THE INDEX OF EXPANSIONS

T. AGAMA

Abstract. In this paper, we study the notion of an index of sub-expansions in an expansion. We prove the index inequality as an application.

1. Introduction

Let $\mathcal{F}:=\left\{\mathcal{S}_{i}\right\}_{i=1}^{\infty}$ be a collection of tuples of polynomials $f_{k} \in \mathbb{R}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$. Then by an expansion on $\mathcal{S} \in \mathcal{F}:=\left\{\mathcal{S}_{i}\right\}_{i=1}^{\infty}$ in the direction x_{i} for $1 \leq i \leq n$, we mean the composite map

$$
\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{i}\right]}: \mathcal{F} \longrightarrow \mathcal{F}
$$

where

$$
\gamma(\mathcal{S})=\left(\begin{array}{c}
f_{1} \\
f_{2} \\
\vdots \\
f_{n}
\end{array}\right) \quad \text { and } \quad \beta(\gamma(\mathcal{S}))=\left(\begin{array}{ccc}
0 & 1 & \cdots 1 \\
1 & 0 & \cdots 1 \\
\vdots & \vdots & \cdots \\
1 & 1 & \cdots 0
\end{array}\right)\left(\begin{array}{c}
f_{1} \\
f_{2} \\
\vdots \\
f_{n}
\end{array}\right)
$$

with

$$
\nabla_{\left[x_{i}\right]}(\mathcal{S})=\left(\frac{\partial f_{1}}{\partial x_{i}}, \frac{\partial f_{2}}{\partial x_{i}}, \ldots, \frac{\partial f_{n}}{\partial x_{i}}\right)
$$

The value of the l th expansion at a given value a of x_{i} is given by

$$
\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{i}\right](a)}^{l}(\mathcal{S})
$$

where $\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{i}\right](a)}^{l}(\mathcal{S})$ is a tuple of polynomials in $\mathbb{R}\left[x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right]$. Similarly by an expansion in the mixed direction $\otimes_{i=1}^{l}\left[x_{\sigma(i)}\right]$ we mean
$\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\otimes_{i=1}^{l}\left[x_{\sigma(i)}\right]}(\mathcal{S})=\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\otimes_{i=2}^{l}\left[x_{\sigma(i)}\right]} \circ\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{\sigma(1)}\right]}(\mathcal{S})$
for any permutation $\sigma:\{1,2, \ldots, l\} \longrightarrow\{1,2, \ldots, l\}$. The value of this expansion on a given value a_{i} of $x_{\sigma(i)}$ for all $i \in[\sigma(1), \sigma(l)]$ is given by

$$
\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\otimes_{i=1}^{l}\left[x_{\sigma(i)}\right]\left(a_{i}\right)}(\mathcal{S})
$$

where $\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\otimes_{i=1}^{l}\left[x_{\sigma(i)}\right]\left(a_{i}\right)}(\mathcal{S})$ is tuple of real numbers \mathbb{R}. We recall from [1] that the expansion $\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}^{k}\left(\mathcal{S}_{z}\right)$ is a sub-expansion of the expansion $\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}^{l}\left(\mathcal{S}_{t}\right)$, denoted $\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}^{k}\left(\mathcal{S}_{z}\right) \leq\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}^{l}\left(\mathcal{S}_{t}\right)$ if there exist some $0 \leq m$ such that

$$
\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}^{k}\left(\mathcal{S}_{z}\right)=\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}^{k+m}\left(\mathcal{S}_{t}\right)
$$

[^0]We say the sub-expansion is proper if $m+k=l$. We denote this proper subexpansion by $\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}^{k}\left(\mathcal{S}_{z}\right)<\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}^{l}\left(\mathcal{S}_{t}\right)$. On the other hand, we say the sub-expansion is ancient if $m+k>l$. Furthermore, we say the mixed expansion $\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\otimes_{i=1}^{l}\left[x_{\sigma(i)}\right]}(\mathcal{S})$ is diagonalizable in the direction $\left[x_{j}\right](1 \leq j \leq n)$ at the spot $\mathcal{S}_{r} \in \mathcal{F}$ with order k with $\mathcal{S}-\mathcal{S}_{r}$ not a tuple of \mathbb{R} if

$$
\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\otimes_{i=1}^{l}\left[x_{\sigma(i)}\right]}(\mathcal{S})=\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}^{k}\left(\mathcal{S}_{r}\right)
$$

We call the expansion $\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}\left(\mathcal{S}_{r}\right)$ the diagonal of the mixed expansion $\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\otimes_{i=1}^{l}\left[x_{\sigma(i)}\right]}(\mathcal{S})$ of order $k \geq 1$. We denote with $\mathcal{O}\left[\left(\gamma^{-1} \circ \beta \circ \gamma \circ\right.\right.$ $\left.\nabla)_{\left[x_{j}\right]}\left(\mathcal{S}_{r}\right)\right]$ the order of the diagonal. In this paper, we study the notion of an index of a sub-expansion in an expansion. By denoting index of the sub-expansion $\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}\left(\mathcal{S}_{z}\right) \leq\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}\left(\mathcal{S}_{t}\right)$ by $\left[\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}\left(\mathcal{S}_{t}\right)\right.$: $\left.\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}\left(\mathcal{S}_{z}\right)\right]$, we prove the inequality
Theorem 1.1 (The index inequality). Let $\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}\left(\mathcal{S}_{1}\right) \leq\left(\gamma^{-1} \circ \beta \circ\right.$ $\gamma \circ \nabla)_{\left[x_{j}\right]}\left(\mathcal{S}_{2}\right) \leq \cdots \leq\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}\left(\mathcal{S}_{n}\right)-a$ chain of sub-expansions of the expansion $\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}\left(\mathcal{S}_{n}\right)$. Then

$$
\begin{aligned}
{\left[\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}\left(\mathcal{S}_{n}\right):\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}\left(\mathcal{S}_{1}\right)\right] } & <\sum_{i=1}^{n-1}\left[\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}\left(\mathcal{S}_{i+1}\right)\right. \\
& \left.:\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}\left(\mathcal{S}_{i}\right)\right]
\end{aligned}
$$

2. Sub-expansion

Definition 2.1. Let $\mathcal{F}=\left\{\mathcal{S}_{i}\right\}_{i=1}^{\infty}$ be a collection of tuples of polynomials in the ring $\mathbb{R}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$. We say the expansion $\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}^{k}\left(\mathcal{S}_{z}\right)$ is a sub-expansion of the expansion $\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}^{l}\left(\mathcal{S}_{t}\right)$, denoted $\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}^{k}\left(\mathcal{S}_{z}\right) \leq$ $\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}^{l}\left(\mathcal{S}_{t}\right)$ if there exist some $0 \leq m$ such that

$$
\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}^{k}\left(\mathcal{S}_{z}\right)=\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}^{k+m}\left(\mathcal{S}_{t}\right)
$$

We say the sub-expansion is proper if $m+k=l$. We denote this proper subexpansion by $\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}^{k}\left(\mathcal{S}_{z}\right)<\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}^{l}\left(\mathcal{S}_{t}\right)$. On the other hand, we say the sub-expansion is ancient if $m+k>l$. In general, we say the expansion $\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{k}\right]}\left(\mathcal{S}_{a}\right)$ is a sub-expansion of the expansion $\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}\left(\mathcal{S}_{b}\right)$ along the directions $\left[x_{\sigma(1)}\right], \ldots,\left[x_{\sigma(l)}\right]$ each with multiplicity k_{i} for $1 \leq i \leq l \leq n$, where $\sigma:\{1,2, \ldots, n\} \longrightarrow\{1,2, \ldots, n\}$ if and only if

$$
\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{k}\right]}\left(\mathcal{S}_{a}\right)=\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\otimes_{i=1}^{r}\left[x_{\sigma(i)}\right]_{i} \circ\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}\left(\mathcal{S}_{b}\right)}
$$

We denote this sub-expansion by

$$
\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{k}\right]}\left(\mathcal{S}_{a}\right) \leq_{\left[x_{\sigma}(1)\right], \ldots,\left[x_{\sigma}(l)\right]}\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}\left(\mathcal{S}_{b}\right)
$$

Definition 2.2. Let $\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}\left(\mathcal{S}_{z}\right)$ and $\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}\left(\mathcal{S}_{t}\right)$ be expansions. By the index of the expansion $\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}\left(\mathcal{S}_{z}\right)$ in the expansion $\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}\left(\mathcal{S}_{t}\right)$, denoted $\left[\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}\left(\mathcal{S}_{t}\right):\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}\left(\mathcal{S}_{z}\right)\right]$, we mean the value of $r \in \mathbb{N}$ such that

$$
\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}\left(\mathcal{S}_{z}\right)=\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}^{r}\left(\mathcal{S}_{t}\right)
$$

and we write

$$
\left[\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}\left(\mathcal{S}_{t}\right):\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}\left(\mathcal{S}_{z}\right)\right]=r .
$$

We say the index is finite if and only if it exists and we write

$$
\left[\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}\left(\mathcal{S}_{t}\right):\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}\left(\mathcal{S}_{z}\right)\right]<\infty
$$

On the other hand, if no such value exists then we say the index is infinite and we write

$$
\left[\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}\left(\mathcal{S}_{t}\right):\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}\left(\mathcal{S}_{z}\right)\right]=\infty
$$

Proposition 2.3. Let $\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}\left(\mathcal{S}_{z}\right)$ and $\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}\left(\mathcal{S}_{t}\right)$ be expansions. Then

$$
\left[\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}\left(\mathcal{S}_{t}\right):\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}\left(\mathcal{S}_{z}\right)\right]<\infty
$$

if and only if $\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}\left(\mathcal{S}_{z}\right) \leq\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}\left(\mathcal{S}_{t}\right)$.
Proof. This is a simple consequence of the notion sub-expansions of an expansion and the index of an expansion.

Proposition 2.4. Let $\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}\left(\mathcal{S}_{1}\right),\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}\left(\mathcal{S}_{2}\right)$ and $\left(\gamma^{-1} \circ \beta \circ \gamma \circ\right.$ $\nabla)_{\left[x_{j}\right]}\left(\mathcal{S}_{3}\right)$ be expansions. If $\left[\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}\left(\mathcal{S}_{3}\right):\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}\left(\mathcal{S}_{2}\right)\right]<\infty$ and $\left[\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}\left(\mathcal{S}_{2}\right):\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}\left(\mathcal{S}_{1}\right)\right]<\infty$ then

$$
\left[\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}\left(\mathcal{S}_{3}\right):\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}\left(\mathcal{S}_{1}\right)\right]<\infty
$$

Proof. Suppose $\left[\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}\left(\mathcal{S}_{3}\right):\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}\left(\mathcal{S}_{2}\right)\right]<\infty$ and $\left[\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}\left(\mathcal{S}_{2}\right):\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}\left(\mathcal{S}_{1}\right)\right]<\infty$. Then there exist some $r, s \in \mathbb{N}$ such that we can write

$$
\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}\left(\mathcal{S}_{2}\right)=\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}^{r}\left(\mathcal{S}_{3}\right)
$$

and

$$
\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}\left(\mathcal{S}_{1}\right)=\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}^{s}\left(\mathcal{S}_{2}\right) .
$$

It follows that

$$
\begin{aligned}
\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}\left(\mathcal{S}_{1}\right) & =\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}^{s}\left(\mathcal{S}_{2}\right. \\
& =\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}^{r+-1}\left(\mathcal{S}_{3}\right)
\end{aligned}
$$

so that $\left[\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}\left(\mathcal{S}_{3}\right):\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}\left(\mathcal{S}_{1}\right)\right]<\infty$.
Remark 2.5. Next we show that the index of a sub-expansion in an expansion decreases with further expansions.

Proposition 2.6. Let $\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}\left(\mathcal{S}_{1}\right) \leq\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}\left(\mathcal{S}_{2}\right)$. If there exists an $l \in \mathbb{N}$ such that $\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}\left(\mathcal{S}_{1}\right) \leq\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}^{l}\left(\mathcal{S}_{2}\right)$ then

$$
\begin{aligned}
{\left[\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}^{l}\left(\mathcal{S}_{2}\right):\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}\left(\mathcal{S}_{1}\right)\right] } & <\left[\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}\left(\mathcal{S}_{2}\right)\right. \\
& \left.:\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}\left(\mathcal{S}_{1}\right)\right]
\end{aligned}
$$

Proof. Suppose $\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}\left(\mathcal{S}_{1}\right) \leq\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}\left(\mathcal{S}_{2}\right)$ then there exists some $s \in \mathbb{N}$ such that

$$
\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}\left(\mathcal{S}_{1}\right)=\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}^{s}\left(\mathcal{S}_{2}\right)
$$

Under the regularity condition $\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}\left(\mathcal{S}_{1}\right) \leq\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}^{l}\left(\mathcal{S}_{2}\right)$ there exists some $u \in \mathbb{N}$ such that we can write

$$
\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}\left(\mathcal{S}_{1}\right)=\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}^{l+u}\left(\mathcal{S}_{2}\right)
$$

so that

$$
\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}^{s}\left(\mathcal{S}_{2}\right)=\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}^{l+u}\left(\mathcal{S}_{2}\right)
$$

and $u<u+l=s$. The claimed inequality follows by making the substitutions $\left[\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}^{l}\left(\mathcal{S}_{2}\right):\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}\left(\mathcal{S}_{1}\right)\right]=u$ and $\left[\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}\left(\mathcal{S}_{2}\right):\right.$ $\left.\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}\left(\mathcal{S}_{1}\right)\right]=s$.

Remark 2.7. Next we relate the index of the smallest sub-expansion in a collection of chains of sub-expansion in their mother expansion to the index of other subexpansions in other sub-expansion.

Theorem 2.8. Let $\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}\left(\mathcal{S}_{1}\right) \leq\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}\left(\mathcal{S}_{2}\right) \leq \cdots \leq\left(\gamma^{-1} \circ\right.$ $\beta \circ \gamma \circ \nabla)_{\left[x_{j}\right]}\left(\mathcal{S}_{n}\right)-a$ chain of sub-expansions of the expansion $\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}\left(\mathcal{S}_{n}\right)$. Then

$$
\begin{aligned}
{\left[\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}\left(\mathcal{S}_{n}\right):\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}\left(\mathcal{S}_{1}\right)\right] } & =\sum_{i=1}^{n-1}\left[\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}\left(\mathcal{S}_{i+1}\right)\right. \\
& \left.:\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}\left(\mathcal{S}_{i}\right)\right]-(n-2)
\end{aligned}
$$

Proof. By appealing to Proposition 2.3 then $\left[\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}\left(\mathcal{S}_{i+1}\right):\left(\gamma^{-1} \circ \beta \circ\right.\right.$ $\left.\gamma \circ \nabla)_{\left[x_{j}\right]}\left(\mathcal{S}_{i}\right)\right]<\infty$ for all $1 \leq i \leq n-1$ and there must exist some $r_{1} \in \mathbb{N}$ such that

$$
\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}\left(\mathcal{S}_{n-1}\right)=\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}^{r_{1}}\left(\mathcal{S}_{n}\right) .
$$

Again there exists some $r_{2} \in \mathbb{N}$ such that

$$
\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}\left(\mathcal{S}_{n-2}\right)=\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}^{r_{2}}\left(\mathcal{S}_{n-1}\right)
$$

so that

$$
\begin{aligned}
\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}\left(\mathcal{S}_{n-2}\right) & =\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}^{r_{2}}\left(\mathcal{S}_{n-1}\right) \\
& =\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}^{r_{1}+r_{2}-1}\left(\mathcal{S}_{n}\right) .
\end{aligned}
$$

Similarly there exists some $r_{3} \in \mathbb{N}$ such that

$$
\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}\left(\mathcal{S}_{n-3}\right)=\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}^{r_{3}}\left(\mathcal{S}_{n-2}\right)
$$

so that

$$
\begin{aligned}
\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}\left(\mathcal{S}_{n-3}\right) & =\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}^{r_{3}}\left(\mathcal{S}_{n-2}\right) \\
& =\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}^{r_{1}+r_{2}+r_{3}-2}\left(\mathcal{S}_{n}\right)
\end{aligned}
$$

By repeating this argument and taking cognisance of the fact $\left[\left(\gamma^{-1} \circ \beta \circ \gamma \circ\right.\right.$ $\left.\nabla)_{\left[x_{j}\right]}\left(\mathcal{S}_{i+1}\right):\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}\left(\mathcal{S}_{i}\right)\right]<\infty$ for all $1 \leq i \leq n-1$, we obtain

$$
\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}\left(\mathcal{S}_{1}\right)=\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}^{r_{1}+r_{2}+r_{3}+\cdots+r_{n-1}-(n-2)}\left(\mathcal{S}_{n}\right)
$$

and it follows that

$$
\left[\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}\left(\mathcal{S}_{n}\right):\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}\left(\mathcal{S}_{1}\right)\right]=\sum_{i=1}^{n-1} r_{n-i}-(n-2)
$$

The claim follows since $\left[\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}\left(\mathcal{S}_{i+1}\right):\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}\left(\mathcal{S}_{i}\right)\right]=r_{n-i}$ for $1 \leq i \leq n-1$.

We now obtain an important inequality as a consequence of Theorem 2.8 relating the index of the smallest sub-expansion in their mother expansion to local indices in each sub-expansion of the sub-expansions in the chain.

Corollary 2.9 (The index inequality). Let $\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}\left(\mathcal{S}_{1}\right) \leq\left(\gamma^{-1} \circ \beta \circ\right.$ $\gamma \circ \nabla)_{\left[x_{j}\right]}\left(\mathcal{S}_{2}\right) \leq \cdots \leq\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}\left(\mathcal{S}_{n}\right)-a$ chain of sub-expansions of the expansion $\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}\left(\mathcal{S}_{n}\right)$. Then

$$
\begin{aligned}
{\left[\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}\left(\mathcal{S}_{n}\right):\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}\left(\mathcal{S}_{1}\right)\right] } & <\sum_{i=1}^{n-1}\left[\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}\left(\mathcal{S}_{i+1}\right)\right. \\
& \left.:\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}\left(\mathcal{S}_{i}\right)\right]
\end{aligned}
$$

Theorem 2.10. Let $\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}\left(\mathcal{S}_{1}\right) \leq\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}\left(\mathcal{S}_{2}\right)-a$ subexpansion of the expansion. If there exists some $s \in \mathbb{N}$ such that $\left(\gamma^{-1} \circ \beta \circ \gamma \circ\right.$ $\nabla)_{\left[x_{j}\right]}^{s}\left(\mathcal{S}_{2}\right) \leq\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}\left(\mathcal{S}_{1}\right)$, then

$$
\begin{aligned}
s+1 & =\left[\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}\left(\mathcal{S}_{2}\right):\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}\left(\mathcal{S}_{1}\right)\right] \\
& +\left[\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}\left(\mathcal{S}_{1}\right):\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}^{s}\left(\mathcal{S}_{2}\right)\right] .
\end{aligned}
$$

Proof. Under the condition $\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}\left(\mathcal{S}_{1}\right) \leq\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}\left(\mathcal{S}_{2}\right)$, it follows that there exists some $l \in \mathbb{N}$ such that

$$
\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}\left(\mathcal{S}_{1}\right)=\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}^{l}\left(\mathcal{S}_{2}\right)
$$

so that $\left[\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}\left(\mathcal{S}_{2}\right):\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}\left(\mathcal{S}_{1}\right)\right]=l$. Again $\left(\gamma^{-1} \circ \beta \circ \gamma \circ\right.$ $\nabla)_{\left[x_{j}\right]}^{s}\left(\mathcal{S}_{2}\right) \leq\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}\left(\mathcal{S}_{1}\right)$ for some $s \in \mathbb{N}$ implies that there exist some $r \in \mathbb{N}$ such that we can write

$$
\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}^{s}\left(\mathcal{S}_{2}\right)=\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}^{r}\left(\mathcal{S}_{1}\right)
$$

so that $\left[\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}\left(\mathcal{S}_{1}\right):\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}^{s}\left(\mathcal{S}_{2}\right)\right]=r$. It follows that we can write

$$
\begin{aligned}
\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}^{s}\left(\mathcal{S}_{2}\right) & =\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}^{r}\left(\mathcal{S}_{1}\right) \\
& =\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}^{r+l-1}\left(\mathcal{S}_{2}\right)
\end{aligned}
$$

and we can further write $s+1=r+l$. The claim follows by the following substitutions $\left[\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}\left(\mathcal{S}_{2}\right):\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}\left(\mathcal{S}_{1}\right)\right]=l$ and $\left[\left(\gamma^{-1} \circ \beta \circ \gamma \circ\right.\right.$ $\left.\nabla)_{\left[x_{j}\right]}\left(\mathcal{S}_{1}\right):\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}^{s}\left(\mathcal{S}_{2}\right)\right]=r$.

2.1. Applications to additive number theory.

Remark 2.11. Next we state a consequence of this result which one can view as an application to theory of partitions in additive number theory.
Corollary 2.12. Let $\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}\left(\mathcal{S}_{1}\right) \leq\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}\left(\mathcal{S}_{2}\right)$ such that $\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}^{s}\left(\mathcal{S}_{2}\right) \leq\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}\left(\mathcal{S}_{1}\right)$. If $\left[\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}\left(\mathcal{S}_{2}\right):\right.$ $\left.\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}\left(\mathcal{S}_{1}\right)\right]$ and $\left[\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}\left(\mathcal{S}_{1}\right):\left(\gamma^{-1} \circ \beta \circ \gamma \circ \nabla\right)_{\left[x_{j}\right]}^{s}\left(\mathcal{S}_{2}\right)\right]$ are both prime numbers, then $s+1$ can be written as a sum of two prime numbers.

References

1. Agama, T. Multivariate expansivity theory and Pierce-Birkhoff conjecture, arXiv preprint arXiv:2011.03523. 2020.

Department of Mathematics, African Institute for mathematical sciences, Ghana.
E-mail address: Theophilus@aims.edu.gh/emperordagama@yahoo.com

[^0]: Date: February 18, 2022.
 2010 Mathematics Subject Classification. Primary 11Pxx, 11Bxx; Secondary 11Axx, 11Gxx.
 Key words and phrases. sub-expansion.

