Toward a proof of the Riemann Hypothesis

James Edwin Rock

Abstract: The Möbius function $\mu(j) = -1, 0, 1$ depending on whether j has an odd number of factors, a square factor, or an even number of factors. The Mertens function m(n) is j = 1 to n, $\sum \mu(j)$. For all n, $|m(n)| < 2n^{1/2}$. $|m(n)| = O(n^{1/2})$, and therefore the Riemann Hypothesis is true.

Set
$$f_n = (1/2)(2/3)(3/4)...([n^{1/2}]/([n^{1/2}]+1))(n) = n/([n^{1/2}]+1) < n^{1/2}$$
. See Appendix 1.
Set $S_n = (4/3)(9/8)(16/15)(25/24)...(s^2/(s^2-1))$, $s^2 \le [n^{1/2}]+1$. $S_n = 2n/(n+1)$ Proof by induction.
 $n=2$ $S_n = (4/3)$ assume $S_n = 2n/n+1$ $S_{n+1} = (2n/n+1)(n+1)^2/((n+1)^2-1) = 2(n+1)/((n+1)+1)$
 $|m(n)| < (S_n)(f_n) < (2)(n^{1/2})$.

A negative cycle is an interval in which $m(s) \le 0$ for all values of s and a positive cycle is an interval in which $m(s) \ge 0$ for all values of s.

For every $s \ge 1$, m(s) is in a positive or negative cycle or possibly both if m(s) = 0.

For |m(s)| at maximum value within a positive/negative cycle m(s+1) is in the same cycle.

 $|m(n)| < (2)(n^{1/2})$ can be inferred from m(1)=1 alone.

For the cycle containing m(n) one or both of the following two conditions hold.

- (1) |m(n)| is at maximum value within a cycle and $|m(n)| \le [(2)(n^{1/2})]$
- $(2) |m(n)| \le [(2)(n^{1/2})] 1.$
- 1) $|m(n+1)| \le |m(n)| \le [(2)(n^{1/2})] \le [(2)(n+1)^{1/2})].$
- 2) $|m(n+1)| \le |m(n)|+1 \le [(2)(n^{1/2})] \le [(2)(n+1)^{1/2})].$

 $|m(n)|=O(n^{1/2})$, and therefore Riemann Hypothesis is true.

Appendix 1. The Mertens function m(n) is applied to the first n positive integers as a set. The reciprocal of each of the s non-square integers up to $\lceil n^{1/2} \rceil + 1$ is a Mertens proportionality factor. The MPF are applied repeatedly to the fractional part of n. $(1 - 1/f_1)(n) = n_1$, $(1 - 1/f_2)(n_1) = n_2$, ... $(1 - 1/f_s)(n_{s-1}) = n_s < 2n^{1/2}$ $2 = f_1$ thru $f_s \le \lceil n^{1/2} \rceil + 1$. Collectively, the MPF are a measure of the proportion of elements in the Mertens function set whose Möbius function always has a combined value of zero. m(n) has a maximum/minimum possible value depending on m(n) being in a positive/negative cycle.