How to rotate a frame in 4D Geometric algebra Cl4

Miroslav Josipović, Zagreb, Croatia, 2022

Abstract

The problem of base vectors rotation appeared in the formulation of the theory of AC circuits in the language of geometric algebra ([4]). In [4], it is shown how to get the desired rotor in a few steps. Here we show that it is possible to find a 4D rotor in a closed form.

Keywords: geometric algebra, rotor, spinor, basis frame, AC circuits

The rotor must have grades $(0,2,4)$ in $4 D$

We want to rotate the basis vectors e_{k} to get a new basis c_{k} (not necessarily orthonormal). In geometric algebra, this means that we need to find a rotor R such that

$$
c_{i}=R e_{i} R^{\dagger}, R R^{\dagger}=1,
$$

where R^{\dagger} means the reverse of R. In [1], Ch. 10.3.2, we have (c^{k} is a reciprocal frame, see [2])

$$
\begin{equation*}
\sum_{k=1}^{n} c^{k} e_{k}=\sum_{k=1}^{n} R e^{k} R^{\dagger} e_{k}=n-2 R\left(2\left\langle R^{\dagger}\right\rangle_{2}+4\left\langle R^{\dagger}\right\rangle_{4}+\cdots\right), \tag{1}
\end{equation*}
$$

where $\left\langle R^{\dagger}\right\rangle_{k}$ means grade k of R^{\dagger}. In 3D, this formula gives

$$
R \propto 1+\sum_{k=1}^{3} c^{k} e_{k} \equiv r,
$$

where the normalization factor $N=\sqrt{r r^{\dagger}}$ is easy to obtain (see [2]).
In 4 D , the term $S=\sum_{k=1}^{4} c^{k} e_{k}$ has grades $(0,2)$; however, $S S^{\dagger}$ generally has grades $(0,4)$. This means that we need to make an extra effort to find a rotor.

Let us consider now the orthonormal frames in 4D Euclidean vector space. Then

$$
S=\sum_{k=1}^{4} c_{k} e_{k}
$$

and we can write

$$
S S^{\dagger}=\alpha+\beta I, \quad \alpha, \beta \in \mathbb{R}, \quad I=e_{1} e_{2} e_{3} e_{4} .
$$

It is not hard to check that $\alpha \pm \beta>0$. Note that the pseudoscalar I anticommutes with vectors, but commutes with 2-blades, like $e_{i} e_{j}$. We also have $I^{2}=1, I^{\dagger}=I$, and

$$
(\alpha+\beta I)(\alpha-\beta I)=\alpha^{2}-\beta^{2} .
$$

The rotor in a closed form

With $R_{i}=\left\langle R^{\dagger}\right\rangle_{i}, R_{4}=r_{4} I, r_{4} \in \mathbb{R}, R^{\dagger}=R_{0}+R_{2}+R_{4}$, we can write the expression (1) as

$$
S=4-4 R\left(R_{2}+2 R_{4}\right)=4-4 R\left(R^{\dagger}-R_{0}+R_{4}\right)=4 R\left(R_{0}-R_{4}\right),
$$

which means

$$
\begin{aligned}
& S\left(R_{0}+R_{4}\right)=4\left(R_{0}^{2}-r_{4}^{2}\right) R, \\
& \quad R \propto S\left(R_{0}+R_{4}\right) \equiv M .
\end{aligned}
$$

Now we have (note that R_{4} commutes with S)

$$
M M^{\dagger}=S S^{\dagger}\left(R_{0}+R_{4}\right)^{2}=(\alpha+\beta I)\left(R_{0}^{2}+r_{4}^{2}+2 R_{0} r_{4} I\right)
$$

Therefore, for $M M^{\dagger}$ to be a real number, we need

$$
2 R_{0} r_{4}=-\beta, \quad R_{0}^{2}+r_{4}^{2}=\alpha .
$$

The solutions are

$$
r_{4}= \pm \sqrt{\frac{\alpha \pm \sqrt{\alpha^{2}-\beta^{2}}}{2}}, R_{0}=\mp \sqrt{\alpha-\frac{\alpha \pm \sqrt{\alpha^{2}-\beta^{2}}}{2}},
$$

and the real norm is

$$
N= \pm \sqrt{M M^{\dagger}}= \pm \sqrt{\alpha^{2}-\beta^{2}}
$$

which means that the rotor is given by

$$
R=S\left(R_{0}+R_{4}\right) / N
$$

An example

Consider the orthonormal vectors c_{i} from [4]

$$
\begin{aligned}
& c_{1}=\left(e_{1}-e_{4}\right) / \sqrt{2}, \\
& c_{2}=\left(-e_{1}+2 e_{2}-e_{4}\right) / \sqrt{6}, \\
& c_{3}=\left(-e_{1}-e_{2}+3 e_{3}-e_{4}\right) / \sqrt{12}, \\
& c_{4}=\left(e_{1}+e_{2}+e_{3}+e_{4}\right) / 2 .
\end{aligned}
$$

The list of the rotor coefficients (generated in Mathematica) is

```
{0.850475,-0.111967,-0.0943927, 0.352278,-0.07243, 0.270313, 0.227884, -0.0300015}
```

This rotor is just the reverse of the rotor from [4]. The interested reader can find the Mathematica notebook 4Drotor.nb at [3].

Rotor decomposition in 4D

Here we use $e_{i j}=e_{i} e_{j}$ and $j=e_{123}$.

In 4D, an even multivector has the form

$$
M=m_{0}+m_{1} e_{12}+m_{2} e_{13}+m_{3} e_{14}+m_{4} e_{23}+m_{5} e_{24}+m_{6} e_{34}+m_{7} I,
$$

whence

$$
M M^{\dagger}=\sum_{i=0}^{7} m_{i}^{2}+2\left(-m_{3} m_{4}+m_{2} m_{5}-m_{1} m_{6}+m_{0} m_{7}\right) I \equiv \alpha+\beta I, \quad \alpha, \beta \in \mathbb{R}
$$

For $\beta=0$, we have $M M^{\dagger}=\alpha \in \mathbb{R}$, which means that for $\alpha=1$ we have a rotor, while for $\alpha \neq 1$ we have a spinor (a rotor with dilatation).

Let us define

$$
\begin{aligned}
& M_{1}=a_{0}+a_{1} e_{12}+a_{2} e_{31}+a_{3} e_{23}, \\
& M_{2}=b_{0}+b_{1} e_{24}, \quad M_{i} M_{i}^{\dagger} \in \mathbb{R} .
\end{aligned}
$$

Note that the product $M_{2} M_{1}$ will recover all the six simple bivectors $e_{i j}$ from $C l_{4}$, as well as the unit pseudoscalar I. Obviously, we have

$$
M_{2} M_{1}\left(M_{2} M_{1}\right)^{\dagger}=M_{2} M_{1} M_{1}^{\dagger} M_{2}^{\dagger} \in \mathbb{R},
$$

which means that the product $M_{2} M_{1}$ is a spinor. After normalization, we get a rotor.
On the other hand, any rotor (spinor) M can be decomposed as $M_{2} M_{1}$.
If we have two rotors

$$
\begin{gathered}
R_{1}=a_{0}+a_{1} e_{12}+a_{2} e_{31}+a_{3} e_{23}, \\
R_{2}=b_{0}+b_{1} e_{24}, R_{i} R_{i}^{\dagger}=1,
\end{gathered}
$$

the rotor $R=R_{2} R_{1}$ means that we rotate about the axis

$$
-j\left(a_{1} e_{12}+a_{2} e_{31}+a_{3} e_{23}\right)=a_{3} e_{1}+a_{2} e_{2}+a_{1} e_{3}
$$

first (see [2]), and then we rotate all the vectors from the subspace spanned by the vectors e_{2} and e_{4} in their own plane. Note that the rotor R_{1} is just a rotor in 3D.

In [4], the authors use the bivector e_{34} instead of e_{24}. However, it is easy to see that we can choose any combination of indices.

Such fluency of calculation and clarity of the geometric interpretation is difficult to imagine in any other formalism. Geometric algebra is the mathematics of the future.

Literature

[1] Dorst, Fontijne, Mann: Geometric Algebra for Computer Science, http://www.geometricalgebra.net, 2007
[2] Josipović, M.: Geometric Multiplication of Vectors: An Introduction to Geometric Algebra in Physics, Birkhäuser, 2019
[3] Josipović, M.: https://www.researchgate.net/project/Geometric-algebra-base-forphysics (under Project Log)
[4] Montoya, F. G, Eid, A.H.: Formulating the geometric foundation of Clarke, Park, and FBD transformations by means of Clifford's geometric algebra, Wiley, 2021

