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Abstract We examine the properties of a partition of the positive integers and exhibit some formulas that 
describe the partition and place all positive integers in specific sequences that comprise the partition. The 
Collatz conjecture also partitions the positive integers. 

1, 5, 9, … contains 1/2 all positive odd integers. 

2, 6, 10, … contains 1/2 all positive even integers. 

3, 11, 19, … contains 1/4 all positive odd integers. 

4, 12, 20, … contains 1/4 all positive even integers. 

7, 23, 39, … contains 1/8 all positive odd integers. 

8, 24, 40, … contains 1/8 all positive even integers. 

The first term of the nth positive (odd | even) number sequence is (2n – 1 | 2n) 

The difference between terms in the nth sequence of positive (odd | even) numbers is 2n+1 

The nth sequence of (odd | even) numbers contains 1/2n proportion of all positive (odd | even) numbers. 

The proportion of positive (odd | even) numbers in the first m (odd | even) sequences is (2m – 1) / 2m. 

The odd number j in the mth position of the nth odd number sequence is j = (2n – 1) + (m – 1)(2n+1). 

The even number j in the mth position of the nth even number sequence is j = (2n) + (m – 1)(2n+1). 

To find the sequence containing the (odd | even) number j, sub 1 for n into the following (odd | even) 
number formula below. If the formula is not satisfied, keep substituting the next larger value s into the 
formula. The formula will be satisfied before j > 2s+1.  

s (mod 2s+1) = (2s+1– 1 | 0) for every (odd | even) s < n, where n satisfies the formula. 

When the odd number j (mod 2n+1) = 2n – 1,  j will be in the nth odd number sequence. 

When m – 1= (j – (2n – 1)) / (2n+1),  j will be in the mth position of the nth odd number sequence. 

When the even number j (mod 2n+1) = 2n,  j will be in the nth even number sequence. 

When m – 1= (j – (2n)) / (2n+1),  j will be in the mth position of the nth even number sequence. 

The proportion of all positive (odd | even) integers in the partition:   

1/2 + 1/4 + 1/8 + ….  is 1 = 1/2 / (1 – 1/2). 

A proportion of one indicates that all positive (odd | even) integers are in the partition.  

This is also confirmed by the formulas that exist to locate the position of every positive (odd | even) 
integer within one of the sequences that form the partition. 



Collatz sequences are formed by starting with any even or odd positive integer. If it is even, divide by two 
until it is odd. Then multiply by three and add one to get an even number. The Collatz conjecture states 
that if this process is repeated you always get back to one.  

The Collatz conjecture is true [1] [2] and it also partitions the positive integers into the Collatz structure. 
This is shown through a number of geometric series whose terms are proportions that all sum to one. 

The Collatz Structure (displayed in the diagram below) consists of horizontal branches and vertical towers. 
Vertical arrows ↓ represent descending Collatz towers, where each term is half the previous term.    
Horizontal arrows ← indicate the Collatz algorithm is applied to move from term to term in the branch. 

Collatz Structure Branches and Towers ↓ indicates a descending Collatz tower 
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 [1] Proving the Collatz Conjecture. https://vixra.org/pdf/2005.0084v1.pdf 

For more details see [2] Collatz Conjecture Proof. https://vixra.org/pdf/1901.0227vE.pdf 
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