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When confronted with a public health emergency, significant innovative treatment protocols can sometimes
be discovered by medical doctors at the front lines based on repurposed medications. We propose a very sim-
ple hybrid statistical framework for analyzing the case series of patients treated with such new protocols, that
enables a comparison with our prior knowledge of expected outcomes, in the absence of treatment. The goal
of the proposed methodology is not to provide a precise measurement of treatment efficacy, but to establish the
existence of treatment efficacy, in order to facilitate the binary decision of whether the treatment protocol should
be adopted on an emergency basis. The methodology consists of a frequentist component that compares a treat-
ment group against the unknown probability of an adverse outcome in the absence of treatment, and calculates a
lower bound for this unknown probability, that has to be exceeded, in order to control the corresponding p-value,
and reject the null hypothesis. We explain the relationship of this method with the exact Fisher test and the bino-
mial proportion confidence interval problem. The resulting lower bound (hereafter, efficacy threshold) is further
adjusted with a Bayesian technique, in order to also control the false positive rate. The combined techniques are
applied to case series of high-risk COVID-19 outpatients, that were treated using the early Zelenko protocol and
the more enhanced McCullough protocol. The resulting efficacy thresholds are then compared against our prior
knowledge of mortality and hospitalization rates of high-risk COVID-19 patients, as reported in the research
literature.
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1. INTRODUCTION

In medical research, the efficacy of new drugs or treatment
protocols is established by controlled studies in which a treat-
ment group is compared against a control group. A case series
is one half of a controlled study consisting only of the treat-
ment group. At the beginning of the COVID-19 pandemic,
practicing medical doctors were confronted with having no
treatment to offer to their patients that can prevent or minimize
hospitalization and/or death. In response, some doctors were
compelled to innovate and discover, on their own, treatment
protocols using repurposed off-label medications. Most no-
table examples, amongst several others, include Didier Raoult
[1] in the IHU Méditerranée Infection hospital in Marseilles
France, Vladimir Zelenko [2] in upstate New York, Shankara
Chetty [3] in South Africa, and Paul Marik’s group [4], which
was in the beginning based at the Eastern Virginia Medical
School. Their efforts to treat patients generated case series of
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successfully treated patients that constitute Real-World Evi-
dence [5].

The goal of this paper is to present a statistical framework
for analyzing systematic case series data of early treatment
protocols with binary endpoints (e.g. hospitalization or death),
and comparing them against our prior knowledge of the likeli-
hood of adverse outcomes in the absence of treatment. Under
certain conditions, which we shall elaborate on below, the pro-
posed methodology can be used to establish the existence of
treatment efficacy, but falls short of precisely measuring the
corresponding odds ratio. Nevertheless, this can be enough
evidence to justify a positive recommendation to adopt these
treatment protocols, on an emergency basis, while more de-
tailed clinical research is in progress. Following the recom-
mendation of the American Statistical Association statement
on statistical significance and p-values [6], the proposed ap-
proach combines use of the p-value, which enables one to re-
ject the null hypothesis, with a Bayesian factor analysis frame-
work [7–11] for controlling the false positive rate [12]. Empir-
ically, we have found that the frequentist p-value framework
has done a pretty good job on its own, at least for the analy-
sis of the case series data considered in this paper. However,
complementing it with Bayesian factor analysis can help raise
the red flag when dealing with small sample sizes and/or weak
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signals.
We apply the proposed framework to the processing of

available case series data [2, 13–17] that support proposed
early outpatient treatment protocols for COVID-19 patients,
such as the original Zelenko triple-drug protocol [2] and the
more advanced McCullough protocol [18–20]. The original
Zelenko protocol was first announced on March 23, 2020 [21].
The proposed approach was to risk-stratify patients into two
groups (low-risk vs high-risk), provide supportive care to the
low-risk group, and treat the high-risk group with a triple-
drug protocol (hydroxychloroquine, azithromycin, zinc sul-
fate). Zelenko’s risk stratification criteria included in the high-
risk group the following: all patients older than 60 were clas-
sified as high-risk; all patients of any age with at least one
comorbidity or BMI > 30 kg/m2; all patients of any age that
presented with shortness of breath. Results were reported in
an April 28, 2020 letter [13] and a June 14, 2020 letter [14],
and the lab-confirmed subset of the April data was published
in a formal case-control study [2]. Zelenko’s letters have been
attached to our supplementary material document [22].

The rationale for the triple-drug therapy was based on the
following mechanisms of action: Hydroxychloroquine pre-
vents the virus from binding with the cells, and also acts as a
zinc ionophore that brings the zinc ions inside the cells, which
in turn inhibit the RDRP (RNA Dependent RNA Polymerase)
enzyme used by the virus to replicate [23, 24]. Azithromycin’s
role is to guard against a secondary infection, but we have
since learned that it also has its own anti-viral properties [25–
27], and a signal of the efficacy of adding azithromycin on
top of hydroxychloroquine can be clearly discerned in a study
of nursing home patients in Andorra, Spain [28]. It is inter-
esting that chloroquine was shown in vitro to have antiviral
properties against the previous SARS-CoV-1 virus [29], and
that there is an anecdotal report from 1918 [30] about the suc-
cessful use of quinine dihydrochloride injections as an early
treatment of the Spanish flu. In hindsight, it is now known
that influenza viruses also use the RDRP protein to repli-
cate [31], which can be inhibited with intracellular zinc ions
[23, 24]. Consequently, there is a mechanism of action that
can explain why we should anticipate the combination of zinc
with a zinc ionophore (i.e. hydroxychloroquine, or quercetin
[32], or EGCG [33]) to inhibit the replication of the influenza
viruses. Other RNA viruses, including the respiratory syncy-
tial virus (RSV) [34] and the highly pathogenic Marburg and
Ebola viruses [35, 36], are also using the RDRP protein to
replicate. It remains a compelling hypothesis, deserving fur-
ther investigation, that the zinc/zinc ionophore concept could
play an important role as part of a broader multi-drug treat-
ment or prophylaxis protocol against these serious infectious
diseases.

Zelenko’s protocol was soon extended into a sequenced
multi-drug approach, known as the McCullough protocol [18–
20], which is based on the insight that COVID-19 is a tri-
phasic illness that manifests in three phases: (1) an initial
viral replication phase, in which the virus infects cells and
uses them to replicate and make new viral particles, during
which patients present with flu-like symptoms; (2) an inflam-
matory hyper-dysregulated immune-modulatory florid pneu-

monia, that presents with a cytokine storm, coughing, and
shortness of breath, triggered by the toxicity of the spike pro-
tein [37], when it is released, as viral particles are destroyed by
the immune system, triggering release of interleukin-6 and a
wave of cytokines; (3) a thromboembolic phase, during which
microscopic blood clots develop in the lungs and the vascu-
lar system, causing oxygen desaturation, and very damag-
ing complications that can include embolic stroke, deep vein
thrombosis, pulmonary embolism, myocardial injury, heart at-
tacks, and damage to other organs.

The rationale of the original Zelenko protocol was that early
intervention to stop the initial viral replication phase could
prevent the disease from progressing to the second and third
phase, and, in doing so, prevent hospitalizations or death. The
McCullough protocol [18–20] extends the Zelenko protocol
by using multiple drugs in combination sequentially to mit-
igate each of the three phases of the illness, depending on
how they present for each individual patient. McCullough’s
therapeutic recommendations for handling the cytokine in-
jury phase and the thrombosis phase of the COVID-19 ill-
ness are, for the most part, standard on-label treatments for
treating hyper-inflammation and preventing blood clots. The
most noteworthy innovations to the antiviral part of the proto-
col are the addition of ivermectin, which has 20 mechanisms
of action against COVID-19 [38], as an antiviral medication
[39–44] to be used as an alternative or in conjunction with hy-
droxychloroquine, the addition of a nutraceutical bundle [45–
47] combined with a zinc ionophore (quercetin [32] or EGCG
[33]) for both low-risk and high-risk patients, and lowering the
age threshold for high-risk patients to 50 years. The MATH+
protocol [4], developed for hospitalized patients by Marik’s
group, follows the same principles of a sequenced multi-drug
treatment. A similar treatment protocol, based on similar in-
sights, was independently discovered and published on May
2020 by Chetty [3] in South Africa.

McCullough’s protocol [18–20] was adopted by some treat-
ment centers throughout the United States and overseas, but
has not been endorsed by the United States public health agen-
cies, ostensibly due to lack of support of the entire sequenced
treatment algorithm by a randomized controlled trial (here-
after RCT). In spite of the urgent need for safe and effective
early outpatient treatment protocols for COVID-19, there has
been no attempt to conduct any such trials of any comprehen-
sive multi-drug outpatient treatment protocols throughout the
pandemic. Instead, the prevailing approach has been to try
to build treatment protocols, one drug at a time, after vali-
dating each drug with an RCT. Because COVID-19 is a mul-
tifaceted tri-phasic illness, and there is no a priori reason to
expect that a single drug alone will work for all 3 phases of
the disease, this orthodox approach is not an optimal research
strategy. The first priority should be to validate the efficacy
of treatment protocols that use multiple drugs in combination,
since this is what is actually going to be used in practice to
treat patients. On that front, there are published observational
data [15–17] on the efficacy of the McCullough protocol, in
addition to Zelenko’s reported outcomes [2, 13, 14, 21], and
there is an abundance of unpublished real world data from sev-
eral treatment centers, from around the world, that have yet to



3

be analyzed [48]. The statistical framework proposed in this
paper is the missing link for conducting a formal analysis of
the available observational data on early COVID-19 treatment
protocols.

The broader context in which the proposed statistical
methodology is situated is as follows. Shortly before COVID-
19 was declared a pandemic by the World Health Organiza-
tion, an article [49] was published on February 23, 2020 in the
New England Journal of Medicine arguing that “the replace-
ment of randomized trials with non-randomized observational
status is a false solution to the serious problem of ensuring
that patients receive treatments that are both safe and effec-
tive”. The opposing viewpoint was published earlier in 2017
by Frieden [50], highlighting the limitations of RCTs and the
need to leverage and overcome the limitations of all available
sources of evidence, including real world evidence [5], in or-
der to make lifesaving public health decisions. In particular,
Frieden [50] stressed that the very high cost of RCTs and the
long timelines needed for planning, recruiting patients, con-
ducting the study, and publishing it, are limitations that “af-
fect the use of randomized controlled trials for urgent health
issues, such as infectious disease outbreaks for which public
health decisions must be made quickly on the basis of limited
and imperfect data.”

Deaton and Cartwright [51] presented the conceptual
framework that underlies RCTs and highlighted several lim-
itations. Among them, they have stressed that randomization
requires very large samples on both arms of the trial, other-
wise, an RCT should not be presumed to be methodologically
superior to a corresponding observational study. Furthermore,
although a properly conducted RCT has internal validity, in
that the inferences are applicable to the specific group of pa-
tients that participated in the trial, the external validity of the
RCT outcomes needs to be justified conceptually on the basis
of prior knowledge, which is either observational, or based on
a deeper understanding of the underlying mechanisms of ac-
tion. Because COVID-19 mortality risk in the absence of early
treatment can span three orders of magnitude (from 0.01% to
more than 10%) [52–58], depending on age and comorbidi-
ties, trials using low-risk patient cohorts are not informative
about expected outcomes on the high-risk patient cohorts and
vice versa.

Furthermore, as was noted by Risch [59], when interpret-
ing evidence from RCTs, and more broadly from any study,
we should bear in mind that results of efficacy or toxicity of a
treatment regimen on hospitalized patients cannot be extrapo-
lated to outpatients and vice versa. Likewise, Risch [59] noted
that evidence of efficacy or lack of efficacy of a single drug do
not necessarily extrapolate to using several drugs in combi-
nation. This latter point is further amplified when there is an
algorithmic overlay governing, which drugs should be used
and when, based on the individual patient’s medical history
and ongoing response to treatment.

In addition to all that, we are also confronted with an ethi-
cal concern. If the available observational evidence are suffi-
ciently convincing, then there is a crossover point where it is
no longer ethical to justify randomly refusing treatment to a
large number of patients, in order to have a sufficiently large

control group. The corresponding mathematical challenge is
being able to quantify the quality of our observational evi-
dence in order to determine whether or not we are already
situated beyond this ethical crossover point.

Just as the quality of evidence provided by randomized con-
trolled trials is fluid with respect to successful randomization
and external validity, the same is true for the real world ev-
idence [5] obtained from any uncontrolled case series. Al-
though lacking a control prevents us from measuring the cor-
responding odds ratio, the confluence of the following condi-
tions makes it possible to establish the existence of treatment
efficacy: First, the proposed treatment protocols should use
repurposed drugs [60] with a known excellent safety record.
When testing new drugs, we have no prior knowledge of the
risks involved and a rigorous controlled study is required to
determine the balance of risks and benefits. Both Zelenko’s
triple drug therapy [2] as well as the expanded multi-drug Mc-
Cullough protocol [18–20] for the early outpatient treatment
of COVID-19 are based exclusively on safe repurposed med-
ications. Second, we need data that give us prior knowledge
of the probability risk of the relevant binary endpoints (i.e.
hospitalization and/or death) in the absence of treatment, as
a function of the relevant stratification parameters. It is not
necessary to have a comprehensive model and it may just be
sufficient to be able to obtain a good lower bound for the re-
spective probability risk, in the absence of treatment. Third,
and most importantly, the case series corresponding to treated
patients should exhibit a very strong signal of benefit, relative
to our prior experience with untreated patients, prior to the
discovery of the respective treatment protocol.

In simple operational terms, the idea that is proposed in this
paper works as follows. Our input is the number N of high-
risk patients treated, the number of patients a with an adverse
outcome (i.e. hospitalization or death) and selection criteria
for extracting the high-risk cohort under consideration, from
which we can deduce, based on prior knowledge, that the un-
known probability x of an adverse outcome without treatment
is bounded by p2 > x > p1. We also choose the desired level
of p-value upper bound p0, which is typically p0 = 0.05 (95%
confidence), although we shall also consider p0 = 0.01 and
p0 = 0.001. The output is an efficacy threshold x+0 (N, a, p0)
that gives us the following rigorous mathematical statement:
if x > x+0 (N, a, p0), then we have more than 1 − p0 confi-
dence that the treatment is effective relative to the standard of
care. This statement has to be paired with the subjective as-
sessment of our prior knowledge, based on which we need to
show that p1 > x+0 (N, a, p0). The upper bound p2 is used by
the Bayesian factor technique as part of finalizing the calcu-
lation of the efficacy threshold x+0 (N, a, p0). When there is a
large gap between p1 and x+0 (N, a, p0), and furthermore, when
the treatment relies on repurposed drugs with known excellent
safety record, then we have clear and convincing evidence that
the treatment is effective. On the other hand, when new medi-
cations, as opposed to repurposed drugs, are introduced into a
preexisting treatment protocol, they should be rigorously stud-
ied both for safety and efficacy with prospective RCTs.

The paper is organized as follows. On Section 2 we
present the technique for calculating the efficacy threshold
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x+0 (N, a, p0) that needs to be exceeded by the probability x of
an adverse event without treatment, in order to reject the null
hypothesis and control the corresponding p-value. We also ex-
plain the relationship of the proposed technique with the exact
Fisher test and with the binomial proportion confidence inter-
val problem. On Section 3, we present a Bayesian technique
for adjusting the efficacy thresholds x+0 (N, a, p0) in order to
also control the corresponding false positive rate. In Sec-
tion 4, we illustrate an application of both techniques to the
Zelenko case series [2, 13, 14] as well as the Procter [15, 16]
and Raoult [17] case series. Discussion and conclusions are
given in Section 5.

2. FREQUENTIST METHODS FOR CASE SERIES
ANALYSIS

In this section, we present the technique for comparing a
treatment group case series against the expected probability
x of an adverse outcome without treatment, based on prior
knowledge. Since the probability x is unknown, we calculate
the minimum value that this probability has to exceed in order
to be able to reject the null hypothesis, that the treatment has
no efficacy. The proposed technique is equivalent to an exact
Fisher test where we take the limit of an infinitely large control
group with probability of an adverse outcome set equal to x.
Contrary to what one might expect, although this limit does
converge, it does not do so monotonically. Likewise, when
comparing a treatment group (N, a) with the probability x of
an adverse outcome without treatment, we find that the result-
ing p-value is not monotonic with respect to x either. We also
explain the relationship of the proposed approach with a bino-
mial confidence interval problem, and provide evidence that
the corresponding coverage probability is conservative.

2.1. Comparing treatment group against expected adverse
event rate without treatment.

Suppose that we have a treatment group of patients in which
N patients have received treatment, and a patients have had
an adverse outcome. Without an appropriate control group,
there is no way to determine what would have happened to
that same group of patients if they had not been treated. Let
x be this unknown probability of an adverse outcome with-
out treatment. Although x may be unknown, we can nev-
ertheless calculate a lower bound x+0 (N, a, p0) such that if
x > x+0 (N, a, p0) then the p-value p(N, a, x), corresponding
to observing the event (N, a) under the null hypothesis, sat-
isfies p(N, a, x) < p0, with p0 = 0.05 for 95% confidence in
rejecting the null hypothesis, or alternatively p0 = 0.01 for
99% confidence, and p0 = 0.001 for 99.9% confidence.

First, we note that under the null hypothesis, that the treat-
ment applied to the treatment group is ineffective, the proba-
bility of observing a patients with an adverse outcome out of
a total of N patients is given by

pr(N, a |x) =
(
N
a

)
xa (1 − x)N−a, (1)

which corresponds to a binomial distribution. The first factor
gives the number of combinations for choosing the a patients
that have an adverse outcome out of all N patients. The sec-
ond factor xa is the probability that the chosen a patients have
an adverse outcome, under the assumption of the null hypoth-
esis. The third factor (1 − x)N−a is likewise the probability
that the remaining N − a patients will not have an adverse
outcome. Consequently, the product of the three factors is the
probability of seeing the event (N, a) under the null hypothe-
sis.

The corresponding p-value is calculated by adding to the
probability of the event (N, a), the probability of all other
events with smaller or equal probability, and it reads

p(N, a, x) =
N∑
n=0

pr(N, n|x)H (pr(N, a |x) − pr(N, n|x)), (2)

where H is the modified Heaviside function given by

H (x) =
{

1, if x ≥ 0
0, if x < 0 . (3)

Given the analytic equation for the p-value as a function of x,
the formal definition for the efficacy threshold x+0 (N, a, p0) is
given by

x+0 (N, a, p0) = inf{x ∈ [a/N, 1] | p(N, a, x) ≤ p0}, (4)

and we expect to find x+0 (N, a, p0) > a/N . By definition, the
meaning of this efficacy threshold is that if the probability x of
an adverse outcome without treatment exceeds x+0 (N, a, p0),
then the corresponding p-value for rejecting the null hypothe-
sis satisfies p(N, a, x) ≤ p0, which is considered statistically
significant for p0 < 0.05. It should be stressed that the effi-
cacy threshold x+0 (N, a, p0) may have to be further increased,
in accordance to the Bayesian methods presented in Section 3,
in order to also control the false positive rate.

The reason why in the above equation x is restricted in
the interval [a/N, 1] is because one can also calculate another
threshold x−0 (N, a, p0) given by

x−0 (N, a, p0) = sup{x ∈ [0, a/N] | p(N, a, x) ≤ p0}, (5)

such that x < x−0 (N, a, p0) implies p(N, a, x) ≤ p0. The
x−0 (N, a, p0) threshold is not relevant from the standpoint of
analyzing a treatment group case series. However, it could be
used on a control group case series to obtain a lower bound on
the probability of an adverse outcome in an untreated cohort
of patients, in the context of a specific confidence p0.

For the case of a treatment group case series, lacking an
appropriate control group, it is still possible to calculate the
efficacy threshold x+0 (N, a, p0) and we may be able to use it
to provide evidence that the treatment used has some efficacy.
As was explained in the introduction to the paper, to construct
a convincing argument, several conditions must be satisfied.
First, the medications used should have a known excellent
safety profile so that any risk of an adverse outcome caused
by the treatment itself, should be negligible relative to the risk
posed by the disease itself, under the preexisting standard of
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care. This requirement underscores that the proposed method-
ology should be used only when repurposing old medications
[60] to address a new challenge. Second, our prior experi-
ence with the standard of care should be sufficiently detailed
to be able to construct a predictive model of the risk of adverse
outcome under the standard of care as a function of the demo-
graphic variables that are most closely associated with an in-
creased risk. The risk model should provide a convincing es-
timate of the lower bound and upper bound of the probability
of an adverse outcome in a demographic similar to that of the
treatment group, when using the standard of care. Given such
an interval (p1, p2) for the risk associated with the standard of
care, we have statistical evidence in support of efficacy of the
proposed treatment protocol if x+0 (N, a, p0) < p1 < p2. Third,
there should be a substantial gap between the observed ad-
verse outcome rate, a/N in the treatment group and the stan-
dard of care risk interval (p1, p2) in order to be able to plau-
sibly rule out the placebo effect. Ideally, the gap between the
efficacy threshold x+0 (N, a, p0) and the risk interval (p1, p2)
should also be as large as possible, which can be achieved
with increased sample sizes.

Under these conditions, a comparison of the efficacy thresh-
old x+0 (N, a, p0) calculated from the treatment group case se-
ries, against the inferred risk interval (p1, p2) associated with
the standard of care, can be used to provide statistical evidence
in support of the existence of efficacy for the newly proposed
treatment. Although it will not be possible to measure the ef-
ficacy, proving the existence of efficacy can be sufficient for
recommending the adoption of a new treatment on an emer-
gency basis.

2.2. Mathematical comments on the proposed hypothesis
testing technique

We now redirect our focus towards some interesting math-
ematical observations. Let p(N, a, M, b) be the p-value ob-
tained from a two-tail exact Fisher test, with (N, a) being the
treatment group of N patients with a patients having an ad-
verse outcome, and (M, b) the control group of M patients,
with b patients having an adverse outcome. It is reasonable to
anticipate that p(N, a, M, b) should be related with p(N, a, x),
in the sense that if we run an exact Fisher test using a hypo-
thetical control group (M, b), such that x = b/M , then taking
the limit in which the size of the control group goes to infinity
should give us convergence to p(N, a, x). From this, we can
infer a corresponding relationship between the hypergeomet-
ric distribution, used in the calculation of p(N, a, M, b), and
the binomial distribution, used in the calculation of p(N, a, x).
As it turns out, this is a known result [61, 62], and there is
even a detailed mathematical study [63] bounding the corre-
sponding rate of convergence as the size of the control group
approaches infinity.

In order to state the relationship between the two probabil-
ities in a precise manner, we begin by noting that in Eq. (A1),
the variable M appears only at the top argument of two bi-
nomial coefficients, one at the numerator, and one at the de-
nominator. It follows that, notwithstanding that the variables

FIG. 1: We plot the p-value calculated from an exact Fisher test that
compares the treatment group from the DSZ study [2] (141 high-risk
patients treated with 1 death) against an artificial control group with
3.8% mortality rate. Note that the exact p-value in the infinite control
group limit should be 0.047, which is approached to three decimals
when we get to control group size between 160,000 and 180,000

N, a, M, b, are supposed to be integers, we can replace M with
a continuous variable (1/x)b, take a discrete sequence limit
b ∈ N∗, with b going to infinity, and show that

lim
b∈N∗

p(N, a, (1/x)b, b) = p(N, a |x). (6)

We give a detailed proof of this equation in appendix A.
The paradoxical feature of the convergence of the exact

Fisher test p-value, in the limit of an infinite control group,
is that it does not converge monotonically. We illustrated this
via an example in Fig. 1 and several more such example cal-
culations have been included in our supplementary material
document [22]. We have observed that as the size of the con-
trol group is increased, the p-value increases, which is coun-
terintuitive, since we are expecting that a larger control group
should increase the contrast between the treatment group and
control group and thus decrease the p-value. On the other
hand, the long term trend of the p-value is indeed that it tends
to decrease, which is done by discontinuous downward jumps.

For an explanation of this phenomenon, we can surmise
that as the hypergeometric distribution smoothly converges
towards the binomial distribution, part of the curve is increas-
ing, and another part is decreasing. The calculation shown in
Fig. 1 implies that, amongst the probability terms contributing
to the exact Fisher test p-value, the terms that tend to increase
with increasing control group sample size, dominate over the
terms that tend to decrease in the sum total. As they do so,
eventually some term becomes larger than the probability term
corresponding to the observed event (N, a, M, b), and is thus
removed from the sum. The sudden removal of these terms
explains the downward jumps and is the mechanism that actu-
ally drives the convergence of the exact Fisher p-value in the
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FIG. 2: Relationship between p-value and expected mortality rate
for high risk patients without early treatment, based on the case series
data from Procter’s dataset of 869 high-risk patients [16]. The zigzag
curve follows p(N, a, x) given by Eq. (2), whereas the smooth curve
follows pCP(N, a, x) given by Eq. (7).

infinite control group limit.
We see similar behavior when plotting the p-value

p(N, a, x) as a function of x with constant N, a and increas-
ing x. For example, in Fig. 2, we plot the p-value against the
expected mortality rate without early outpatient treatment of
COVID 19, based on Procter’s combined case series [16] of
869 high risk patients with 2 deaths that received early treat-
ment. The figure has vertical lines marking the crossover to
95%, 99%, and 99.9% confidence. With increasing x, the
contrast between the mortality rate x that we are expecting
without early treatment and the observed reduced mortality
rate with early treatment also increases, and thus our confi-
dence towards rejecting the null hypothesis should also im-
prove. We are therefore expecting p(N, a |x) to be monoton-
ically decreasing with respect to x. Instead we see in Fig. 2
that p(N, a |x) again follows a zigzag curve, where it increases
with small increases in x, while exhibiting a decreasing trend
with larger increases in x, that are driven by discontinuous
downward jumps.

This behavior can be explained if we approximate
p(N, a, x) using the equation

pCP(N, a, x) = 2
a∑

n=0
pr(N, n|x), (7)

which assumes, as an approximation, that the sum of the right-
tail terms pr(N, n|x) with a < n < N , that are included in the
exact p-value calculation, is equal to the corresponding left-
tail sum. Replacing the right-tail sum with the left-tail sum
gives us the smooth monotonic curve shown in Fig. 2. We can
therefore identify the right-tail terms as the cause of the zigzag
behavior in the exact p-value p(N, a, x). We can also explain
this theoretically by noting that the derivative of pr(N, n|x)

with respect to x is given by,

(d/dx)pr(N, n|x) =
(
N
n

)
(d/dx)[xn(1 − x)N−n] (8)

=

(
N
n

)
xn−1(1 − x)N−n−1(n − N x). (9)

Under the assumption that we are looking at values of x that
satisfy x > a/N , we see that for the left-tail terms we have
0 ≤ n < a and therefore n−N x < n−N (a/N ) = n−a < 0, and
since all other factors in Eq. (9) are positive, we get the correct
behavior that the left-tail terms are decreasing with respect to
x. However, for the right-tail terms, we have a < n ≤ N
and therefore we have n − N x > 0 if and only if n satisfies
a/N < x < n/N . It follows that some, but not all of the
terms in the right-tail sum, are going in the “wrong” direction
and are increasing with respect to x. The right-tail terms that
are decreasing are the ones that satisfy a/N < n/N < x <
1. The bad terms are eventually dropped from the p-value
sum, when they become large enough, which accounts for the
discontinuities.

This discontinuous behavior of p(N, a, x) with respect to x
makes it difficult to automate the calculation of the efficacy
thresholds x+0 (N, a, p0). Therefore for the purposes of this
work we simply scanned ranges of x in increments of 0.1% or
0.01% and located the thresholds manually. The correspond-
ing calculations are included in the supplementary material
document [22].

2.3. Relationship with the Binomial Proportion Confidence
Interval Problem

The last mathematical remark that we wish to comment on
is the question of whether anyone has ever proposed or studied
an approach like what we have proposed in Section 2. From
a mathematical point of view, the answer is yes. Hypothe-
sis testing in which a treatment group is compared against a
specific expected adverse outcome probability is the “inverse”
(more precisely, the contrapositive) of the binomial propor-
tion confidence interval problem, as was noted by Reiczigel
[64]. Suppose you run a binomial trial (e.g. tossing several
times a possibly loaded coin with a binary success/fail out-
come for each toss) and for N trials you observe a failures
and N − a successes. Assuming that we know a priori that the
failure probability is the same for each trial, what is the un-
known probability x of failure? On its face, you could guess
that x = a/N , but since we are given only a finite sample to
work with, the best we can do is to claim that the correct value
of x is near the estimate a/N . The challenge of the binomial
proportion confidence interval problem is to identify an inter-
val (x1, x2) such that we can assert with 95% confidence that
x ∈ (x1, x2). A solution to the binomial proportion confidence
interval problem can be represented by an incidence function
I (N, a, x, p0) such that I (N, a, x, p0) = 1 if and only if x is
inside the interval (x1, x2) corresponding to 1− p0 confidence
based on the binomial trial sample (N, a). Otherwise, we set
I (N, a, x, p0) = 0.
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Now, suppose you have a treatment group with N patients
and a adverse outcomes and suppose that x is the probabil-
ity of adverse outcome without treatment. Let I (N, a, x, p0)
represent the solution to the corresponding binomial trial con-
fidence interval problem for a binomial trial with an observed
sample (N, a). Then the null hypothesis H0 implies that the
probability x of an adverse outcome without treatment is equal
to the probability of adverse outcome with treatment. In turn,
that implies x ∈ (x1, x2) with 1 − p0 confidence. We obtained
thus the Boolean statement

H0 =⇒ I (N, a, x, p0) = 1. (10)

Using elementary concepts of Boolean algebra, this statement
is equivalent to the corresponding contrapositive statement

I (N, a, x, p0) = 0 =⇒ ¬H0, (11)

Here, ¬H0 represents the logical negation of the null hypoth-
esis H0. This is the statement of a sufficient condition for
rejecting the null hypothesis, and it establishes how the two
problems are related to each other. More specifically, what we
have previously defined as an efficacy threshold x+0 (N, a, p0)
is the upper endpoint x2 of the binomial proportion confidence
interval (x1, x2). Likewise, the lower endpoint x1 coincides
with the opposite threshold x−0 (N, a, p0).

As a result, previous research on the binomial proportion
confidence interval problem becomes relevant to our hypoth-
esis testing problem, and in connection to that, we have the
following additional remarks. First, the proposed solution
I (N, a, x, p0) should ideally be self-consistent in the sense that
the coverage probability c(N, p0 |x) given by

c(N, p0 |x) =
N∑
n=0

I (N, n, x, p0) pr(N, n|x), (12)

should satisfy c(N, p0 |x) = 1 − p0 for all x ∈ [0, 1].
Given a binomial trial with N attempts and a solution method
I (N, n, x, p0) for the binomial confidence interval problem,
the coverage probability c(N, p0 |x) for that solution method,
by definition, is the conditional probability that, given any
unweighted random choice of a possible binomial trial out-
come (N, n), the solution I (N, n, x, p0) to the corresponding
binomial proportion confidence interval problem gives a con-
fidence interval that includes the true binomial trial probabil-
ity responsible for the outcome (N, n), under the condition
that this true probability is equal to x. Second, it can be
shown [65] that it is impossible to formulate any such solu-
tion I (N, n, x, p0) that will give the correct coverage probabil-
ity c(N, p0 |x) for all x ∈ [0, 1]. Therefore, considering that
for our purposes it is preferred to overestimate rather than un-
derestimate the efficacy thresholds x+0 (N, a, p0), we are happy
to settle for a solution that gives conservative coverage such
that c(N, p0 |x) > 1 − p0, for all x ∈ [0, 1].Third, we discover
that the overwhelming majority of known methods for solv-
ing the binomial proportion confidence interval problem do
not have conservative coverage [66]. A notable exception is
the Clopper-Pearson interval [67], which gives a correspond-
ing efficacy threshold that reads

xCP(N, a, p0) = {x ∈ [a, N] | pCP(N, a, x) ≥ p0}, (13)

FIG. 3: Coverage probability for the Clopper-Pearson interval [67]
with sample sizes N = 20 and N = 100. The black curve corresponds
to N = 20 and the blue curve, which is situated below the black
curve, corresponds to N = 100. The coverage probabilities were
calculated using 0.01 increments.

with pCP(N, a, x) given by Eq. (7). Fig. 3 shows the coverage
probability for the Clopper-Pearson interval for sample sizes
N = 20 and N = 100. We see that the coverage is indeed
conservative and tends to approach 95% from above with in-
creasing sample size.

Although the Clopper-Pearson interval is very well-known
and tends to be the go-to method for the binomial proportion
confidence interval problem, from the standpoint of hypoth-
esis testing, it cannot be interpreted as a consequence of the
two-tail exact Fisher test, under the limit of an infinite control
group with a fixed adverse event probability. If we wish to de-
fine a solution to the binomial proportion confidence interval
problem that is consistent with Eq. (4) and corresponds to the
aforementioned limit of an exact Fisher test, then we should
define

I (N, a, x, p0) = 1⇐⇒
N∑
n=0

pr(N, n|x)H (pr(N, a |x) − pr(N, n|x)) ≥ p0. (14)

The confidence interval that corresponds to this equation was
originally proposed by Sterne [68] and its importance was
highlighted more recently by Reiczigel [64].

In Fig. 4, we show the coverage probability for the Sterne
interval for sample sizes N = 20 and N = 100 and note that it
also has conservative coverage, which is very desirable in the
context of hypothesis testing. In Fig. 5, we compare the cov-
erage probability of the Clopper-Pearson interval against the
coverage probability of the Sterne interval and note that al-
though they are both conservative, the Sterne interval has less
conservative coverage probability than the Clopper-Pearson,
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FIG. 4: Coverage probability for the Sterne interval [68] with sam-
ple sizes N = 20 and N = 100. The black curve corresponds to
N = 20 and the blue curve, which is situated below the black curve,
corresponds to N = 100. The coverage probabilities were calculated
using 0.01 increments.

over the same sample size.This suggests that the Sterne in-
terval is the better choice, both from the standpoint of cover-
age probability and also due to its relationship with the exact
Fisher test. On the other hand, due to the zigzag graph of
p(N, a |x) as a function of x, a defect of the Sterne interval is
that it is not always an interval, but may be punctuated with
holes, so there has been some early interest in correcting this
problem [69, 70]. Since the Sterne interval has conservative
coverage while punctuated with holes, it will have more con-
servative coverage if one plugs the holes, so there is no need
to worry about underestimating the efficacy thresholds.

3. BAYESIAN FACTOR ANALYSIS OF EFFICACY
THRESHOLDS

The methodology that we proposed in Section 2 is vulnera-
ble to the criticism that rejecting the null hypothesis, solely on
the basis that the p-value satisfies p < 0.05, is not sufficient
for asserting that treatment efficacy is statistically significant.
This is indeed the position of the recent American Statistical
Association statement on statistical significance and p-values
[6]. The problem is that p-values only measure how incom-
patible the data are with the null hypothesis. However, this
measure does not always do a good job at controlling the prob-
ability of a false positive result [71]. To estimate the latter
probability we would have to formulate the appropriate al-
ternate hypothesis and consider how much the data is com-
patible or incompatible with that alternate hypothesis. This
has prompted recommendations to lower the p-value thresh-
old down to 0.01 or 0.001 [71, 72]. However, this is only
a stopgap measure that does not fundamentally address the

FIG. 5: Comparison of the coverage probability for the Clopper-
Pearson interval [67] versus the Sterne interval [68] with sample size
N = 100. The black curve shows the coverage probability for the
Clopper Pearson interval, and the blue curve, which is situated be-
low the black curve, shows the coverage probability for the Sterne
interval. The coverage probabilities were calculated using 0.01 in-
crements.

problem.
In this section, we supplement the p-value based analysis of

Section 2, with a proposal for a Bayesian factor analysis [7–
11]. The Bayesian factor compares the alternate hypothesis
(treatment efficacy), against the null hypothesis and can be
used to calculate the probability of a false positive result [12].
We do not mean to suggest that the Bayesian factor should
replace the p-value in hypothesis testing. Our view is that
we need to use both. That is, use the p-value to reject the
null hypothesis, and then use the Bayesian factor to assess the
strength of the evidence in favor of the alternate hypothesis.
This viewpoint is similar to earlier proposals for conditional
frequentist testing [7]. In the following, we will briefly review
the Bayesian factor framework and then outline our specific
proposal for validating and adjusting, as needed, the efficacy
threshold x+0 (N, a, p0).

3.1. Bayesian factor and the false positive rate

Let ,A, B, be two arbitrary events in some probability space.
From the definition of conditional probability, we obtain the
Bayes rule, noting that

p(B |A) =
p(B ∩ A)

p(A)
=

p(A ∩ B)
p(A)

(15)

=
p(A|B)p(B)

p(A)
. (16)

Let D represent our data, H0 represent the null hypothesis,
and H1 represent the alternate hypothesis. In the Bayesian
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statistics framework, we assign probabilities p(H0), p(H1) to
the hypotheses H0, H1 representing our prior belief about how
likely each hypothesis is, and then calculate the updated prob-
abilities p(H0 |D) and p(H1 |D) on the condition of observing
the data D. In this way, Bayesian statistics is distinct from
frequentist statistics where probabilities are not assigned to
the hypotheses themselves.

From the Bayes rule we have,

p(H1 |D) =
p(D |H1)p(H1)

p(D)
, (17)

p(H0 |D) =
p(D |H0)p(H0)

p(D)
, (18)

and dividing the two equations gives

p(H1 |D)
p(H0 |D)

=
p(D |H1)
p(D |H0)

p(H1)
p(H0)

. (19)

The Bayes factor B(D |H1, H0) is defined to read

B(D |H1, H0) =
p(D |H1)
p(D |H0)

, (20)

and it is the numerical factor that amplifies our prior belief
about the odds ratio b(H1, H0) = p(H1)/p(H0) after seeing
the data D. Here, p(D |H1) is the probability of seeing the
data D if H1 is true and p(D |H0) is likewise the probability of
seeing the data D if H0 is true.

To interpret the meaning of the Bayesian factor, the fol-
lowing argument is used to calculate the posterior probabil-
ities p(H1 |D) and p(H0 |D) in terms of B(D |H1, H0) and
b(H1, H0) = p(H1)/p(H0). We assume that H0, H1 satisfy
p(H0) + p(H1) = 1 and p(H0 |D) + p(H1 |D) = 1. Combin-
ing the second equation with Eq. (17) and Eq. (18) gives the
Bayes theorem

p(D) = p(D |H0)p(H0) + p(D |H1)p(H1), (21)

and it follows that the probability of a false positive result is
given by

p(H0 |D) =
p(D |H0)p(H0)

p(D)
(22)

=
p(D |H0)p(H0)

p(D |H0)p(H0) + p(D |H1)p(H1)
(23)

=
p(D |H0)p(H0)

p(D |H0)p(H0)[1 + B(D |H1, H0)b(H1, H0)]
(24)

=
1

1 + B(D |H1, H0)b(H1, H0)
. (25)

We see that the false positive probability approximately
scales as the inverse of the Bayes factor B(D |H1, H0). On
the other hand, the dependence of p(H0 |D)) on the prior like-
lihood ratio b(H1, H0), which measures our subjective belief
about the odds ratio between H1 and H0, before seeing the
data D, is uncomfortable. There are three ways to cope with
that: First, one can simply join the frequentist camp, consider

probabilities based on beliefs as meaningless, and forget about
the whole thing. Second, one can use an uninformed prior,
meaning that we assume that both hypotheses H0 and H1 are
equally probable, not having any prior knowledge that favors
one over the other, and choose p(H0) = p(H1) = 1/2, which
corresponds to b(H1, H0) = 1. An interesting third way is
to use the reverse Bayesian analysis technique proposed by
Colquhoun [12], which is based on the equivalence

p(H0 |D) < p0 ⇐⇒ b(H1, H0) >
1 − p0

p0B(D |H1, H0)
, (26)

which relates an upper bound p0 on the probability p(H0 |D)
with a corresponding lower bound bmin(p0, B) on the prior
likelihood ratio b(H1, H0), which is given by

bmin(p0, B) =
1 − p0
p0B

, (27)

with B being the value of the corresponding Bayesian factor.
The meaning of Eq. (27) is that, given a desired lower bound
p0 for the false positive rate and a threshold B for the Bayesian
coefficient, bmin(p0, B) is the minimum prior likelihood ratio
p(H1)/p(H0) for our prior knowledge of the extent to which
the alternate hypothesis H1 is favored over the null hypothesis
H0, for which the Bayesian threshold B can control the false
positive rate and keep it below p0. As such, given our subjec-
tive choice for bmin, one can calculate the threshold B for the
Bayesian factor corresponding to the minimum tolerated false
positive rate p0.

Since we wish to constrain the false positive rates to less
than 0.05, in order to claim 95% statistical significance, we
choose p0 = 0.05. Kass and Raftery [11] and Jeffries [73]
both recommend that the threshold B > 100 be used for a de-
cisive acceptance of the alternate hypothesis H1 over the null
hypothesis H0. Using B = 100 we find that bmin(0.05, 100) =
0.19. This means that even if our prior belief is as bad as 5 to
1 in favor of the null hypothesis, a Bayesian factor B > 100
is good enough to accept the alternate hypothesis with more
than 95% confidence. In this sense, we can indeed claim that
B > 100 is a reasonable threshold for a decisive Bayesian
factor. We also know that for B = (1 − p0)/p0 we have
bmin(p0, B) = 1 which corresponds to an uninformed prior
likelihood ratio, and for p0 = 0.05, this corresponds to the
threshold B > 19, which reads log B > 1.27, on a deci-
mal logarithmic scale. Rounding up a bit, we can then argue
that log B > 1.3 gives 95% statistical significance for accept-
ing the alternate hypothesis and is a reasonable choice for a
threshold for strong evidence. As such this threshold is higher
than the threshold for strong evidence that was previously pro-
posed by Kass and Raftery [11], and lower than the corre-
sponding threshold, previously proposed by Jeffries [73]. As
a practical matter, we shall prefer to use the decisive threshold
log B > 2, but for cases that may fall short of that, it is good
to know that 1.3 < log B < 2 still represents a strong signal.
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3.2. Application to hypothesis testing for case series

Now, let us consider how Bayesian factor analysis can be
applied to a case series with a treatment group of N patients,
where a patients have an adverse outcome. Let x0 be the cor-
responding efficacy threshold, determined via the techniques
of Section 2, and let x be the probability of an adverse out-
come with treatment. We define a null hypothesis H0 and an
alternate hypothesis H1 about the value of x such that

H0 : x0 < x ≤ 1, (28)
H1 : 0 < x ≤ x0. (29)

We use for x0 the upper endpoint of the binomial propor-
tion confidence interval corresponding to the observed data
(N, a). Consequently, the null hypothesis H0 has been defined
to place x outside and above that interval, and the alternative
hypothesis H1 considers the remaining possible values for x.

Because both H0 and H1 are composite hypotheses, it
is necessary to introduce prior probabilities pr(x |H0) and
pr(x |H1), corresponding to H0 and H1. It may seem tempting
to just use uninformed priors, both for H0 and H1, however,
doing so would certainly not be appropriate for the null hy-
pothesis H0 in almost all situations, since with many illnesses,
we can rule out probabilities of adverse outcome beyond some
upper bound p2. We can thus use instead an uninformed prior
on the interval [x0, p2], given by

pr(x |H0(x0, p2)) =
{

1/(p2 − x0), if x ∈ [x0, p2]
0, if x ∈ (p2, 1], (30)

and perform an appropriate sensitivity analysis on the param-
eter p2. In general, increasing p2 will tend to increase the
Bayes factor, since doing so will tend to increase the contrast
between the null and alternate hypotheses. So we can explore
how much p2 can be decreased and still maintain a decisive
Bayes factor. Likewise, for the alternate hypothesis H1, we
will use an uninformed prior on the interval [0, t] with t ≤ x0
given by

pr(x |H1(x0, t)) =
{

1/t, if x ∈ [0, t]
0, if x ∈ (t, x0]. (31)

The reason for this choice is that we have found empirically
that in some cases, the Bayes factor may actually increase,
if instead of an uninformed prior on [0, x0] we use an unin-
formed prior on the shorter interval [0, t]. From an intuitive
standpoint, we surmise that if the data has a very strong ef-
ficacy signal, then the contrast between the null and alternate
hypotheses is increased when one eliminates the relatively un-
likely values of x between t and x0. For this reason, we shall
use the maximum value of the Bayes factor taken over all val-
ues t ∈ (0, x0), on a decimal logarithmic scale, which is given
by

b(x0, p2) = max
t∈(0,x0]

b0(x0, p2, t), (32)

b0(x0, p2, t) = log B(N, a |H1(x0, t), H0(x0, p2)). (33)

In appendix B we prove that the function b0(x0, p2, t) is ini-
tially increasing and then decreasing with respect to t with a

maximum in the interval [a/N, 1]. If this maximum is located
in the narrower interval [a/N, x0] then the optimal Bayes fac-
tor is indeed obtained when we use a choice t ∈ (0, p0) for the
prior distribution of the alternate hypothesis H1. If the max-
imum is formally located at t > x0, then the optimal Bayes
factor is obtained at t = x0. The resulting metric b(x0, p2) is
still dependent on the parameter p2 of the prior distribution of
the null hypothesis H0.

To complete the metric definition by Eq. (32) and
Eq. (33), we now show the calculation of the Bayes factor
B(N, a |H1(x0, t), H0(x0, p2)) between H1 and H0 as of func-
tion of x0, p2, t and the data N, a. We note that the probabil-
ities for seeing the data (N, a) under the hypotheses H1 and
H0 are given by:

pr(N, a |H0(x0, p2)) =
∫ 1

x0

dx pr(N, a |x) pr(x |H0(x0, p2))

(34)

=
1

p2 − x0

∫ p2

x0

dx pr(N, a |x) (35)

=
1

p2 − x0

(
N
a

) ∫ p2

x0

xa (1 − x)N−a dx, (36)

and

pr(N, a |H1(x0, p2)) =
∫ x0

0
dx pr(N, a |x) pr(x |H1(x0, t))

(37)

=
1
t

∫ t

0
dx pr(N, a |x) (38)

=
1
t

(
N
a

) ∫ t

0
xa (1 − x)N−a dx, (39)

consequently, the corresponding Bayes factor is given by

B(N, a |H1(x0, t), H0(x0, p2)) =
pr(N, a |H1(x0, p2))
pr(N, a |H0(x0, p2))

(40)

=
p2 − x0

t

∫ t

0
xa (1 − x)N−a dx∫ p2

x0

xa (1 − x)N−a dx
. (41)

The integrals can be calculated using exact algebra or numeri-
cally with the open source computer algebra software Maxima
[74]. The exact algebra calculation takes longer to carry out,
but we have confirmed that the numerical calculation using
the function quad qagr is just as accurate.

In order to control for the false positive rate, we propose
that the efficacy thresholds x+0 (N, a, p0) with p0 = 0.05 should
be increased, if necessary, by requiring that they also sat-
isfy b(x0, p2) ≥ 2. Since the threshold used for a decisive
Bayes factor with p0 = 0.05 corresponds approximately to
bmin(p0, B) = 1/5, it is reasonable to use the empirical for-
mula

b(x0, p2) ≥ log
(
5(1 − p0)

p0

)
, (42)
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to adjust the efficacy thresholds x+0 (N, a, p0) for an arbitrary
value of demanded confidence p0. For p0 = 0.01, this gives
b(x0, p2) ≥ 2.7 and for p0 = 0.001 we find b(x0, p2) ≥ 3.7
as the Bayes factor thresholds corresponding to a prior like-
lihood ratio p(H1)/p(H0) = 1/5 and, as such, they are the
thresholds that we recommend imposing on the Bayes factors
for the purpose of adjusting the corresponding efficacy thresh-
olds x+0 (N, a, p0) for the choices p0 = 0.01 and p0 = 0.001.

4. APPLICATION TO THE ANALYSIS OF EARLY
OUTPATIENT COVID-19 TREATMENT CASE SERIES

4.1. Review of the Zelenko, Procter and Raoult case series

We shall now analyze, using the aforementioned methodol-
ogy, the high-risk patient case series by Zelenko [2, 13, 14],
Procter [15, 16], and Raoult [17]. The main reason for focus-
ing on these case series specifically, is that they consist exclu-
sively of high-risk patients, where early outpatient treatment
is expected to make a difference. In this subsection we shall
present the details of these case series, focusing on outcomes
and treatment protocols used.

In the Zelenko April 2020 letter [13], Zelenko reported
on his outcomes based on a total of 1,450 patients that he
treated for COVID-19 until April 28, 2020 in an Orthodox
Jewish community in upstate New York. From this cohort,
405 patients were classified as high risk and treated with his
triple-drug therapy (hydroxychloroquine, azithromycin, zinc
sulfate). The reported outcomes were 6 hospitalizations and 2
deaths. From amongst the patients classified as low risk, who
were given only supportive care, there were no hospitaliza-
tions or deaths. Zelenko’s criteria for risk stratification define
three categories of high risk patients: (1) every patient older
than 60; (2) every patient younger than 60 but with comorbidi-
ties; (3) patients younger than 60 and without comorbidities
that presented with shortness of breath.

A subset of the April 28, 2020 case series was published in
a case controlled study [2] that included only the treated pa-
tients with COVID-19 infection that was confirmed by a PCR
test or an antibody IgG test. The remaining patients were
clinically diagnosed from symptomatic presentation and via
ruling out a bacterial or influenza infection. This Derwand–
Scholz–Zelenko study (hereafter DSZ study) [2] included 335
patients of which, 141 patients were classified as high-risk pa-
tients and treated with the triple drug protocol with 4 hospi-
talizations and 1 death. Detailed demographic data is given
for the high-risk patient treatment group, including a detailed
breakdown in the three high-risk categories. The study also in-
cluded a control group of 377 patients who were seen by other
treatment centers in the same community, that were only of-
fered supportive care and no early outpatient treatment. From
this untreated group, 13 patients died and 58 patients were
hospitalized. The untreated group includes both low-risk and
high-risk patients, so we expect that it underestimates both
the hospitalization and mortality risk for high-risk patients.
Unfortunately, demographic data was not available for the un-
treated group, so from a strictly methodological point of view,

one cannot entirely rule out the theoretical possibility that the
untreated group might have consisted of patients that are at
higher risk on average than those of the high-risk treatment
group. On the other hand, using a case series of untreated
patients from Israel [55], with demographic data indicating a
combination of low and high-risk patients, with 143 deaths
reported out of 4,179 untreated patients, gives the same mor-
tality rate as in the DSZ control group, suggesting that the
DSZ control group also consists of a mixed demographic of
low and high risk patients.

The June 2020 Zelenko case series [14] is reported in a let-
ter that Zelenko sent to the Israeli Health Minister at the time,
Dr. Moshe Bar Siman-Tov, on June 14, 2020, which was later
made publicly available. In the letter, Zelenko reported that
a total of approximately 2,200 patients were seen as of June
14, 2020, with 800 patients deemed high-risk under the same
criteria and treated with the triple-drug therapy, since the be-
ginning of the pandemic. The reported cumulative outcomes
are, 12 hospitalizations, 2 deaths, no serious side effects, and
no cardiac arrhythmias.

During the April 2020–June 2020 interval, Zelenko en-
hanced his triple drug therapy protocol with oral dexametha-
sone and budesonide nebulizer at the beginning of May 2020.
He introduced the blood thinner Eliquis towards the end of
May 2020 and beginning of June 2020. Ivermectin was not
used by Zelenko until October 2020. Consequently, the DSZ
study [2] and the Zelenko April 2020 case series [13] reflect
the outcomes of the triple drug therapy, when used by itself
as an early outpatient treatment. The Zelenko June 2020 case
series [14] includes the use of steroid medications and a blood
thinner, so the underlying treatment protocol is closer to the
McCullough protocol [18–20].

It is worth noting that both letters [13, 14] were originally
posted on Google Drive by Zelenko and were censored by
Google during 2021. The April 2020 letter [13] was cited by
Risch [59], whose paper has also preserved the corresponding
case series data. The June 2020 letter case series data [14]
was independently reported by a subsequent publication by
Risch [75], however, it included only the number of reported
deaths, and not the number of hospitalizations. The authors
have attached copies of all three Zelenko letters [13, 14, 21]
to our supplementary material document [22].

The Procter case series were reported consecutively in two
publications [15, 16]. The first paper [15] reports on 922 pa-
tients that were seen between April 2020 and September 2020,
of which 320 were risk stratified as high-risk patients and
treated with the McCullough protocol [18–20]. The outcome
was, 6 hospitalizations and 1 death. The second paper [16] re-
ports on an additional patient cohort seen between September
2020 and December 2020. Out of the total number of patients
during that time period, 549 were risk stratified as high-risk
and treated with an outcome of 14 hospitalizations and one
death. For both case series, the risk stratification criteria were
similar to those used by Zelenko. However, the age threshold
used to risk stratify patients as high-risk was lowered to 50
years. The medications used were customized for each patient
in accordance with the McCullough protocol [18–20] and in-
cluded hydroxychloroquine, ivermectin, zinc, azithromycin,
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Study Total High-risk Hospitalizations & Deaths

DSZ study [2] 712 141 4 (2.8%) 1 (0.7%)
Zelenko April 2020 [13] 1450 405 6 (1.4%) 2 (0.4%)
Zelenko June 2020 [14] 2200 800 12 (1.5%) 2 (0.25%)
Procter I [15] 922 320 6 (1.8%) 1 (0.3%)
Procter II [16] ? 869 20 (2.3%) 2 (0.2%)
Raoult [17] 10429 1495 106 (7.0%) 5 (0.3%)
DSZ control [2] 377 < 377 58 (>15%) 13 (>3.4%)
Israeli control [55] 4179 < 4179 N/A 143 (>3.4%)
Raoult control [17] 2114 520 38 (7.3%) 11 (2%)

FIG. 6: Case series list: The table lists the total number of patients,
the subset of high risk patients that were treated with a sequenced
multidrug regimen, number of patients that were hospitalized, and
number of deaths, for the following case series: Derwand-Scholtz-
Zelenko study treatment group [2], Zelenko’s complete April 2020
data set [13], Zelenko’s complete June 2020 data set [14], Procter’s
observational studies [15, 16], and Raoult’s high risk (older than 60)
treatment group [17]. The table also lists the same data for the control
group in the DSZ study [2], the untreated group in the Israeli study
[55], and the control group in the Raoult study [17].

doxycycline, budesonide, foliate, thiamin, IV fluids, and for
more severe cases, dexamethasone and ceftriaxone were also
added. Demographic details for the cohorts were reported in
the respective publications [15, 16].

The final high-risk patient case series is extracted from a
recent cohort study [17] of 10,429 patients that were seen
between March 2020 and December 2020 by Raoult’s IHU
Méditerranée Infection hospital in Marseille, France. From
the entire cohort, 8,315 patients were treated with hydroxy-
chloroquine, azithromycin and zinc. Of those patients, those
older than 70 or with comorbidities were also treated with
enoxaparin and low-dose dexamethasone was given on a case
by case basis to patients that presented with inflammatory
pneumonopathy, high viral loads, or on a case by case ba-
sis. This treatment protocol is consistent to some extent with
the principles that underlie the McCullough protocol [18–20].
The remaining 2,114 patients did not receive hydroxychloro-
quine or azithromycin or both because it was either contraindi-
cated or because the patients did not consent to using one or
two of these medications. This cohort was used in the Raoult
study [17] as a control group. The study risk-stratified the pa-
tients by age (see Table 1 of Ref. [17]) making it possible to
extract a case series of high-risk patients under the restriction
age ≥ 60. In the treatment group, this results in 1,495 high-
risk patients with 5 deaths and 106 hospitalizations. In the
control group, under the age ≥ 60 constraint, there are 520
high-risk patients with 38 hospitalizations and 11 deaths. The
authors note that no serious adverse events to the medications
were reported and that the reported deaths were not related to
side effects of hydroxychloroquine or azithromycin. Further-
more, no deaths were reported for age < 60 cohort in both the
treatment group and control group.

Fig. 6 summarizes the aforementioned case series, includ-
ing the treatment groups from the DSZ study [2], the Zelenko

Study odds ratio 95% CI p-value

Exact Fisher tests on mortality rates

DSZ study vs DSZ control 0.2 0.02–1.54 0.12
Zelenko April 2020 vs DSZ control 0.13 0.03–0.61 0.003
Zelenko June 2020 vs DSZ control 0.07 0.01–0.31 10−5

DSZ vs Israeli control 0.2 0.03–1.45 0.09
Zelenko April 2020 vs Israeli control 0.14 0.03–0.57 0.0002
Zelenko June 2020 vs Israeli control 0.07 0.02–0.28 10−9

Exact Fisher tests on hospitalization rates

DSZ vs DSZ control 0.16 0.05–0.45 0.02
Zelenko April 2020 vs DSZ control 0.08 0.03–0.19 10−13

Zelenko June 2020 vs DSZ control 0.08 0.04–0.16 10−19

FIG. 7: Exact Fisher test comparing the mortality rate reduction and
hospitalization rate reduction between the high risk patient treated
group the DSZ study [2], Zelenko’s complete April 2020 data set
[13], and Zelenko’s complete June 2020 data set [14] against the low
risk and high risk patient control groups in the DSZ study [2] and the
Israeli study [55]. The p-values where there is a failure to establish
95% confidence are highlighted.

[2, 13, 14] and Procter [15, 16] case series and the age ≥ 60
treatment group from the Raoult study [17]. Note that the Ze-
lenko June 2020 case series and the Procter II case series as
reported on Fig. 6, combine the two respective consecutive
case series. We also report on Fig. 6 the DSZ study’s con-
trol group [2], the alternative Israeli control group [55] and
the age ≥ 60 part of the Raoult control group [17]. We em-
phasize that all reported treatment group case series consist of
high-risk patients.

From a cursory examination of Fig. 6, we see that the mor-
tality rate is consistent across all treatment groups, which
speaks to the consistency Bradford Hill criterion [76]. Hos-
pitalization rates are also consistent between the Zelenko
[2, 13, 14] and Procter case series [15, 16], but there is a
clear discrepancy with the hospitalization rates reported in the
Raoult treatment case series [17]. We believe that the reason
for the discrepancy is that both Zelenko and Procter explicitly
aimed to prevent hospitalizations due to the poor outcomes of
the inpatient treatment protocols used in the United States. In
Marseille, France, Raoult had the option of using his IHU
Méditerranée Infection hospital, for short hospitalizations, in
order to closely monitor his more concerning cases.

In Fig. 7, we show the results of comparing the Zelenko
April 2020 [13] and Zelenko June 2020 [14] case series
against both the original DSZ control group [2] as well as
the alternative control group from Israel [55]. Although in
the original DSZ study [2] mortality rate reduction was not
statistically significant, we have found that comparing either
the Zelenko April 2020 case series [13] or the June 2020 case
series [14] against either control group, gives more than 90%
mortality rate reduction, which is also statistically significant
in terms of both p-value and confidence interval. Likewise, we
see at least 90% hospitalization rate reduction when the Ze-
lenko April 2020 case series or Zelenko June 2020 case series
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Study 95% threshold 99% threshold 99.9% threshold

Mortality rate efficacy thresholds

DSZ study 3.8% (3.9%) 5.3% (5.2%) 7.0% (6.9%)
Zelenko April 2020 1.8% 2.4% (2.3%) 2.9%
Zelenko June 2020 1.0% 1.2% (1.2%) 1.6% (1.5%)
Procter I 1.7% (1.8%) 2.3% 3.1%
Procter II 0.84% (0.83%) 1.08% (1.07%) 1.4% (1.38%)
Raoult 0.79% (0.78%) 0.96% (0.95%) 1.18%

Hospitalization rate efficacy thresholds

DSZ study 7.0% (7.2%) 8.8% (8.7%) 10.6% (10.7%)
Zelenko April 2020 3.2% 3.9% 4.7%
Zelenko June 2020 2.7% 3.0% 3.5%
Procter I 4.1% 4.9% 5.9%
Procter II 3.6% 4.0% 4.5%

FIG. 8: Mortality and hospitalization rate reduction efficacy thresh-
olds, defined as the upper end of the Sterne interval [68], correspond-
ing to 95%, 99%, and 99.9% confidence, for the DSZ study treatment
group [2], Zelenko’s complete April 2020 data set [13], Zelenko’s
complete June 2020 data set [14], Procter’s observational studies
[15, 16], and Raoult’s high risk (older than 60) treatment group [17].
The approximate efficacy thresholds obtained by the upper endpoint
of the Clopper-Pearson interval [67] are shown in parenthesis when
not equal to the Sterne interval [68] threshold.

is compared against the DSZ control group, which is statisti-
cally significant as well. Because the control groups consist of
a combination of both low-risk and high-risk patients, whereas
the treatment groups consist of only high-risk patients, the re-
sulting comparisons are biased towards the null, and are thus
underestimating the actual efficacy of the respective treatment
protocols.

4.2. Case series efficacy thresholds

We have calculated the efficacy threshold for mortality rate
reduction and hospitalization rate reduction corresponding to
the case series by Zelenko [2, 13, 14], Procter [15, 16], and
Raoult [17]. The calculations are shown in the supplementary
material document [22]. The results are tabulated in Fig. 8.
We display the efficacy thresholds for 95%, 99% and 99.9%
confidence, which are calculated as the upper end points of the
corresponding Sterne interval [68] (see Eq. (4)), and in paren-
thesis, we display the approximate thresholds, obtained using
the upper endpoint of the corresponding Clopper-Pearson in-
terval [67], (see Eq. (13)), when they diverge from the exact
thresholds by more than the precision used. We use precision
of 0.1% for most case series, except for the two largest ones,
Procter II [16] and Raoult [17], where we use 0.01% preci-
sion.

Each threshold corresponds to a mathematically rigorous
conditional statement about rejecting the null hypothesis that
the corresponding early outpatient treatment protocol is inef-
fective. For example, the 1.7% efficacy threshold correspond-

Age Deaths Cases CFR

10-19 0 416 0%
20-29 7 3619 0.193%
30-39 18 7600 0.237%
40-49 38 8571 0.4%
50-59 130 10008 1.3%
60-69 309 8583 3.6%
70-79 312 3918 7.96%
≥ 80 208 1408 14.8%

≥ 60 829 13909 5.96%

FIG. 9: Crude Case Fatality Rate data, in the absence of early out-
patient treatment, based on early data from China as of February 11,
2020, and published on March 30, 2020. [54]

ing to 95% confidence for rejecting the null hypothesis in the
Zelenko April 2020 case series corresponds to the following
statement: if the expected mortality rate for an equivalent co-
hort without early outpatient treatment exceeds 1.7%, then the
null hypothesis can be rejected with at least 95% confidence.
Similar statements can be formulated for each efficacy thresh-
old metric on Fig. 8. These statements are mathematical facts.
However, to complete the inference argument, they need to be
paired with an inevitably subjective statement that provides
an estimate, or at least a lower bound, on the expected mor-
tality or hospitalization rates of similar cohorts without early
outpatient treatment. If we can assert that these rates are in
an interval that is entirely above the corresponding efficacy
thresholds, then we can reject the null hypothesis. Secondar-
ily, we need an inference about the intervals of mortality or
hospitalization rates, in the absence of early outpatient treat-
ment, in order to do the Bayesian adjustment of the efficacy
thresholds.

In general, patients have been classified as high-risk based
on the following three categories: (1) old age; (2) comorbidi-
ties or obesity (with BMI ≥ 30kg/m2); (3) shortness of breath
upon presentation. The age threshold for high risk classifica-
tion is age ≥ 60 for the Zelenko [2, 13, 14] and Raoult [17]
case series, and age ≥ 50 for the Procter [15, 16] case series.
The high-risk treatment groups for the Zelenko [2, 13, 14] and
Procter [15, 16] case series include the demographic distribu-
tion of all three categories of high-risk patients, whereas in the
Raoult [17] case series we have included only age ≥ 60 pa-
tients. Our approach, in the following, is to lower bound the
mortality rate, in the absence of early outpatient treatment,
separately for each of the three high-risk patient categories.
Then, the common lower bound becomes applicable to any
demographic distribution of the three categories. To estab-
lish the existence of treatment efficacy, it is sufficient for this
lower bound to exceed the corresponding efficacy thresholds
of Fig. 8. In the following, we shall now consider the mortal-
ity rate for each of the three high-risk patient categories sepa-
rately.

With regards to the first category of patients classified as
high-risk due to old age, the earliest data from China [54] as
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Age Italy CFR China CFR

0-9 0% 0%
10-19 0% 0.2%
20-29 0% 0.2%
30-39 0.3% 0.2%
40-49 0.4% 0.4%
50-59 1.0% 1.3%
60-69 3.5% 3.6%
70-79 12.8% 8.0%
≥ 80 20.2% 14.8%

FIG. 10: Crude Case Fatality Rate data, in the absence of early outpa-
tient treatment, based on early data from China and Italy as of March
17, 2020 and published on March 23, 2020 [52, 53].

of February 11, 2020, estimated a minimum of 3.6% mortal-
ity rate for patients older than 60 and a minimum of 1.3%
mortality rate for patients older than 50 (see Fig. 9). These
numbers are corroborated with numbers from China [52] and
Italy [53] as of March 17, 2020 (see Fig. 10). The 3.6% mor-
tality rate for age ≥ 60 exceeds the 95% efficacy thresholds
for the Zelenko April 2020 [13] and Zelenko June 2020 case
series [14] by a wide margin. The gap with the efficacy thresh-
old of the DSZ study [2] is too small due to the small sample
size of patients. The most noteworthy comparison is with the
Raoult case series [17] which consists of exclusively patients
with age ≥ 60. There is a large gap between 3.6% and the
95% efficacy threshold, which is down to 0.79%, and even the
99.9% efficacy threshold, which is at 1.16%. So there is an un-
ambiguous, very strong signal of benefit with the Raoult case
series [17] with respect to mortality rate reduction. With the
Procter I [15] and Procter II [16] case series, the age threshold
used for risk stratification was age ≥ 50 and for the Procter
II case series [16], there is a small gap between the 0.84%
efficacy threshold and a 1.3% lower bound on the untreated
mortality rate. A more favorable comparison is possible if
one uses the United States case fatality rate (hereafter CFR)
[77], or adjusted data from the CDC [56–58] which will be
discussed at the end of this subsection.

The second category of high risk patients are patients with
comorbidities regardless of age. In Fig. 11, we show case fa-
tality rates with respect to comorbidities (i.e. cardiovascular
disease, diabetes, respiratory disease, hypertension, cancer),
based on data from China [52] in the period up to February 11,
2020, and additional data from Israel [55] with patients diag-
nosed in the period up to April 16, 2020, and deaths recorded
up to July 16, 2020. There is variability in mortality rates
from 5% to 15%, with the entire interval clearly exceeding,
by a very wide margin, the efficacy thresholds, for all case se-
ries reported on Fig. 8. The Israeli data appear to show higher
mortality rates than the data from China, and the reason for
that could be that the Israeli study [55] accounted for the time
lag between patient diagnosis and death.

These studies do not account for the mortality risk from
obesity and also do not account for the mortality risk cor-

Comorbidity CFR from Chinese study [52]

Comorbidity Deaths Cases CFR

Cardiovascular disease 92 873 10.5%
Diabetes 80 1102 7.3%

Respiratory disease 32 511 6.3%
Hypertension 161 2683 6%

Cancer 6 107 5.6%

Comorbidity CFR from Israeli study [55]

Comorbidity Deaths Cases CFR

Cardiovascular disease 87 518 16.7%
Diabetes 71 531 13%

Respiratory disease 23 361 6%
Hypertension 102 744 13.7%

Cancer 37 264 10%

FIG. 11: Case fatality rate based on early-stage analysis of COVID-
19 outbreak in China in the period up to February 11, 2020 [52] vs
similar statistics from Israel published on September 7, 2020 [55].

responding to the third category of high-risk patients that
present with shortness of breath. A collaborative study by
Risch and a research group in Brazil [78], found, using multi-
variate regression analysis, that both obesity and dyspnea pose
a higher mortality risk than heart disease (see Table 2 of Ref.
[78]), therefore, we expect that they both lie in the same 5%
to 15% interval as patients with other comorbidities.

For the case of obesity, as a mortality risk factor, this con-
clusion is also supported by more recent meta-analysis [79],
showing that obesity is a greater mortality risk factor than dia-
betes and hypertension, and one that increases with increasing
BMI. A study of 148,494 patients across 238 hospitals by the
CDC [80] also confirms that obesity is an increasing mortality
risk factor with increasing BMI. It is known that obesity is as-
sociated with increased levels of the inflammatory cytokines
TNF-α (tumor necrosis factor alpha), IL-1β (interleukin-1-
beta), and IL-6 (interleukin 6), produced by macrophages in
the adipose tissue [81]. A study of 9390 hospitalized pa-
tients in Abu Dhabi, United Arab Emirates, has found that
patients with severe COVID-19 symptoms, requiring inten-
sive care, had significantly elevated IL-6 biomarker relative
to patients that presented with mild or moderate symptoms
[82]. An earlier meta-analysis [83] has also confirmed that
the IL-6 biomarker is associated with severe progression of
the COVID-19 disease. Consequently, there is a very com-
pelling biological mechanism that explains why obesity is a
severe risk factor for progression of the disease to the covid-
19 pneumonia phase, requiring a high risk classification and
immediate early outpatient treatment.

For the case of patients presenting with shortness of breath,
it is important to appreciate the fact that, without an early out-
patient treatment intervention, such presentation implies that
the disease is progressing beyond the viral replication phase,
into the COVID-19 pneumonia phase, soon to be followed
with the thromboembolic stage, oxygen desaturation, and hos-
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FIG. 12: Cumulative case fatality rate in the United States and France
between April 2020 and November 2021.

pitalization. It is thus self-evident that these patients should
be classified as high-risk and treated immediately. Assuming
that most of such patients will be hospitalized without outpa-
tient treatment, we can also estimate the corresponding mor-
tality risk, in the absence of outpatient treatment, by looking at
the conditional probability of death, assuming hospitalization
has already taken place. A study by the Houston Methodist
Hospital [84] has shown an average mortality rate of 5.8%
for hospitalized patients between March 2020 and July 2020,
in spite of the use of hydroxychloroquine and anticoagulants.
Furthermore, the study reports 12.1% mortality rate, for hos-
pitalized patients between March 13th 2020 and May 15th
2020, and 3.5% mortality rate between May 16th 2020 and
July 7, 2020, corresponding to two consecutive surges, not-
ing that the second surge targeted younger patients than the
first surge. A prospective multicenter study [85] from Italy
of 1050 patients in the Coracle registry, between February 22,
2020 and April 1, 2020, showed an overall 13% average mor-
tality rate, and more specifically, 7.4% mortality rate for hos-
pitalized patients that do not require supplemental oxygen or
invasive ventilation, 12.8% mortality rate for hospitalized pa-
tients that require supplemental oxygen, and 22.9% mortality
rate for hospitalized patients that are invasively ventilated. In
light of the above mortality rates for hospitalized patients, the
mortality risk of patients presenting with shortness of breath
exceeds the efficacy of thresholds of Fig. 8, if we expect that
more than half of them will be hospitalized, in the absence of
any attempt at early outpatient treatment.

Based on the above arguments, we can lower bound the un-
treated mortality risk by 3% for each of the three categories of
high-risk patients, using age ≥ 60 threshold for the first cate-
gory. Consequently this lower bound can be applied to any de-
mographic distribution between these three categories, for any
particular high-risk patient cohort, and it is sufficiently high to
exceed the efficacy threshold for the Zelenko April 2020 [13],
Zelenko June 2020 [14] and Raoult case series [17].

A completely different approach is to compare the efficacy

thresholds against the CFR for the entire population [77]. The
CFR for the United States and France is displayed on Fig. 12
for the time period between April 2020 and October 2021.
During 2020, the CFR ranged from 2% to 6% in the United
States and from 2% to 16% in France. In both countries, the
CFR converged to 1.7% during 2021 and remained roughly
constant, with very small oscillations throughout 2021. The
minimum value of 1.7% exceeds the mortality rate reduction
efficacy thresholds for the Zelenko June 2020 [14], Procter
II[16], and Raoult case series [17]. Taking the CFR at face
value, this is a very strong signal of efficacy, because the
CFR includes asymptomatic, low-risk, and high-risk patients,
regardless of whether they received early treatment, against
solely high-risk patients in the treatment groups of the respec-
tive case series. This comparison strongly biases against being
able to reject the null hypothesis, and nevertheless, we are still
able to do so.

In particular, we note that in the United States, the CFR
ranged from 2% to 6% during 2020, which lies above the 1.8%
mortality rate reduction efficacy threshold for Zelenko April
2020 case series [13]. This was a strong indicator in favor
of adopting Zelenko’s triple-drug protocol at that time on an
emergency basis, but was unfortunately not implemented in
the United States for outpatients [86]. By June 2020, the re-
spective efficacy threshold decreased to 1.0% while the CFR
was still in the neighborhood of 3%. Thus, there was a very
strong signal in favor of adopting the Zelenko triple-drug ther-
apy by the summer of 2020.

Alternatively to using the CFR, we can also estimate the
mortality risk of the first category of high risk patients (age ≥
60 or age ≥ 50) using adjusted estimates by the CDC [56–
58] of COVID-19 deaths per symptomatic cases. The CDC
report attempts to adjust for the differences in underreporting
of symptomatic illness, hospitalizations, and deaths, and it is
based on reports ranging from February 2020 to September
2021. The raw data and a copy of the CDC Report website
are given in our supplementary material document [22]. From
that, we calculate for the age ≥ 50 group a mortality rate of
2.26% (95% CI: 1.94% – 2.61%) which exceeds by a wide
margin the 95% efficacy thresholds for mortality rate reduc-
tion for both Procter I [15] and Procter II [16] case series, and
for the Zelenko April 2020 [13], Zelenko June 2020 [14] and
Raoult case series [17]. We cannot deduce an age ≥ 60 mor-
tality rate from the CDC data, but note that the age ≥ 65 mor-
tality rate, according to the CDC is 4.79% (95% CI: 4.11% to
5.52%).

4.3. Analysis of hospitalization rate reduction efficacy

In Fig. 8, we see that the 95% efficacy thresholds for hospi-
talization rate reduction range from 2.7% to 4.1% for all case
series, with the exception of the DSZ case series, where it is at
7.0%, due to the smaller sample size. These thresholds can be
compared against the following empirical data. At the begin-
ning of the pandemic, based on data from China until Febru-
ary 11, 2020, there was an initial estimate [54] that the proba-
bility of hospitalization for a high-risk age ≥ 60 cohort would
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range from 10% to 18%. The control group from Zelenko’s
study [2] consisting of both low and high-risk patients, again
at the beginning of the pandemic here in the United States, re-
ported 377 patients with 58 hospitalizations, corresponding to
15% hospitalization rate. In the Cleveland study [87], which
was used to train a predictive model for the risk of hospital-
ization and death based on patient medical history, the entire
dataset consisted of a total of 4,536 patients between March 8,
2020 and June 5, 2020. There were 582 hospitalizations cor-
responding to 21% hospitalization rate. In the Mass General
Brigham hospital study [88], from a cohort of 12,347 patients
that tested positive, there were 3,401 hospitalizations between
March 4, 2020 and July 14, 2020, corresponding to a 27%
hospitalization rate. This was also a cohort that included both
low-risk and high-risk patients. The CDC adjusted data [56–
58] between February 2020 and September 2021, estimate
13.79% (95% CI: 17.09% to 28.52%) hospitalization proba-
bility for the age ≥ 50 group, given a symptomatic infection.
For the age ≥ 65 cohort, this estimate increases to 22.09%
(95% CI: 17.09% to 28.52%)

Overall, our observation is that we tend to see numbers
ranging from 10% to 28% with substantial variability between
various cohorts, all of which were not given early outpatient
treatment. On the other hand, we see that the case series of
high risk patients shown in Fig. 8, have efficacy thresholds
for hospitalization rate reduction ranging from 2.7% to 4.1%,
which have a substantial separation from the 10% to 28% in-
terval. We interpret this big gap between the two intervals
as strong evidence of the existence of hospitalization rate re-
duction efficacy as a result of the respective early outpatient
treatment protocols in the Zelenko April 2020 [13], Zelenko
June 2020 [14], Procter I [15], Procter II case series [16]

4.4. Bayesian analysis of efficacy thresholds

We shall now assess whether the efficacy thresholds need
to be increased, using the Bayesian technique described in
Section 3, in order to control the false positive rate. In
Fig. 13, we have calculated the logarithmic Bayesian metric
b(x0, p2), given by Eq. (32), for the mortality and hospitaliza-
tion rate redaction efficacy thresholds corresponding to 95%
confidence, using a range of values of p2 for the purpose of
sensitivity analysis. The calculation details are available in
our supplementary material document [22]. Recall from Sec-
tion 3, that p2 corresponds to our sense of the worst possible
probability of the respective adverse outcome (hospitalization
or death) in high-risk patients in the absence of early outpa-
tient treatment. As such, 5% to 10% is a typical range for mor-
tality rates in untreated high-risk patients, making p2 = 5% a
highly conservative choice. We did not consider values higher
than 10%, even though worse probabilities are possible, be-
cause for p2 > 10%, we see that all logarithmic Bayesian
factors already satisfy b(x0, p2) ≥ 2. We have also looked at
p2 = 2%, which is obviously entirely unrealistic, because it
corresponds to the mortality rate of the Raoult control group
[17] where some partial treatment was given.

In spite of that, we see that the logarithmic Bayesian factor

Bayes factors at the mortality rate efficacy thresholds

Study 95% threshold p2 = 0.02 p2 = 0.05 p2 = 0.1
DSZ study 3.8% N/A 1.38 1.99
Zelenko April 2020 1.8% 1.17 2.04 2.45
Zelenko June 2020 1.0% 2.06 2.66 3.02
Procter I 1.7% 1.28 2.07 2.47
Procter II 0.84% 1.92 2.48 2.82
Raoult 0.79% 1.91 2.45 2.79

Bayes factors at the hospitalization rate efficacy thresholds

Study 95% threshold p2 = 0.02 p2 = 0.05 p2 = 0.1
DSZ study 7.0% 1.30 1.71 1.92
Zelenko April 2020 3.2% 2.00 2.24 2.39
Zelenko June 2020 2.7% 2.24 2.47 2.61
Procter I 4.1% 1.89 2.15 2.32
Procter II 3.6% 1.98 2.23 2.39

FIG. 13: Bayes factor (decimal logarithm) corresponding to the
95% efficacy threshold (Sterne interval [68]) for mortality and hos-
pitalization rate reduction, using maximum untreated mortality rate
p2 for high risk patients at p2 ∈ {0.02, 0.05, 0.10} and maximum
untreated hospitalization rate p2 for high risk patients at p2 ∈
{0.10, 0.15, 0.20}, for the DSZ study treatment group [2], Zelenko’s
complete April 2020 data set [13], Zelenko’s complete June 2020
data set [14], Procter’s observational studies [15, 16], and Raoult’s
high risk (older than 60) treatment group [17].

b(x0, p2) for p2 = 2% is very close to 2 for the Procter II [16],
and Raoult [17] case series, and for the Zelenko June 2020
case series [14], it is above 2. For the Zelenko April 2020
[13] and Procter I [15] case series, the logarithmic Bayesian
factor is too small for p2 = 2% to control the false positive
rate for mortality rate reduction, however, it is above the de-
cisive threshold for p2 = 5% and p2 = 10%. This is not a
serious concern, since that particular choice of p2 = 2% is
unrealistically small. For the DSZ study [2], a p2 = 2% log-
arithmic Bayesian factor is not relevant since the correspond-
ing p-value efficacy threshold exceeds 2%. Furthermore, the
p2 = 5% logarithmic Bayesian factor is also far below the
decisive threshold and the p2 = 10% logarithmic Bayesian
factor is only borderline decisive. This signals that the sam-
ple size in the DSZ study [2] maybe too small to be used to
establish a statistically significant mortality rate reduction in
terms of controlling the false positive rate, even if we are able
to successfully reject the null hypothesis.

Likewise, for the hospitalization rate reduction efficacy
thresholds, we have used the values p2 = 10%, 15%, 20%
based on our expectation of a typical 10% to 28% range for
the probability of hospitalization, in the absence of early out-
patient treatment. We did not consider p2 > 20% since almost
all of the logarithmic Bayesian factors satisfy b(x0, p2) ≥ 2 at
p2 = 20%. For all case series, except for the DSZ study [2]
and the Procter I case series [15], the numbers are good for
all three values of p2, therefore, it is not necessary to increase
the 95% confidence efficacy threshold for hospitalization rate
reduction. For the DSZ study [2] we see that the logarith-
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Mortality rate Bayesian efficacy thresholds

Study 95% log Bayes = 2 thresholds
threshold p2 = 2% p2 = 5% p2 = 10%

DSZ study 3.8% N/A N/A 3.9%
Zelenko April 2020 1.8% N/A 1.8% 1.5%
Zelenko June 2020 1.0% 1.0% 0.8% 0.6%
Procter I 1.7% N/A 1.9% 1.3%
Procter II 0.84% 0.87% 0.7% 0.6%
Raoult 0.79% 0.82% < 0.7% < 0.7%

Hospitalization rate Bayesian efficacy thresholds

Study 95% log Bayes = 2 thresholds
threshold p2 = 10% p2 = 15% p2 = 20%

DSZ study 7.0% 9.5% 7.8% 7.2%
Zelenko April 2020 3.2% 3.2% 3.0% 2.9%
Zelenko June 2020 2.7% 2.6% 2.5% 2.4%
Procter I 4.1% 4.3% 4.0% 3.7%
Procter II 3.6% 3.7% 3.5% 3.4%

FIG. 14: Comparison of the 95% confidence efficacy threshold
(Sterne interval [68]) for mortality and hospitalization rate reduc-
tion with the Bayes factor efficacy thresholds at log Bayes = 2, us-
ing maximum untreated mortality rate p2 for high risk patients at
p2 ∈ {0.02, 0.05, 0.10} and maximum untreated hospitalization rate
p2 for high risk patients at p2 ∈ {0.10, 0.15, 0.20}, for the DSZ study
treatment group [2], Zelenko’s complete April 2020 data set [13],
Zelenko’s complete June 2020 data set [14], Procter’s observational
studies [15, 16], and Raoult’s high risk (older than 60) treatment
group [17].

mic Bayesian factors stand out as being noticeably below 2.
This is caused by the small sample size, and it signals that al-
though the 7.0% threshold is appropriate for rejecting the null
hypothesis, it may not be sufficient for accepting the alternate
hypothesis. The logarithmic Bayesian factor is also out of line
for the Procter I case series [15] for hospitalization rate reduc-
tion with p2 = 10%, however, this is not a serious concern
since that particular choice of p2 is unrealistically small.

In Fig. 14, we compare the efficacy thresholds for rejecting
the null hypothesis with the corresponding 95% confidence
Bayesian thresholds, obtained by the inequality b(x0, p2) ≥ 2
for accepting the alternate hypothesis. For the DSZ study [2],
we see that the corresponding Bayesian thresholds for hos-
pitalization rate reduction range from 7.2% to 9.5%, which
lie above the 7.0% threshold obtained via the p-value. So, the
most cautious course of action is to opt for the 9.5% threshold,
which is still below most of our estimates for hospitalization
probability of untreated patients. For the DSZ study [2], for
both p2 = 2% and p2 = 5%, the logarithmic Bayesian fac-
tor for mortality rate reduction does not go above the decisive
threshold for any value of x with a/N ≤ x ≤ p2, consequently
the corresponding Bayesian thresholds are undefined, and for
p2 = 10% we find a Bayesian mortality rate reduction thresh-
old of 3.9% which is slightly larger than the p-value threshold
of 3.8%. For the Procter I case series [15], there is a weak indi-
cation that the 4.1% efficacy threshold for hospitalization rate

Bayes factors at the mortality rate efficacy thresholds

Study 99% threshold p2 = 0.02 p2 = 0.05 p2 = 0.1
DSZ study 5.3% N/A N/A 2.70
Zelenko April 2.4% N/A 2.81 3.27
Zelenko June 1.2% 2.53 3.21 3.57
Procter I 2.3% N/A 2.72 3.17
Procter II 1.08% 2.55 3.17 3.53
Raoult 0.96% 2.57 3.16 3.51

Bayes factors at the hospitalization rate efficacy thresholds

Study 99% threshold p2 = 0.02 p2 = 0.05 p2 = 0.1
DSZ study 8.8% 1.83 2.42 2.67
Zelenko April 3.9% 2.75 3.00 3.17
Zelenko June 3.0% 2.77 3.00 3.16
Procter I 4.9% 2.55 2.85 3.02
Procter II 4.0% 2.63 2.89 3.05

FIG. 15: Bayes factor (decimal logarithm) corresponding to the
99% efficacy threshold (Sterne interval [68]) for mortality and hos-
pitalization rate reduction, using maximum untreated mortality rate
p2 for high risk patients at p2 ∈ {0.02, 0.05, 0.10} and maximum
untreated hospitalization rate p2 for high risk patients at p2 ∈
{0.10, 0.15, 0.20}, for the DSZ study treatment group [2], Zelenko’s
complete April 2020 data set [13], Zelenko’s complete June 2020
data set [14], Procter’s observational studies [15, 16], and Raoult’s
high risk (older than 60) treatment group [17].

reduction might have to be increased to 4.3%, and the mor-
tality rate reduction threshold increased from 1.7% to 1.9%.
Likewise for the Procter II case series [16], an increase of the
hospitalization rate reduction efficacy threshold from 3.6% to
3.7% is weakly indicated. Both adjustments are negligible
and inconsequential. For the Zelenko April 2020 [13] and Ze-
lenko June 2020 [14] case series, where the sample sizes are
much larger, we see that the overall trend is for the Bayesian
thresholds to be far more lenient than the ones obtained via
the p-value. This is possibly attributed to a very strong signal
of efficacy in the data.

It is interesting to repeat the Bayesian analysis on the ef-
ficacy thresholds for mortality rate reduction and hospitaliza-
tion rate reduction for 99% confidence and 99.9% confidence.
We have seen that the Bayesian adjustments to the 95% con-
fidence efficacy thresholds, when they are needed, are very
small, so the relevant question is whether this pattern con-
tinues when the demanded confidence increases to 99% or
99.9%. Fig. 15 and Fig. 16 show the values of the logarith-
mic Bayesian factor b2(x0, p2) at the mortality and hospital-
ization efficacy thresholds for 99% and 99.9% confidence, as
determined solely from the p-value, and for various values of
p2, as previously discussed. Note that for Fig. 15 the deci-
sive Bayesian factor threshold corresponding to 99% confi-
dence is b2(x0, p2) ≥ 2.7. Likewise, in Fig. 16, the decisive
Bayesian factor threshold corresponding to 99.9% confidence
is b2(x0, p2) ≥ 3.7. We see that for the most part the logarith-
mic Bayesian factors are either above or near their respective
thresholds.
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Bayes factors at the mortality rate efficacy thresholds

Study 99.9% threshold p2 = 0.02 p2 = 0.05 p2 = 0.1
DSZ study 7.0% N/A N/A 3.51
Zelenko April 2020 2.9% N/A 3.47 4.00
Zelenko June 2020 1.6% 3.43 4.34 4.73
Procter I 3.1% N/A 3.59 4.16
Procter II 1.4% 3.38 4.15 4.53
Raoult 1.18% 3.49 4.16 4.52

Bayes factors at the hospitalization rate efficacy thresholds

Study 99.9% threshold p2 = 0.02 p2 = 0.05 p2 = 0.1
DSZ study 10.6% N/A 3.17 3.49
Zelenko April 2020 4.7% 3.68 3.97 4.15
Zelenko June 2020 3.5% 3.75 4.00 4.16
Procter I 5.9% 3.45 3.80 3.99
Procter II 4.5% 3.54 3.82 3.99

FIG. 16: Bayes factor (decimal logarithm) corresponding to the
99.9% efficacy threshold (Sterne interval [68]) for mortality and
hospitalization rate reduction, using maximum untreated mortality
rate p2 for high risk patients at p2 ∈ {0.02, 0.05, 0.10} and maxi-
mum untreated hospitalization rate p2 for high risk patients at p2 ∈
{0.10, 0.15, 0.20}, for the DSZ study treatment group [2], Zelenko’s
complete April 2020 data set [13], Zelenko’s complete June 2020
data set [14], Procter’s observational studies [15, 16], and Raoult’s
high risk (older than 60) treatment group [17].

Likewise, in Fig. 17 and Fig. 18 we are comparing the mor-
tality and hospitalization rate reduction efficacy thresholds de-
termined via the p-value, against the corresponding efficacy
thresholds determined using the logarithmic Bayesian factor
b2(x0, p2), for 99% and 99.9% confidence correspondingly.
We see that the Bayesian perturbations to the efficacy thresh-
olds are for the most part negligible for both 99% and 99.9%
confidence, continuing the similar pattern that we have ob-
served for the 95% confidence efficacy thresholds.

As a practical matter, in all cases, we want to see both the
frequentist and Bayesian thresholds exceeded before claim-
ing a statistically significant result. For the case series under
consideration, we see that the Bayesian adjustments to the ef-
ficacy thresholds for mortality and hospitalization rate reduc-
tion are negligible and therefore do not impact the analysis of
the preceding sections.

5. DISCUSSION AND CONCLUSIONS

Our findings fully support risk stratification in the man-
agement of acute COVID-19, with the intent of reducing the
intensity and duration of symptoms and by that mechanism,
lower the risk of hospitalization and death. Although COVID-
19 is generally known as a respiratory disease, there is an ac-
cumulation of evidence [37, 89, 90] that it is also, if not pri-
marily, a vascular disease, with endothelial injury having a
major role in sustained permanent injuries, hospitalizations,
and death. The most impactful countermeasure that can pre-

Mortality rate Bayesian efficacy thresholds

Study 99% log Bayes = 2.7 thresholds
threshold p2 = 2% p2 = 5% p2 = 10%

DSZ study 5.3% N/A N/A 5.3%
Zelenko April 2020 2.4% N/A 2.4% 2.0%
Zelenko June 2020 1.2% 1.3% 1.1% 0.9%
Procter I 2.3% N/A 2.3% 1.9%
Procter II 1.08% 1.14% 0.92% 0.80%
Raoult 0.96% 1.0% 0.86% 0.77%

Hospitalization rate Bayesian efficacy thresholds

Study 99% log Bayes = 2.7 thresholds
threshold p2 = 10% p2 = 15% p2 = 20%

DSZ study 8.8% N/A 9.5% 8.9%
Zelenko April 2020 3.9% N/A 3.7% 3.5%
Zelenko June 2020 3.0% 3.0% 2.9% 2.8%
Procter I 4.9% 5.1% 4.8% 4.6%
Procter II 4.0% 4.1% 3.9% 3.8%

FIG. 17: Comparison of the 99% confidence efficacy threshold
(Sterne interval [68]) for mortality and hospitalization rate reduc-
tion with the Bayes factor efficacy thresholds at log Bayes = 2.7,
using maximum untreated mortality rate p2 for high risk patients at
p2 ∈ {0.02, 0.05, 0.10} and maximum untreated hospitalization rate
p2 for high risk patients at p2 ∈ {0.10, 0.15, 0.20}, for the DSZ study
treatment group [2], Zelenko’s complete April 2020 data set [13],
Zelenko’s complete June 2020 data set [14], Procter’s observational
studies [15, 16], and Raoult’s high risk (older than 60) treatment
group [17].

vent these adverse outcomes is early outpatient treatment, us-
ing multiple drugs in combination, that stops viral replica-
tion at the first phase of the illness, and mitigates the in-
juries caused by the hyper inflammatory COVID-19 pneumo-
nia phase and the subsequent thromboembolic phase.

Looking back, after 2 years of going through the COVID-
19 pandemic, one of the lessons learned is that some of the
key discoveries for the successful treatment of a novel disease
emerge from the experience of the frontline doctors that are
directly confronted with the need to find a way to help their
patients. Although the orthodox approach is to consider pos-
sible treatments as unproven until they are validated with an
RCT, in real life, it is possible to be confronted with a sit-
uation where the observational data is sufficiently strong to
justify the immediate adoption of a treatment protocol, and to
raise the ethical concern of whether it is appropriate to even
conduct the RCT, and deny treatment to a very large cohort
of patients, in order to form a control group. Consequently,
there is a need to be able to analyze observational data in a
statistically rigorous way.

We have provided a hybrid statistical framework for as-
sessing observational evidence that combines both frequentist
and Bayesian methods; the frequentist methods aim to con-
trol the p-value for rejecting the null hypothesis, whereas the
Bayesian methods aim to control the false positive rate. The
two methods are complementary and not mutually exclusive.
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Mortality rate Bayesian efficacy thresholds

Study 99.9% log Bayes = 3.7 thresholds
threshold p2 = 2% p2 = 5% p2 = 10%

DSZ study 7.0% N/A N/A 7.4%
Zelenko April 2.9% N/A 3.1% 2.7%
Zelenko June 1.6% 1.8% 1.4% 1.3%
Procter I 3.1% N/A 3.2% 2.8%
Procter II 1.4% 1.53% 1.26% 1.14%
Raoult 1.18% 1.23% 1.08% 1.01%

Hospitalization rate Bayesian efficacy thresholds

Study 99.9% log Bayes = 3.7 thresholds
threshold p2 = 10% p2 = 15% p2 = 20%

DSZ study 10.6% N/A 11.9% 11.1%
Zelenko April 2020 4.7% 4.8% 4.5% 4.4%
Zelenko June 2020 3.5% 3.5% 3.4% 3.3%
Procter I 5.9% 6.2% 5.8% 5.7%
Procter II 4.5% 4.6% 4.5% 4.4%

FIG. 18: Comparison of the 99.9% confidence efficacy threshold
(Sterne interval [68]) for mortality and hospitalization rate reduc-
tion with the Bayes factor efficacy thresholds at log Bayes = 3.7,
using maximum untreated mortality rate p2 for high risk patients at
p2 ∈ {0.02, 0.05, 0.10} and maximum untreated hospitalization rate
p2 for high risk patients at p2 ∈ {0.10, 0.15, 0.20}, for the DSZ study
treatment group [2], Zelenko’s complete April 2020 data set [13],
Zelenko’s complete June 2020 data set [14], Procter’s observational
studies [15, 16], and Raoult’s high risk (older than 60) treatment
group [17].

The core mathematical ideas are very simple, however, there
are some subtleties concerning the relationship of the frequen-
tist methods with the exact Fisher test and the binomial pro-
portion confidence interval problem. We have also discussed
some counterintuitive misbehavior of the p-value, that we no-
ticed during the course of this investigation, that is inherent to
the definition of the p-value itself. Specifically we’ve noticed
that the p-value does not have a precisely monotonic relation-
ship with our intuitive understanding of statistical confidence
in rejecting the null hypothesis. Empirically, we have noticed
that this misbehavior intensifies with small sample sizes, and
is diminished with increasing sample sizes [22].

The main weakness of the proposed statistical methodology
is that it has to be limited only to the assessment of treatments
that are based on repurposed medications [60] with a known
excellent safety record. It would be highly inappropriate to
use this approach on new medications, or other countermea-
sures, where the balance of risks and benefits is yet to be deter-
mined. Furthermore, the analysis of the treatment group case
series needs to be compared with a model that can at mini-
mum lower-bound the probability of adverse outcomes with-
out treatment, based on our prior knowledge. On the other
hand, the development of this model can be done indepen-
dently from the analysis of the treatment group case series.

One way in which our approach deviates from the usual
way of doing things, is that we are using the proposed statisti-

cal methodology to assess the efficacy of the entire treatment
algorithm against supportive care. Both of the original Ze-
lenko protocol [2] and the more enhanced McCullough proto-
col [18–20] are examples of sequenced multi-drug treatment
protocols. Furthermore, both protocols are algorithmic, in the
sense that treatment is customized to the individual patient,
based on the patient’s medical history and the response to
treatment. For the case of the Zelenko protocol [2] this is done
via the risk stratification of patients to low-risk and high-risk
patients. For the case of the McCullough protocol [18–20],
this is done both by risk stratification and also by account-
ing for the progression of the illness through the three distinct
stages and response to treatment. Consequently, the immedi-
ate goal is not to establish that any particular drug is effective.
The goal is to establish that the treatment algorithm itself is
effective, so that it can be deployed rapidly on an emergency
basis and be subsequently improved over time with further re-
search.

A possible theoretical criticism is that the particular case
series that we have considered may have selection bias, i.e.
they were published and came to our attention as a result of
their positive outcomes, and not because they are represen-
tative of the typical outcomes of most treatment centers that
employ early outpatient treatment protocols against COVID-
19. This is mitigated to some extent by the fact that we have
reported case series from three different treatment centers, two
in the United States and one in France, with consistent mor-
tality rates, therefore this consistency is compelling statistical
evidence against selection bias. More importantly, for both of
the Zelenko [2, 13, 14] and Procter [15, 16] case series, we
have two consecutive reports over two consecutive time inter-
vals replicating the hospitalization and mortality rate reduc-
tion outcomes, and these replications are additional statistical
evidence against a theoretical selection bias.

The case series that we have analyzed in this paper add up
to a total of 3164 high-risk patients. It is currently estimated
that the total number of high-risk patients that have been
treated with early outpatient treatment protocols throughout
the United States may exceed this number by one or two or-
ders of magnitude [48]. Unfortunately, no resources have been
allocated to study this data by our public health agencies, but
we can make some suggestions about how such an analysis
could be carried out. One idea for quickly analyzing a very
large dataset is to extract the age > 50 and/or age > 65 part of
the database, calculate the corresponding efficacy thresholds
for hospitalization rate reduction and mortality rate reduction,
and compare them with the CDC estimates [56–58] for num-
ber of hospitalizations and deaths for these age groups over the
total number of cases with symptomatic illness. Given a large
enough data set, it would also be interesting to risk-stratify
the age > 50 and/or age > 65 cohorts further with respect
to number of days between initial symptoms and initiation of
treatment and calculate the efficacy thresholds as a function
of the delay in initiating treatment. Furthermore, it would be
useful to breakdown the case series data in sequential time in-
tervals corresponding to different waves and different variants
of the SARS-CoV-2 virus. This analysis would inadvertently
not include younger patients that are high risk due to comor-
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bidities or shortness of breath presentation, however, it has
the advantage that it can be carried out quickly with limited
resources. Analyzing the data from several more treatment
centers, that have adopted early outpatient treatment protocols
for high-risk patients would further mitigate the potential for
selection bias.

With substantial resources, a more detailed analysis is pos-
sible that can consider the entire dataset and actually esti-
mate the treatment efficacy. Given a case series of N pa-
tients, one can input the medical history of each patient to
the Cleveland Clinic calculator [87] and use their mathemat-
ical model to predict the probability of hospitalization and
death for each patient individually. Knowing the correspond-
ing sequence of probabilities q = (p1, p2, . . . , pN ) for an ad-
verse outcome (hospitalization or death) for all patients, the
probability pr(N, a |q) of seeing a adverse outcomes follows
a Poison binomial distribution [91], and it can be substituted
to Eq. (2) in order to calculate the p-value for rejecting the
null hypothesis of no treatment efficacy. Because the proba-
bility of an adverse outcome is known for each patient, note
that there is no need to worry about calculating any efficacy
thresholds, and it is possible instead to directly calculate the
p-value for rejecting the null hypothesis.. Furthermore, since
the mean of the Poison binomial distribution is the average
q = (1/N )(p1 + p2 + . . . + pn) of the individual probabilities,
one can calculate the risk ratio via the equation RR = a/(qN ).
To conduct the corresponding Bayesian analysis, we can as-
sume that the effect of the early outpatient treatment is to re-
duce the probabilities of adverse outcome by a numerical fac-
tor x to xq = (xp1, xp2, . . . , xpN ) with 0 ≤ x ≤ 1 and use
the Poison binomial distribution pr(N, a |xq) in Eq. (35) and
Eq. (38) to calculate the corresponding integrals needed for
the Bayesian factor. All other aspects of the Bayesian analysis
would remain the same, except that the hypothesis being val-
idated would not concern any efficacy thresholds but it would
instead concern hypotheses about the actual efficacy x of the
early outpatient treatment protocol.

That said, we do not mean to imply that such a detailed
analysis is necessary in order to greenlight the use of the in-
vestigated early outpatient treatment protocols for COVID-
19. However, the fact that such a detailed analysis is pos-
sible to carry out, using existing data and prior mathemati-
cal modeling, is highly relevant with respect to assessing the
ethics of validating the McCullough protocol at this time, us-
ing an RCT. A limitation of the Cleveland Clinic calculator is
that it should ideally be used in conjunction with case series
over time intervals that are aligned with the data set used to
train the calculator’s mathematical predictive model. Because
the Cleveland Clinic calculator used data collected between
March 4th 2020 and July 14th 2020 it can certainly be applied
to case series up until July 2020. However, we believe that it
can also be extended up until and including the Delta variant,
that became dominant towards the end of 2021, since all of
these subsequent variants were just as hard to treat or harder
than the initial waves in 2020.

Notwithstanding economically-motivated obstacles [86,
92] that have been placed against the adoption of early treat-
ment protocols for COVID-19, everything that we have been

through during the last two years vindicates the position of
Frieden [50] that there is an urgent need to leverage and over-
come the limitations of real-world evidence data, in order to
deploy a timely life-saving response to urgent health issues.
There is still an opportunity to learn much by analyzing data
from various treatment centers here in the United States that
treated COVID-19 with early outpatient treatment protocols,
as well as treatment centers from all around the world. More
importantly, it is necessary to reflect on and develop policies
and procedures for leveraging the direct experience of front-
line doctors treating patients, towards an agile and effective
response to future epidemics and pandemics.
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Appendix A: Exact Fisher test in the limit of an infinite control
group

Let N be the total number of patients in the treatment group,
let a be the number of patients with an adverse outcome (hos-
pitalization or death) in the treatment group, let M be the
total number of patients in the control group, and let b be
the number of patients in the control group with an adverse
outcome. In this appendix we will show that in the limit of
an infinite control group (M, b) with x = b/M , the p-value

p(N, a, M, b) obtained from the two-tail exact Fisher test con-
verges to p(N, a, x).

In the exact Fisher test, we assume that N , M , and a+b, are
fixed numbers, and under the null hypothesis, we also assume
that the distribution of the total a + b patients with an ad-
verse outcome between the treatment group and control group
is random, with equal probability for every possible combina-
tion. It follows that under the null hypothesis, the probability
of seeing a particular event (N, a, M, b) is given by

pr(N, a, M, b) =

(
a + b

b

) (
N + M − a − b

N − a

)
(
N + M

N

) . (A1)

The corresponding p-value is the probability of observing the event (N, a, M, b) or any other less probable event, and it is given
by

pr(N, a, M, b) =
min{N,a+b }∑

n=0
pr(N, n, M, a + b − n)H (pr(N, a, M, b) − pr(N, n, M, a + b − n)), (A2)

We note that the summation variable n is restricted by both the total size N of the treatment group and the total number a + b of
the patients with an adverse outcome, so the permissible range for all possible events is 0 ≤ n ≤ min{N, a + b}.

A key insight is that in the definition of pr(N, a, M, b), the variable M can be replaced with a continuous real number, because
it appears only in the top argument of the corresponding binomial coefficients. Recall that for all a ∈ R and n ∈ N the extended
definition of the binomial coefficient is given by(

a
n

)
=

1
n!

n∏
λ=1

(a + 1 − λ) =
1
n!

n∏
λ=1

(a + 1 − (n − λ + 1)) =
1
n!

n∏
λ=1

(a − n + λ). (A3)

On the second step we have used the transformation λ 7→ n− λ + 1 which effectively reverses the order of factors in the product.
It follows that for all M ∈ R the corresponding M-dependent binomial coefficients are given by(

N + M − a − b
N − a

)
=

1
(N − a)!

N−a∏
λ=1

((N + M − a − b) − (N − a) + λ) =
1

(N − a)!

N−a∏
λ=1

(M − b + λ), (A4)

and(
N + M

N

)
=

1
N!

N∏
λ=1

((N + M) − N + λ) =
1

N!

N∏
λ=1

(M + λ), (A5)

and thus, the hypergeometric probability distribution pr(N, a, M, b) can be rewritten as

pr(N, a, M, b) =

(
a + b

b

) (
N + M − a − b

N − a

)
(
N + M

N

) (A6)

=
(a + b)!

a!b!



1
(N − a)!

N−a∏
λ=1

(M − b + λ)



N!

N∏
λ=1

(
1

M + λ

) (A7)

=
N!

a!(N − a)!
(a + b)!

b!

N−a∏
λ=1

(M − b + λ)
N∏
λ=1

(
1

M + λ

)
(A8)
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=

(
N
a

) a∏
λ=1

(b + λ)
N−a∏
λ=1

(M − b + λ)
a∏
λ=1

(
1

M + λ

) N−a∏
λ=1

(
1

M + a + gl

)
(A9)

=

(
N
a

) a∏
λ=1

(
b + λ
M + λ

) N−a∏
λ=1

(
M − b + λ
M + a + λ

)
. (A10)

To take the limit of an infinite control group with probability x of an adverse outcome, we set b = xM , or equivalently M =
(1/x)b, and take a sequence limit b ∈ N to infinity. We conclude that

lim
b∈N

pr(N, a, (1/x)b, b) =
(
N
a

) 
a∏
λ=1

lim
b∈N

(
b + λ

(1/x)b + λ

)


N−a∏
λ=1

lim
b∈N

(
(1/x)b − b + λ
(1/x)b + a + λ

) (A11)

=

(
N
a

) (
1

1/x

)a (
1/x − 1

1/x

)N−a
(A12)

=

(
N
a

)
xa (1 − x)N−a = pr(N, a |x). (A13)

An immediate consequence is that the corresponding p-values
satisfy a similar relationship that reads

lim
b∈N∗

p(N, a, (1/x)b, b) = p(N, a |x). (A14)

The probability sums on both sides of Eq. (A14) involve a
variable n that goes from 0 to N , making the number of terms
on the left-hand-side probability sum independent of the size
of the control group, as soon as b is large enough. This makes
it possible to derive Eq. (A14) as an immediate consequence
of Eq. (A13).

Appendix B: Monotonicity of the Bayesian factor

We prove that the function b0(x0, p2, t) is initially increas-
ing and then decreasing with respect to t with a maximum in
the interval [a/N, 1]. We recall that

b0(x0, p2, t) = log



p2 − x0
t

∫ t

0
xa (1 − x)N−adx∫ p2

x0

xa (1 − x)N−adx



, (B1)

consequently maximizing the function b0(x0, p2, t) is equiva-
lent to maximizing

g(t) =
1
t

∫ t

0
xa (1 − x)N−a dx, (B2)

since all other factors are independent of t. For our argument,
it is simpler to work with the more abstract definition

g(t) =
1
t

∫ t

0
f (x) dx, (B3)

and assume that the function f (x) is increasing in the interval
[0, a/N], decreasing in the interval [a/N, 1], and also satisfies
f (1) = 0 and f (x) > 0 for all x ∈ (0, 1). These are all

general assumptions that are indeed satisfied by the binomial
distribution f (x) = xa (1−x)N−a. Differentiating with respect
to t gives

g′(t) =
−1
t2

∫ t

0
f (x) dx +

f (t)
t
. (B4)

From the assumptions f (1) = 0 and f (x) > 0 for all x ∈
(0, 1), it immediately follows that

g′(1) = −
∫ 1

0
f (x) dx < 0. (B5)

Next, we apply the integral mean-value theorem on the inter-
val [0, a/N] which requires the assumption that f (x) > 0 for
all x ∈ (0, a/N] and it follows that there exists ξ ∈ [0, a/N]
such that

f (ξ) =
1

a/N

∫ a/N

0
f (x) dx. (B6)

We use this equation to show that

g′(a/N ) =
−1

(a/N )2

∫ a/N

0
f (x) dx +

f (a/N )
a/N

(B7)

=
− f (ξ)
a/N

+
f (a/N )

a/N
(B8)

=
( f (a/N ) − f (ξ))N

a
> 0. (B9)

Here, the inequality step is justified by the assumption that the
function f (x) is increasing in the interval [0, a/N]. It follows
via the Bolzano theorem that there is at least one t0 ∈ [a/N, 1]
such that g′(t0) = 0, making all such t0 critical points that are
the possible local minimum or maximum points of g(t). From
Eq. (B4), it follows that all such critical points t0 also satisfy
the equation

f (t0) =
1
t0

∫ t0

0
f (x) dx. (B10)
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We shall now use the second derivative test to show that any
such critical points have to be local maxima, which in turn
implies the uniqueness of only one such local maximum point
in the interval [a/N, 1]. The second derivative of the function
g(t) is given by

g′′(t) =
d
dt

[
−1
t2

∫ t

0
f (x) dx +

f (t)
t

]
(B11)

=
2
t3

∫ t

0
f (x) dx −

f (t)
t2 −

f (t)
t2 +

f ′(t)
t

(B12)

=
2
t3

∫ t

0
f (x) dx −

2 f (t)
t2 +

f ′(t)
t

, (B13)

and for t = t0, it follows that

g′′(t0) =
2
t3
0

t0 f (t0) −
2 f (t0)

t2
0
+

f ′(t0)
t0

=
f ′(t0)

t0
< 0. (B14)

Here, the last inequality step is justified by the assumption that
the function f (x) is decreasing over the interval [a/N, 1] and
furthermore that t0 ∈ [a/N, 1]. We conclude that all critical
points in the interval [a/N, 1] have to be local maxima, and by
necessity this means that only one such local maximum actu-
ally exists in the interval [a/N, 1]. This concludes the proof
of our claim.
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