THE LOCAL PRODUCT AND LOCAL PRODUCT SPACE

T. AGAMA

ABSTRACT. In this note we introduce the notion of the local product on a
sheet and associated space. As an application we prove under some special
conditions the following inequalities
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for all s € N, where (,) denotes the inner product and where e(q) = 7%,

1. Introduction

The notion of an inner product and associated space is so rife in the literature
that there is hardly any formal introduction. The inner product space tends to
offer a useful terrain for achieving a large class of mathematical results, ranging
from identities to inequalities. The result in this setting is often always the best
possible. A typical instance is the Cauchy-Schwartz achieved in the setting of the
Hilbert space [1]. In this paper we introduce the notion of the local product and the
induced local product space. This space turns out to be a special type of a complex
inner product space. We exploit this space to obtain the following inequalities
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—

Theorem 1.1. Let @,b € R™ such that (@, b) > 1 and a;,b; > 1 for all1 < i <mn,
then the lower bound holds
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for all s € N, where {,) denotes the inner product and where e(q) = ™.
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Theorem 1.2. Let EL’,Z;G R™ such that (@,b) > 1 and a;,b; > 1 for all 1 < i < mn,
then the upper bound holds
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for all s € N, where (,) denotes the inner product and where e(q) = e*™,

2. The local product and associated space

In this note we introduce and study the notion of the local product and asso-
ciated space.

Definition 2.1. Let @b € C" and f : C — C be continuous on Uy [lagl, 1651
Let (C™,(,)) be a complex inner product space. Then by the k*" local product of @
with b on the sheet f, we mean the bi-variate map Q}JS S (C () x (C, () — C
such that
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where (,) denotes the inner product and where e(q) = e?™4. We denote an inner
product space with a k*" local product defined over a sheet f as the k" local
product space over a sheet f. We denote this space with the triple (C™, (,), Q;?(; ))-

The k" local product is in some sense a universal map induced by a sheet. In
other words a local product can be constructed by carefully choosing the sheet. By
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taking our sheet to be the constant function f :=1 we obtain the local product
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Similarly, if we take our sheet to be f = log, then under the condition that (@, b) # 0,
we obtain the induced local product
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By taking the sheet f = Id to be the identity function, then we obtain in this
setting the associated local product
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Again, by taking the sheet f = Id™' with (a,b) # 0, then we obtain the corre-
sponding induced k** local product
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3. Properties of the local product product

In this section we study some properties of the local product on a fixed sheet.

Proposition 3.1. The following holds
(i) If f is linear such that {a,b) = —(b,a) then

-,

Gh(@b) = (-1)"+1gk (b @).

(i) Let f,g : R — R such that f(t) < g(t) for any t € [1,00). Then
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|Gy (a@;b)| < |Gg(a;0)|.
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Proof. (i) By the linearity of f, we can write
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(ii) Property (ii) follows very easily from the inequality f(¢) < g(¢).

4. Applications of the local product

In this section we explore some applications of the local product.
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Theorem 4.1. Let d = (a1,as,...,a,), b= (b1,b2,...,b,) € R™ such that (d,b) >

1 and a;,b; > 1 for all 1 < i < n, then the lower bound holds
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Proof. Let f: R — Rt and @,b € R" such that (@,b) > 1. We note that
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By taking the sheet f = Id to be the identity function, then we obtain in this
setting the associated local product
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Since log < Id for all ¢ € [1,00), it follows that gﬁf;?’(&’; b) < Gt (a; b) by taking
k =4s+ 3 for all s € N and the inequality follows from this inequality. O

Remark 4.2. Next we obtain another inequality which controls the multiple integral
of an exponential function by the multiple integral of their powers.
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Theorem 4.3. Let @ = (a1, az,...,a,), b= (b1,ba,...,b,) € R™ such that (d,b) >
1 and a;,b; > 1 for all 1 < i <mn, then the upper bound holds
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for all s € N, where {,) denotes the inner product and where e(q) = ™.

Proof. Let f: R — Rt and @,b € R" such that (@, b) > 1. We note that
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By taking the sheet f = Id™! to be the reciprocal of the identity function, then we
obtain in this setting the associated local product
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Since Id™" < log for all t € [1,00), it follows that G"*(a@;b) < Gpat®(d;b) by

taking k = 4s + 3 for all s € N and the inequality follows from this inequality. [
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