
Out of distribution detection with DLSGAN

Jeongik Cho

jeongik.jo.01@gmail.com

Abstract

DLSGAN proposed a learning-based GAN

inversion method with maximum likelihood

estimation. In this paper, I propose a method

for out-of-distribution detection using the

encoder of DLSGAN. Simply, the log-likelihood

of the predicted latent code of input data can

be used for out-of-distribution (OOD) detection.

1. OOD detection DLSGAN

DLSGAN [4] proposed a learning-based GAN

inversion method with maximum likelihood

estimation of the encoder. The encoder of

DLSGAN maps input data to predicted latent

code.

When the DLSGAN converged, one can know

the true distribution of DLSGAN encoder

output. Therefore, the log-likelihood of input

data can be simply calculated through the

DLSGAN encoder. The following equation

shows the log-likelihood of the predicted latent

code of input data.

𝑜𝑜𝑑 𝑠𝑐𝑜𝑟𝑒 = 𝑠𝑢𝑚(log 𝑓(𝐸(𝑥)|𝜇, 𝑣))

In the above equation, 𝑥 and 𝐸 represent

input data and DLSGAN encoder, respectively.

𝐸(𝑥) represents 𝑑_𝑧 -dimensional predicted

latent code of input data 𝑥 . 𝑓 represents

probability density function of the i.i.d. latent

random variable 𝑍. 𝜇 and 𝑣 represents mean

and variance vector for the probability density

function 𝑓. 𝜇 is mean vector of latent random

variable 𝑍 . 𝑣 is the same vector as traced

variance vector of DLSGAN.

 The 𝑜𝑜𝑑 𝑠𝑐𝑜𝑟𝑒 is simply the log-likelihood of

the predicted latent code 𝐸(𝑥). If the 𝑜𝑜𝑑 𝑠𝑐𝑜𝑟𝑒

is smaller than the threshold, the input data is

classified as OOD data. Otherwise, it is classified

as in-distribution data.

2. Experiments

2.1 Experiments settings

I used MNIST handwritten digits dataset [1] as

an in-distribution dataset and corrupted MNIST

dataset [2] as an OOD dataset. The following

figure shows samples of in-distribution data

and OOD data.

mailto:jeongik.jo.01@gmail.com

Figure 1. Samples of the dataset. The first image

shows in-distribution data. Other images show

OOD data.

 I trained DLSGAN to generate in-distribution

data with an MNIST handwritten digits training

dataset, then measured the OOD detection

performance of the proposed method. 10k test

dataset of the MNIST dataset was used as the

in-distribution dataset, and 10k test dataset of

corrupted MNIST was used as OOD dataset.

AUROC was used for OOD detection

performance evaluation.

For the threshold value, 100 intervals from 0

to 1000 were used.

Following hyperparameters was used for

DLSGAN training.

𝜆𝑒𝑛𝑐 = 1

𝜆𝑟1 = 10

𝑍 = (𝑍𝑖)𝑖=1
256 ~

𝑖.𝑖.𝑑.
 𝑁(0,12)

𝑏𝑎𝑡𝑐ℎ 𝑠𝑖𝑧𝑒 = 32

Also, an exponential moving average with

𝑑𝑒𝑐𝑎𝑦 𝑟𝑎𝑡𝑒 = 0.999 was used to approximate

the element-wise variance of the predicted

latent vector. NSGAN with R1 regularization [3]

was used for DLSGAN training. DLSGAN was

trained with 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 = 10−3 for the first

30 epochs and then trained with

𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 = 10−5 for the next 30 epochs.

The following table shows the performance of

trained DLSGAN.

FID [5] 11.2907

Precision [6] 0.6465

Recall [6] 0.5571

Fake PSNR 25.8172

Fake SSIM 0.8901

Real PSNR 17.8839

Real SSIM 0.6848

Figure 2. Performance of trained DLSGAN

10k generated images and 10k test images

were used for DLSGAN performance evaluation.

2.2 Experiments results

 AUROC

Shot noise 0.8961

Impulse noise 1.0000

Glass blur 0.9914

Motion blur 0.9995

Stripe 1.0000

Fog 1.0000

Spatter 0.9785

Dotted line 0.9958

Zigzag 0.9989

Canny edges 0.9999

Figure 3. OOD detection performance

Figure 3 shows the OOD detection

performance of the proposed method. Each

row of the table shows the AUROC performance

according to the OOD dataset. One can see that

the proposed method almost perfectly

detected OOD data.

3. Conclusion

 In this paper, I found that the encoder of

DLSGAN can be used to estimate the likelihood

of input data. The proposed method shows

high detection performance even for the OOD

data very close to the in-distribution data.

4. References

[1] Yann LeCun, Corinna Cortes, Christopher J.C.

Burges, “THE MNIST DATABASE of handwritten

digits”

http://yann.lecun.com/exdb/mnist/

[2] Norman Mu, Justin Gilmer, “MNIST-C: A

Robustness Benchmark for Computer Vision“

https://arxiv.org/abs/1906.02337

[3] Lars Mescheder, Andreas Geiger, Sebastian

Nowozin, “Which Training Methods for GANs

do actually Converge?”

https://arxiv.org/abs/1801.04406v4

[4] J. Cho, and A. Krzyzak, “Dynamic Latent Scale

for GAN Inversion,” In Proceedings of the 11th

ICPRAM

[5] Martin Heusel, Hubert Ramsauer, Thomas

Unterthiner, Bernhard Nessler, Sepp Hochreiter,

“GANs Trained by a Two Time-Scale Update

Rule Converge to a Local Nash Equilibrium”

https://arxiv.org/abs/1706.08500

[6] Tuomas Kynkäänniemi, Tero Karras, Samuli

Laine, Jaakko Lehtinen, Timo Aila, “Improved

Precision and Recall Metric for Assessing

Generative Models”

https://proceedings.neurips.cc/paper/2019/has

h/0234c510bc6d908b28c70ff313743079-

Abstract.html

http://yann.lecun.com/exdb/mnist/
https://arxiv.org/abs/1906.02337
https://arxiv.org/abs/1801.04406v4
https://arxiv.org/abs/1706.08500
https://proceedings.neurips.cc/paper/2019/hash/0234c510bc6d908b28c70ff313743079-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/0234c510bc6d908b28c70ff313743079-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/0234c510bc6d908b28c70ff313743079-Abstract.html

