Toward a proof of the Riemann Hypothesis
 James Edwin Rock

Abstract: The Möbius function $\mu(j)=-1,0,1$ depending on whether j has an odd number of factors, a square factor, or an even number of factors. The Mertens function $m(n)$ is $j=1$ to $n, \sum \mu(j)$. For all n, $|m(n)|<2 n^{1 / 2} .|m(n)|=O\left(n^{1 / 2}\right)$, and therefore the Riemann Hypothesis is true.

Set $f_{n}=(1 / 2)(2 / 3)(3 / 4) \ldots\left(\left[n^{1 / 2}\right] /\left(\left[n^{1 / 2}\right]+1\right)\right)(n)=n /\left(\left[n^{1 / 2}\right]+1\right)<n^{1 / 2}$. See Appendix 1 .
Set $S_{n}=(4 / 3)(9 / 8)(16 / 15)(25 / 24) \ldots\left(s^{2} /\left(s^{2}-1\right)\right), s^{2} \leq\left[n^{1 / 2}\right]+1 . S_{n}=2 n /(n+1)$ Proof by induction.
$n=2 S_{n}=(4 / 3)$ assume $S_{n}=2 n / n+1 \quad S_{n+1}=(2 n / n+1)(n+1)^{2} /\left((n+1)^{2}-1\right)=2(n+1) /((n+1)+1)$
$|m(n)|<\left(S_{n}\right)\left(f_{n}\right)<(2)\left(n^{1 / 2}\right)$.
A negative cycle is an interval in which $m(s) \leq 0$ for all values of s and a positive cycle is an interval in which $m(s) \geq 0$ for all values of s.

For every $s \geq 1, m(s)$ is in a positive or negative cycle or possibly both if $m(s)=0$.
For $|m(s)|$ at maximum value within a positive/negative cycle $m(s+1)$ is in the same cycle.
$|\boldsymbol{m}(\boldsymbol{n})|<(\mathbf{2})\left(\boldsymbol{n}^{1 / 2}\right)$ can be inferred from $\boldsymbol{m}(\mathbf{1})=\mathbf{1}$ alone.
For the cycle containing $\boldsymbol{m}(\boldsymbol{n})$ one or both of the following two conditions hold.
(1) $|m(n)|$ is at maximum value within a cycle and $|m(n)| \leq\left[(2)\left(n^{1 / 2}\right)\right]$
(2) $|m(n)| \leq\left[(2)\left(n^{1 / 2}\right)\right]-1$.

1) $\left.|m(n+1)| \leq|m(n)| \leq\left[(2)\left(n^{1 / 2}\right)\right] \leq\left[(2)(n+1)^{1 / 2}\right)\right]$.
2) $\left.|\boldsymbol{m}(n+1)| \leq|m(n)|+1 \leq\left[(2)\left(n^{1 / 2}\right)\right] \leq\left[(2)(n+1)^{1 / 2}\right)\right]$.
$|\boldsymbol{m}(\boldsymbol{n})|=\boldsymbol{O}\left(\boldsymbol{n}^{1 / 2}\right)$, and therefore Riemann Hypothesis is true.
Appendix 1. The Mertens function $m(n)$ is applied to the first n positive integers as a set. The reciprocal of each of the s non-square integers up to $\left[n^{1 / 2}\right]+1$ is a Mertens proportionality factor. The MPF are applied repeatedly to the fractional part of $n .\left(1-1 / f_{l}\right)(n)=n_{l},\left(1-1 / f_{2}\right)\left(n_{1}\right)=n_{2}, \ldots\left(1-1 / f_{s}\right)\left(n_{s-l}\right)=n_{s}<2 n^{1 / 2}$ $2=f_{1}$ thru $f_{s} \leq\left[n^{1 / 2}\right]+1$. Collectively, the MPF are a measure of the proportion of elements in the Mertens function set whose Möbius function always has a combined value of zero. $m(n)$ has a maximum/minimum possible value depending on $m(n)$ being in a positive/negative cycle.
