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In this Part II we focus on a few key elements of quantum mechanics essential for 

understanding of quantum technologies and computing. 

We begin with a subtle but important similarity between classical and quantum 

mechanics which is typically overlooked in favor of an apparent differences. Further, it is 

reminded that classical motion can be obtained via averaging over quantum 

distributions / wave functions and, conversely, quantum distributions can be recast as a 

superposition of virtual classical paths. Relatedly, we emphasize the importance  of the 

case intermediate between classical and quantum mechanics – that is, quasi-classical 

mechanics. The above background facilitates additional insights and heuristics into the 

mechanisms of widely acclaimed long distance correlations in quantum mechanics and 

origins of the coherency in quantum ensembles in the context of wave-particle duality. 

 

 

 

“…Nothing is more repellent 

 to normal human beings than  

 the clinical succession of  

of definitions, axioms, and theorems  

generated by the labors 

 of pure mathematicians.” 

J.M. Ziman  

Introduction 

In this Part II we continue (Part I “Foundations of Quantum computinf. I. 

Demystifying quantum paradoxes”) an honorary attempt to dissolve the haze of 

mystery around certain facets of Quantum Mechanics randomness and speak about 

it in a  “normal layman” language. There is a caveat though: any classical / heuristic 

model for a truly quantum event is by necessity bound to some sort of surrogating 

and should be taken as such. Therefore, a prudent grain of caution is always 

recommended to avoid improper oversimplifications or even vulgarizations.  



Accordingly, in Sec.1 we explore some subtle and often underappreciated similarity 

between Classical Mechanics (CM) and Quantum Mechanics (QM) in contrast to well 

acclaimed differences. Sec.2 discusses to what extent CM can be expressed in QM 

terms and vice versa, i.e. Ehrenfest equations and Feynman path integrals. In Sec.3 

we consider classically minded prototypes for long-distance correlations in QM. And, 

finally, in relation to wave-particle duality, Sec.4 ponders possible mechanisms 

behind formation of quantum ensembles, in particular, in the context of emerging 

coherent patterns in experiments with low-intensity beams. 

Two final comments are in order: most of formal technical arguments and details in 

support for the heuristics in the paper are omitted to broaden its accessibility for 

technically non-savvy readers.  For the same reason the list of references is not 

included: an interested reader should consult any more or less comprehensive text 

on quantum mechanics. 

As in Part I, for compactness, the following intuitive abbreviations are used for most 

repetitive terms: CM – classical mechanics, QM – quantum mechanics, PS – principle 

of superposition, SE –Shrödinger equation, PA – probability amplitude, WF – wave 

function, EPR - Einstein- Podolsky-Rosen, CI – Copenhagen Interpretation, WPD – 

wave-particle duality.  

 

 

1. Quantum vs Classical Mechanics probabilities 

As is well known (and pointed out in part I of “Foundations”), while in CM the 

motion takes place via paths (called trajectories) fully specified by an initial position 

and momentum x1 and p1, in QM trajectories do not exist simply because the 

position and momentum cannot be specified simultaneously (Heisenberg 

uncertainty principle). That is, given initial x1 in QM, the future particle locations are 

not known with certainty, but only probabilistically. And here comes a subtle 

similarity between CM and QM which is widely underappreciated. Indeed, if we 

specify only x1, leaving p1 arbitrary, then even in CM the future paths are undefined. 

What’s more, even if we specify both initial and final x1 and x2, keeping initial p1 or 

final p2 arbitrary, then there would still have existed a whole bunch of trajectories 

connecting x1 and x2. A trivial example from elementary physics: projectile motion in 

an uniform gravitational field, i.e. the motion of a shell fired at some angle to 

horizon. In other words, in that respect CM and QM are quite similar. However, once 

we begin to squeeze the range of possible initial p1 or final p2 momenta, i.e. when 

uncertainties Δp1 or Δp2 reduce – and this is where the similarity begins to break – 

so does the spectrum of classically available paths, either emanating from x1 or 

connecting x1 to x2, so that in the limit of Δp1 or Δp2 → 0 we obtain a uniquely 



defined classical trajectory. Such a refinement is not at all possible in QM even 

conceptually, because of the uncertainty principle, and thus prohibiting trajectories 

in QM. We pointed out to this parallelism because it proves helpful for constructing 

classically inspired heuristics to seemingly mysterious / puzzling quantum 

phenomena. 

Historical aside: to our knowledge, one of the first indications to that subtlety was 

made as early as in 1933/1934 by prof. Yu.B. Rumer in his “Introduction to Quantum 

Mechanics”, Moscow, 1935. Once at that, we note in passing that the exposition of 

QM vs CM in this book is refreshingly clear and concise, yet comprehensive – as 

opposed to many formidable texts written later - echoing the same of the all time 

quantum masterpiece “Principles of Quantum Mechanics” by P. Dirac. We 

wholeheartedly recommend both jewels to all interested readers. 

     

2. Ehrenfest equations and Feynman paths. 

Given the CM-QM similarity discussed in Sec.1, question arises to what extent it is 

possible, if at all, to view CM motion as averaged over QM distributions, and vice 

versa, QM in terms of the CM trajectories. 

First of all, an averaging of the Shrödinger equation (SE) over a spatial coordinates 

leads to the equivalent Ehrenfest equation, which reads as the modified Newton 

second law ma = F + Quantum corrections (ψ), where “Quantum corrections” is a 

cumulative notation for additional terms, arising from quantum effects, and ψ is the 

wave function of a system / particle. In other words, this equation can be 

alternatively viewed as averaging over quantum states spaced around some “mean” 

trajectory. Further, under normal conditions Quantum Corrections term is 

comparable with F in the Right Hand Side (RHS) and, as expected, the standard 

Newton equation does not apply. However, when ℏ reduces the Quantum 

corrections term reduces commensurately and totally vanish in the limit of ℏ →0, 

recovering thereby the pure classical Newton equation ma = F, or m d2x(t)/dt2 = 

∂U/∂x. In other words, in the quasi-classical limit ℏ →0, a classical motion is 

contributed by few quantum states tightly packed around the particle center of 

mass.   

The construction of the opposite view, QM in terms of CM trajectories, follows from 

the R.Feynman milestone result: namely, Feynman showed that the quantum 

motion can be rendered, in a sense, as an interference of classical trajectories. 

Specifically, the probability amplitude of getting, say, from x1 to x2, which normally 

stems from SE, can be alternatively, but equivalently, obtained by summing 

amplitudes along all classical paths from x1 to x2.  More precisely, if for each and 

every imaginable trajectory connecting x1 and x2 – and trajectories need not 



necessarily be real “physical” trajectories – calculate an ordinary classical action Sk, 

then the sum   Σexp[(i/ℏ)Sk(x1, x2)] over all trajectories (k is the summation index) 

gives a quantum amplitude K(x1,x2,t), which otherwise would come as a solution to 

SE. Without delving into this any further, we point out only three key points. First, 

Feynman path sum (or integral) became a standard technical tool in the modern 

Quantum Field Theory (QFT). Second, similar to Ehrenfest equations, as ℏ → 0, i.e. in 

a quasi-classical situation, all exponents in the sum wildly oscillate and effectively 

cancel each other, except for those corresponding to paths in the neighborhood of 

classic paths (where S’k ≈ 0 – stationary points of Sk). That is, in the classical limit, 

quantum amplitudes are dominated by classical paths and their vicinity, as expected. 

In other words, QM is possible to construct from CM trajectories, and, the other way 

around, CM motion naturally arises in the ℏ →0 limit of QM. Last, but not the least, a 

quantum motion can be perceived, at least heuristically, as happening over the web 

of classical “virtual” trajectories. Clearly, a transparency and heuristic appeal of 

Feynman path integral is rather irresistible. 

To bottomline, the transition CM  ⃪→ QM looks as follows. As we move from CM to 

QM, a classical trajectory splits into a tight bundle of paths which continue to 

diverge as ℏ grows. Conversely, when ℏ reduces, quantum / Feynman paths coalesce 

around classical trajectory, and eventually fully collapse on it in the limit ℏ = 0. In the 

intermediate region – traditionally known as quasi-classical – where the system is 

already not classical, but not yet fully quantum, quantum amplitudes (and 

probabilities) follow directly from classical actions obtained along classical 

trajectories (see, for instance, R. Feynman, A. Hibbs, “Quantum mechanics and path 

integrals”, McGrawhill, 1965). 

 

3. Some general heuristics on long – distance correlations. 
In Part I, we touched base on long-distance correlations - resulting from 
conservation laws - as a true wave phenomenon via a well reputable concept of 
wave-particle duality. We then emphasized, that even though SE is a statistical 
equation, the conservation laws hold in quantum mechanics not statistically, but – 
surprisingly in some sense – in every individual outcome: we can dub this as a 
“detailed” conservation, rather than statistical one. Here, we’ll offer additional 
qualitative arguments that this detailed conservation is not surprising, but is, in fact, 
what to be naturally expected from the two way CM  ⃪→ QM heuristics (Sec. 2).    
Intending for a sort of classically minded prototype for quantum long-distance 
correlations, consider first a shell at rest exploding into two equal pieces. At any 
time - and distance! - after the explosion the total momentum remains 0, i.e. the 
momenta (angular momenta, spins, etc.) of each piece are equal and opposite, as 
long as there are no external actions. We can even imagine a sequence of random 



explosions, producing every time a directionally random distribution of fragments, 
but as long as they are pair-wise balanced, the conservation still holds for all random 
realizations in every possible direction. Therefore, if we view quantum amplitudes as 
a virtual superposition of classical events (in a sense of classical imitation of 
quantum ensemble) - loosely speaking, a la Feynman paths superposition and not 
necessarily in a coordinate space, but in some suitable representation - we can 
expect a detailed translation of classical conservation to the quantum world. 
Obviously, this classical heuristics is only a surrogate imitation of a true quantum 
reality, but it helps understand that consistency and a smooth transition between 
classical and quantum cases obviates the need for an artificial quantum non-locality.   
Conversely, consider now a classical motion -  in light of the Ehrenfest equation – via 
linearly weighting some tight quantum states. Since the conservation clearly holds 
for a classical motion, the quantum Ehrenfest averages should do the same. In turn, 
these averages are made up linearly from quantum states, independent of each 
other – hence, the conservation should hold individually for each quantum “event” 
contributing to classical averages. 
In the region intermediate between CM and QM – called quasi-classical – both 
mechanics overlap and coexist so that quantum amplitudes (wave functions) are 
directly related to classical trajectories. The importance of the quasi-classical 
mechanics extends way beyond fertile heuristic analogies and technical relationships 
between CM and QM – it serves for their mutual cross-validation. By way of 
example: in the above classical model of randomly distributed fragments the long-
distance correlation of debris in every possible direction follows immediately, while 
from the quantum view the randomness in quantum measurements historically 
contributed to a confusion and even to the so called “quantum non-local” 
interpretation. However, once we recall the quasi-classical relationships between 
classical trajectories and quantum amplitudes, the connection of wave functions in 
any representation to classically balanced outcomes becomes transparent, and so 
does the conservation in any random realization in QM. 
 

4. Random thoughts on Quantum Vacuum 

As mentioned in Part I, the framework of QM and its statistical interpretation rests 

on the concept of quantum ensembles. In this section we discuss certain heuristics 

about possible formation mechanisms of those ensembles. 

What is invariably observed in all quantum interference experiments with low 

intensity beams – be it a diffraction on the edge, or on the pinhole or on two narrow 

slits (in the Young milestone scheme) – is a gradual emergence of a coherent 

interference pattern on the screen despite the fact, that beam particles are clearly 

consecutive and independent. And the standard explanation of this striking effect 

has been traditionally resting on the concept of wave-particle duality (WPD). 

Briefly, WPD historically dates back to the Louis de Broglie revolutionary conjecture 

of 1923, which associated each  quantum particle to a corresponding wave – about 



60 years later that strange combination of so to speak half-particle and half-wave 

was somewhat frivolously dubbed as “wavicle” by R.Feynman (“QED: Strange theory 

of light and matter”, 1985). On a more serious note, WPD assumes that all aspects of 

phenomena in quantum world can be explained either via classical, i.e. particle-like 

view, or wave-like view, but not both. Granted, the wave facet of WPD is clearly 

conducive for an understanding of a coherent intensity distribution on a screen. 

However, it is still not enough to explain how this coherence survives across 

consecutive and independent beam particles. What could be helpful in this regard, is 

an appreciation of the potential connection of an apparently coherent patterns to an 

impact of well hidden quantum vacuum. 

This footprint of quantum vacuum fluctuations on physical objects can be illustrated 

via an obvious analogy. Water ripples, i.e. quantum fluctuations, caused by a light 

summer breeze would not be felt at all by the big ocean cruiser, i.e. heavy classical 

object. A small sail boat will experience some jittering, but overall its motion would 

be just slightly affected. And only a small wooden chip, i.e. elementary particle, will 

be impacted full way. With this parallelism at hand, we reiterate the question: how 

the consecutive and unequivocally independent (!) particles in beam experiments 

manage to build-up a coherent interference pattern? Even if we assume - according 

to WPD - all particles in the beam behaving as waves, they still ought to be 

independent - analogously to particles they originate from, and that precludes the 

coherence.  

To get this conundrum clarified, let’s pretend for a moment that particles appearing 

as waves are not, in fact, waves per se, but are merely artful cover-ups 

masquerading the underlying “manipulations” of quantum vacuum. That is, every 

time free photons, electrons, atoms, or even groups of atoms experience tight 

interactions with Dirac’s “under-sea” of elementary particles hidden in quantum 

vacuum – and that is exactly what they always do because of their affinity to hidden 

particles - they exhibit a coherent “wave” behavior, very much like quasi-particles 

emerging in many-body systems. And further, the quantum vacuum acts as a 

random, but stationary and common “bath” to all members of the beam (quantum 

ensemble!). This way consecutive and formally independent beam particles become, 

in fact, mutually correlated. That is, one and the same vacuum hidden fabric 

superposes with each real beam particle very much like secondary waves in the 

standard textbook Fresnel diffraction, i.e. it is the engagement of a unique vacuum 

background that couples all particles / waves to produce an interference picture. 

And naturally, that scenario does not apply to heavily macroscopic objects because 

they are effectively disconnected from vacuum fluctuations. 



On the closing note, we reiterate that while the de Broglie hypothesis was not 

correct literally in associating each particle with a certain wave, it nevertheless 

paved the way to the whole new paradigm, in which the classical determinism of an 

individual particle is replaced by the determinism of the wave function in a 

statistically complete collective of micro-particles, i.e. coherent quantum ensemble.   

 

5. Some key takeaways. 

1. Along with a well acclaimed difference between QM and CM, there exists yet a 

subtle and often underappreciated mutual similarity helping better understand 

the transition between them.     

2. In the region intermediate between CM and QM – known as quasi-classical – 

both mechanics apply and quantum probabilities directly follow from classical 

mechanics.  

3. The long-distance correlations between non-interacting particles in QM is the 

same manifestation of the conservation laws as in CM and, loosely speaking, can 

be heuristically pictured as such. 

4. It is possible that the formation of quantum ensembles is facilitated via an 

impact of quantum vacuum.  
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