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Аbstract 
In work results of computer modeling of parameters of an electron shell of atom such as orbital 

radiuses and constants of shielding are presented. It is shown that for atoms with completely filled 

electronic subshells, the dependence of the orbital radii from the nuclear charge (atomic number) 
can be described by application of a computing experiment, and to consider the received equations 

as a basis for extrapolation of data on orbital radiuses on all range of atomic numbers of elements 

what gives the chance of creation of the full scheme of dependence of orbital radii on charging 
number of the nucleus and calculation of the average size of atom. 
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1. Introduction 

The achievements of recent years in the field of quantum physics make it possible to 

determine with sufficient accuracy the parameters of the electron shells of atoms, such as the 

orbital radius, the size of the atom, the screening constant, as well as the energy characteristics of 

atoms [1-4]. The concept of the orbital radius is the quantum-mechanical distance calculated from 

the nucleus to the corresponding main maximum of the radial distribution function of the electron 

density for the ground state of the atom [2]. Initial information about the values of atomic radii 

was obtained experimentally by studying the spectral lines of chemical elements [3]. So, when 

determining atomic radii Pauling [5] suggested that the radius of the atom depends on the most 

probable distance between the nucleus and the outer electrons and is inversely proportional to the 

effective charge of the nucleus. Later, Slater [6] constructed his system of atomic radii based on 

experimental data on interatomic distances with subsequent correction of the results obtained by 

quantum mechanical calculations. On the basis of qualitative considerations, it can be shown that 

the size of an atom should depend on the charge of the nucleus and the number of electron shells 

(the principal quantum number of the outer electrons). However, the difficulties of theoretical 

interpretation of the properties of many-electron atoms led to the need to replace such atoms with 

a hydrogen-like system consisting of a nucleus surrounded by internal electrons and having one 

external electron. The form of this dependence, with respect to the orbital radius rorb, for 

multielectron atoms is reflected in the formula [7] 

 𝑟𝑜𝑟𝑏 = 𝐾𝑟

𝑎0𝑛2

𝑍 − 𝑆
 , (1) 

where Kr is the proportionality coefficient; a0 is the radius of the hydrogen atom; n is the principal 

quantum number; Z is the nuclear charge; S is the constant of shielding. 

The proportionality coefficient Kr is usually expressed here in the form 

 𝐾𝑟 =
3

2
−

𝑙(𝑙 + 1)

2𝑛2
 , (1a) 

where l is the orbital quantum number. 

In 1964, Weber and Cromer [8] calculated the orbital radii of the outer electrons of atoms 

from the wave functions in the Hartree-Fock-Slater self-consistent field approximation with the 

Dirac relativistic correction. We also note that subsequently, also with the help of quantum 

mechanical calculations, Boyd's orbital radii were determined [9], but their values for many 

elements are almost twice the data of Slater and Weber-Cromer. 

Another of the parameters of the electronic structure of an atom is the constant of shielding 

S. The concept of constant of shielding is a generally accepted method for evaluating the electronic 



interaction in many-electron atoms. By definition, S is a quantity that compensates for the effect 

of a part of the nuclear charge on the selected electron due to the presence of previously filled 

electron shells, and in the study of some properties of the atom and electrons of the unfilled 

subshell, which can also participate in screening. 

Since, as mentioned earlier, different electrons of an atom play different roles in different 

atomic properties, the screening constants will differ slightly depending on how they are 

determined. Slater [10] formulated a number of rules of thumb for computing S to give good 

approximations to atomic orbitals of this type. J. Slater's rules, based on a comparison of theoretical 

and experimental data, determine the procedure for calculating the effective charge of the nucleus 

of a free atom. These rules were later refined by a number of authors [11]. At the same time, the 

calculated results are still incomplete today, which requires a more in-depth consideration by using 

additional methods for processing known data. Approximate correlations between the values of 

the considered parameters of the atom make it possible to extrapolate their values to the entire 

range of atomic numbers [12]. One of these methods is statistical analysis. Applying this approach, 

we can carry out inter- and extrapolation, taking as a basis the known values of the orbital radii of 

the closed ones, i.e. completely filled electron shells of atoms. 

This paper presents the results of modeling the parameters of the electron shell of free 

neutral atoms. Here, applying a slightly transformed formula (1) to estimate the orbital radius of a 

many-electron atom, based on the obtained regression equations, followed by an estimate of the 

extrapolated values of the orbital radii of completely filled subshells of atoms. The main goal of 

this work is to construct a diagram of the dependence of the orbital radius on the charge number 

of the nucleus, which makes it possible to trace the dynamics of the change in the size of the 

subshells of the atom with an increase in the charge of the nucleus.  

2. Modeling 

First, let us pay attention to the screening constant, which retains its value within a separate 

subshell. For the same reason, we will restrict ourselves to considering only closed subshells. 

Expression (1) includes two calculated parameters: the proportionality coefficient Kr and the 

screening constant. Taking as a basis the known datasets on orbital radii [8], it is possible to carry 

out computer simulation, using the methods of statistical analysis, the linearized equation Z = 

f(a0/rorb), in order to estimate the selected parameters for each of the subshells of the electronic 

structure of the atom 

 𝑍 = 𝐾𝑟  𝑛2 (𝑎0 𝑟𝑜𝑟𝑏⁄ ) + 𝑆, (2) 

where Kr and S act as constants for each individual electron subshell of the atom. Note that the 

principal quantum number n included in the equation is also constant within an individual electron 

subshell. 

Based on the above mentioned assumptions, let us formulate the task set. Let there be a set 

of data on orbital radii, including their values for closed electron subshells, limited by the 

possibilities of calculating numerical values for each of the subshells under consideration. It is 

required to determine the constants included in Eq. (2) by conducting a computational experiment 

to construct regression equations for electronic subshells, with subsequent refinement of specific 

parameter values by varying the initial data. The obtained equations, in the future, can be used to 

extrapolate the calculated values of the orbital radii for the entire range of possible charge numbers. 

Despite the above reservations regarding the orbital radii, it was decided to proceed with 

the analysis, provided that the known values of the radii given in the literature have been repeatedly 

discussed and, therefore, their values can be considered verified information. For the statistical 

analysis, we used tables of the orbital radii of electrons in the atom by Weber and Cromer [8], 

which are currently considered the most reliable. The information in these tables is not used fully 

enough to determine the parameters of the electron shell for all atoms. Most often, the tables give 

the calculated values of the first ten values of the orbital radii, due to the emergence of significant 

difficulties in calculating the exact values of the orbital radii in the "heavier" atoms. At the same 



time, the use of these data for specific subshells makes it possible to carry out a statistical analysis 

based on the above regularity, which reflects the linearity of the dependence of the reciprocal of 

the orbital radius on the charge of the atomic nucleus. However, we note that the results of 

calculating the orbital radii are not entirely complete, which requires a more in-depth consideration 

by using additional methods for processing known data. 

To solve the problem, first the parameter Kr is selected so that it, together with the constant 

of shielding S, would make it possible to apply statistical analysis to construct a linear regression 

equation Y=Ax+B, in which the coefficients will correspond to the values of these parameters Kr 

and S. Regression analysis of the initial data the values of the orbital radii were performed 

separately for each electron subshell of the atom. 

In order to have a general judgment about the quality of the resulting model, we found the 

relative deviations of the values of the parameters under consideration, sharply differing in 

magnitude from the general population, and at the first stage excluded them from further 

consideration. This procedure was carried out until the regression coefficient reached a value close 

to one. There are cases when, when carrying out this procedure, the number of values may turn 

out to be on the limiting boundary – of the order of four. We considered such subshells according 

to a special, refined procedure, with the involvement of other methods in the analysis of the initial 

data. 

At the next stage, we already proceeded to varying the parameters of the regression 

equation. This approach is necessary to possibly take into account a number of previously excluded 

data. As a result of varying the values of Kr and S in the obtained equation, the orbital radii of the 

atom were calculated, which coincide, within a certain average error, with their experimentally 

measured values. 

At the final stage, obtained by interpolation regression equations of the relationship 

between the orbital radii of the atom and the parameters affecting them, their values were 

extrapolated to the entire range of atomic numbers in order to create a complete scheme for 

changing the orbital radii of the closed electron subshells of the atom from the charge number of 

the nucleus. 

As an example, consider the relationship between the orbital radius rorb and the nuclear 

charge of an atom Z for a closed 2s-subshell, built by taking into account the known values [8] and 

obtained using the proposed technology presented above. The results of the studies are presented 

in table 1. 

 

Таble 1. Comparison of data on orbital radii obtained in [8] with the results of the 

application of technology based on regression analysis 

Z rorb (acc. to data [8]) rorb (given article) 
Percentage error, 

% 

3 1,586 1,416 10,70 

4 1,04 0,991 4,71 

5 0,769 0,762 0,89 

6 0,62 0,619 0,14 

7 0,521 0,521 0,06 

8 0,45 0,450 0,05 

9 0,396 0,396 0,04 

10 0,354 0,354 0,09 

 

Comparison of the results of the computational experiment and the data from [8] shows 

that the values of the relative error for the first four atoms have significantly higher values than for 

those presented in the rest of Table 1. This fact is associated with the instability of the position of 

the electrons of the 2s-subshell in the lighter atoms, with the subsequent stabilization of the 

distances to the nucleus in heavier atoms. 



Initially, the first values of rorb, having increased relative errors, were excluded from 

consideration; however, upon further consideration, it turned out that the value of the orbital radius 

for an atom with Z = 6 can also be taken into account in the study. The use of equation (2) made 

it possible to control the curvature of the calculated line (Fig. 1) by changing the constant of 

shielding S, as well as its displacement relative to the vertical axis, determined by the value of the 

coefficient Kr.  

 
Fig. 1. The graph of the dependence of the orbital radius rorb on the nuclear charge of an 

atom Z for a closed 2s-subshell:  – according to the data of [8]; red line – according to the 

values obtained in this work 
 

Varying these constants, using the program we developed, allowed us to determine the 

smallest value for the average relative error, which in our case takes a value equal to 0.7. This 

average error corresponded to the value of the coefficient Kr =1,56 at S=0,67. 

3. Results and discussion 

Knowing the value of the orbital radius rorb allows using equation (2) to calculate the values 

of the parameters for the selected subshells of many-electron atoms. The calculation results are 

presented in table. 2. 
 

Таble 2. Calculated values of the parameters of the electron shell of an atom 

Subshell No., Np 
Electronic 

configuration 

Coefficient, Kr Constant of shielding, S 

Acc to eq. (1a) 
In the 

article 
Acc to Slater  In the article 

Reference mean 
error, % 

1 1s2 1,5 1,00 0,3 0,178 0,24 

2 2s2 1,5 1,56 2,05 0,67 0,07 

3 2p6 1,25 1,00 4,15 3,49 0,13 

4 3s2 1,5 1,57 9,15 5,68 0,11 

5 3p6 1,39 1,41 11,25 8,40 0,05 

6 3d10 1,17 1,00 21,15 13,70 0,22 

7 4s2 1,5 1,50 25,65 17,65 0,04 

8 4p6 1,44 1,48 27,75 19,85 0,04 

9 4d10 1,31 1,21 39,15 27,60 0,18 

10 4f14 1,13 1,17 50,55 30,46 0,06 

11 5s2 1,5 1,38 43,65 32,11 0,06 

12 5p6 1,46 1,43 45,75 41,93 0,08 

13 5d10 1,38 1,17 71,15 53,95 0,08 
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14 5f14 1,26 1,39 62,55 57,05 0,10 

15 6s2 1,5 1,13 75,65 60,67 0,04 

16 6p6 1,47 1,03 77,75 67,77 0,16 

17 6d10 1,42 1,00 79,15 73,99 0,03 

18 7s2 1,5 1,18 84,8 73,02 0,04 

Note: the reference mean error is given for the constant of shielding S calculated in this work. 
 

The analysis of the performed calculation revealed a number of important features. First, 

we note that the value of the coefficient Kr has a well-defined individual value for each electron 

subshell. For example, for kainosymmetrics, it takes on a value equal to one. An exception is the 

4f-subshell, for which the Kr coefficient has a slightly higher value of 1.13. For the subshells 

following the kainosymmetrics, the value of the coefficient has the largest and almost identical 

values, numerically close to 1.5. 

Second, when considering the screening constants, the obtained values for the 1s- and 2s-

subshells, are striking, which are much smaller than those obtained when calculating according to 

Slater's rules [10]. If the first case can somehow be compared with the constant of shielding 

obtained by Pauling (S = 0.188) [5], then the authors have not found a possible explanation for the 

2s-subshell at the moment. At the same time, all subsequent S values have a fairly satisfactory 

correlation with the Slater data, which is clearly seen in the graph below (Fig. 3). 

Thus, the calculation of the orbital radii in many-electron atoms according to Eq. (1) for 

the indicated values of the Kr coefficient and the constant of shielding S gives satisfactory 

agreement with the available experimental data. The average error in the deviation of the calculated 

values of the constant of shielding here does not exceed 0.24%. 

Figure 2 shows in the form of a diagram the curves of the dependence of the orbital radii 

𝑟𝑜𝑟𝑏 of the closed electron subshells of the atom on the charge number of the nucleus Z.  

 
 

Fig. 2. Scheme of variation of the orbital radii rorb (in angstroms) of closed electron 

subshells of an atom from the charge number of the nucleus Z 



As can be seen in the presented graphs of the dependence “orbital radius - nuclear charge”, 

in addition to the known data on orbital radii [8], also on the continuation of the curves of 

dependences, the values obtained by calculating by regression equations are located. In addition, 

we note that here, at large values of the nuclear charge (from Z = 60 and above), the curves are 

clearly grouped in accordance with the shell model of the atomic structure. 

Figure 3 shows the dependence of the parameter S on the number of the electron subshell 

Np. As you can see, the values of the parameter S agree fairly well with the values obtained based 

on the Slater rules. At the same time, you can also see that the calculated values of the screening 

constants according to Slater's rules have values slightly higher than those obtained by statistical 

analysis. 

Analysis of the consideration of the concept of the serial number of the subshell Np showed 

that this parameter, in turn, depends on the principal and orbital quantum numbers, which allows 

us to represent this dependence as follows  

𝑁𝑝 = 1 +
𝑛(𝑛 − 1)

2
+ 𝑙 (3) 

In addition, statistical processing of the data on the dependence of the constant of shielding 

on the serial number of the subshell allowed us to propose for this dependence the following semi 

empirical equation 

𝑆 = (𝑁𝑝 − 𝑏)𝜋 2⁄ , (4) 

where b – is a constant taking values 1/2 – for Slater data, and 2/3 – according to the data of this 

work. When constructing equation (3), it was also taken into account that the obtained numerical 

value of the power equal to 1.571 is quite close to the value 11/7, which can be compared with the 

value equal to π/2.  

 

 
 

Fig. 3. Dependence of the constant of shielding S on the serial number of the subshell Np.  

 – in this article;   – acc. to Slater; red line – according to equation (4) at b=2/3 

 

When considering the dependence of the coefficient Kr on the subshell sequential number 

Np, shown in Fig. 4, it can be unambiguously asserted that the changes in the values of the Kr 

parameter are periodic in nature, repeating for atoms, starting from the filled subshells with 

kainosymmetric electrons. In addition, there is almost complete agreement of the calculated data 

with the theoretical model in the initial part of the graph. The emerging discrepancy in the regions 

further down the 4f-subshell is most likely associated with the effects of lanthanide and actinoid 

compression. 
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In the case of subdividing electronic configurations into separate subgroups, at the head of 

which are kainosymmetrics, then introducing a new quantum number k, for these subgroups, which 

we call a symmetric quantum number, the coefficient Kr can be written in the form 

 𝐾𝑟 = 1 +
𝑘

𝑘2 + 1
 . (5) 

Therefore, the symmetric quantum number k is a quantity that shows the position of the 

selected subshell in the row of subshells following the kainosymmetrics, and this quantum number 

can take the following values: 0 (for a subshell with a kainosymmetrics), 1, 2, 3, etc. – for 

subsequent subshells. 

 
Fig. 4. Dependence of the coefficient Kr on the sequential number of the subshell Np: 

 – calculated data,  – according to equation (5) 
 

At the end of our study, having included expressions (4) and (5) in formula (1), we finally 

obtain the equation for calculating the orbital radii of closed subshells that determine the average 

size of an atom in the following form 

𝑟𝑜𝑟𝑏 = (1 +
𝑘

𝑘2 + 1
)

𝑎0𝑛2

𝑍 − (𝑁𝑝 − 𝑏)
𝜋 2⁄

 . (6) 

Knowing the quantum numbers n and k, the nuclear charge Z, and the numbers of the 

subshells Np under consideration (at b=2/3) allows one to calculate the orbital radii rorb for closed 

subshells of a many-electron atom using Eq. (6). The calculation results are presented in the form 

of a graph in Figure 5. 

 

 
Fig. 5. Dependence of the orbital radius 𝑟𝑜𝑟𝑏 of an atom on the serial number of the closed 

subshell Np:  – data from work [8],  – according to the equation (6). 
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Note that when considering the dependence of rorb on the subshell sequential number Np, it 

is necessary to pay special attention to s-subshell, the filling of which takes place in several stages. 

In this case, it is desirable to take as a basis only those values of the orbital radii at which the 

electrons already have a fixed position, that is, they cannot shift in the region of other subshells. 

4. Conclusion 

As a result of the analysis of the data on the parameters of multielectron atoms, a number 

of regularities have been revealed that make it possible to make significant adjustments to the 

traditional concepts of the structure and sequence of formation of the electronic shells of atoms. 

The essence of the results presented in this work is as follows. By means of computer 

simulation, a computational experiment was carried out to form regression equations describing 

the dependence of the orbital radius rorb on the charge number of the nucleus Z, on the basis of 

which a diagram of the arrangement of the curves rorb=f(Z) was constructed for each of the closed 

subshells separately. A semi empirical equation is proposed for the dependence of the constant of 

shielding S on the number of subshells in an atom Np. The concept of a symmetric quantum number 

k is introduced, which determines the secondary periodicity of the arrangement of subshells having 

kainosymmetrics as the main criterion. The form of the dependence of the coefficient Kr on the 

symmetric quantum number k is determined. An equation is obtained to estimate the average size 

of an atom. 

Thus, the calculation of the average size of closed subshells of atoms according to equation 

(6) gives satisfactory agreement with the available experimental data. 
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