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Abstract

We discuss the two-slit experiment and the Aharonov-Bohm (AB) experiment in
the magnetic field. In such a case the electron moving in the magnetic field produces
so called synchrotron radiation. In other words the photons are emitted from the
points of the electron trajectory and it means that the trajectory of electron is visible
in the synchrotron radiation spectrum. The axiomatic system of quantum mechanics
does not enable to define the trajectory of the elementary particle. The two-slit
experiment and AB experiment in a magnetic field was never performed and it
means that they are the missing experiments of quantum mechanics. The extension
of the discussion to the cosmical rays moving in the magnetic field of the Saturn
magnetosphere and its rings is mentioned. It is related to the probe CASSINI. The
solution of the problem in the framework of the hydrodynamical model of quantum
mechanics and the nonlinear quantum mechanics is also mentioned.
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1 Introduction

The electron moving in the magnetic field produces so called synchrotron radiation.
The production can be described by the classical electrodynamics, or, in the framework
of quantum electrodynamics (Pardy, 2007). From the view point of quantum electrody-
namics, the photons are emitted from the points of the trajectory of an electron and the
trajectory of electron is visible in the synchrotron radiation spectrum. The emission of
photons is stochastic and it causes that the trajectory of electrons for instance in accel-
erators is not stable. The axiomatic system of quantum mechanics does not enable to
define the trajectory of the elementary particle, nevertheless the trajectory is physically
meaningful. Mauritsson et al. (2008) used recently the attosecond laser stroboscope to
cleanly image electron motion in atom which is the experimental proof of the existence of
the electron trajectories.

The visibility of the trajectory in a magnetic field is not the exact analogue of the
trajectory of the charged particle in the gas of the Wilson camera, because in this
device the track is generated by the charged particle under special conditions. The
Wilson cloud chamber is a track detector which is based on the principle that a charged
particle passing through any medium ionizes atoms of the medium. The electromagnetic
interaction of a charged particle with this medium is strong enough to remove electrons
of atoms, or, to ionize the atoms of the medium. The medium of the Wilson chamber is
a damp air. If the air is suddenly expanded, then droplets of condensation form. The
droplets condensation form around the ions (the Wilson discovery). The droplets may be
photographed, revealing the picture of the ionization trail created by the charged particle1.

Electron moving in the two-slit experiment immersed in the magnetic field radiates
photons and it means that the trajectory of electron is visible in the synchrotron spectrum,
or, as the track in the CCD camera. Such experiment was never performed and it
means that this is the missing experiment of quantum mechanics. The standard quantum
mechanics considers only probability of the appearance of a particle and not its trajectory.

The extension of our discussion to the cosmical magnetic field, or, to the Saturn
magnetosphere and its rings is mentioned with regard to the probe CASSINI. The solution
of the problem in the framework of the hydrodynamical model of quantum mechanics and
the nonlinear quantum mechanics is mentioned. In the next section we discuss the two-
slit experiment in the magnetic field and then the Aharonov-Bohm effect in the magnetic
field. The article is the small modification of the author e-print (Pardy, 2008a).

2 The two-slit experiment

An alternative to the standard quantum mechanics, is the de Broglie-Bohm theory where
particles also have precise locations at all times, and that their velocities are defined
by the wave-function. So while a single particle will travel through one particular slit
in the double-slit experiment, the so-called ”pilot wave” that influences it will travel
through both. The two slit de Broglie-Bohm trajectories were first calculated by in 1979
(Phillipidis et al., 1979) . The de Broglie-Bohm theory produces the same statistical

1Author performed some experiments with the Wilson chamber as a student at the Purkyně University
in Brno, Czech Republic.
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results as standard quantum mechanics, without many of its conceptual difficulties..
Following Holstein (1992), the electron beam is emitted from the left to the right

from the source S to the screen S1 with the upper slit A1 and the lower slit A2. Then
it continues to the screen S2 to form the diffraction pattern. The symbolic scheme is as
follows:

S → S1 → S2. (1)

The corresponding classical trajectories are SA1P , and SA2P , P being the point of
the impinging electron on the screen S2.

Assuming the dominance of the classical trajectories (Holstein, 1992), the phase along
the first trajectory is as follows:
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λ being the de Broglie wavelength.
The phase along the second trajectory is as follows:
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The relative phase difference between the two paths is then given by the formula
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The wave function at the point on the screen S is then
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The intensity is
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. (7)

If we denote by L the distance between screens, by δ the distance between slits and by
s the distance of the point on the screen S2 from the axis of symmetry of the experiment,
then we can write using the Pythagoras theorem c2 = a2 + b2; c = d1,2, a = L, b = s± δ/2
:
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So, we can write the intensity distribution of electron in term of the angle θ and the
slit separation in the form:

I(θ) = 4I0 cos2
(
πδ

sin θ

2λ

)
, (10)

where I0 is the intensity in case that only single slit is open.
If we switch on the magnetic field between the screen S and S2 then it is evident that

the phase obtained along the first trajectory and the second trajectory is as follows:
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The phase difference between two trajectories is evidently as follows
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Using the Stokes theorem

ie
∮
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∫
area

rotA · dS = ie
∫
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B · dS = ieBSarea, (14)

where B is the density of the magnetic induction at the area SA2PA1S.
The intensity patterns is then shifted due to the existence of the magnetic field as

I(θ) = 4I0 cos2
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sin θ

2λ
+ e
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2
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)
. (15)

During the calculation we used the assumption that the magnetic field is sufficiently
small to not change the original dominant trajectories and it is very small, to cause
the change of these trajectories by the synchrotron bremsstrahlung. The synchrotron
radiation is the crucial effect to see the electron trajectory in reality. Such approach
can be used not only in the quantum mechanical two-slit experiments but also in case
of detections of the charged particle in the particle laboratories, or as the synchrotron
radiation observation of the cosmical particles when moving in the cosmical magnetic
fields. To our knowledge, such experimental approach was not applied till this time.

3 Aharonov-Bohm effect

Werner Ehrenberg and Raymond E. Siday first predicted the effect in 1949 (Ehrenberg
et al., 1949). Yakir Aharonov and David Bohm published their analysis in 1959. After
publication of the 1959 paper, Bohm was informed of Ehrenberg and Siday’s work, which
was acknowledged and credited in Bohm and Aharonov’s subsequent 1961 paper.

The effect was confirmed experimentally, with a very large error, while Bohm was still
alive. By the time the error was down to a respectable value, Bohm had died (Peshkin
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et al., 1989). The present elaborate is some modification of the original author article
(Pardy, 2008b).

In case of the so called Bohm-Aharonov effect an infinite solenoid is introduced between
slits A1, A2 on the right side of the screen S1. Since the solenoid is infinite, there is no
magnetic field outside the solenoid volume itself. However, There is non-vanishing vector
potential outside of the solenoid, which can be expressed in the cylindrical coordinates
r, ϕ, z as

A =

{
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2
Br; r < R,

Aϕ = 1
2
BR2

r
, r > R,

(16)

which corresponds to the magnetic field nonzero inside the solenoid and zero out of the
solenoid of the diameter 2R, or,

B = rotA = Bz =
1

r

∂
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The phase difference at the point P between two paths is analogical to the previous
discussion
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(
i
πd2
λ
− iπd1

λ
+ ie

∮
A · dx

)
(18)

where the circle of integration is SA2PA1S.
According to the Stokes theorem we get in analogy with eq. (13):
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The intensity pattern is shifted according in analogy with eq. (14). Or,
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In case that in the Bohm-Aharonov arrangement the external magnetic field is switch
on of the intensity Bext, then the total shift of the intensity pattern is obviously:

I(θ) = 4I0 cos2
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where in this case Sarea is the area SA2PA1S
While the Bohm-Aharonov effect was verified experimentally, the Bohm-Aharonov

effect in the homogeneous magnetic field was, to our knowledge, never performed. Also
in this experiment the synchrotron radiation of electron is produced and it means that
the trajectories are visible in the synchrotron radiation spectrum. Of course, we can
derive the AB effect completely in terms of magnetic field and not in terms of the vector
potential. However, with the same result. It is necessary only to stress that the wave
function of electron ”feels” the magnetic field inside the solenoid and it respects it.
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4 Discussion

We have considered the two-slit experiment and the AB experiment in the magnetic field.
In such a case the electron moving in the magnetic field produces so called synchrotron
radiation. In other words, the photons are emitted from the the points of the trajectory
of electron and it means that the trajectory of electron is visible in the synchrotron
radiation spectrum. The axiomatic system of quantum mechanics does not enable to
define the trajectory of the elementary particle, nevertheless the trajectory is physically
meaningful. Electron is an elementary particle with the localized mass and charge and
it is geometrically point-like. The two-slit experiment and AB experiment in a magnetic
field was never performed and it means that they are the missing experiments of quantum
mechanics. The situation can be considered as the analog of the particle detection in the
Wilson camera where the track of a charged particle is visible. Trajectories of the particles
moving in the magnetic field are visible in the synchrotron radiation spectrum detected
by the CCD camera.

There is a dual experiment where the magnetic monopole moves in the electric field and
produces the synchrotron radiation. To our knowledge, duality was developed in particle
physics but the dual experiments with magnetic monopoles were never performed. So,
the dual experiments are also missing ones in quantum electrodynamics.

The analysis can be extended to the cosmical space, where the charged cosmical
rays move in the magnetic field and produce the synchrotron radiation spectrum which
enables to make the trajectories visible. The opportunity was given to the cosmical probe
CASSINI moving on the orbit around the Saturn in its magnetosphere and in the magnetic
field of its rings. The charged cosmical rays moving in such magnetic fields generate
the synchrotron radiation which can be detected by CCD camera. In other words the
trajectories are visible. So, the Auger Argentina cosmic rays project can be supplemented
by the Saturn cosmical ray project realized by the probe CASSINI (Matthews et al.,
2004).

The problem of the visibility of trajectories can be also solved in the framework of the
so called hydrodynamical model of quantum mechanics. According to Madelung (1926)
Bohm and Vigier (1954), Wilhelm (1970), Rosen (1974, 1986) and others, the original
Schrödinger equation can be transformed into the hydrodynamical system of equations
by using the so called Madelung ansatz:

Ψ =
√
ne

i
h̄
S, (22)

where n is interpreted as the density of particles and S is the classical action for h̄→ 0.
The mass density is defined by relation % = nm where m is mass of a particle.

It is well known that after insertion of the relation (22) into the original Schrödinger
equation

ih̄
∂Ψ

∂t
= − h̄2

2m
∆Ψ + VΨ, (23)

where V is the potential energy, we get, after separating the real and imaginary parts,
the following system of equations:
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∂n

∂t
+ div(nv) = 0 (25)

with

v =
∇S
m

. (26)

Equation (24) is the Hamilton-Jacobi equation with the additional term

Vq = − h̄2

2m

∆
√
n√
n
, (27)

which is called the quantum Bohm potential and equation (25) is the continuity equation.
After application of operator ∇ on eq. (24), it can be cast into the Euler hydrody-

namical equation of the form:

∂v

∂t
+ (v · ∇)v = − 1

m
∇(V + Vq). (28)

In case of the existence of magnetic field, the nonlinear equation (24), or, (28) must
be generalized for the vector potential A (Pardy, 2001) and then applied to the two-slit
experiment and the AB experiment.

In case of the nonlinear Schrödinger equation with the logarithmic nonlinearity the
basic equation is of the form (Pardy, 2001), (Bialynicky-Birula et al., 1976):

ih̄
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∂t
= − h̄2

2m
∆Ψ + VΨ + b(ln |Ψ|2)Ψ, (29)

where b < 3× 10−15eV (Gähler et al., 1981) is some constant.
The quantum hydrodynamical equation with the nonlinear term is then
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It is evident that to find the quantum hydrodynamical solutions will be more
complicated than of the linear quantum mechanical equation. Let us first remember the
one-dimensional solutions of the one-dimensional nonlinear Schrödinger equation (Pardy,
2001).

Let be c, (Im c = 0), v, k, ω some parameters and let us insert function

Ψ(x, t) = cG(x− vt)eikx−iωt (32)

into the one-dimensional equation (29) with V = 0. Putting the imaginary part of the
new equation to zero, we get

v =
h̄k

m
(33)
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and for function G we get the following nonlinear equation (symbol ′ denotes derivation
with respect to ξ = x− vt):

G′′ + AG+B(lnG)G = 0, (34)

where

A =
2m

h̄
ω − k2 +

2m

h̄2
b ln c2 (35)
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4mb

h̄2
. (36)

After multiplication of eq. (34) by G′ we get:
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or, after integration

G′2 = −AG2 −BG2 lnG+
B

2
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If we choose the solution in such a way that G(∞) = 0 and G′(∞) = 0, we get
const. = 0 and after elementary operations we get the following differential equation to
be solved:

dG

G
√
a−B lnG

= dξ, (39)

where

a =
B

2
− A. (40)

Equation (39) can be solved by the elementary integration and the result is

G = e
a
B e−

B
4
(ξ+d)2 , (41)

where d is some constant.
The corresponding soliton-wave function is evidently in the one-dimensional free

particle case of the form:

Ψ(x, t) = ce
a
B e−

B
4
(x−vt+d)2eikx−iωt. (42)

It is not necessary to change the standard probability interpretation of the wave
function. It means that the normalization condition in our one-dimensional case is∫ ∞

−∞
Ψ∗Ψ dx = 1. (43)

Using the Gauss integral
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c2e
2a
B =

(
B

2π

) 1
2

(45)

and the density probability Ψ∗Ψ = δm(ξ) is of the form (with d = 0):

δm(ξ) =

√
mα

π
e−αmξ

2

; α =
2b

h̄2
. (46)

It may be easy to see that δm(ξ) is the delta-generating function and for m → ∞ is
just the Dirac δ-function.

It means that the motion of a particle with sufficiently big mass m is strongly localized
and in other words it means that the motion of this particle is the classical one (There
are no quantum jumps of the Moon). Such behavior of a particle cannot be obtained in
the standard quantum mechanics because the plane wave exp[ikx − iωt] corresponds to
the free particle with no possibility of localization for m→∞.

Let us still remark that it is possible to show that coefficient c2 is real and positive
number (Pardy. 2001). The generalization of the equation (29), or, (30) can be performed
by involving the vector potential A into them for the solution of the two-slit experiment
and AB experiment in the presence of the magnetic field (Pardy, 2001).

We frequently read in the physical texts on the quantum mechanics that the classical
limit of quantum mechanics is obtained only by the so called WKB method. However,
the limit is only formal because in this case the probabilistic form of the solution is
conserved while classical mechanics is strongly deterministic. In other words, statistical
description of quantum mechanics is in no case reduced to the strong determinism of
classical mechanics of one-particle system. So, only nonlinear quantum mechanics of
the above form gives the correct classical limit expressed by the delta-function. More
information on the problems which are solved by the nonlinear Schrödinger equation
involving the collapse of the wave function and the Schrödinger cat paradox is described
in author’s articles (Pardy, 2001, 1994). The extended version of the nonlinear quantum
world is described in the preprint of Castro (2002).
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