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Abstract

In this work, we introduce the concept of Fermat’s Urn, an urn containing three types of
marbles, and such that it holds a peculiar constraint therein: The probability to get at least
one marble of a given type (while performing multiple independent drawings) is equal to
the probability not to get any marble of another type. Further, we discuss a list of implicit
hypotheses related to Fermat’s Equation, which would allow us to interpret this equation
exactly as the mentioned constraint in Fermat’s Urn. Then, we study the properties of this
constraint in relation with the capability to distinguish the types of marbles within the
urn, namely in case of the event “to get at least one marble of each type”. Eventually, on
the basis of a simple theorem related to this event, we prove that Fermat’s Equation and
Fermat’s Urn may share those properties only if we perform at most two drawings from
the urn. This result reflects then in the solution of Fermat’s Equation.
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1 Fermat’s Urn

Consider an urn C containing three distinct types of marbles, say type A,B and G, and
such that each of the three types is represented in the urn by at least one marble. Let
us denote with α, β, γ > 0 the respective numbers of marbles and with c = α + β + γ
the total number of marbles in the urn C. Let us perform n drawings with replacement
of one marble at a time from the urn C (in the following, we will simply refer to this
kind of drawings as to “trials”).

Denoting with LA
n the event “to get at least one marble of type A in n trials”, the

probability to obtain a success for this event is P (LA
n ) = 1−

(
β+γ
c

)n
. Similarly, denoting

with LB
n the event “to get at least one marble of type B in n trials”, the probability

to obtain a success for this event is P (LB
n ) = 1 −

(
α+γ
c

)n
. It is of historical interest

to remark that Fermat was familiar with such sort of event, having discussed about it,
around the year 1664, in a series of letters exchanged with B. Pascal in response to the
famous challenge thrown down by A. Gombaud to Mersenne’s Salon [1].
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Let us suppose to have found some α, β, γ such that it exists a specific number of
trials n for which P (LA

n ) = P (¬LB
n ). In this case, it must hold the following constraint:

1−
(
β + γ

c

)n

=

(
α + γ

c

)n

. (1)

We will refer to such a peculiar urn as to a Fermat’s Urn, since, denoting a = α + γ,
b = β + γ (and recalling that c = α + β + γ), the above constraint formally coincides
with Fermat’s Equation an + bn = cn [2].

2 Some properties of Fermat’s Equation

We hereby discuss some simple properties of the integers a, b, c defining Fermat’s Equa-
tion.

(i) a, b ∈ (0, c) : If a = 0 or b = 0 Fermat’s Equation reads b = c or a = c. If a ≥ c
or b ≥ c, Fermat’s Equation cannot hold. Therefore, in order to state a proper
Fermat’s Equation, avoiding trivial solutions, it must be 0 < a < c and 0 < b < c.
This allows to interpret the quantities a/c, b/c, (a/c)n, (b/c)n as probabilities. This
property will be useful, since in the following we will study those quantities in the
context of a Fermat’s Urn (and in the light of the Inclusion-exclusion principle).

(ii) a, b > 1 : Let us suppose that a = 1 (a similar discussion will apply if b = 1). In
this case, Fermat’s Equation reads 1 + bn = cn, i.e. 1 = cn − bn. On the other
hand, it is easy to prove [3] that cn− bn = (c− b)(cn−1+ cn−2b+ . . .+ cbn−2+ bn−1).
However, since c − b > 1 (discarding the trivial solution b = c), then, in case
cn − bn = 1, we would have 1 = (c− b)(cn−1 + cn−2b + . . . + bn−1) > 1, which is a
contradiction.

(iii) a ̸= b : If a = b, then we would have 2an = cn and therefore n
√
2 = c/a, where

the first member is irrational and the second one is rational. Therefore, Fermat’s
Equation may hold only if a ̸= b.

(iv) a + b > c : In fact, cn = an + bn < (a + b)n =⇒ cn < (a + b)n and therefore
c < a+ b. This means that the integer a, b, c appearing in Fermat’s Equation can
always define an integer triangle with sides of lengths a, b, c, and whose longest
side is of length c, because of Prop. (i). This property will be clarified below.

(v) a, b can be decomposed in the sum of two non-zero integers : We first observe
that Prop. (ii) ensures that a ≥ 2 and b ≥ 2. Applying the notation a = α + γ
and b = β + γ, and c = α + β + γ, we can construct the integers α, β, γ (given
the integers a, b, c appearing in Fermat’s Equation) by the simple rules α = c− b,
β = c − a and γ = a + b − c. We observe that none among the α, β, γ obtained
from a Fermat’s Equation by means of the previous construction can be equal to
0. Let us suppose that α = 0 (a similar reasoning applies also for β = 0): In this
case, we find (0 + γ)n + (β + γ)n = (0 + β + γ)n, which is obviously false (unless
also γ = 0, which yields to a trivial solution of Fermat’s Equation). Similarly, if
γ = 0, we have (α + 0)n + (β + 0)n = (α + β + 0)n, which is again false, unless
one or both among α and β are equal to 0, or unless n = 1. Finally, we observe
that Prop. (iv) yields to an immediate geometric relationship between the integers
a, b, c related to a Fermat’s Equation and the integers α, β, γ, see Fig. (1).
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Figure 1: Given any non-isosceles triangle (iii) with integer
sides a, b, c, where c is the longest side (i), by reporting the
sides a and b onto c, we can always define a related triplet of
non-null (v) integers α, β, γ such that a = α+ γ, b = β + γ
and c = α+ β + γ (this procedure is always possible, since
c is the longest side). If a, b, c satisfy a Fermat’s Equation,
α, β, γ define the respective Fermat’s Urn.

The properties (i-v) allow us to state that, given a triplet of integers a, b, c which
satisfies Fermat’s Equation an + bn = cn, we can always find a triplet of integers α, β, γ
by means of which we can build a respective Fermat’s Urn. In other words, Fermat’s
Equation can be always interpreted as the constraint P (LA

n ) = P (¬LB
n ) within an urn

C in such a way that the equivalence between (1) and Fermat’s Equation is not only
formal, but substantial.

We observe that α, β, γ, n are integers by construction, as required by Fermat’s
Equation. Otherwise, (1) does not represent the equivalence among the probabilities
of the events LA

n and ¬LB
n . In fact, at each trial, we must be sure to get either one

marble of type A, or one marble of type B, or one marble of type G, without ambiguity.
In other words, the integer nature of the trials is reflected in the integer nature of the
marbles, and vice versa.

3 Probability to get at least one marble of each type

Let us consider the events LA
n , L

B
n , L

G
n , and let us apply the Inclusion–exclusion principle:

P (LA
n ∪ LB

n ∪ LG
n ) = P (LA

n ) + P (LB
n ) + P (LG

n )−
− P (LA

n ∩ LB
n )− P (LA

n ∩ LG
n )− P (LB

n ∩ LG
n ) + P (LA

n ∩ LB
n ∩ LG

n ).

Observing that, since there is at least one marble of each type in the urn it must
hold P (LA

n ∪ LB
n ∪ LG

n ) = 1, this expression can be written as

P (LA
n ∩ LB

n ∩ LG
n ) = 1− P (LA

n )− P (LB
n )− P (LG

n )+

+ P (LA
n ∩ LB

n ) + P (LA
n ∩ LG

n ) + P (LB
n ∩ LG

n ), (2)

which gives us the probability to get at least one marble of each type in n trials.
Let us explicit the above expression in terms of the numbers of marbles α, β, γ.

Observing that

P (LA
n ∩ LB

n ) = P (LA
n |LB

n )P (LB
n ) = [1− P (¬LA

n |LB
n )]P (LB

n ) =

= P (LB
n )− P (¬LA

n |LB
n )P (LB

n ) = P (LB
n )− P (LB

n |¬LA
n )P (¬LA

n ),

we find

P (LA
n ∩ LB

n ) = 1−
(
α + γ

c

)n

−
[
1−

(
γ

β + γ

)n](
β + γ

c

)n

=

= 1−
(
α + γ

c

)n

−
(
β + γ

c

)n

+
(γ
c

)n

.
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With the same reasoning used to get the explicit form of P (LA
n ∩ LB

n ), we find

P (LA
n ∩ LG

n ) = 1−
(
α + β

c

)n

−
(
β + γ

c

)n

+

(
β

c

)n

and

P (LB
n ∩ LG

n ) = 1−
(
α + β

c

)n

−
(
α + γ

c

)n

+
(α
c

)n

.

With these results, it is easy to verify that Eq. (2) can be written as

P (LA
n ∩ LB

n ∩ LG
n ) = 1−

(
α + γ

c

)n

−
(
β + γ

c

)n

−
(
α + β

c

)n

+

+
(α
c

)n

+

(
β

c

)n

+
(γ
c

)n

. (3)

A trivial theorem related to this probability reads

P (LA
n ∩ LB

n ∩ LG
n ) = 0 ⇐⇒ n ≤ 2. (4)

In fact, since there is at least one marble of each of the three types in the urn C, the
only scenario in which it results absolutely impossible to get at least one marble of
each type in n trials is when we perform less trials than the number of distinct types of
marbles in the urn. We remark that this is also the only case in which P (LA

n ∩LB
n ∩LG

n )
does not depend on the exact values of the integers α, β, γ.

In case of Fermat’s Urn, applying the constraint (1) in Eq. (3), we find

P (LA
n ∩ LB

n ∩ LG
n ) = −

(
α + β

c

)n

+
(α
c

)n

+

(
β

c

)n

+
(γ
c

)n

. (5)

The above equation represents a fully equivalent way to express the constraint
P (LA

n ) = P (¬LB
n ) defining a Fermat’s Urn, as in (1), through the Inclusion-exclusion

principle.

4 Discussion

In the previous sections, we proved that assessing a Fermat’s Equation is totally equiv-
alent to impose a constraint among the probability of LA

n and ¬LB
n in an urn containing

three distinct types of marbles (Fermat’s Urn).
A synoptic comparison between the two ways in which we can formulate such con-

straint, i.e. as in (1) and as in (5),

1−
(
α + γ

c

)n

−
(
β + γ

c

)n

= 0, P (LA
n ∩ LB

n ∩ LG
n ) =

αn + βn + γn − (α + β)n

cn
,

highlights how the first expression does not explicitly refer to α, β, γ (but only to the
sums a = α + γ, b = β + γ), whereas the second one does.

This means that, if Fermat’s Equation holds, the constraint P (LA
n ) = P (¬LB

n ) as
in (1) can be imposed in the urn C without being able to distinguish all the three
types of marbles. In fact, in order to assess (1), it is sufficient to have the capability
to distinguish, among the c marbles in the urn, the ones of type A from the ones of
type B ∪ G – to define P (LA

n ) – or the ones of type B from the ones of type A ∪ G –
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to define P (LB
n ). We said or because the relation (1) allows us to know one of the two

probabilities, given the other one.
On the contrary, since the integers α, β, γ appear explicitly in (5), the capability to

distinguish all the three types of marbles among them is instead required in order to
state the constraint in this manner.

One may argue that, even if we are not able to distinguish all the three types of
marbles, we can anyway infer the values of the integers α, β, γ, namely by means of
the construction rules given in Prop. (v). However, Eq. (5) requires that the ratio
therein must represent a probability. Its denominator cn, indeed, evaluates all the
possible cases in which we can extract c marbles in n trials. In turn, the numerator
αn + βn + γn − (α + β)n must account for a number of favorable cases related to a
distinguishable characteristic of the drawn marbles. But, again, if we are not able to
distinguish all the three types of marbles to one another, this number (no matter how
we calculate it) does not represent the size of any subset of identifiable cases among the
cn ones, and therefore the ratio in (5) does not represent an actual probability.

5 Conclusions

We found that, applying to the letter the relationship between a, b, c, n imposed by
Fermat’s Equation into an urn C, the constraint P (LA

n ) = P (¬LB
n ) can be expressed in

such a way that the capability to distinguish all the three types of marbles is not re-
quired, as in (1). Conversely, we observed that this constraint, written in the equivalent
form (5), actually requires this capability. But the fact that Fermat’s Equation hold
can not depend on the capability to distinguish the types of marbles within the urn
C. Therefore, if we require a priori that Fermat’s Equation holds, then the constraint
P (LA

n ) = P (¬LB
n ), although expressed in the form (5), must not depend, as well as (1),

on the capability to distinguish all the types of marbles.
Due to the explicit dependence of (5) on α, β, γ, the only way to satisfy such re-

quirement, is to assess that P (LA
n ∩ LB

n ∩ LG
n ) does not depend on the exact values of

α, β, γ or, in other words, to admit that, given any Fermat’s Equation, the probability
P (LA

n ∩LB
n ∩LG

n ) takes always the same value. But, as we have seen in (4), this can be
attained only if P (LA

n ∩ LB
n ∩ LG

n ) = 0, i.e. only if n ≤ 2.
Now, to declare that Fermat’s Equation has solutions coincides to state the hypothe-

ses of Fermat’s Last Theorem. Since we have already proved the equivalence between
Fermat’s Equation and the constraint defining the respective Fermat’s Urn, the result-
ing condition n ≤ 2 related to the latter must reflect in the solutions of the former,
giving an elementary proof the well-known Theorem.
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