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Abstract: It will be a very pity that we have still confusions on the very
famous problem on 0/0 and the value of the elementary function of x/x at
x=0. In this note, we would like to discuss the problems in some elementary
and self contained way in order to obtain some good understanding for some
general people.

David Hilbert:
The art of doing mathematics consists in finding that special case which

contains all the germs of generality.
Oliver Heaviside:
Mathematics is an experimental science, and definitions do not come first,

but later on.
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1 Introduction
It will be a very pity that we have still confusions on the very famous problem
on 0/0 and the value of the elementary function of x/x at x=0. In this note,
we would like to discuss the problems in some elementary and self contained
way in order to obtain some good understanding for some general people.

Firstly, recall that
0

0
= 0/0 = 0

was stated by the founder Brahmagupta (598 -668 ?) who established four
arithmetic operations by introducing 0 and at the same time he defined as
0/0 = 0 in Brāhmasphuṭasiddhānta. We have been, however, considering
that his definition 0/0 = 0 is wrong for over 1300 years, but, we saw that his
definition is right and suitable. However, its meaning will be still vague in a
sense. When we consider the fractional in the usual way

0

0
= X,

and so,
0 = 0×X,

we can not determine X uniquley, indeed, we can consider such X as any
number - undetermined.

Meanwhile, from the fact
x

x
= 1

except for x = 0, some few people consider that

0

0
= 1.

First of all, we have to recall that in our usual axioms for the number fields
R and C we do not consider the division by zero x/0 and so, when we
consider such fractionals, we have to give their meanings (definitions) strictly.
However, such an introduction is quite simple and we can introduce the
Yamada field contaning the division by zero fractionals x/0. See [2] for the
details.

This statement is for the general fractions
a

b
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containing the case of b = 0.
The very natural and strong motievations of the Yamada field are given

by the Moore-Penroze generalized solution for the simple and fundamental
equation bx = a and the following the Takahasi uniquess theorem:

Let F be a function from C×C to C satisfying

F (b, a)F (c, d) = F (bc, ad)

for all
a, b, c, d ∈ C

and
F (b, a) =

b

a
, a, b ∈ C, a ̸= 0.

Then, we obtain, for any b ∈ C

F (b, 0) = 0.

On the long mysterious history of the division by zero, this fact seems to
be decisive. Indeed, Takahasi’s assumption for the product property should
be accepted for any generalization of fraction (division). Without the product
property, we will not be able to consider any reasonable fraction (division).

Following the fact, we should define

F (b, 0) =
b

0
= 0.

Of course, the division by zero fractionals b
0

are not the usual fractions, and
so we have to consider the fractionals with the Yamada field laws or with the
properties of the Moore-Penrose generalized inverses. Precisely, see the cited
references.

Next we shall consider the function case. Note firstly that fraction case
as numbers and function case are different essentially. In mathematics, the
definition is, of course, very fundamental and important. Many confusions
on the division by zero are based on the definitions of the division by zero.
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2 Essence of division by zero calculus
We will state very elementary facts and so, in order to state the contents in
a self contained way, we state the essence of division by zero calculus.

For any Laurent expansion around z = a,

f(z) =
−1∑

n=−∞

Cn(z − a)n + C0 +
∞∑
n=1

Cn(z − a)n, (2.1)

we will define
f(a) = C0. (2.2)

For the correspondence (2.2) for the function f(z), we will call it the
division by zero calculus. By considering derivatives in (2.1), we can
define any order derivatives of the function f at the singular point a; that
is,

f (n)(a) = n!Cn.

However, we can consider the more general definition of the division by
zero calculus.

For a function y = f(x) which is n order differentiable at x = a, we will
define the value of the function, for n > 0

f(x)

(x− a)n

at the point x = a by the value

f (n)(a)

n!
.

For the important case of n = 1,

f(x)

x− a
|x=a = f ′(a). (2.3)

In particular, the values of the functions y = 1/x and y = 0/x at the origin
x = 0 are zero. We write them as 1/0 = 0 and 0/0 = 0, respectively.
Of course, the definitions of 1/0 = 0 and 0/0 = 0 are not usual ones in the
sense: 0 · x = b and x = b/0. Our division by zero is given in this sense and
is not given by the usual sense as in stated in [1, 2, 3, 4].
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In particular, note that for a > 0[
an

n

]
n=0

= log a.

This will mean that the concept of division by zero calculus is important.
Note that

(xn)′ = nxn−1

and so (
xn

n

)′

= xn−1.

Here, we obtain the right result for n = 0

(log x)′ =
1

x

by the division by zero calculus.

3 Hyperbolic case
In the hyperbolic curve

x2

a2
− y2

b2
= 1, a, b > 0, (3.1)

by the representation by parameter t

x =
a

cos θ
=

a

2

(
1

t
+ t

)
and

y =
b

tan θ
=

b

2

(
1

t
− t

)
,

the origin (0, 0) may be included as the point of the hyperbolic curve, as we
see from the cases θ = ±π/2 and t = 0.

In addition, from the fact, we will be able to understand that the asymp-
totic lines are the tangential lines of the hyperbolic curve.

The two tangential lines of the hyperbolic curve with gradient m is given
by

y = mx±
√
a2m2 − b2 (3.2)
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and the gradients of the asymptotic lines are

m = ± b

a
.

Then, we have asymptotic lines y = ± b
a
x as tangential lines.

The common points of (3.1) and (3.2) are given by(
± a2m√

a2m2 − b2
,± b2m√

a2m2 − b2

)
.

For the case a2m2 − b2 = 0, they are (0, 0).

4 Parabolic case
For the envelop of the lines represented by, for constants m and a fixed
constant p > 0,

y = mx+
p

m
, (4.1)

we have the function, by using an elementary ordinary differential equation,

y2 = 4px. (4.2)

The origin of this parabolic function is excluded from the envelop of the
linear functions, because the linear equations do not contain the y axis as
the tangential line of the parabolic function. Now recall that, by the division
by zero, as the linear equation for m = 0, we have the function y = 0, the x
axis.

– This function may be considered as a function with zero gradient and
passing the point at infinity; however, the point at infinity is represented by
0, the origin; that is, the line may be considered as the x axis. Furthermore,
then we can consider the x axis as a tangential line of the parabolic function,
because they are gradient zero at the point at infinity. –

Furthermore, we can say that the x axis y = 0 and the parabolic function
have the zero gradient at the origin, since tan(π/2) = 0; that is, in the
reasonable sense the x axis is a tangential line of the parabolic function.

Indeed, we will see the surprising property that the gradient of the parabolic
function at the origin is zero. We have many examples, see [1].

Anyhow, by the division by zero, the envelop of the linear functions may
be considered as the whole parabolic function containing the origin.
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When we consider the limiting of the linear equations as m → 0, we will
think that the limit function is a parallel line to the x axis through the point
at infinity. Since the point at infinity is represented by zero, it will become
the x axis.

Meanwhile, when we consider the limiting function as m → ∞, we have
the y axis x = 0 and this function is a native tangential line of the parabolic
function at the origin. From these two tangential lines, we see that the origin
has double natures; one is the continuous tangential line x = 0 and the
second is the discontinuous tangential line y = 0.

In addition, note that the tangential point of (4.2) for the line (4.1) is
given by (

p

m
,
2p

m

)
and it is (0, 0) for m = 0.

We can see that the point at infinity is reflected to the origin; and so,
the origin has the double natures; one is the native origin and another is the
reflected one of the point at infinity.

5 On the function x/x at x=0
Apparently, by our division by zero calculus, for the function

f(x) =
x

x
,

we have
f(0) =

(x
x

)
x=0

= 1.

However, when we write the result as

f(0) =
(x
x

)
x=0

=
0

0
,

we have the contradiction
f(0) = 0.

Therefore, we can not write so. We have to consider the difference(x
x

)
x=0
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and
0

0
.

In this note, we shall refer to some interesting property of the function

f(x) =
x

x
.

We will consider the function with the parameter representation by t

x = t− 1

t
, y = t2 +

1

t2
.

For t ̸= 0, it represents the function

y = x2 + 2.

Note that for t = 1, it represents the point

(0, 2).

However, by the division by zero calculus it represents the point for t = 0

(0, 0).

What does the point (0, 0) mean? However, we can see its reason com-
pletely that the origin represents the point at infinity and the function passes
the point at infinity. We can see its total figure on the horn torus on which
the point at infinity and zero point are attaching. See the cited references.

Here, we see that for t ̸= 0,

y = x2 + 2 =

(
t− 1

t

)2

+ 2 = t2 − 2t× 1

t
+

1

t2
+ 2

= t2 − 2
t

t
+

1

t2
+ 2.

Then, if we use the result (
t

t

)
t=0

= 1,

by the division by zero calculus, we obtain the result

(0, 0).
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Meanwhile, when we use the result of the division by zero(
t

t

)
t=0

= 0,

we have the result
(0, 2).

Therefore, the important case appears by mixing both results of the
division by zero and division by zero calculus.

6 Conclusion
We introduced the new tangential lines by the concept of the division by
zero. We referred to the relation of the point at infinity and the origin.

For the function x/x we should consider both cases at x = 0 as
the values 1 and 0. Then, we should check the results for the both cases.
Of course, we can not consider always the cancellation as in(x

x

)
x=0

= 1.

If we do not consider the division by zero calculus, we can not consider the
case t = 0 and we can not catch the point at infinity that may be considered
as the point of the function on the horn torus.
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