min, σmin)   significance of ηmin,  dependent on probability distribution parameters  η0

min, σmin. (alignment)

signiMAX0(ηmax, η0
max, σmax)   significance of ηmax,  dependent on probability distribution parameters  η0

max, σmax. (alignment)

In[1]:= Print["The date and time that this statement was evaluated: ", Now]

Print["The computer time expended so far is ", TimeUsed[], " seconds."]

The date and time that this statement was evaluated: Mon 20 Dec 2021 13:04:48 GMT-5.

The computer time expended so far is 0.5 seconds.

In[3]:= homeDirectory =

"C:\\Users\\shurt\\Dropbox\\HOME_DESKTOP-0MRE5OJ\\SendXXX_CJP_CEJPetc\\SendViXra\\

20200715AlignmentMethod\\20210505AlignmentMethodv4\\20210515Clump1QSOsNearNGP";

In[4]:= mean[data_] := 1  Length[data] Sum[data[[i4]], {i4, Length[data]}];

(* arithmetic average *)

stanDev[data_] :=

1  Length[data] Sumdata[[i5]] - mean[data]2, {i5, Length[data]}
1/2

(*standard deviation*)

In[6]:= (* y = η - η0σ; dy = dησ *)

(* The normalization factor "norm" is needed to make

the integral of the probability distribution equal to unity. *)

norm =
1

2 π1/2
NIntegrate1 + ⅇ4 (y-1)

-1
ⅇ
-
y2

2 , {y, -∞, ∞}

-1

;

Print["The normalization scale factor is norm = ",

norm , " for both alignment probMIN0 and avoidance probMAX0."];

The normalization scale factor is norm = 1.22029 for both alignment probMIN0 and avoidance probMAX0.

In[8]:= probMIN0[η_, η0_, σ_] :=
norm

σ 2 π1/2
1 + ⅇ

4
η-η0-σ

σ

-1

ⅇ
-
1

2


η - η0

σ

2

signiMIN0[η_, η0_, σ_] := NIntegrate[probMIN0[η1, η0, σ], {η1, -∞, η}]

probMAX0[η_, η0_, σ_] :=
norm

σ 2 π1/2
1 + ⅇ

-4
η-η0+σ

σ

-1

ⅇ
-
1

2


η - η0

σ

2

signiMAX0[η_, η0_, σ_] := NIntegrate[probMAX0[η1, η0, σ], {η1, η, ∞}]

The significance signiMIN0[η, η0, σ] is the Integral of probMIN0, i.e. signiMIN0 = ∫-∞
η PMIN (η) ⅆη.
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The significance signiMAX0[η, η0, σ] is the Integral of probMAX0, i.e. signiMAX0 = ∫η
∞PMAX (η) ⅆη.

In[12]:= (* {{nSrc,ρRgnRadius},{x0min,dx0min},{bmin,dbmin},

{amin,damin},{x0max,dx0max},{bmax,dbmax},{amax,damax},

{σθrHminToCenter,θrHminToCenter},{σθrHmaxToCenter,θrHmaxToCenter}} *)

A2b. The Library data

Definitions:

fitData0 This table is output from another notebook. Not all of the data is relevant here.

powr[i,j], fitDataReduced1 The number of digits are adjusted so that the standard error has two significant figures,2 sig figs

fitData   Parameters of the alignment (min) and avoidance (max) random run distributions. Originally in radians, converted to 

degrees below.

1a. nSrci[i]    Number of sources 1b. ρNomi[i]  Nominal radius, deg. 1c. ρRMSi[i] RMS radius, deg. 

2a. η0mini[i]   peak alignment distribution 2b. dη0mini[i] standard error

3a. σmini[i]    half-width alignment distr. 3b. dσmini[i] standard error

4a. η0maxi[i]   peak alignment distribution 4b. dη0maxi[i] standard error

5a. σmaxi[i]    half-width alignment distr. 5b. dσmaxi[i] standard error

wi[i] inverse square root of the number of sources, w = 1N1/2

τRMSi[i] inverse RMS radius, in deg.-1

nSrcList list of the number of sources in the Library samples

wList list of the inverse square root of the number of sources for Library samples

ρNomList list of the nominal radii, deg., of the Library samples

τNomList list of the inverse nominal radii

colornSrcList assigned colors for the numbers of sources nSrc and the corresponding w

colorρList assigned colors for the nominal radii ρNominal and the corresponding inverses τNominal

nSrcColorKeyLegend for the number of sources nSrc

wNColorKey Legend for the number of sources nSrc and w  =  nSrc-1/2

ρNomColorKey Legend for the nominal radii ρNominal

ρτNomColorKey Legend for the nominal radii ρNominal and their inverses,  and

 τNominal

idsFORnSrc[iN] ID #s in fitData, one set for each value of nSrc

idsFORρNom[iρ] ID #s in fitData, one set for each value of ρNominal

lpρη0min[iN] list plot of Library data, alignment peak parameter η0
min versus RMS radius ρRMS

eta0VSradiusDataMin Combined plot of the lpρη0min for all Library data

lpρSigmamin, sigmaMINvsRadiusData Library data plots, except alignment half-width parameter σmin replaces η0
min

lpρη0max, eta0VSradiusDataMax Library data plots, except avoidance peak  η0
max replaces η0

min

lpρSigmamax, sigmaMAXvsRadiusData  Plots of Library data 

lpτη0minPlusMinus[iN] list plot of Library data, alignment peak parameter η0
min versus RMS radius ρRMS with error bars 
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for one of the ρNominal values

Similar list plots: lpτSigmaminPlusMinus, sigmaMINvsTauData, lpτη0maxPlusMinus[iN], η0maxVSτData, lpτSigmamaxPlusMi-

nus[iN], sigmaMAXvsTauData. 

In[15]:= (*In the last two hidden cells,

a table fitData0 is imported that has all the needed data for the Library,

but also extra data that is not needed. The following table,

fitData, is the result of removing the irrelevant quantities. And

it has been altered so the sig. figs. match the standard errors. *)

fitData1 = {{{9., 0.004363, 0.0043, 10000.}, {0.598, 0.0013}, {0.1127, 0.0016},

{0.977, 0.001700}, {0.1128, 0.002}}, {{9., 0.005818, 0.005734, 10 000.},

{0.5885, 0.0016}, {0.1118, 0.0019}, {0.9868, 0.001}, {0.1107, 0.001200}},

{{9., 0.008727, 0.008601, 10 000.}, {0.5707, 0.0011}, {0.1076, 0.0013},

{1.00503, 0.000860}, {0.1069, 0.001}}, {{9., 0.017453, 0.017202, 10 000.},

{0.52541, 0.00068}, {0.09791, 0.000810}, {1.05165, 0.00079}, {0.09636, 0.000950}},

{{9., 0.02618, 0.025803, 10 000.}, {0.50422, 0.000610}, {0.09425, 0.000730},

{1.07266, 0.000740}, {0.09407, 0.000890}}, {{9., 0.034907, 0.034406, 10000.},

{0.49249, 0.00084}, {0.09335, 0.001}, {1.08406, 0.000770}, {0.09356, 0.000910}},

{{9., 0.05236, 0.051615, 10 000.}, {0.48150, 0.00076}, {0.09325, 0.000910},

{1.09181, 0.00072}, {0.09353, 0.000860}}, {{9., 0.069813, 0.068831, 10 000.},

{0.47716, 0.000600}, {0.09572, 0.00072}, {1.0949, 0.0005}, {0.09324, 0.000600}},

{{9., 0.139626, 0.137827, 10 000.}, {0.47140, 0.00051}, {0.0943, 0.000610},

{1.10081, 0.000610}, {0.09566, 0.000730}}, {{9., 0.733038, 0.758894, 10000.},

{0.46917, 0.00062}, {0.09209, 0.00075}, {1.10139, 0.00043000}, {0.09214, 0.000520}},

{{16., 0.004363, 0.003926, 10 000.}, {0.6493, 0.0011}, {0.0839, 0.0014},

{0.92532, 0.000950}, {0.083, 0.0011}}, {{16., 0.005818, 0.005234, 10 000.},

{0.6436, 0.0011}, {0.0849, 0.0013}, {0.9314, 0.0011}, {0.0836, 0.0013}},

{{16., 0.008727, 0.007851, 10 000.}, {0.6308, 0.001200}, {0.0827, 0.0014},

{0.9443, 0.001}, {0.0829, 0.001200}}, {{16., 0.017453, 0.015703, 10 000.},

{0.59942, 0.000830}, {0.07466, 0.00099}, {0.97587, 0.000810}, {0.07568, 0.00097}},

{{16., 0.02618, 0.023555, 10 000.}, {0.58222, 0.00076}, {0.07263, 0.000900},

{0.99397, 0.00063}, {0.07299, 0.00075}}, {{16., 0.034907, 0.031407, 10 000.},

{0.57108, 0.00033}, {0.07264, 0.0004}, {1.00501, 0.00042}, {0.07128, 0.00051}},

{{16., 0.05236, 0.047116, 10 000.}, {0.56133, 0.00048}, {0.07272, 0.000570},

{1.01146, 0.000600}, {0.07183, 0.00072}}, {{16., 0.069813, 0.06283, 10 000.},

{0.55732, 0.0004}, {0.07328, 0.00047000}, {1.01605, 0.000520}, {0.07326, 0.00062}},

{{16., 0.139626, 0.125785, 10 000.}, {0.55186, 0.00067}, {0.0721, 0.0008},

{1.02026, 0.000490}, {0.07183, 0.00059}}, {{16., 0.733038, 0.686975, 10000.},

{0.55102, 0.000520}, {0.07313, 0.00062}, {1.02006, 0.000490}, {0.07269, 0.00059}},

{{25., 0.004363, 0.003724, 10 000.}, {0.67677, 0.00076}, {0.06753, 0.000910},

{0.89747, 0.000730}, {0.06752, 0.000870}}, {{25., 0.005818, 0.004966, 10000.},

{0.67228, 0.000730}, {0.06735, 0.000870}, {0.90184, 0.00093}, {0.0673, 0.0011}},

{{25., 0.008727, 0.007448, 10 000.}, {0.66404, 0.00088}, {0.0651, 0.0011},

{0.91047, 0.00076}, {0.06528, 0.000910}}, {{25., 0.017453, 0.014897, 10000.},

{0.64101, 0.00037}, {0.06098, 0.00044}, {0.93461, 0.00051}, {0.06021, 0.000610}},

{{25., 0.02618, 0.022346, 10 000.}, {0.62549, 0.000700}, {0.05922, 0.000830},

{0.95097, 0.00045000}, {0.05944, 0.00054}}, {{25., 0.034907, 0.029795, 10000.},

{0.61729, 0.00039}, {0.0589, 0.00046}, {0.95886, 0.00033}, {0.05889, 0.00039}},

22     20211112InterpolateAndFormula2a.nb



{{25., 0.05236, 0.044697, 10 000.}, {0.60836, 0.00045000}, {0.05886, 0.000530},

{0.96488, 0.00031}, {0.05889, 0.00037}}, {{25., 0.069813, 0.059604, 10 000.},

{0.60328, 0.00048}, {0.05880, 0.00058}, {0.96728, 0.00046}, {0.05893, 0.00055}},

{{25., 0.139626, 0.119314, 10 000.}, {0.60034, 0.00025}, {0.06006, 0.00030000},

{0.97273, 0.00035}, {0.060610, 0.00042}}, {{25., 0.733038, 0.648932, 10000.},

{0.59794, 0.0005}, {0.05811, 0.000600}, {0.97322, 0.00036}, {0.0584, 0.00043000}},

{{36., 0.004363, 0.003598, 10 000.}, {0.69775, 0.000820}, {0.055510, 0.00098000},

{0.8761, 0.00088}, {0.055600, 0.001}}, {{36., 0.005818, 0.004797, 10 000.},

{0.69363, 0.000830}, {0.0555, 0.001}, {0.8804, 0.000860}, {0.0557, 0.001}},

{{36., 0.008727, 0.007196, 10 000.}, {0.68712, 0.000730}, {0.05454, 0.000870},

{0.8879, 0.00058}, {0.05439, 0.000690}}, {{36., 0.017453, 0.014392, 10 000.},

{0.66756, 0.0004}, {0.05093, 0.00047000}, {0.90807, 0.00035}, {0.05152, 0.00041}},

{{36., 0.02618, 0.021588, 10 000.}, {0.65519, 0.00041}, {0.04926, 0.000490},

{0.92136, 0.00037}, {0.05009, 0.00044}}, {{36., 0.034907, 0.028785, 10 000.},

{0.64719, 0.00039}, {0.04839, 0.00046}, {0.92823, 0.00037}, {0.04884, 0.00044}},

{{36., 0.05236, 0.043181, 10 000.}, {0.63967, 0.00033}, {0.04904, 0.0004},

{0.93442, 0.00044}, {0.04867, 0.000530}}, {{36., 0.069813, 0.057582, 10000.},

{0.63554, 0.00030000}, {0.05024, 0.00035}, {0.93769, 0.00033}, {0.049210, 0.0004}},

{{36., 0.139626, 0.115259, 10 000.}, {0.63112, 0.0004}, {0.04907, 0.00048},

{0.94043, 0.00059}, {0.0495, 0.000700}}, {{36., 0.733038, 0.625307, 10 000.},

{0.62905, 0.00036}, {0.04914, 0.00043000}, {0.94269, 0.00043000}, {0.04859, 0.00051}},

{{49., 0.004363, 0.003511, 10 000.}, {0.71156, 0.000730}, {0.04788, 0.00088},

{0.86253, 0.00072}, {0.04732, 0.000860}}, {{49., 0.005818, 0.004682, 10000.},

{0.70811, 0.00079}, {0.04807, 0.000940}, {0.86667, 0.00076}, {0.04843, 0.000910}},

{{49., 0.008727, 0.007022, 10 000.}, {0.70161, 0.000530}, {0.04623, 0.00063},

{0.87291, 0.00055}, {0.04655, 0.000660}}, {{49., 0.017453, 0.014045, 10000.},

{0.68587, 0.00035}, {0.04424, 0.00042}, {0.890, 0.00035}, {0.04376, 0.00042}},

{{49., 0.02618, 0.021068, 10 000.}, {0.67439, 0.00027}, {0.043160, 0.00032},

{0.90159, 0.00026000}, {0.0427, 0.00031}}, {{49., 0.034907, 0.028091, 10000.},

{0.66799, 0.00024000}, {0.04188, 0.00029}, {0.90758, 0.00038}, {0.04168, 0.00046}},

{{49., 0.05236, 0.04214, 10 000.}, {0.66113, 0.00023}, {0.04173, 0.00027},

{0.91225, 0.00029}, {0.042210, 0.00035}}, {{49., 0.069813, 0.056193, 10000.},

{0.65771, 0.00019}, {0.04249, 0.00022}, {0.91411, 0.00028000}, {0.041890, 0.00034}},

{{49., 0.139626, 0.112476, 10 000.}, {0.65365, 0.00022}, {0.04396, 0.00026000},

{0.91819, 0.00022}, {0.04322, 0.00026000}}, {{49., 0.733038, 0.609183, 10000.},

{0.65169, 0.00022}, {0.04206, 0.00027}, {0.91821, 0.00032}, {0.04166, 0.00038}},

{{64., 0.004363, 0.003448, 10 000.}, {0.72042, 0.000700}, {0.042660, 0.00084},

{0.85352, 0.00071}, {0.04226, 0.000850}}, {{64., 0.005818, 0.004597, 10000.},

{0.71742, 0.00051}, {0.04232, 0.000610}, {0.857, 0.000530}, {0.04168, 0.00064}},

{{64., 0.008727, 0.006896, 10 000.}, {0.71212, 0.00059}, {0.04115, 0.00071},

{0.8622, 0.000530}, {0.040940, 0.00063}}, {{64., 0.017453, 0.013792, 10000.},

{0.69893, 0.00034}, {0.03817, 0.00041}, {0.87707, 0.00034}, {0.0381, 0.00041}},

{{64., 0.02618, 0.020688, 10 000.}, {0.68991, 0.00039}, {0.03791, 0.00047000},

{0.88662, 0.00031}, {0.03707, 0.00037}}, {{64., 0.034907, 0.027585, 10 000.},

{0.68318, 0.00030000}, {0.03715, 0.00036}, {0.89217, 0.00027}, {0.03706, 0.00032}},

{{64., 0.05236, 0.041381, 10 000.}, {0.67673, 0.00022}, {0.03751, 0.00026000},

{0.89693, 0.00029}, {0.03724, 0.00035}}, {{64., 0.069813, 0.05518, 10 000.},

{0.67481, 0.00031}, {0.03732, 0.00037}, {0.89809, 0.00033}, {0.03743, 0.00039}},

{{64., 0.139626, 0.110445, 10 000.}, {0.67003, 0.00034}, {0.03716, 0.00041},

{0.90149, 0.00031}, {0.03727, 0.00037}}, {{64., 0.733038, 0.597467, 10 000.},

{0.66813, 0.00024000}, {0.03774, 0.00029}, {0.9024, 0.00028000}, {0.03726, 0.00033}},
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{{81., 0.004363, 0.0034, 10 000.}, {0.72763, 0.000560}, {0.03752, 0.00067},

{0.84644, 0.000560}, {0.03725, 0.00067}}, {{81., 0.005818, 0.004533, 10000.},

{0.7255, 0.0005}, {0.037540, 0.000600}, {0.84895, 0.00045000}, {0.03713, 0.00054}},

{{81., 0.008727, 0.006799, 10 000.}, {0.72054, 0.000490}, {0.03712, 0.00058},

{0.85379, 0.00044}, {0.036250, 0.000530}}, {{81., 0.017453, 0.013599, 10000.},

{0.709, 0.00034}, {0.034910, 0.00041}, {0.86674, 0.00018}, {0.03409, 0.00022}},

{{81., 0.02618, 0.020399, 10 000.}, {0.70134, 0.00030000}, {0.03357, 0.00035},

{0.87493, 0.00024000}, {0.033030, 0.00028000}}, {{81., 0.034907, 0.027199, 10 000.},

{0.6956, 0.0001500}, {0.03345, 0.00018}, {0.88028, 0.00023}, {0.03265, 0.00028000}},

{{81., 0.05236, 0.040802, 10 000.}, {0.68945, 0.00023}, {0.03349, 0.00028000},

{0.88405, 0.00033}, {0.03343, 0.00039}}, {{81., 0.069813, 0.054408, 10 000.},

{0.68641, 0.00019}, {0.03356, 0.00023}, {0.88641, 0.00031}, {0.03351, 0.00037}},

{{81., 0.139626, 0.108897, 10 000.}, {0.68338, 0.00025}, {0.03265, 0.00030000},

{0.88795, 0.00041}, {0.03366, 0.00048}}, {{81., 0.733038, 0.588565, 10 000.},

{0.68158, 0.00028000}, {0.032850, 0.00034}, {0.88922, 0.00025}, {0.03259, 0.00030000}},

{{121., 0.004363, 0.003331, 10 000.}, {0.7385, 0.0004}, {0.030840, 0.00048},

{0.8356, 0.00036}, {0.030590, 0.00042}}, {{121., 0.005818, 0.004441, 10000.},

{0.73652, 0.00041}, {0.0308600, 0.000490}, {0.83759, 0.00038}, {0.03021, 0.00046}},

{{121., 0.008727, 0.006662, 10 000.}, {0.73305, 0.00035}, {0.03037, 0.00042},

{0.84113, 0.00038}, {0.029820, 0.00045000}}, {{121., 0.017453, 0.013324, 10 000.},

{0.72346, 0.00029}, {0.028620, 0.00034}, {0.852, 0.00030000}, {0.02825, 0.00036}},

{{121., 0.02618, 0.019987, 10 000.}, {0.71662, 0.00027}, {0.027750, 0.00032},

{0.85972, 0.00016}, {0.027670, 0.00019}}, {{121., 0.034907, 0.026649, 10000.},

{0.71241, 0.00026000}, {0.02706, 0.00031}, {0.86292, 0.00018}, {0.027080, 0.00021}},

{{121., 0.05236, 0.039977, 10 000.}, {0.708, 0.00018}, {0.02723, 0.00022},

{0.86635, 0.0001500}, {0.027420, 0.00018}}, {{121., 0.069813, 0.053308, 10000.},

{0.70508, 0.00023}, {0.027260, 0.00028000}, {0.86744, 0.00022}, {0.02772, 0.00026000}},

{{121., 0.139626, 0.106692, 10 000.}, {0.70191, 0.00029}, {0.02704, 0.00034},

{0.86976, 0.0001500}, {0.027500, 0.00018}}, {{121., 0.733038, 0.575927, 10000.},

{0.70062, 0.00025}, {0.0267700, 0.00030000}, {0.87027, 0.00019}, {0.02739, 0.00023}},

{{225., 0.004363, 0.003251, 10 000.}, {0.75118, 0.00031}, {0.022740, 0.00038},

{0.82256, 0.00034}, {0.02254, 0.0004}}, {{225., 0.005818, 0.004334, 10 000.},

{0.75016, 0.00029}, {0.022140, 0.00035}, {0.8238, 0.00038}, {0.021730, 0.00045000}},

{{225., 0.008727, 0.006501, 10 000.}, {0.74756, 0.00030000}, {0.022410, 0.00035},

{0.82659, 0.00029}, {0.021630, 0.00034}}, {{225., 0.017453, 0.013003, 10000.},

{0.74086, 0.00018}, {0.021040, 0.00022}, {0.83388, 0.00022}, {0.0206400, 0.00027}},

{{225., 0.02618, 0.019505, 10 000.}, {0.73588, 0.00022}, {0.0201300, 0.00026000},

{0.83963, 0.00018}, {0.0198, 0.00021}}, {{225., 0.034907, 0.026007, 10 000.},

{0.73308, 0.00013}, {0.02008, 0.0001500}, {0.84245, 0.0002}, {0.01983, 0.00023}},

{{225., 0.05236, 0.039013, 10 000.}, {0.728744, 0.000090}, {0.02014, 0.00011},

{0.84508, 0.00013}, {0.019770, 0.00016}}, {{225., 0.069813, 0.052023, 10000.},

{0.727354, 0.000099}, {0.0199, 0.00012}, {0.84565, 0.00013}, {0.0200400, 0.00016}},

{{225., 0.139626, 0.104116, 10 000.}, {0.72498, 0.00013}, {0.020100, 0.00016},

{0.84702, 0.0001500}, {0.0202100, 0.00018}}, {{225., 0.733038, 0.561218, 10 000.},

{0.72336, 0.00016}, {0.019770, 0.00019}, {0.84781, 0.0001400}, {0.02023, 0.00017}}};

In[16]:= fitData = fitData1;
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In[17]:= (*Identify the items in the fitData table with functions having recognizable names.*)

nSrci[i_] := fitData[[i, 1, 1]]

(*Convert fitData radians to DEGREES:*)

ρNomi[i_] := fitData[[i, 1, 2]]
360.

2. π
(*Use the nominal radius in degrees*)

ρRMSi[i_] := fitData[[i, 1, 3]]
360.

2. π
(*Use the RMS radius *)

η0mini[i_] := fitData[[i, 2, 1]]
360.

2. π

dη0mini[i_] := fitData[[i, 2, 2]]
360.

2. π

σmini[i_] := fitData[[i, 3, 1]]
360.

2. π

dσmini[i_] := fitData[[i, 3, 2]]
360.

2. π

η0maxi[i_] := fitData[[i, 4, 1]]
360.

2. π

dη0maxi[i_] := fitData[[i, 4, 2]]
360.

2. π

σmaxi[i_] := fitData[[i, 5, 1]]
360.

2. π

dσmaxi[i_] := fitData[[i, 5, 2]]
360.

2. π

In[28]:= wi[i_] :=
1

nSrci[i]1/2
(*w = 1N1/2*)

τRMSi[i_] :=
1

ρRMSi[i]
(* inverse RMS radius in inverse degrees*)

FYI: Much of the following is copied from “20211116AlternateRandomRunStatsDegrees.nb”

In[30]:= nSrcList = Union[Table[nSrci[i], {i, Length[fitData]}]];

wList = Table
1

nSrcList[[i]]1/2.
, {i, Length[nSrcList]};

Print["The number of sources for samples in the Library are nSrc = ", nSrcList, ". "]

Print["Their inverse square roots are w = ", wList, " ."]

The number of sources for samples in the Library are nSrc =

{9., 16., 25., 36., 49., 64., 81., 121., 225.}.

Their inverse square roots are w =

{0.333333, 0.25, 0.2, 0.166667, 0.142857, 0.125, 0.111111, 0.0909091, 0.0666667} .
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In[34]:= ρNomList = Union[Table[ρNomi[i], {i, Length[fitData]}]];(*degrees*)

τNomList = Table
1

ρNomList[[i]]
, {i, Length[ρNomList]};(*degrees-1*)

Print["The list of nominal radii is ρ = ", ρNomList, " , in degrees. "]

Print"Their inverses are τNom = ", τNomList, " , in deg-1."

The list of nominal radii is ρ = {0.249981, 0.333347, 0.50002,

0.999983, 1.5, 2.00002, 3.00001, 3.99999, 7.99998, 42.} , in degrees.

Their inverses are τNom = {4.0003, 2.99988, 1.99992, 1.00002,

0.666665, 0.499994, 0.333333, 0.250001, 0.125, 0.0238095} , in deg-1.

In[38]:= (*Set up the color codes.*)

colornSrcList =

Table[ColorData["Atoms", "ColorList"][[i]], {i, {55, 56, 57, 70, 74, 79, 89, 118, 65} }];

colorρList = Table[ColorData["Atoms", "ColorList"][[i]],

{i, {52, 53, 54, 67, 71, 76, 86, 115, 62, 77} }];

nSrcColorKey = Table[{nSrcList[[i]], colornSrcList[[i]]}, {i, Length[nSrcList]}];

wNColorKey = {{nSrcList[[1]], colornSrcList[[1]], "1/3"},

{nSrcList[[2]], colornSrcList[[2]], "1/4"}, {nSrcList[[3]],

colornSrcList[[3]], "1/5"}, {nSrcList[[4]], colornSrcList[[4]], "1/6"},

{nSrcList[[5]], colornSrcList[[5]], "1/7"}, {nSrcList[[6]], colornSrcList[[6]],

"1/8"}, {nSrcList[[7]], colornSrcList[[7]], "1/9"}, {nSrcList[[8]],

colornSrcList[[8]], "1/11"}, {nSrcList[[9]], colornSrcList[[9]], "1/15"} };

ρNomColorKey = Table[{ρNomi[i], colorρList[[i]]}, {i, Length[ρNomList]}];

ρτNomColorKey =

TableρNomi[i] "°", colorρList[[i]], ρNomi[i]-1, {i, Length[ρNomList]};

In[43]:= Print[" ",

Text@Grid[Prepend[Table[{colornSrcList[[i]], nSrcList[[i]]}, {i, Length[nSrcList]}],

{"Display code", "N"}], Spacings → {Automatic, .6},

Dividers → {{Darker[Gray, .6], {Lighter[Gray, .5]}, Darker[Gray, .6]},

{Darker[Gray, .6], Darker[Gray, .6], {False}, Darker[Gray, .6]}}],

" ", Text@Grid[Prepend[Table[{colorρList[[i]],

{"1/4", "1/3", "1/2", "1", "3/2", "2", "3", "4", "8", "42"}[[i]] "°"},

{i, Length[ρNomList]}], {"Display code", "ρ (Nominal)"}], Spacings → {Automatic, .6},

Dividers → {{Darker[Gray, .6], {Lighter[Gray, .5]}, Darker[Gray, .6]},

{Darker[Gray, .6], Darker[Gray, .6], {False}, Darker[Gray, .6]}}]]

Print["Table A1: Color codes for variables N and ρNominal, used to label the Library

data. Left: Display codes for the number of sources N. Right: Display codes for

the nominal sample radius ρNominal. While we prefer the root-mean-square radius

ρRMS for calculations, the RMS radius depends on N and does not work as a label. "]
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Display code N

9.

16.

25.

36.

49.

64.

81.

121.

225.

Display code ρ (Nominal)

1/4 °

1/3 °

1/2 °

1 °

3/2 °

2 °

3 °

4 °

8 °

42 °

Table A1: Color codes for variables N and ρNominal, used to label the Library

data. Left: Display codes for the number of sources N. Right: Display codes for

the nominal sample radius ρNominal. While we prefer the root-mean-square radius

ρRMS for calculations, the RMS radius depends on N and does not work as a label.

In[45]:= Table[idsFORnSrc[iN] = {}, {iN, Length[nSrcList]}];

(* ids give fitData table entries with nSrc sources.*)

TableFori = 1, i ≤ Length[fitData], i++, IfnSrci[i] - nSrcList[[iN]]2 < 1,

AppendTo[idsFORnSrc[iN], i], {iN, Length[nSrcList]};

iN = 3;

Print["For example, idsFORnSrc[", iN,

"] gives the ids for the records in the fitData table for iN = ", iN,

" and nSrc = " , nSrcList[[iN]], " They are ids = ", idsFORnSrc[iN], "."]

Clear[

iN]

For example, idsFORnSrc[3] gives the ids for the records in the fitData table for iN =

3 and nSrc = 25. They are ids = {21, 22, 23, 24, 25, 26, 27, 28, 29, 30}.

In[50]:= Table[idsFORρNom[iρ] = {}, {iρ, Length[ρNomList]}];

TableFori = 1, i ≤ Length[fitData], i++, IfAbs
ρNomi[i] - ρNomList[[iρ]]

Min[ρNomi[i], ρNomList[[iρ]]]
 < 10-2,

AppendTo[idsFORρNom[iρ], i], {iρ, Length[ρNomList]};

iρ = 3;

Print["For example, idsFORρNom[", iρ,

"] gives the ids for the records in the fitData table for iρ = ",

iρ, " with nominal radius ρ = " , ρNomList[[iρ]],

" degrees; record numbers: ", idsFORρNom[iρ], "."]

Clear[iρ]

For example, idsFORρNom[3] gives the ids for the records in the fitData table for iρ = 3

with nominal radius ρ = 0.50002 degrees; record numbers: {3, 13, 23, 33, 43, 53, 63, 73, 83}.

In[55]:= (*Do not DROP!! Needed as legends for some figures in Part I the Article.*)

(*Print"{N, color-code, w = N-1/2} = ",wNColorKey

Print"{ρNom, color-code, τNom = ρNom-1} = ",ρτNomColorKey 

*)

20211112InterpolateAndFormula2a.nb     27



In[56]:= lpρη0min[iN_] := ListPlotTable[{ρRMSi[i] , η0mini[i]}, {i, idsFORnSrc[iN]}],

PlotRange → {{0, 45}, {25, 45}}, FrameLabel → {"ρ ", "η0"},

FrameTicks → { {{{25, 25 °}, {30, 30 °}, {35, 35 °}, {40, 40 °}, {45, 45 °}}, None} ,

{{{0, 0 °}, {10, 10 °}, {20, 20 °}, {30, 30 °}, {40, 40 °}}, None} },

PlotLabel → "η0
min vs ρRMS", PlotStyle → colornSrcList[[iN]] ,

GridLines → Automatic, Frame → True, ImageSize → 72 × 6;

eta0VSradiusDataMin = Show[Table[lpρη0min[iN], {iN, Length[wList]}]];

(*Print[" {N, color} = ",nSrcColorKey]*)

In[58]:= lpρSigmamin[iN_] := ListPlotTable[{ρRMSi[i],

If[8.5 < Mod[i, Length[ρNomList]] < 9.5, Around[σmini[i], dσmini[i]], σmini[i]]},

{i, idsFORnSrc[iN]}], PlotRange → {{0.0, 45}, {0.0, 8.}}, FrameLabel → {"ρ", "σ"},

FrameTicks → { {{{0, 0 °}, {2, 2 °}, {4, 4 °}, {6, 6 °}, {8, 8 °}}, None} ,

{{{0, 0 °}, {10, 10 °}, {20, 20 °}, {30, 30 °}, {40, 40 °}}, None} },

PlotLabel → "σmin vs ρRMS", PlotStyle → colornSrcList[[iN]] , GridLines → Automatic,

Frame → True, IntervalMarkersStyle → colornSrcList[[iN]], ImageSize → 72 × 4;

sigmaMINvsRadiusData = Show[Table[lpρSigmamin[iN], {iN, Length[wList]}]];

In[60]:= GraphicsRow[{eta0VSradiusDataMin, sigmaMINvsRadiusData}, ImageSize → 72 × 8]

Print[" {N, color} = ", nSrcColorKey]

Print"Figure A1: The Library data for probability distribution parameters η0
min

and σmin plotted with respect to ρRMS. Fig. A1 is the same as Fig. 6."
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Figure A1: The Library data for probability distribution parameters

η0
min and σmin plotted with respect to ρRMS. Fig. A1 is the same as Fig. 6.

In[63]:= lpρη0max[iN_] := ListPlotTable[{ρRMSi[i] , η0maxi[i]}, {i, idsFORnSrc[iN]}],

PlotRange → {{0, 45}, {45, 65}}, FrameLabel → {"ρ ", "η0"},

FrameTicks → { {{{45, 45 °}, {50, 50 °}, {55, 55 °}, {60, 60 °}, {65, 65 °}}, None} ,

{{{0, 0 °}, {10, 10 °}, {20, 20 °}, {30, 30 °}, {40, 40 °}}, None} },

PlotLabel → "η0
max vs ρRMS", PlotStyle → colornSrcList[[iN]] ,

GridLines → Automatic, Frame → True, ImageSize → 72 × 5

eta0VSradiusDataMax = Show[Table[lpρη0max[iN], {iN, Length[wList]}]];

(*Print[" {N, color} = ",nSrcColorKey]*)
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In[65]:= lpρSigmamax[iN_] := ListPlotTable[{ρRMSi[i],

If[8.5 < Mod[i, Length[ρNomList]] < 9.5, Around[σmaxi[i], dσmaxi[i]], σmaxi[i]]},

{i, idsFORnSrc[iN]}], PlotRange → {{0.0, 45}, {0.0, 8.}}, FrameLabel → {"ρ", "σ"},

FrameTicks → { {{{0, 0 °}, {2, 2 °}, {4, 4 °}, {6, 6 °}, {8, 8 °}}, None} ,

{{{0, 0 °}, {10, 10 °}, {20, 20 °}, {30, 30 °}, {40, 40 °}}, None} },

PlotLabel → "σmax vs ρRMS", PlotStyle → colornSrcList[[iN]] , GridLines → Automatic,

Frame → True, IntervalMarkersStyle → colornSrcList[[iN]], ImageSize → 72 × 4;

sigmaMAXvsRadiusData = Show[Table[lpρSigmamax[iN], {iN, Length[wList]}]];

In[67]:= GraphicsRow[{eta0VSradiusDataMax, sigmaMAXvsRadiusData}, ImageSize → 72 × 8]

Print[" {N, color} = ", nSrcColorKey]

Print"Figure A2: The Library data for distribution parameters

η0
max and σmax plotted with respect to ρRMS. Like the min data in Figs

6 and A1, the max data for constant N has curves for ρ below 5°."
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Figure A2: The Library data for distribution parameters

η0
max and σmax plotted with respect to ρRMS. Like the min data in

Figs 6 and A1, the max data for constant N has curves for ρ below 5°.

In[70]:= lpτη0minPlusMinus[iN_] :=

ListPlotTable[{τRMSi[i], If[2.5 < Mod[i, Length[ρNomList]] < 3.5,

Around[η0mini[i], dη0mini[i]], η0mini[i]]}, {i, idsFORnSrc[iN]}],

PlotRange → {{0, 6}, {25, 45}}, FrameLabel → "τ, deg-1", "η0",

FrameTicks → { {{{25, 25 °}, {30, 30 °}, {35, 35 °}, {40, 40 °}, {45, 45 °}}, None} ,

{Table[i, {i, 6}], None} }, PlotLabel → "η0
min vs τRMS",

PlotStyle → colornSrcList[[iN]] , GridLines → Automatic, Frame → True,

IntervalMarkers → "Tubes", IntervalMarkersStyle → colornSrcList[[iN]], ImageSize → 72 × 5

η0minVSτData = Show[Table[lpτη0minPlusMinus[iN], {iN, Length[wList]}]];

In[72]:= lpτSigmaminPlusMinus[iN_] :=

ListPlotTable[{τRMSi[i], If[2.5 < Mod[i, Length[ρNomList]] < 3.5,

Around[σmini[i], dσmini[i]], σmini[i]]}, {i, idsFORnSrc[iN]}],

PlotRange → {{0, 6}, {0, 8}}, FrameLabel → "τ, deg-1", "σ", FrameTicks →

{ {{{0, 0 °}, {2, 2 °}, {4, 4 °}, {6, 6 °}, {8, 8 °}}, None} , {Table[i, {i, 6}], None} },

PlotLabel → "σmin vs τRMS", PlotStyle → colornSrcList[[iN]] , GridLines → Automatic,

Frame → True, IntervalMarkersStyle → colornSrcList[[iN]], ImageSize → 72 × 4

sigmaMINvsTauData = Show[Table[lpτSigmaminPlusMinus[iN], {iN, Length[wList]}]];
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In[74]:= GraphicsRow[{η0minVSτData, sigmaMINvsTauData}, ImageSize → 72 × 8]

Print" {N, color, w = N-1/2} = ", wNColorKey

Print"Figure A3: The Library data for probability distribution parameters η0
min

and σmin plotted with respect to τRMS. (Fig. A3 is a copy of Fig. 7.)"
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Figure A3: The Library data for probability distribution parameters

η0
min and σmin plotted with respect to τRMS. (Fig. A3 is a copy of Fig. 7.)

In[77]:= lpτη0maxPlusMinus[iN_] :=

ListPlotTable[{τRMSi[i], If[2.5 < Mod[i, Length[ρNomList]] < 3.5,

Around[η0maxi[i], dη0maxi[i]], η0maxi[i]]}, {i, idsFORnSrc[iN]}],

PlotRange → {{0, 6}, {45, 65}}, FrameLabel → "τ, deg-1", "η0",

FrameTicks → { {{{45, 45 °}, {50, 50 °}, {55, 55 °}, {60, 60 °}, {65, 65 °}}, None} ,

{Table[i, {i, 6}], None} }, PlotLabel → "η0
max vs τRMS",

PlotStyle → colornSrcList[[iN]] , GridLines → Automatic, Frame → True,

IntervalMarkers → "Tubes", IntervalMarkersStyle → colornSrcList[[iN]], ImageSize → 72 × 5

η0maxVSτData = Show[Table[lpτη0maxPlusMinus[iN], {iN, Length[wList]}]];

In[79]:= lpτSigmamaxPlusMinus[iN_] :=

ListPlotTable[{τRMSi[i], If[2.5 < Mod[i, Length[ρNomList]] < 3.5,

Around[σmaxi[i], dσmaxi[i]], σmaxi[i]]}, {i, idsFORnSrc[iN]}],

PlotRange → {{0, 6}, {0, 8}}, FrameLabel → "τ, deg-1", "σ", FrameTicks →

{ {{{0, 0 °}, {2, 2 °}, {4, 4 °}, {6, 6 °}, {8, 8 °}}, None} , {Table[i, {i, 6}], None} },

PlotLabel → "σmax vs τRMS", PlotStyle → colornSrcList[[iN]] , GridLines → Automatic,

Frame → True, IntervalMarkersStyle → colornSrcList[[iN]], ImageSize → 72 × 4

sigmaMAXvsTauData = Show[Table[lpτSigmamaxPlusMinus[iN], {iN, Length[wList]}]];
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In[81]:= GraphicsRow[{η0maxVSτData, sigmaMAXvsTauData}, ImageSize → 72 × 8]

Print[" {N, color, w} = ", wNColorKey]

Print"Figure A4: The Library data for probability

distribution parameters η0
max and σmax plotted with respect to

τRMS. Compared with Fig. A2, the data is spread out nicely here. "
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Figure A4: The Library data for probability distribution parameters η0
max and σmax plotted

with respect to τRMS. Compared with Fig. A2, the data is spread out nicely here.

A3. Interpolation Method B

The Library constructed for Method B in Sec. A2 is essentially a table of the values of the four parameters,  η0
min, σmin,   η0

max, 

and σmax, needed to determine the probability distributions and significances in Eqs. (A1-A4).  

Instead of the variables N and ρRMS, the number of sources and the root-mean-square radius, we choose to consider the four 

parameters as functions of  w and τRMS, the inverse square root of N and the inverse of the radius ρRMS, 

w  =  N-1/2   and   τRMS  =  ρRMS-1. (A5)

The Library data is graphed in Figs. 9 and  A1 for the smallest alignment angle  ηmin . The data for avoidance, i.e. the largest 

avoidance angle ηmax, is plotted in Figure A4 in terms of w  and τRMS.

Definitions:

Tables: wτη0minLib, wτdη0minLib, wτη0maxLib, wτdη0maxLib, wτσminLib, wτdσminLib, wτσmaxLib, wτdσmaxLib

The tables  wτη0minLib ...  have  Library data in the form [(w, τRMS), quantity] were “quantity” is one of the parameters or their 

standard errors: η0
min, dη0

min, σmin,   dσmin, η0
max, dη0

max,  σmax , dσmax     

The associated interpolation functions are η0minBint, dη0minBint , η0maxBint , dη0maxBint, σminBint, dσminBint, σmaxBint , 

dσmaxBint 

nExample, ρRMSexample Random values of the number of sources and the RMS radius are used to illustrate the distribution 

parameter outputs of Interpolation Method B

Setting up the interpolations takes two steps. First a tables of the data are constructed. Each table has the form {w, τRMS, 
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parameter}. Second, the interpolation for each parameter is defined. There are four parameters  η0
min, σmin,   η0

max, and σmax and each 

one has a standard error  dη0
min, dσmin,   dη0

max, and dσmax developed in the fitting process.

In[84]:= wτη0minLib = Table[{{wi[i], τRMSi[i]}, η0mini[i]}, {i, Length[fitData]}];

wτdη0minLib = Table[{wi[i], τRMSi[i], dη0mini[i]}, {i, Length[fitData]}];

wτη0maxLib = Table[{wi[i], τRMSi[i], η0maxi[i]}, {i, Length[fitData]}];

wτdη0maxLib = Table[{wi[i], τRMSi[i], dη0maxi[i]}, {i, Length[fitData]}];

wτσminLib = Table[{wi[i], τRMSi[i], σmini[i]}, {i, Length[fitData]}];

wτdσminLib = Table[{wi[i], τRMSi[i], dσmini[i]}, {i, Length[fitData]}];

wτσmaxLib = Table[{wi[i], τRMSi[i], σmaxi[i]}, {i, Length[fitData]}];

wτdσmaxLib = Table[{wi[i], τRMSi[i], dσmaxi[i]}, {i, Length[fitData]}];

In[92]:= η0minBint = Interpolation[wτη0minLib];(* int - interpolation function*)

dη0minBint = Interpolation[wτdη0minLib];

η0maxBint = Interpolation[wτη0maxLib];

dη0maxBint = Interpolation[wτdη0maxLib];

σminBint = Interpolation[wτσminLib];

dσminBint = Interpolation[wτdσminLib];

σmaxBint = Interpolation[wτσmaxLib];

dσmaxBint = Interpolation[wτdσmaxLib];

Interpolation: Interpolation on unstructured grids is currently only supported for InterpolationOrder->1 or

InterpolationOrder->All. Order will be reduced to 1.

By the rules of interpolations, when the variables w and τ are in the range of the Library data, then Mathematica finds an average 

value from the surrounding Library data points. In terms of the variables w and τRMS, the ranges are  

1
15

 ≤ w ≤ 1
3

   and    0.024 deg-1  ≲ τRMS ≲ 4 deg-1  (Ranges of Interpolation Variables )  (A6)

The values for τRMS are only approximate because the limits shown are values of 1/ρNominal and the nominal values only approxi-

mate the root-mean-square values.

 

In[100]:= (*An example of using the interpolating functions.*)

nExample = RandomInteger[{9, 225}]; ρRMSexample = RandomReal[{0.25, 12}];

Print"The most likely value of the two random

run distribution parameters η0
min and σmin (alignment) for ",

nExample, " sources in a region with RMS radius ", ρRMSexample,

"° is found by interpolation of Library data: "

Print"Given N = ", nExample, " and ρRMS = ", ρRMSexample,

"°, we find that w = N-1/2 = ", NnExample-1/2, ", and τ = ρRMS-1 = ", ρRMSexample-1,

". The interpolations give η0
min = ", η0minBintnExample-1/2, ρRMSexample-1, "°, σmin = ",

σminBintnExample-1/2, ρRMSexample-1, "°, η0
max = ", η0maxBintnExample-1/2, ρRMSexample-1,

"°, σmax = ", σmaxBintnExample-1/2, ρRMSexample-1, "°."

Print["Compare these values with the Library data plotted in Figs. A3 and A4."]
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The most likely value of the two random

run distribution parameters η0
min and σmin (alignment) for 25

sources in a region with RMS radius 3.08468° is found by interpolation of Library data:

Given N = 25 and ρRMS = 3.08468°, we find that w = N-1/2 = 0.2, and τ = ρRMS-1 = 0.324183

. The interpolations give η0
min = 34.6589°, σmin = 3.3701°, η0

max = 55.3769°, σmax = 3.3757°.

Compare these values with the Library data plotted in Figs. A3 and A4.

A4. Fit the Library Data with Functions, Function Method C

Applying Interpolation Method B when one or both sample’s variables are outside the Library data set, results in Mathematica 

extrapolating, not interpolating. Instead of interpolating Library data points that surround the sample’s variables, Mathematica 

guesses what lies beyond the Library’s boundaries. In such a case or for other situations that arise, one can apply alternative Formula 

Method C to find the distribution parameters   η0
min, σmin,   η0

max, and σmax and , with Eqs. (A4, A5), the significances desired.

 Formula Method C finds formulas to fit the four distribution parameters   η0
min(w, τRMS), σmin(w, τRMS),   η0

max(w, τRMS), 

and σmax(w, τRMS). 

Definitions:

Alignment:

Library data fitting functions: 

eta0minFit[w,τ], eta0minFitbig[w,τ], eta0minFitsmall[w,τ], deta0minFit[w,τ]

sigmaminFit[w,τ], sigminFitBig[w,τ], sigminFitSmall[w,τ], dsigmaminFit[w,τ]

Plots of the Library data fitting function for the iNth value of w: 

plotTauEtamin[iN], plotTauEtaminbig[iN], plotTauEtaminsmall[iN], 

plotTausigmamin[iN], ...

Display of the fitting functions for all values of w:  

eta0MinVSTauFit (Big, Best, Small) and eta0MinVSTauFit0 (Best only)

sortPercentDiffEta0minfit  percent differences between the Library data and the relevant fitting function, here for η0
min. 

sortPercentDiffSigmaminfit Same, but for σmin

Avoidance:

REPEAT ALL OF THE ABOVE AGAIN, BUT THIS TIME WITH “MAX”, NOT “MIN”.

eta0maxFit[w,τ], ..., sortPercentDiffSigmamaxfit 

The fitting functions are derived in another notebook, “20211116AlternateRandomRunStatsDegrees.nb”, Ref. 7. Mathematica 

supplies a lot of extra digits when the formulas are copied. Please forgive the appearance. I am rounding the coefficients to two more 

places than the change in value from best to big. For example, the best value of the first coefficient in eta0minFit(w,τ) is 

45.02686206815433` with a value in  eta0minFitbig(w,τ) of 45.04343933099011`. These values are replaced by 45.0269 and 

45.0434, respectively.
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In[104]:= (*Equation (A7)*)

eta0minFit[w_, τ_] :=

45.0269 - w 47.386 + 7.32 w - 17.789 Tanh0.7096 - 0.3488 w -0.5348 + τ

In[105]:= (*Equation A8*)eta0minFitbig[w_, τ_] :=

45.0434 - w 47.031 + 6.83 w + -17.789 + 0.302 Sign-0.7096 + 0.3488 w -0.5348 + τ

Tanh-0.5348 + τ + 0.0254 Sign[0.7096 - 0.3488 w]

0.7096 + w -0.3488 + 0.0321 Sign[-0.5348 + τ] + 0.0137 Sign[-0.5348 + τ]

In[106]:= (*Equation A9*)eta0minFitsmall[w_, τ_] :=

45.0103 - w 47.741 + 7.81 w + -17.789 - 0.302 Sign-0.7096 + 0.3488 w -0.5348 + τ

Tanh-0.5348 + τ - 0.0254 Sign[0.7096 - 0.3488 w]

0.7096 + w -0.3488 - 0.0321 Sign[-0.5348 + τ] - 0.0137 Sign[-0.5348 + τ]

In[107]:= deta0minFit[w_, τ_] := eta0minFitbig[w, τ] - eta0minFit[w, τ]

In[108]:=

plotTauEtamin[iN_] :=

Plot[eta0minFit[wList[[iN]], τ], {τ, 0, 6}, PlotStyle → colornSrcList[[iN]] ];

plotTauEtaminbig[iN_] := Plot[eta0minFitbig[wList[[iN]], τ],

{τ, 0, 6}, PlotStyle → colornSrcList[[iN]] ];

plotTauEtaminsmall[iN_] := Plot[eta0minFitsmall[wList[[iN]], τ],

{τ, 0, 6}, PlotStyle → colornSrcList[[iN]] ];

In[111]:= eta0MinVSTauFit =

Show[Table[Show[{lpτη0minPlusMinus[iN], plotTauEtamin[iN], plotTauEtaminbig[iN],

plotTauEtaminsmall[iN]}], {iN, Length[nSrcList]}], ImageSize → 72 × 5];

eta0MinVSTauFit0 = Show[Table[Show[{lpτη0minPlusMinus[iN], plotTauEtamin[iN]}],

{iN, Length[nSrcList]}], ImageSize → 72 × 5];

In[113]:= (*Equation A10*)

sigmaminFit[w_, τ_] := 0.25 w 73.570 - 8.29 w + 3.093 + 10.658 w Tanh1.2161 -1.6072 + τ

In[114]:= (*Equation A11*)

sigminFitBig[w_, τ_] := 0.25 w

73.679 - 7.86 w + 3.093 + w 10.658 + 0.508 Sign[-1.6072 + τ] + 0.126 Sign[-1.6072 + τ]

Tanh-1.6072 + τ + 0.0202 Sign[3.093 + 10.658 w] 1.2161 + 0.0441 Sign[-1.6072 + τ]

In[115]:= (*Equation A12*)

sigminFitSmall[w_, τ_] := 0.25 w

73.460 - 8.73 w + 3.093 + w 10.658 - 0.508 Sign[-1.6072 + τ] - 0.126 Sign[-1.6072 + τ]

Tanh-1.6072 + τ - 0.0202 Sign[3.093 + 10.658 w] 1.2161 - 0.0441 Sign[-1.6072 + τ]

In[116]:= dsigmaminFit[w_, τ_] := sigminFitBig[w, τ] - sigmaminFit[w, τ]

In[117]:=

plotTausigmamin[iN_] :=

Plot[sigmaminFit[wList[[iN]], τ], {τ, 0, 6}, PlotStyle → colornSrcList[[iN]] ];

plotTausigmaminbig[iN_] := Plot[sigminFitBig[wList[[iN]], τ],

{τ, 0, 6}, PlotStyle → colornSrcList[[iN]] ];

plotTausigmaminsmall[iN_] := Plot[sigminFitSmall[wList[[iN]], τ],

{τ, 0, 6}, PlotStyle → colornSrcList[[iN]] ];
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In[120]:= sigmaMinVSTauFit =

Show[Table[Show[{lpτSigmaminPlusMinus[iN], plotTausigmamin[iN], plotTausigmaminbig[iN],

plotTausigmaminsmall[iN]}], {iN, Length[nSrcList]}], ImageSize → 72 × 5];

sigmaMinVSTauFit0 = Show[Table[Show[{lpτSigmaminPlusMinus[iN], plotTausigmamin[iN]}],

{iN, Length[nSrcList]}], ImageSize → 72 × 5];

In[122]:= GraphicsRow[{eta0MinVSTauFit0, sigmaMinVSTauFit0}, ImageSize → 72 × 9]
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Figure A5: The fitting functions and Library data for alignment parameters η0
min, σmin. Top: The

best fit to the data. Bottom: One sigma accuracy of the fit. For the η0
min fit, this

means that each of the 7 parameters in Eq. (6) is replaced by a value that differs

from its best value by its standard error divided by 7 , with the expectation

that this will move the curve by one σ. We plot Big, Small, and Best curves.
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In[126]:= sortPercentDiffEta0minfit =

SortFlattenTable100. Absη0mini[i] - eta0minFit[wi[i], τRMSi[i]]  η0mini[i],

{i, Length[fitData]} ;

ListPlotsortPercentDiffEta0minfit , PlotRange → All, FrameLabel → "", " % diff η0
min ",

PlotLabel → "η0
min fit", GridLines → Automatic, Frame → True

Print"Figure A6: The percent difference of the fit to the

data for η0
min. The average, i.e. arithmetic mean, %diff is ",

mean[sortPercentDiffEta0minfit], "%, with the largest %diff = ",

sortPercentDiffEta0minfit[[-1]] , "%." 
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Figure A6: The percent difference of the fit to the data for η0
min. The average,

i.e. arithmetic mean, %diff is 0.161082%, with the largest %diff = 0.783077%.
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In[129]:= sortPercentDiffSigmaminfit =

SortFlattenTable100. Absσmini[i] - sigmaminFit[wi[i], τRMSi[i]]  σmini[i ],

{i, Length[fitData]} ;

ListPlotsortPercentDiffSigmaminfit, PlotRange → All, FrameLabel → {"", " % diff σmin "},

PlotLabel → "σmin fit", GridLines → Automatic, Frame → True

Print"Figure A7: The percent difference of

the fit to the data for σmin. The mean %diff is ",

mean[sortPercentDiffSigmaminfit], "%, with the largest %diff = ",

sortPercentDiffSigmaminfit[[-1]] , "%. " 
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Figure A7: The percent difference of the fit to the data for σmin. The mean %diff is

0.909478%, with the largest %diff = 3.53309%.

In[132]:= (*Equation A13*)

eta0maxFit[w_, τ_] := 45.1455 + w 44.230 + 8.35 w - 14.632 Tanh0.6808 -0.8608 + τ

In[133]:= (*Equation A14*)

eta0maxFitbig[w_, τ_] := 45.1632 + w 44.483 + 8.85 w + -14.632 + 0.179 Sign[-0.8608 + τ]

Tanh-0.8777 + τ 0.6808 + 0.0106 Sign[0.8608 - τ]

In[134]:= (*Equation A15*)

eta0maxFitsmall[w_, τ_] := 45.1279 + w 43.977 + 7.85 w + -14.632 - 0.179 Sign[-0.8608 + τ]

Tanh-0.8439 + τ 0.6808 - 0.0106 Sign[0.8608 - τ]

In[135]:= deta0maxFit[w_, τ_] := eta0maxFitbig[w, τ] - eta0maxFit[w, τ]

In[136]:=

plotTauEtamax[iN_] :=

Plot[eta0maxFit[wList[[iN]], τ], {τ, 0, 6}, PlotStyle → colornSrcList[[iN]] ];

plotTauEtamaxbig[iN_] := Plot[eta0maxFitbig[wList[[iN]], τ],

{τ, 0, 6}, PlotStyle → colornSrcList[[iN]] ];

plotTauEtamaxsmall[iN_] := Plot[eta0maxFitsmall[wList[[iN]], τ],

{τ, 0, 6}, PlotStyle → colornSrcList[[iN]] ];
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In[139]:= eta0MaxVSTauFit =

Show[Table[Show[{lpτη0maxPlusMinus[iN], plotTauEtamax[iN], plotTauEtamaxbig[iN],

plotTauEtamaxsmall[iN]}], {iN, Length[nSrcList]}], ImageSize → 72 × 5];

eta0MaxVSTauFit0 = Show[Table[Show[{lpτη0maxPlusMinus[iN], plotTauEtamax[iN]}],

{iN, Length[nSrcList]}], ImageSize → 72 × 5];

In[141]:= (*Equation A16*)

sigmamaxFit[w_, τ_] := 0.25 w 73.287 - 8.11 w + 2.773 + 11.126 w Tanh1.2850 -1.6242 + τ

In[142]:= (*Equation A17*)

sigmaxFitBig[w_, τ_] := 0.25 w

73.400 - 7.66 w + 2.773 + w 11.126 + 0.521 Sign[-1.6242 + τ] + 0.129 Sign[-1.6242 + τ]

Tanh-1.6242 + τ + 0.0210 Sign[2.773 + 11.126 w] 1.2850 + 0.0494 Sign[-1.6242 + τ]

In[143]:= (*Equation A18*)

sigmaxFitSmall[w_, τ_] := 0.25 w

73.174 - 8.567 w + 2.773 + w 11.126 - 0.521 Sign[-1.6242 + τ] - 0.129 Sign[-1.6242 + τ]

Tanh-1.6242 + τ - 0.0210 Sign[2.773 + 11.126 w] 1.2850 - 0.0494 Sign[-1.6242 + τ]

In[144]:= dsigmamaxFit[w_, τ_] := sigmaxFitBig[w, τ] - sigmamaxFit[w, τ]

In[145]:=

plotTausigmamax[iN_] :=

Plot[sigmamaxFit[wList[[iN]], τ], {τ, 0, 6}, PlotStyle → colornSrcList[[iN]] ];

plotTausigmamaxbig[iN_] := Plot[sigmaxFitBig[wList[[iN]], τ],

{τ, 0, 6}, PlotStyle → colornSrcList[[iN]] ];

plotTausigmamaxsmall[iN_] := Plot[sigmaxFitSmall[wList[[iN]], τ],

{τ, 0, 6}, PlotStyle → colornSrcList[[iN]] ];

In[148]:= sigmaMaxVSTauFit =

Show[Table[Show[{lpτSigmamaxPlusMinus[iN], plotTausigmamax[iN], plotTausigmamaxbig[iN],

plotTausigmamaxsmall[iN]}], {iN, Length[nSrcList]}], ImageSize → 72 × 5];

sigmaMaxVSTauFit0 = Show[Table[Show[{lpτSigmamaxPlusMinus[iN], plotTausigmamax[iN]}],

{iN, Length[nSrcList]}], ImageSize → 72 × 5];

In[150]:= GraphicsRow[{eta0MaxVSTauFit0, sigmaMaxVSTauFit0}, ImageSize → 72 × 9]
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Out[151]=
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Figure A8: The fitting functions and Library data for avoidance parameters η0
max, σmax. Top: The

best fit to the data. Bottom: One sigma accuracy of the fit. For what this means, see Fig. A5.

In[154]:= sortPercentDiffEta0maxfit =

SortFlattenTable100. Absη0maxi[i] - eta0maxFit[wi[i], τRMSi[i]]  η0maxi[i],

{i, Length[fitData]} ;

ListPlotsortPercentDiffEta0maxfit , PlotRange → All, FrameLabel → "", " % diff η0
max ",

PlotLabel → "η0
max fit", GridLines → Automatic, Frame → True

Print"Figure A9: The percent difference of fit to data

for η0
max. The average, i.e. arithmetic mean, %diff is ",

mean[sortPercentDiffEta0maxfit], "%, with the largest %diff = ",

sortPercentDiffEta0maxfit[[-1]] , "%." 
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Figure A9: The percent difference of fit to data for η0
max. The average,

i.e. arithmetic mean, %diff is 0.106133%, with the largest %diff = 0.358982%.
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In[157]:= sortPercentDiffSigmamaxfit =

SortFlattenTable100. Absσmaxi[i] - sigmamaxFit[wi[i], τRMSi[i]]  σmaxi[i ],

{i, Length[fitData]} ;

ListPlotsortPercentDiffSigmamaxfit, PlotRange → All, FrameLabel → {"", " % diff σmax "},

PlotLabel → "σmax fit", GridLines → Automatic, Frame → True

Print"Figure A10: The percent diff of fit to data for σmax. The average %diff is ",

mean[sortPercentDiffSigmamaxfit], "%, with the largest %diff = ",

sortPercentDiffSigmamaxfit[[-1]] , "%." 
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Figure A10: The percent diff of fit to data for σmax. The average %diff is

0.942796%, with the largest %diff = 3.69747%.

A5. Compare the three methods A,B,C for three previously studied samples 27 QSOs, 13 QSOs, 99 Stars

Definitions:

qsosStarsColumns  Labels for the columns of the table of data from the three samples

qsosStars3Samplesdata for the three samples

qsosStarsPropertiesmin  Labels as above, but restricted to alignment for the article in Part I

qsosStarsDistParametersmin data restricted to alignment for display in the article in Part I

From previous work with the three samples, the distribution parameters η0
min,dη0min, σmin, dσmin,  η0max,dη0max, σmax, dσmax.

These were all found with Direct Method A, hence the names:

   η0minA, dη0minA, σminA, dσminA,  η0maxA, dη0maxA, σmaxA, dσmaxA, 

The same quantities for the three samples, but found with Interpolation Method B and Formula Method C. Same names except ‘A’ 

replaced with ‘B’ or ‘C’.

For B:  η0minB, ..., dσmaxB

For C:  η0minC, ... dσmaxC

compareη0min values of η0
min for the three samples by the three methods; the value includes error bars
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compare{σmin, η0max, σmax} Ditto for the other parameters

lowy{η0min,...,σmax} PlotRange for graphics

lp{η0min, η0max, σmin, σmax}Compare[i_] Compare the parameter {η0min, η0max, σmin, σmax} (pick one) for the ith sample

sigminA, B, C  significances of alignment angle η0
min for the three samples by Methods A, B, C

Standard errors of the significances for the three samples:

 dsigminAPLUS[i_], dsigminAMINUS[i_], dsigminBPLUS[i_], dsigminBMINUS[i_], dsigminCPLUS[i_], dsigminCMI-

NUS[i_] 

lpSigminCompare[i_] Compare the significances found by the three methods for the ith sample

Repeat sigminA, B, C  -----  lpSigminCompare[i_]  for avoidance “max”

Previous studies of three observed samples, 27 QSOs, 13 QSOs, 99 Stars, produced two types of data. First there is the number 

of sources, the root-mean-square radius and the extremes, ηmin and ηmax,  of the alignment function η(H). The second type of data 

comes from running the process with random polarization directions replacing the observed directions. The second type of data 

reduces to the location of the peak, η0
min and η0

max, and the half-widths, σmin and σmax,  of the random run distributions of  ηmin and 

ηmax. We put the two types of data in separate tables.

threeSamplesObservedData:

1. Sample 2. N, number of sources 3. ρRMS, region’s root-mean-square radius4. smallest alignment angle ηmin in degrees 5. 

largest avoidance angle ηmax in degrees

threeSamplesRandomRunParameters:

1. Sample 2. η0min, most likely in random runs 3. dη0min, standard error 4. σmin, half-width of random run distribution 5. 

dσmin, standard error 6. η0max, most likely in random runs 7. dη0max, standard error 8. σmax, half-width of random run 

distribution 9. dσmax, standard error 

In[160]:= threeSamplesObservedColumns = "Sample", "N", "ρRMS°", "ηmin°", "ηmax°";

threeSamplesObserved =
"27 QSOs" 27 6.82492 21.094 66.660
"13 QSOs" 13 4.72812 10.865 62.665
"99 Stars" 99 6.83803 7.007 83.122

;

In[162]:= threeSamplesRandomRunColumns =

"Sample", "η0
min°", "dη0

min°", "σmin°", "dσmin°", "η0
max°", "dη0

max°", "σmax°", "dσmax°";

threeSamplesRandomRunParameters =

"27 QSOs" 34.923 0.029 3.272 0.034 55.200 0.031 3.279 0.037
"13 QSOs" 30.256 0.165 4.638 0.197 60.168 0.171 4.811 0.204
"99 Stars" 39.947 0.018 1.737 0.021 50.074 0.011 1.765 0.013

;
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In[164]:= Print" ", Text@GridPrependthreeSamplesObserved,

"Sample", "N", "ρRMS, deg", "ηmin, deg", "ηmax, deg", Spacings → {Automatic, .6},

Dividers → {{Darker[Gray, .6], {Lighter[Gray, .5]}, Darker[Gray, .6]},

{Darker[Gray, .6], Darker[Gray, .6], {False}, Darker[Gray, .6]}} 

Print"Table A2: Number of sources, root-mean-square radius, and

extremes of the alignment angle function η(H) for the three

samples from previously 'published' work. See Refs. 3,4,5. "

Sample N ρRMS, deg ηmin, deg ηmax, deg

27 QSOs 27 6.82492 21.094 66.66

13 QSOs 13 4.72812 10.865 62.665

99 Stars 99 6.83803 7.007 83.122

Table A2: Number of sources, root-mean-square radius, and extremes of the alignment angle

function η(H) for the three samples from previously 'published' work. See Refs. 3,4,5.

In[166]:= Print" ",

Text@GridPrependthreeSamplesRandomRunParameters, "Sample", "η0
min", "dη0

min",

"σmin", "dσmin", "η0
max", "dη0

max", "σmax", "dσmax", Spacings → {Automatic, .6},

Dividers → {{Darker[Gray, .6], {Lighter[Gray, .5]}, Darker[Gray, .6]},

{Darker[Gray, .6], Darker[Gray, .6], {False}, Darker[Gray, .6]}} 

Print["Table A3: Parameters and their standard errors for the fits to

the random run distributions Eqs. (A1) and (A2), obtained with

Direct Method A. All of the parameter values are in degrees. "]

Sample η0
min dη0

min σmin dσmin η0
max dη0

max σmax dσmax

27 QSOs 34.923 0.029 3.272 0.034 55.2 0.031 3.279 0.037

13 QSOs 30.256 0.165 4.638 0.197 60.168 0.171 4.811 0.204

99 Stars 39.947 0.018 1.737 0.021 50.074 0.011 1.765 0.013

Table A3: Parameters and their standard errors for the fits to the random run distributions Eqs.

(A1) and (A2), obtained with Direct Method A. All of the parameter values are in degrees.

The following section creates table for the article, Part I the Article. The article in Part I does not include the topic of avoidance, so 

“max” quantities are excluded.

In[168]:= (*This table is created for Part I the Article*)threeSamplesPropertiesmin =

Partition[Flatten[Table[threeSamplesObserved[[i, j]], {i, 3}, {j, 4}]], 4]

Out[168]= {{27 QSOs, 27, 6.82492, 21.094},

{13 QSOs, 13, 4.72812, 10.865}, {99 Stars, 99, 6.83803, 7.007}}

In[169]:= (*This table is created for Part I the Article*)threeSamplesDistParametersmin =

Partition[Flatten[Table[{threeSamplesRandomRunParameters[[i, 1]], Around[

threeSamplesRandomRunParameters[[i, 2]], threeSamplesRandomRunParameters[[i, 3]]],

Around[threeSamplesRandomRunParameters[[i, 4]],

threeSamplesRandomRunParameters[[i, 5]]]}, {i, 3}]], 3]

Out[169]= {{27 QSOs, 34.923 ±0.029, 3.272 ±0.034},

{13 QSOs, 30.26 ±0.17, 4.64 ±0.20}, {99 Stars, 39.947 ±0.018, 1.737 ±0.021}}
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In[170]:= (*This table is created for Part I the Article*)

Print" ",

Text@GridPrependthreeSamplesPropertiesmin, "Sample", "N", "ρRMS, deg", "ηmin, deg",

Spacings → {Automatic, .6},

Dividers → {{Darker[Gray, .6], {Lighter[Gray, .5]}, Darker[Gray, .6]},

{Darker[Gray, .6], Darker[Gray, .6], {False}, Darker[Gray, .6]}}, " ",

Text@GridPrependthreeSamplesDistParametersmin, "Sample", "η0
min, deg", "σmin, deg",

Spacings → {Automatic, .6},

Dividers → {{Darker[Gray, .6], {Lighter[Gray, .5]}, Darker[Gray, .6]},

{Darker[Gray, .6], Darker[Gray, .6], {False}, Darker[Gray, .6]}} 

Print["See Part I the Article, this is Table 1. The Article

focusses on alignment (min), not avoidance (max). "]

Sample N ρRMS, deg ηmin, deg

27 QSOs 27 6.82492 21.094

13 QSOs 13 4.72812 10.865

99 Stars 99 6.83803 7.007

Sample η0
min, deg σmin, deg

27 QSOs 34.923 ±0.029 3.272 ±0.034

13 QSOs 30.26 ±0.17 4.64 ±0.20

99 Stars 39.947 ±0.018 1.737 ±0.021

See Part I the Article, this is Table 1.

The Article focusses on alignment (min), not avoidance (max).

In[172]:= η0minA = Table[threeSamplesRandomRunParameters[[i, 2]],

{i, Length[threeSamplesRandomRunParameters]}] ;(*degrees*)

dη0minA = Table[threeSamplesRandomRunParameters[[i, 3]],

{i, Length[threeSamplesRandomRunParameters]}] ;(*degrees*)

σminA = Table[threeSamplesRandomRunParameters[[i, 4]],

{i, Length[threeSamplesRandomRunParameters]}] ;(*degrees*)

dσminA = Table[threeSamplesRandomRunParameters[[i, 5]],

{i, Length[threeSamplesRandomRunParameters]}] ;(*degrees*)

In[176]:=

η0maxA = Table[threeSamplesRandomRunParameters[[i, 6]],

{i, Length[threeSamplesRandomRunParameters]}]; (*degrees*)

dη0maxA = Table[threeSamplesRandomRunParameters[[i, 7]],

{i, Length[threeSamplesRandomRunParameters]}]; (*degrees*)

σmaxA = Table[threeSamplesRandomRunParameters[[i, 8]],

{i, Length[threeSamplesRandomRunParameters]}]; (*degrees*)

dσmaxA = Table[threeSamplesRandomRunParameters[[i, 9]],

{i, Length[threeSamplesRandomRunParameters]}]; (*degrees*)

In[180]:= η0minB = Tableη0minBintthreeSamplesObserved[[i, 2]]-1/2, threeSamplesObserved[[i, 3]]-1,

{i, Length[threeSamplesObserved]}; (*degrees*)

dη0minB = Tabledη0minBintthreeSamplesObserved[[i, 2]]-1/2,

threeSamplesObserved[[i, 3]]-1, {i, Length[threeSamplesObserved]} ;(*degrees*)

σminB = TableσminBintthreeSamplesObserved[[i, 2]]-1/2, threeSamplesObserved[[i, 3]]-1,

{i, Length[threeSamplesObserved]}; (*degrees*)

dσminB = TabledσminBintthreeSamplesObserved[[i, 2]]-1/2, threeSamplesObserved[[i, 3]]-1,

{i, Length[threeSamplesObserved]} ;(*degrees*)
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In[184]:=

η0maxB = Tableη0maxBintthreeSamplesObserved[[i, 2]]-1/2, threeSamplesObserved[[i, 3]]-1,

{i, Length[threeSamplesObserved]} ;(*degrees*)

dη0maxB = Tabledη0maxBintthreeSamplesObserved[[i, 2]]-1/2,

threeSamplesObserved[[i, 3]]-1, {i, Length[threeSamplesObserved]}; (*degrees*)

σmaxB = TableσmaxBintthreeSamplesObserved[[i, 2]]-1/2, threeSamplesObserved[[i, 3]]-1,

{i, Length[threeSamplesObserved]}; (*degrees*)

dσmaxB = TabledσmaxBintthreeSamplesObserved[[i, 2]]-1/2, threeSamplesObserved[[i, 3]]-1,

{i, Length[threeSamplesObserved]} ;(*degrees*)

In[188]:= η0minC =

Tableeta0minFitthreeSamplesObserved[[i, 2]]-1/2, threeSamplesObserved[[i, 3]]-1,

{i, Length[threeSamplesObserved]} ;(*degrees*)

dη0minC = Tabledeta0minFitthreeSamplesObserved[[i, 2]]-1/2,

threeSamplesObserved[[i, 3]]-1, {i, Length[threeSamplesObserved]} ;(*degrees*)

σminC = TablesigmaminFitthreeSamplesObserved[[i, 2]]-1/2,

threeSamplesObserved[[i, 3]]-1, {i, Length[threeSamplesObserved]}; (*degrees*)

dσminC = TabledsigmaminFitthreeSamplesObserved[[i, 2]]-1/2,

threeSamplesObserved[[i, 3]]-1, {i, Length[threeSamplesObserved]}; (*degrees*)

In[192]:=

η0maxC =

Tableeta0maxFitthreeSamplesObserved[[i, 2]]-1/2, threeSamplesObserved[[i, 3]]-1,

{i, Length[threeSamplesObserved]}; (*degrees*)

dη0maxC = Tabledeta0maxFitthreeSamplesObserved[[i, 2]]-1/2,

threeSamplesObserved[[i, 3]]-1, {i, Length[threeSamplesObserved]}; (*degrees*)

σmaxC = TablesigmamaxFitthreeSamplesObserved[[i, 2]]-1/2,

threeSamplesObserved[[i, 3]]-1, {i, Length[threeSamplesObserved]}; (*degrees*)

dσmaxC = TabledsigmamaxFitthreeSamplesObserved[[i, 2]]-1/2,

threeSamplesObserved[[i, 3]]-1, {i, Length[threeSamplesObserved]}; (*degrees*)

In[196]:= compareη0min = Table[{threeSamplesObserved[[i, 1]], Around[η0minA[[i]], dη0minA[[i]] ],

Around[η0minB[[i]], dη0minB[[i]] ], Around[η0minC[[i]], dη0minC[[i]] ]}, {i, 3}];

compareσmin = Table[{threeSamplesObserved[[i, 1]], Around[σminA[[i]], dσminA[[i]] ],

Around[σminB[[i]], dσminB[[i]] ], Around[σminC[[i]], dσminC[[i]] ]}, {i, 3}];
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Probability distribution parameters for ηmin with the three Methods:

(a) peak η0
min :

Sample A (degrees) B (degrees) C (degrees)

27 QSOs 34.923 ±0.029 34.796 ±0.016 34.80 ±0.19

13 QSOs 30.26 ±0.17 30.293 ±0.033 30.36 ±0.27

99 Stars 39.947 ±0.018 39.703 ±0.015 39.73 ±0.10

(b) half-width σmin :

Sample A (degrees) B (degrees) C (degrees)

27 QSOs 3.272 ±0.034 3.299 ±0.020 3.229 ±0.022

13 QSOs 4.64 ±0.20 4.59 ±0.04 4.55 ±0.04

99 Stars 1.737 ±0.021 1.700 ±0.018 1.729 ±0.009

Table A4: Probability distribution parameters for ηmin with the three Methods, Direct Method

A, Interpolation Method B, Function Method C. This is Table 2 in Part I the Article.

[Caption Table 2: Distribution parameters η0
min and σmin in the probability distribution

formula Eq. (3). (a) The values of the parameters for the location of the peak η0
min

for the three methods. Compared with A, the B and C values overlap with A except for

the B-value of η0
min for the 27 QSOs and the 99 Stars. (b) The half-widths σmin, in

degrees, for the three methods. The B and C values for σmin are within the listed

standard error of the Method A values. Also see the displays in Figs. 11 and 12. ]

In[201]:= compareη0max = Table[{threeSamplesObserved[[i, 1]], Around[η0maxA[[i]], dη0maxA[[i]] ],

Around[η0maxB[[i]], dη0maxB[[i]] ], Around[η0maxC[[i]], dη0maxC[[i]] ]}, {i, 3}];

compareσmax = Table[{threeSamplesObserved[[i, 1]], Around[σmaxA[[i]], dσmaxA[[i]] ],

Around[σmaxB[[i]], dσmaxB[[i]] ], Around[σmaxC[[i]], dσmaxC[[i]] ]}, {i, 3}];

(a) peak η0
max

Sample A B C

27 QSOs 55.200 ±0.031 55.315 ±0.023 55.24 ±0.14

13 QSOs 60.17 ±0.17 59.799 ±0.029 59.74 ±0.21

99 Stars 50.074 ±0.011 50.332 ±0.016 50.34 ±0.08

(b) half-width σmax :

Sample A B C

27 QSOs 3.28 ±0.04 3.328 ±0.028 3.225 ±0.022

13 QSOs 4.81 ±0.20 4.539 ±0.034 4.54 ±0.04

99 Stars 1.765 ±0.013 1.743 ±0.019 1.727 ±0.009

Table A5: Probability distribution parameters for ηmax with the three Methods, Direct

Method A, Interpolation Method B, Function Method C. Here are the distribution

parameters η0
max and σmax in the probability distribution formula Eq. (A2). (a)

The values of the parameters for the location of the peak η0
max for the three

methods. Compared with A, the B and C values do not overlap with A except for the

C-value of η0
max for the 27 QSOs. (b) The half-widths σmax, in degrees, for the

three methods. Again most of the B and C values for σmax are not within the listed

standard error of the Method A values. Also see the displays in Figs. 11 and 12.
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In[205]:= lowyη0min = {34.5, 30.0, 39.5};

lpη0minCompare[i_] := ListPlot{Around[η0minA[[i]], dη0minA[[i]]],

Around[η0minB[[i]], dη0minB[[i]]], Around[η0minC[[i]], dη0minC[[i]]]},

PlotRange → {{0.5, 3.5}, {lowyη0min[[i]], lowyη0min[[i]] + 1.}},

GridLines → Automatic, Frame → True, FrameLabel → "Method", "η0
min, degrees",

FrameTicks → {Automatic, {{{1., "A"}, {2., "B"}, {3., "C"}}, Automatic}},

PlotLabel → threeSamplesObserved[[i, 1]] ": η0
min (alignment)", ImageSize → 72 × 5

lpη0minCompare[2];

In[208]:= GraphicsGrid[

{{lpη0minCompare[1], lpη0minCompare[2]}, {lpη0minCompare[3]}}, ImageSize → 72 × 9]

Print"Figure A11: This is Fig. 11 in Part I the Article. [Fig. 11 Caption: Compare

parameter η0
min for the 3 methods with 3 samples. Method B has small standard

errors, so it is precise, but it is not always accurate when compared with A.]" 

Out[208]=

A B C

34.6

34.8

35.0

35.2

35.4

Method

η
0
m
in
,d
eg
re
es

27 QSOs : η0
min (alignment)

A B C
30.0

30.2

30.4

30.6

30.8

31.0

Method

η
0
m
in
,d
eg
re
es

13 QSOs : η0
min (alignment)

A B C

39.6

39.8

40.0

40.2

40.4

Method

η
0
m
in
,d
eg
re
es

99 Stars : η0
min (alignment)

Figure A11: This is Fig. 11 in Part I the Article. [Fig. 11 Caption: Compare

parameter η0
min for the 3 methods with 3 samples. Method B has small standard

errors, so it is precise, but it is not always accurate when compared with A.]

In[210]:= lowyη0max = {54.75, 59.4, 49.75};

lpη0maxCompare[i_] := ListPlot{Around[η0maxA[[i]], dη0maxA[[i]]],

Around[η0maxB[[i]], dη0maxB[[i]]], Around[η0maxC[[i]], dη0maxC[[i]]]},

PlotRange → {{0.5, 3.5}, {lowyη0max[[i]], lowyη0max[[i]] + 1.}},

GridLines → Automatic, Frame → True, FrameLabel → "Method", "η0
max, degrees",

FrameTicks → {Automatic, {{{1., "A"}, {2., "B"}, {3., "C"}}, Automatic}},

PlotLabel → threeSamplesObserved[[i, 1]] ": η0
max (avoidance)", ImageSize → 72 × 5

lpη0maxCompare[1];
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In[213]:= GraphicsGrid[

{{lpη0maxCompare[1], lpη0maxCompare[2]}, {lpη0maxCompare[3]}}, ImageSize → 72 × 9]

Print"Figure A12: Compare parameter η0
max for the 3 methods with 3 samples. As with

η0
min in Fig. A11, Method B tends to be precise, but not always accurate,

when compared with A. Method C has larger error bars than B, but only the 27

QSO sample value agrees with Method A, within the standard errors shown." 

Out[213]=

A B C

54.8

55.0

55.2

55.4

55.6

Method

η
0
m
ax
,d
eg
re
es

27 QSOs : η0
max (avoidance)

A B C
59.4

59.6

59.8

60.0

60.2

60.4

Method

η
0
m
ax
,d
eg
re
es

13 QSOs : η0
max (avoidance)

A B C

49.8

50.0

50.2

50.4

50.6

Method

η
0
m
ax
,d
eg
re
es

99 Stars : η0
max (avoidance)

Figure A12: Compare parameter η0
max for the 3 methods with 3 samples. As

with η0
min in Fig. A11, Method B tends to be precise, but not always accurate,

when compared with A. Method C has larger error bars than B, but only the

27 QSO sample value agrees with Method A, within the standard errors shown.

In[215]:= lowyσmin = {3.0, 4.4, 1.5};

lpσminCompare[i_] := ListPlot{Around[σminA[[i]], dσminA[[i]]], Around[σminB[[i]],

dσminB[[i]]], Around[σminC[[i]], dσminC[[i]]]}, PlotRange → {{0.5, 3.5},

{lowyσmin[[i]], lowyσmin[[i]] + 1.}}, GridLines → Automatic, Frame → True, FrameLabel →

"Method", "σmin, degrees", FrameTicks → {Automatic, {{{1., "A"}, {2., "B"}, {3., "C"}},

Automatic}}, FrameTicks → {Automatic, {{{1., "A"}, {2., "B"}, {3., "C"}}, Automatic}},

PlotLabel → threeSamplesObserved[[i, 1]] ": σmin (alignment)", ImageSize → 72 × 5

lpσminCompare[2];
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In[217]:= GraphicsGrid[

{{lpσminCompare[1], lpσminCompare[2]}, {lpσminCompare[3]}}, ImageSize → 72 × 9]

Print"Figure A13: This is Fig. 12 in Part I the Article.

[Fig. 12 Caption: Compare parameter σmin for the 3 methods with

3 samples. Methods B and C give values that overlap with A.]" 
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Figure A13: This is Fig. 12 in Part I the Article. [Fig. 12 Caption: Compare parameter σmin

for the 3 methods with 3 samples. Methods B and C give values that overlap with A.]

In[219]:= lowyσmax = {3.0, 4.4, 1.5};

lpσmaxCompare[i_] := ListPlot{Around[σmaxA[[i]], dσmaxA[[i]]], Around[σmaxB[[i]],

dσmaxB[[i]]], Around[σmaxC[[i]], dσmaxC[[i]]]}, PlotRange → {{0.5, 3.5},

{lowyσmax[[i]], lowyσmax[[i]] + 1.}}, GridLines → Automatic, Frame → True, FrameLabel →

"Method", "σmax, degrees", FrameTicks → {Automatic, {{{1., "A"}, {2., "B"}, {3., "C"}},

Automatic}}, FrameTicks → {Automatic, {{{1., "A"}, {2., "B"}, {3., "C"}}, Automatic}},

PlotLabel → threeSamplesObserved[[i, 1]] ": σmax (avoidance)", ImageSize → 72 × 5

lpσmaxCompare[2];
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In[221]:= GraphicsGrid[

{{lpσmaxCompare[1], lpσmaxCompare[2]}, {lpσmaxCompare[3]}}, ImageSize → 72 × 9]

Print"Figure A14: Compare parameter σmax for the 3 methods with 3 samples. Notice

the similarity between this figure and Fig. A13. The half-widths σmax for

avoidance and the half-widths σmin for alignment are alike in their values. " 
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Figure A14: Compare parameter σmax for the 3 methods with 3 samples.

Notice the similarity between this figure and Fig. A13. The half-widths σmax

for avoidance and the half-widths σmin for alignment are alike in their values.

In[223]:= sigminA = Table[signiMIN0[threeSamplesObserved[[i, 4]], η0minA[[i]], σminA[[i]]],

{i, Length[threeSamplesObserved]}];

sigminB = Table[signiMIN0[threeSamplesObserved[[i, 4]], η0minB[[i]], σminB[[i]]],

{i, Length[threeSamplesObserved]}];

sigminC = Table[signiMIN0[threeSamplesObserved[[i, 4]], η0minC[[i]], σminC[[i]]],

{i, Length[threeSamplesObserved]}];

20211112InterpolateAndFormula2a.nb     49



In[226]:= dsigminAPLUS[i_] := signiMIN0[threeSamplesObserved[[i, 4]],

η0minA[[i]] - dη0minA[[i]], σminA[[i]] + dσminA[[i]] ] - sigminA[[i]];

dsigminAMINUS[i_] := sigminA[[i]] - signiMIN0[threeSamplesObserved[[i, 4]],

η0minA[[i]] + dη0minA[[i]], σminA[[i]] - dσminA[[i]] ];

dsigminBPLUS[i_] := signiMIN0[threeSamplesObserved[[i, 4]],

η0minB[[i]] - dη0minB[[i]], σminB[[i]] + dσminB[[i]] ] - sigminB[[i]];

dsigminBMINUS[i_] := sigminB[[i]] - signiMIN0[threeSamplesObserved[[i, 4]],

η0minB[[i]] + dη0minB[[i]], σminB[[i]] - dσminB[[i]] ];

dsigminCPLUS[i_] := signiMIN0[threeSamplesObserved[[i, 4]],

η0minC[[i]] - dη0minC[[i]], σminC[[i]] + dσminC[[i]] ] - sigminC[[i]];

dsigminCMINUS[i_] := sigminC[[i]] - signiMIN0[threeSamplesObserved[[i, 4]],

η0minC[[i]] + dη0minC[[i]], σminC[[i]] - dσminC[[i]] ];

In[232]:= lpSigminCompare[i_] :=

ListPlot{Around[sigminA[[i]], {dsigminAMINUS[i], dsigminAPLUS[i]}],

Around[sigminB[[i]], {dsigminAMINUS[i], dsigminAPLUS[i]}],

Around[sigminC[[i]], {dsigminAMINUS[i], dsigminAPLUS[i]}]},

PlotRange → {{0.5, 3.5}, All}, GridLines → Automatic,

Frame → True, FrameLabel → {"Method", "p-value"},

FrameTicks → {Automatic, {{{1., "A"}, {2., "B"}, {3., "C"}}, Automatic}}, PlotLabel →

threeSamplesObserved[[i, 1]] ": Significance of ηmin (alignment)", ImageSize → 72 × 5

lpSigminCompare[1];

In[234]:= GraphicsGrid[

{{lpSigminCompare[1], lpSigminCompare[2]}, {lpSigminCompare[3]}}, ImageSize → 72 × 9]
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Figure A15: This is Fig. 13 in Part I the Article. [Fig. 13 Caption: The significances

of the smallest alignment angle ηmin for three samples as determined by Methods

A, B, and C. The error bars are due to the standard errors of the parameters

η0
min and σmin. For all three samples, the significances determined by the

Interpolation Method B and the Formula Method C agree with the Direct Method A. ]

In[236]:= sigmaxA = Table[signiMAX0[threeSamplesObserved[[i, 5]], η0maxA[[i]], σmaxA[[i]]],

{i, Length[threeSamplesObserved]}];

sigmaxB = Table[signiMAX0[threeSamplesObserved[[i, 5]], η0maxB[[i]], σmaxB[[i]]],

{i, Length[threeSamplesObserved]}];

sigmaxC = Table[signiMAX0[threeSamplesObserved[[i, 5]], η0maxC[[i]], σmaxC[[i]]],

{i, Length[threeSamplesObserved]}];

In[239]:= dsigmaxAPLUS[i_] := signiMAX0[threeSamplesObserved[[i, 5]],

η0maxA[[i]] - dη0maxA[[i]], σmaxA[[i]] + dσmaxA[[i]] ] - sigmaxA[[i]];

dsigmaxAMAXUS[i_] := sigmaxA[[i]] - signiMAX0[threeSamplesObserved[[i, 5]],

η0maxA[[i]] + dη0maxA[[i]], σmaxA[[i]] - dσmaxA[[i]] ];

dsigmaxBPLUS[i_] := signiMAX0[threeSamplesObserved[[i, 5]],

η0maxB[[i]] - dη0maxB[[i]], σmaxB[[i]] + dσmaxB[[i]] ] - sigmaxB[[i]];

dsigmaxBMAXUS[i_] := sigmaxB[[i]] - signiMAX0[threeSamplesObserved[[i, 5]],

η0maxB[[i]] + dη0maxB[[i]], σmaxB[[i]] - dσmaxB[[i]] ];

dsigmaxCPLUS[i_] := signiMAX0[threeSamplesObserved[[i, 5]],

η0maxC[[i]] - dη0maxC[[i]], σmaxC[[i]] + dσmaxC[[i]] ] - sigmaxC[[i]];

dsigmaxCMAXUS[i_] := sigmaxC[[i]] - signiMAX0[threeSamplesObserved[[i, 5]],

η0maxC[[i]] + dη0maxC[[i]], σmaxC[[i]] - dσmaxC[[i]] ];

In[245]:= lpSigmaxCompare[i_] :=

ListPlot{Around[sigmaxA[[i]], {dsigmaxAMAXUS[i], dsigmaxAPLUS[i]}],

Around[sigmaxB[[i]], {dsigmaxAMAXUS[i], dsigmaxAPLUS[i]}],

Around[sigmaxC[[i]], {dsigmaxAMAXUS[i], dsigmaxAPLUS[i]}]},

PlotRange → {{0.5, 3.5}, All}, GridLines → Automatic,

Frame → True, FrameLabel → {"Method", "p-value"},

FrameTicks → {Automatic, {{{1., "A"}, {2., "B"}, {3., "C"}}, Automatic}}, PlotLabel →

threeSamplesObserved[[i, 1]] ": Significance of ηmax (avoidance)", ImageSize → 72 × 5

lpSigmaxCompare[1];
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In[247]:= GraphicsGrid[

{{lpSigmaxCompare[1], lpSigmaxCompare[2]}, {lpSigmaxCompare[3]}}, ImageSize → 72 × 9]
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Figure A16: The significance of the largest avoidance angle ηmax for three samples as determined

by Methods A, B, and C. The error bars are due to the standard errors of the parameters

η0
max and σmax. Three of six B and C significances agree with those of A; three do not.

Note that the 13 QSO sample's ηmax is not significant for avoidance. For the 13 QSO sample,

30% or 40% (i.e. p-value = 0.30 to 0.40) of the ηmax for like-samples with randomly

directed polarization directions are better, larger than the observed polarization

directions' result ηmax. Better random run results are too likely for the 13 QSO sample

to qualify as significant. One needs 5% for 'significant' and 1% qualifies as 'very

significant'. This shows that significant alignment does not guarantee significant avoidance.

In[249]:= Print["The date and time that this statement was evaluated : ", Now]

The date and time that this statement was evaluated : Mon 20 Dec 2021 13:04:58 GMT-5.
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