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Abstract 
A simple coin toss game, attributed to Nicolaus Bernoulli, in the early 1700s results in a mathematical paradox 
which still appears to be subject to what might be described as "mainly conceptual" rather than "purely 
mathematical" solutions. A mathematical solution is given showing that, if the number of games is 2m-1 then the 
average payout per game for this number of games is m/(2-(1/2m-1)). 
 
 
The "(St.) Petersburg" Game 
There are various summaries of the history and assorted "solutions"[1][2]. To summarise the basics of the game and 
the paradox:- 
 

A coin is tossed. When a "Head" (H) occurs the game ends and there is a payout. Should a "Tail" (T) occur 
the coin is tossed until an H occurs. 

 
The payout basis is that the number of tokens paid is equal to 2p-1 where p is the number of coin tosses in 
the game. 

 
The task is to estimate how much the player would be prepared to pay to play the game. Thus, the player 
needs to calculate the average payout per game and to ensure that they offer significantly less than this to 
play the game; in this way they will expect to profit. 

 
The standard/normal way of calculating the average payout leads to an infinite value. 

 
Given that this is fun and there is no Fields Medal expected, we shall not be too concerned about a lack of 
mathematical rigour when discussing infinite values; we shall use popular language. It is recommended just to go 
with the flow. 
 
 
Some Additional History 
The paradox appears to have originated from the famous Bernoulli family in the early 1700s. Daniel Bernoulli went 
to St Petersburg in 1725 where his brother Nicolaus was professor of mathematics. Nicolaus had uncovered the 
paradox prior to Daniel's arrival but their discussions of the problem of the game resulted in Daniel pursuing and 
publicising it. It first appeared in the Commentarii of the Academy and this is the origin of its name; "Petersburg". 
 
The paradox was so shocking to mathematicians of the time and in the absence of any obvious mathematical 
solution, (this was over 100 years before the birth of Georg Cantor), that Bernoulli was reduced to inventing the 
concept of "moral expectation" (as opposed to "mathematical expectation") as a means of explaining away the 
paradox; the first "conceptual" approach to resolving the paradox. Inventing new concepts by way of explanation 
has become popular over the years, some of which have found application in other areas. For some reason a simple 
mathematical solution does not seem to have been offered. 
 
At the time, the problem was subject to an experimental mathematical test by Georges-Louis Leclerc (Comte de 
Buffon) who played a total of 2084 games and paid out a total of 10057 tokens, (Crowns in his case), indicating 
that the average payout was 4.83. It is worth noting that the formula previewed in the Abstract gives a value of 5.52 
which is comfortingly close to the experimental value. Probably, if a set of 2084 games were to be played a very 
large number of times then the average value for the average payout would approach 5.52; or not? 
 
 
The (Short-Form) Calculation 
Consider playing 1 game; it is necessary to calculate the probability of all of the possible outcomes of this game 
occurring. The probability of the game ending on the first toss (H) is 1/2. The probability for TH is 1/4; the 
probability for TTH is 1/8 etc. The general probability is 1/2p where p is, as before, the number of coin tosses in the 
game. 



 
We now have the probability of any particular game occurring and we have the reward for that particular game 
defined. The table below shows the fractional game outcome probabilities, the reward, their product and the 
summations of the two infinite series. 
 

Game Outcome Probability Game Reward Product (Game Fraction Reward) 
1/2 1 1/2 
1/4 2 1/2 
1/8 4 1/2 
1/16 8 1/2 
1/32 16 1/2 
1/64 32 1/2 
1/2p 2p-1 1/2 
........   

Column Sum tends to: 1  Column Sum tends to: ∞/2 
 
Thus for 1 game the average reward will be ∞/2. In theory the player should offer an enormous number of tokens 
for the privilege of being allowed to play the game. Should the player do this they will quickly discover that there is 
something wrong with the mathematical analysis; something wrong with a mathematical analysis that they have 
used on many occasions in other circumstances and achieved a fully correct outcome/result. 
 
This is the "(St.) Petersburg Paradox". So where does the problem lie and what is the mathematical resolution to the 
paradox? 
 
 
The Root Of The Problem 
The game is cleverly constructed so that not only are the individual games not all of the same length (probability of 
occurrence) but there is the potential for any individual game to be infinite. The potential for a single game to be of 
infinite duration negates the usual (short-form) methods of calculating probabilities. The problem is therefore 
linked to infinity and thus a resolution would require a more precise understanding of infinity than was available in 
the early 1700s. 
 
 
The (Long-Form) Calculation 
Consider a simple 1 toss game (p=1) where 1 token is paid for H and 0 tokens are paid for T. The task, as 
previously is to calculate the average reward and the usual short-form way of doing this is as follows:- 
 
i The probability of H is 1/2 and the probability of T is 1/2 
ii The average reward is (1/2 x 1) + (1/2 x 0) = 1/2 
iii The average reward over n games is (n x 1/2) /n (= 1/2) 
 
In the long-form procedure we shall use the terms "most likely" distribution of results when considering n games 
and "theoretical" distribution of results for an infinite number of games. For simplicity and clarity we shall also 
consider only a "convenient" number of games where "convenient" requires that the number of games chosen is 
capable of producing the required most likely (and ultimately, theoretical) distribution. For this simple 1 toss game 
we are therefore only considering an even number of games. We start from the same position as for the short-form. 
 
iv The probability of H is 1/2 and the probability of T is 1/2. 
v As the number of games played increases the distribution of the number of games between the two 

outcomes will approach closer and closer to the most likely distribution for the number of games (n) 
played. 

vi When the number of games is infinite with respect to the number of possible outcomes of a game the 
calculated theoretical distribution is achieved. 

vii When the conditions of vi are met we may write ((∞/2 x 1) + (∞/2 x 0)) / ∞ as the expression for the 
average reward over an infinite number of games. Permitting the ∞s to cancel we obtain 1/2. 

viii To find the average reward for n games ∞ is replaced by n and obviously 1/2 is again obtained. 
 
It may be said that the long-form of the procedure is unnecessarily pedantic and it is, excessively so, for finite 
games. Where a game is potentially infinite the pedantry is not unnecessary. 



 
For the (St.) Petersburg game, using the short-form procedure we have shown, (by a procedure equivalent to ii 
above), that the average reward per game is ∞/2 and we can say the average reward over n games is (n x ∞/2) / n 
which is also ∞/2.  
 
Using the long-form procedure differences occur and in particular the basis of vi (emphasis) becomes important. 
 
The individual probabilities for the fractional game outcomes obviously remain the same; 1/2, 1/4, 1/8 etc. We 
should now consider a "convenient" number of games and this number needs to take into account the fractional 
outcome probabilities. As n increases the most likely distribution of the outcomes will follow these fractional 
probabilities; there will be twice as many H outcomes as TH outcomes and twice as many TH outcomes as TTH 
outcomes etc. So, for example, for 15 games the most likely distribution would be 8, 4, 2, 1 for 1/2, 1/4, 1/8, 1/16. 
Generalising this distribution, a convenient number for n will therefore take the form 2m-1 (which is the (St.) 
Petersburg game equivalent of demanding even numbers for the simple p=1 H/T game described previously), 
where m is an integer >1. 
 
It is now necessary to consider the condition (emphasis) given in vi. We require to establish the number of games 
which is both infinite in respect of the (∞) number of outcomes and which is also a convenient number. A number 
of games satisfying both conditions is therefore 2∞-1 (which it will be noted is a higher order of infinity than the ∞ 
number of outcomes). 
 
By analogy with vii we can calculate the total reward and divide it by the number of games to generate the average 
reward:- 
 
Total Reward  (2∞-1 x 1) + (2∞-2 x 2) + .... (2∞-r x 2r-1)......( 20- x 2∞-1) = ∞ x 2∞-1 
Average Reward (∞ x 2∞-1)/(2∞-1) 
 
Dividing top and bottom by 2∞-1 permits the Average Reward to be rewritten as ∞/(2-(1/2∞-1)) 
 
It is worth noting that this reduces to ∞/2 (the result from the short-form method) when allowing for the different 
orders of infinity. 
 
Finally, ∞ can be replaced by m to produce m/(2-(1/2m-1)) and we see that the Average Reward has a dependency 
on the number of games played; which is what was intuitively clear from the initial analysis in respect of how many 
tokens should be offered for the privilege of playing the game. It is worth emphasising that n is the number of 
completed games, not the number of coin tosses. The table shows the Average Reward for some values of m. 
 

m n Average Reward 
2 3 1.3333333 
4 15 2.1333333 
6 63 3.0476190 
8 255 4.0156863 

10 1023 5.0048876 
12 4095 6.0014652 
14 16383 7.0004273 
16 65535 8.0001221 
18 262143 9.0000343 
20 1048575 10.0000095 

 
The average reward tends to m/2 as m increases and hence when m is infinite the average reward is ∞/2 which 
agrees with the short-form result. However, the average reward per game (n) increases only very slowly with n. In 
simple terms the short-form approach to the Petersburg game picks the incorrect order of infinity for the game; the 
long-form picks the correct order of infinity for the game. 
 
 
Generalisation 
The procedure may be generalised for a game with any number of outcomes; b. The general form of the short-form 
procedure is shown below. The probability of one defined outcome, of the b possible outcomes, occurring is 1/b 



and the probability of this one defined outcome not occurring prior to this is (1-1/b)q where q is the number of 
undefined outcomes which occur prior to the defined outcome occurring. 
 

Game Occurrence Probability Game Reward Product (Game Fraction Reward) 
(1-1/b)0 x 1/b 1/(1-1/b)0 1/b 
(1-1/b)1 x 1/b 1/(1-1/b)1 1/b 
(1-1/b)2 x 1/b 1/(1-1/b)2 1/b 
(1-1/b)3 x 1/b 1/(1-1/b)3 1/b 
(1-1/b)4 x 1/b 1/(1-1/b)4  
(1-1/b)5 x 1/b 1/(1-1/b)5  
(1-1/b)q x 1/b 1/(1-1/b)q 1/b 

........   
Column Sum tends to: 1  Column Sum tends to: ∞/b 

 
Thus for 1 game the average reward will be ∞/b. For b=2 the generalised table reproduces the binary outcome table 
given previously. A similar generalisation may be applied to the long-form if required. 
 
As an aside; it is worth noting that a single game with infinite outcomes of known probabilities can be a convenient 
way of generating infinite series where the sum is (by definition) equal to 1 and where it would not be the simplest 
task to establish the value of the summation by other means. The generalised occurrence probability column 
summation is the infinite series:- 
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where b is an integer. The summation is 1 by definition. 
 
 
Numerical Checking 
A simple programme, replacing the Herculean efforts of Leclerc, can be used to check the predictions of the long-
form procedure. The elements are:- 
 
i A random number generator produces either a 0 or 1 
ii For efficiency, two games may be played in parallel; one game ending with a 0 the second game ending 

with a 1. The number of games is stored (for each of the two parallel games). 
iii The reward is calculated for each (parallel) game and the cumulative reward is stored. 
iv When the number of games (for either the "0" game or the "1" game) equals 2m-1 (where m is an integer), 

the average reward per game is calculated and stored. 
v Results are outputted in graphical form where the y axis is the average reward and the x axis is m 
 
When the author first did this using the built-in BASIC programming language on a Camputers Lynx 48k 
computer[3] (with output to cassette tape; chormium dioxide of course) in the early 1980s it took quite a long time 
to reach m=15; but reach it it did. 
 
Commonly, after the initial wild fluctuations settle down, a curve is generated which is not as smooth as might be 
expected. Oscillations may be observed, steps up/down may occur, or some otherwise disjointed curve is produced; 
this indicates that the random number generator built into the programme is not actually generating truly random 
numbers. 
 
The randomness of the random number generator can be improved by, for example, using it to fill, say, an 8x8 
array with 0s and 1s and then using it to choose a random row (by generating a random number 1-8) and a random 
column (again by generating a random number 1-8) and using the 0 or 1 found from the row/column co-ordinates. 
This simple "trick" of introducing a second type/level of randomisation is usually sufficient to ensure that, as m 
increases, the curves for both the 0 and 1 parallel games approach smoothly ever closer to the value predicted by 
the equation. 
 
The same procedure can be adapted for the general case where there are b outcomes. In particular the matrix used 
to improve the randomisation will require (greatly) extending. 



 
 
A More Serious Suggestion 
With due regard to the comments in Numerical Checking concerning the limitations of random number generators 
it is possible to turn the analysis of the (St.) Petersburg game round. Having established the relationship between 
the average reward and the number of games it would be possible, when dealing with very long sequences of 
numbers, to use the degree of compliance achieved to the predictions of the equation as a measure of randomness in 
the sequence. The sequence could be binary or any base via the generalisation given. A failure to achieve, 
ultimately, a smooth approach to the theoretical curve could, for example, imply that there was a pattern in the data 
stream and there may be applications where this would be a valuable thing to establish. 
 
 
Finally; "Or Not?" 
"Probably, if a set of 2084 games were to be played a very large number of times then the average value for the 
average payout would approach 5.52; or not?" 
 
We may imagine Leclerc, being a scientist of some standing, deciding that a single experimental mathematical test 
was not sufficiently reliable. He resolves to repeat the experiment a number of times, 8 to be precise, but being a 
Count he decides to use some of his staff to assist. 8 workers are given a tent each and are required to play the 
game and to record the H/T sequence until each one has played 2084 games. In this way Leclerc has 8 identical 
experiments and hence 8 independent results to average. When all of the staff indicate that the task has been 
completed the results are passed to Leclerc; he is somewhat unnerved to find that the results are quite scattered and 
that his reliability situation has not been greatly improved. 
 
Also, unbeknown to Leclerc, Daniel Bernoulli still has a great interest in this paradox and has collected the 
sequence from each tent and produced one longer sequence of 16672 games. Neither 2084 nor 16672 are 
"convenient" numbers but we can still apply the formula:- 
 
For 2084 games  m= 11.02444712  Average reward = 5.5148711 
For 16672 games  m= 14.02505303  Average reward = 7.0129472 
 
Leclerc's ambition to obtain a more accurate value for his 2084 game series would appear to be doomed. This is not 
unexpected where the return is dependent on the number of games played. It is often said that "the wheel has no 
memory" in the context of playing roulette and this statement is equally applicable to the coin. There is, however, 
an assumption built into these truisms which is that the game is finite. More fully, the truism should be "the 
wheel/coin has no memory when playing a game that has no memory"; and when dealing with a game which has an 
infinite number of outcomes and a return which has a dependence on the number of game played then the second 
condition is not met. 
 
I trust it has been fun. 
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