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Abstract. Multi Expression Programming (MEP) is an evolutionary
technique that may be used for solving computationaly difficult
problems. MEP uses a linear solution representation. Each MEP
individua isastring encoding complex expressions (computer programs).
A MEP individual may encode multiple solutions of the current problem.
In this paper MEP is used for evolving a Traveling Salesman Problem
(TSP) heuristic for graphs satisfying triangle inequality. Evolved MEP
heuristic is compared with Nearest Neighbor Heuristic (NN) and
Minimum Spanning Tree Heuristic (MST) on some difficult problems in
TSPLIB. For most of the considered problems the evolved MEP heuristic
outperforms NN and MST. The obtained algorithm was tested against
some problems in TSPLIB. The results emphasizes that evolved MEP
heuristic is a powerful tool for solving difficult TSP instances.

1. Introduction

In [12, 13, 14] a new evolutionary paradigm caled Multi Expression
Programming (MEP)* has been proposed. MEP may be considered as an
dternative to standard Genetic Programming technique [8]. MEP uses a linear
solution representation. Each MEP individua is a string encoding complex
expressions (computer programs). A MEP individua may encode multiple
solutions of the current problem. Usualy the best solution is chosen for fitness
assignment purposes.

One of the most important applications of MEP is discovering heuristics for
solving computationally difficult (mainly NP-Complete) problems. Instead of
searching the solution of a particular problem the MEP aim is to discover a
heuristic that solves the entire class of instances for a given problem.

In this paper MEP technique is used for discovering TSP heuristics for
graphs satisfying triangle inequality (T1 graphs). This option was chosen due to
the existence of a big number of real-world applications implying TI graphs (e.g.
plains, trains and vehicles routes). MEP technique is used to learn a path function
f that is used for evauating the reachable nodes. This function serves as a
heuristic for detecting the optimum path.

In the proposed approach the TSP path starts with a randomly selected node
of the graph. Each node reachable from the current node in one step is evaluated
using the function (computer program) f evolved by MEP agorithm. The best

! MEP source code is avail able at the address www.mep.cs.ubbcl uj.ro.



node is added to the aready detected path. The agorithm stops when the path
contains all graph nodes.

MEP learning process for TSP has a remarkable quality: the evolved
(learned) heuristic works very well for data sets much larger than the training set.
For MEP training stage graphs having 3 to 50 nodes are considered. Evolved
MEP function was tested and performs well for graphs having maximum 1000
nodes.

Evolved function f is compared with some well known heuristics. Numerical
experiments emphasize that (for considered examples) MEP function outperforms
dedicated heuristics.

2. MEP Technique

MEP uses a linear solution representation and a special phenotypic transcription
model. A MEP chromosome usually encodes severd expressions (computer
programs). The ability of MEP chromosome to encode several syntactically
correct expressionsis called strong implicit parallelism.

2.1. MEP Algorithm

Standard MEP agorithm starts with a randomly generated population of
individuals.

A fixed number of the high fit individuas enter in the next generation
(elitism). The mating pool is filled using binary tournament selection. Individuals
from mating pool are randomly paired and recombined. By recombination of two
parents two offspring are obtained. The offspring are mutated and enter the next
generation.

2.2. MEP Representation

MEP genes are substrings of variable length. Number of genesin a chromosome
is constant and it represents chromosome length. Each gene encodes atermina or
a function symbol. A gene encoding a function includes pointers towards genes
containing the function arguments. Function parameters always have indices of
lower values than the position of that function symbol itself in chromosome.
Proposed representation ensures no cycle arises when the chromosome is
decoded (phenotypically transcripted). According to the proposed representation
scheme the first symbol of the chromosome must be a terminal symbol. In this
way only syntactically correct programs are generated by M EP technique.
Let T={a, b, c, d} be the set of termina symbolsand F = {+, *} be the set of
function symbols. Consider as an example the MEP chromosome C given below:
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Remark: Numbers on the left positions stand for gene labels or addresses.
Actualy labels do not belong to the chromosome, but they are provided for
explanation purposes only.

2.3. MEP phenotypic transcription

MEP chromosomes are read downstream starting with the first position. A
terminal symbol specifies a simple expression. A function symbol specifies a
complex expression (formed by connecting the operands specified by the
argument positions with the current function symboal).

Consider the chromosome C specified above (section 2.2). Chromosome C is
not able to encode a unique expression that involves al of the genes. But C
encodes the expressions:

Ei=a,
Ezzb,
E3:a+b,
Es=c,
Es=d,
E5:C+d.

Each MEP chromosome is allowed to encode a number of expressions equal
to the chromosome length (number of genes). Expression associated to each
chromosome position is obtained by interpreting the respective gene.

2.4. Selection and sear ch operators

Within MEP technique binary tournament [Goldberg] selection is used. Search
operators are recombination and mutation. These possible operators are defined to
preserve the chromosome structure. All offspring describe syntactically correct
expressions.

2.4.1. Recombination

Three variants of recombination operator have been considered and tested within
our MEP implementation: one—point crossover, two—point crossover and uniform
crossover. These operators are simple versions of standard binary crossover
operators (see [4], [6]). Two—point crossover seems to work best with MEP ([12])
and it will be used in al experiments considered in this paper.

2.4.2. Mutation

Mutation operator may be applied to each chromosome gene. A mutation
probability (pm) is considered when applying mutation operator.

By mutation some symbols in chromosome are changed. To preserve the
chromosome structure its first gene must encode, also after mutation, a terminal
symbol. For other genesthereis no restriction in symbols changing.

If the gene selected for mutation encodes a termina symbol, this symbol may
be changed into another terminal symbol or into a function symbol. In the last
case the positions (addresses) indicating the function arguments are randomly
generated.



If the mutating gene encodes a function, then the gene may be mutated into a
terminal symbol or into another function (i.e. function symbol and pointers
towards arguments).

3. TSP problem with triangle inequality

TSP problem for Tl graphs (i.e. satisfying triangle inequdity) is stated as follows.
Consider aset C ={cy, Cy,..., Cna} Of cities, and adistance d(c;, ¢;) O Z* for each
pair ¢, ¢, O C, d(c;, ) = d(g;, ¢), and for each three cities ¢, ¢, ¢, 0 C, d(c, ) <
d(ci, c) + d(c, G). The tour <Cyg, Cry, ..., Cynay> Of @l cities in C having
minimum lengthis needed ([1], [3])

TSP problem with triangle inequality is an NP-complete problem [7]. No
polynomial time a gorithm for solving TSP problem is known.
Severa heurigtics for solving TSP problem have been proposed. The most
important are Nearest Neighbor ([3], [7]) and the Minimum Spanning Tree ([3]).

4. Evolving Heuristicsfor TSP

In this section we address the problem of discovering heuristics that can solve
TSP rather than solving a particular instance of the problem.

MEP technique is used for evolving a path function f that gives a way to
choose graph vertices in order to obtain a Hamiltonian cycle. The fitness is
assigned to a function f in the current population by applying f on several
randomly chosen graphs (training set) and evaluating the results.

Evolved path function may be used for solving particular instances of TSP.
For each problem the graph nodes are evaluated using the path function f and are
added one by one to the aready build path.

The agorithm for TSP using evolved path function f may be described as
follows:

S.. Lét ) = G {the path starts with the node co}

S.k=1;

S;. whilek<N—-1do

S:.. Using function f select cyy.q) — the next node of the path
S;. Add Cryq) to the dready built path.

S. k=k+1;

S;. endwhile

S, isthe key step of this agorithm. The procedure that selects the next node
of the path in an optimal way uses the function f evolved by the MEP technique
as described in sections 4.1 and 4.2.

4.1. Terminal and Function Symbolsfor Evolving Heuristic Function f

Path function f has to use (as input) some information about already build path
and some information about unvisited nodes.

A naturd way for defining the set of terminalsis to consider the terminals as
representing the distances between nodes. Therefore we have:
T={d},|0<i<sN-10<j<N-1}.



But this approach leads to some difficulties when applied for graphs having
different number of nodes. To avoid this difficulty, we consider a specia terminal
set which isindependent with respect to the number of graph nodes.

Let us denote by y; the last visited node (current node). We have to select the
next node to be added to the path. In this respect al unvisited nodes are
considered. Let us denote by y, the next node to be visited.

For evolving path function f we consider a set T of terminals involving the
following elements:

(i) d_y; y,—distance between the graph nodesy; and ys,

(i) min_g y; (min_g_y,) — the minimum distance from the nodes y; (y,) to
unvisited nodes,

(i) sum_g_vy; (sum_g_Y,) — the sum of all distances between nodes y; (y») and
unvisited nodes,

(iv) prod_g_y; (prod_g_y,) — the product of al distances between nodes y; (Y,)
and unvisited nodes,

(v) max_g_y; (max_g y,) — the maximum distance from the nodes y; (y») to
unvisited nodes,

(vi) length —the length of the already built path.

The set T of terminas (function variables) isthus:

T = {d_y1 Yo, Min_g_y;, Min_g_y,, max_g yi, Max_g_Y,, SUM g_y1, SUM g Vs,
prod_g_yi, prod_g_y,, length}.

Let us remark that members of T are not actua terminas (in the standard
acceptation). For this reason we may call members of T as instantiated (or
intermediate) nonterminals.

Set T of terminals is chosen in such way to be independent of the number of
graph nodes. This choice confers flexibility and robustness to the evolved
heuristic.

For evolving a MEP function for TSP problem we may consider the
following set of function symbols: F ={+, — /, *, cos, sin, min, max}.

The node y, that generates the lowest output of evolved function f is chosen
to be the next node of the path. Ties are solved arbitrarily. For instance we may
consider the node with the lowest index is selected.

Example

Consider the MEP linear structure:
Ldyy.

2:mn_g y;

3+1,2

4:sum g v,

5:%2,4

This MEP individud encodes the path functions fy, f,, f3, fs, f5 given by:
fi=d yi_ys,

f=min_g y:,

fa=dy_y,+mn_gy,

f4 =sum g_y»,

fs=min_g_y;* sum_g_y,.



4.2. Fitness assignment

In order to obtain a good heuristic we have to train the path function f using
several graphs. The training graphs are randomly generated at the beginning of
the search process and remain unchanged during the search process. To avoid
overfitting (see [15]), another set of randomly generated graphs (validation set) is
considered. After each generation the quality of the best-so-far individua is
calculated using the validation set in order to check its generaization ability
during training. At the end of the search process, the function with the highest
quality is supplied asthe program output.

The fitness (quality) of a detected path function f is defined as the sum of the
TSP path length of graphsin the training set. Thusthe fitness is to be minimized.

4.3. A Numerical Experiment

In this experiment we evolve a heuristic for solving TSP problem.

Let us denote by Gy the set of class of Tl graphs having maximum k nodes.
MEP agorithm considers the class Gs, (i.e. graphs having 3 to 50 nodes) for
training and the class Gyq for vaidation. Evolved path function was tested for
graphs in the class Gy (i.€. graphs having maxim 1000 nodes). MEP agorithm
parameters are givenin Table 1.

Population size 300

Number of generations 100

Chromosome length 40 genes

Mutation probability 0.1

Crossover type One-Crossover-Point
Crossover probability 0.9

Training set size 30

M aximum number of nodesin training set 50

Validation set size 20

Maximum number of nodesin validation set | 100

Table 1. MEP algorithm parameters for evolving a heuristic for TSP with triangle
inequality.

The evolution of the best individua fitness and the average fitness of the best
individuals over 30 runs are depicted in Figure 1.
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Figure 1. The fitness evolution of the best individual in the best run and the average
fitness of the best individuals over 30 runs.

A path function evolved by the MEP agorithm is:
f=(sum_g(y2)) * (d_y1_y> — (max(d_y:_y2, max_g(y1))) + d_yi_y2).

Heurigtic function f that is evolved by MEP technique is directly used for
building the optimum path. The corresponding learning process has a remarkable
quality: the evolved (learned) heuristic works very well on data sets significantly
larger than the training set. In our example the training set Gs, is significantly
smaller than the set Gypgo Used for testing.

5. Assessing the Performance of the Evolved MEP Heuristic

In this section the performance of evolved MEP heuristic, NN and MST are
compared. In the first experiment we compare the considered a gorithms on some
randomly generated graphs. In the second experiment the heuristics are compared
against several difficult problemsin TSPLIB [16].

5.1. Experiment 1

In this experiment we provide a direct comparison of the evolved MEP heurigtic,
NN and MST. The considered heuristics are tested for randomly generated graphs
satisfying triangle inequality.

Evolved heuristic was tested for different graphs from the classes G,q, Gsgo
and Gyopo. For each graph class 1000 graphs satisfying triangle inequality have
been randomly generated. These graphs have been considered for experiments
with evolved MEP heuristic, NN and MST.

Performance of evolved MEP heuristic, NN and M ST are depicted in Table 2

Table 2. Evolved MEP heuristic vs. NN, MST. For each graph class we present the
number of graphs for which evolved MEP heuristic generates a cycle shorter than the cycle
obtained by the algorithm MST and NN.



Graphs types MST NN

Gono 953 800
Gsoo 974 906
Giooo 990 948

Results obtained emphasizes that evolved MEP heuristic outperforms NN
and M ST algorithms on random graphs.

5.2. Experiment 2

To obtain a stronger evidence of the results above we test the performance of the
considered heuristics against some difficult problemsin TSPLIB. The results are
presented in Table 3.

Table 3. The performance of evolved MEP heuristic, NN and MST on some problems in
TSPLIB. Length is the length of the TSP path obtained with one of the considered
heuristics. Error is calculated as (Length — Shortest_Length)/ Shortest_Length * 100. Each
node of the graph has been considered as thefirst node of the path.

Problem MEP NN MST
Length Error Length Error (%) | Length Error
(%0) (%)

az280 2858.86 10.85 | 3084.22 | 19.58976 | 3475.23 34.75
att48 37188.2 10.93 | 39236.9 | 17.04227 | 43955.8 31.11
berlin52 7672.1 1.72 | 8182.19 | 8.488332 | 10403.9 37.94
bier127 134945 14.08 127954 | 8.177068 | 152747 29.13
ch130 6558.03 7.33| 7198.74 | 17.81899 | 8276.51 35.45
ch150 7104.03 8.82 | 7078.44 | 8.431985 | 9142.99 40.05
d198 17780.7 12.67 | 175751 | 11.37579 | 17957.6 13.79
d493 43071.3 23.05 41167 | 17.61328 | 41846.6 19.55
des7 56965.6 16.46 | 60398.7 | 23.48442 | 63044.2 28.89
eil101 685.013 89| 753.044 | 19.72083 | 846.116 34.51
eil51 441.969 3.74 | 505.298 | 18.61455 | 605.049 42.03
eil76 564.179 486 | 612.656 | 13.87658 | 739.229 374
fl417 13933.8 17.47 | 13828.2 | 16.58545 | 16113.2 35.85
0il262 2659.17 11.82 | 2799.49 | 17.72456 | 3340.84 40.48
kroA150 28376.3 6.98 31482 | 18.6925 | 38754.8 46.11
kroA200 32040.3 9.09 | 34547.7 | 17.63722 | 40204.1 36.89
kroB100 24801 12.01 25883 | 16.90077 | 28803.5 30.09
kroB200 33267.4 13.01 | 355924 | 20.91042 | 40619.9 37.98
1in105 15133.2 524 | 16939.4 | 17.80652 | 18855.6 31.13
1in318 46203.4 9.93 | 49215.6 | 17.09915 | 60964.8 45.05
pch442 56948.3 12.15| 57856.3 | 13.9397 | 73580.1 44.9
pr226 84937.8 5.68 | 92905.1 | 15.59818 | 111998 39.35
pr264 55827.1 13.61 | 541245 | 10.15468 | 65486.5 33.27
rat195 2473.49 6.47 | 2560.62 | 10.22901 | 2979.64 28.26
rat575 7573.6 11.82 7914.2 | 16.84925 | 9423.4 39.13
rat783 9982.96 13.36 | 10836.6 | 23.05928 | 11990.5 36.16
rd400 16973.3 11.07 | 18303.3 | 19.77816 | 20962 37.17




ts225 136069 7.44 140485 | 10.92994 | 187246 47.85

us74 43095.6 16.77 | 44605.1 | 20.86465 | 50066 35.66

u724 46545.7 11.06 | 50731.4 | 21.04844 | 60098.9 43.39

From Table 3 we can see that evolved MEP heuristic performs better than
NN and MST on most of the considered problems. Only for five problems
(bier127, ch150, d198, d493, fl417) NN performs better than evolved MEP
heuristic. MST does not perform better than evolved MEP heuristic for no
problem. The highest error obtained by the evolved MEP heuristic is 23.05 (the
problem d493) while the highest error obtained by NN is 23.45 (the problem
rd400). The lowest error obtained with MEP is 1.72 (problem berlin52) while the
lowest error obtained by NN is 8.17 (problem bier127). The mean of errors for all
considered problems is 10.61 (for evolved MEP heuristic) 16.33 (for NN
heuristic) and 35.77 (for MST heuristic).

6. Conclusions and Further Work

MEP technique is used to evolve heuristics for solving TSP problems.
Experimenta results emphasizes that evolved heuristic outperforms some well
known dedicated heuristics.

Moreover improvement of MEP results could be realized by alowing more
function symbols to appear in the MEP chromosome. Further research will focus
on using MEP for discovering better heurisgtics for solving TSP.

Further improvement may be obtained by increasing the chromosome length.
In this case the complexity of the evolved formula could increases, but the
performances of the obtained heuristic could be significantly better.

Evolving functions that outperform other dedicated heuristics would be of
great practica interest. In this way computer programs that are hard to implement
could be simulated by simple functions.
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