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ABSTRACT 

This paper presents a new model for calculating credit valuation adjustment and wrong way risk. 

Empirically, we find evidence that wrong way risk has a material effect on credit valuation 

adjustment. The nature and direction of effect depend on payoff, correlation, credit quality and risk 

mitigation. The magnitude of the impact is relatively greater in credit and equity markets. Moreover, 

the empirical results indicate that diversification can reduce the impact of wrong or right way risk 

on the risky value of a portfolio. 
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Derivative valuation historically didn’t take counterparty risk into account. But contract parties, in 

reality, may have a chance of default. As a consequence, the International Accounting Standard 

(IAS) 39 requires banks to provide a fair-value adjustment due to counterparty risk. Now credit 

valuation adjustment (CVA) has become the first line of defense and the central part of counterparty 

risk management. 

CVA not only allows institutions to move beyond the traditional control mindset of credit 

risk limits and to quantify counterparty risk as a single measurable P&L number, but also offers an 

opportunity for banks to dynamically manage, price and hedge counterparty risk.  

CVA, by definition, is the difference between the risk-free portfolio value and the true (or 

risky or defaultable) portfolio value that takes into account the possibility of a counterparty’s 

default.  

In general, risky valuation can be classified into two categories: the default time approach 

(DTA) and the default probability approach (DPA). The DTA involves the default time explicitly. 

Most CVA models in the literature (Brigo and Capponi (2008), Lipton and Sepp (2009), Pykhtin 

and Zhu (2006) and Gregory (2009), etc.) are based on this approach.  

Since CVA is used for financial accounting and pricing, its accuracy is essential. Moreover, 

this current model is based on a well-known assumption, in which credit exposure and 

counterparty’s credit quality are independent. Obviously, it cannot capture wrong/right way risk 

properly.  

In this paper, we present a framework for risky valuation and CVA. In contrast to previous 

studies, the model relies on the DPA rather than the DTA. Our study shows that the pricing process 

of a defaultable contract normally has a backward recursive nature if its payoff could be positive 

or negative.  

An intuitive way of understanding these backward recursive behaviors is that we can think 

of that any contingent claim embeds two default options. In other words, when entering an OTC 

derivatives transaction, one party grants the other party an option to default and, at the same time, 
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also receives an option to default itself. In theory, default may occur at any time. Therefore, the 

default options are American style options that normally require a backward induction valuation. 

Wrong way risk occurs when exposure to a counterparty is adversely correlated with the 

credit quality of that counterparty, while right way risk occurs when exposure to a counterparty is 

positively correlated with the credit quality of that counterparty. For example, in wrong way risk 

exposure tends to increase when counterparty credit quality worsens, while in right way risk 

exposure tends to decrease when counterparty credit quality declines. Wrong/right way risk, as an 

additional source of risk, is rightly of concern to banks and regulators. Since this new model allows 

us to incorporate correlated and potentially simultaneous defaults into risky valuation, it can 

naturally capture wrong/right way risk. 

 

1. One-Way CVA 

We consider a filtered probability space (  , F ,  
0ttF , P ) satisfying the usual 

conditions, where   denotes a sample space; F  denotes a  -algebra; P  denotes a probability 

measure;  
0ttF  denotes a filtration. 

The stopping (or default) time   of a firm is modeled as a Cox arrival process (also known 

as a doubly stochastic Poisson process) whose first jump occurs at default and is defined as, 

 = 
t

s dssht
0

),(:inf      (1) 

where )(th  or ),( tth   denotes the stochastic hazard rate or arrival intensity dependent on an 

exogenous common state 
t , and   is a unit exponential random variable independent of 

t .  

It is well-known that the survival probability from time t to s in this framework is defined 

by 
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 The default probability for the period (t, s) in this framework is defined by 







−−=−== 

s
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duuhstpZtsPstq )(exp1),(1),|(:),(               (2b) 

Two counterparties are denoted as A and B. Let valuation date be t. Consider a financial 

contract that promises to pay a 0TX  from party B to party A at maturity date T, and nothing 

before date T. All calculations in the paper are from the perspective of party A. The risk-free value 

of the financial contract is given by 

 tFT
F XTtDEtV ),()( =                (3a) 

where 





−=  duurTtD

T

t
)(exp),(     (3b) 

where  tE F•  denotes the expectation conditional on the tF , ),( TtD denotes the risk-free 

discount factor at time t for the maturity T and )(ur denotes the risk-free short rate at time u 

( Tut  ). 

Next, we turn to risky valuation. In a unilateral credit risk case, we assume that party A is 

default-free and party B is defaultable. Risky valuation can be generally classified into two 

categories: the default time approach (DTA) and the default probability (intensity) approach 

(DPA).  

Under a risk-neutral measure, the value of this defaultable contract is the discounted 

expectation of all the payoffs and is given by 

( ) tTTT VtDXTtDEtV F|1)(),(1),()(  +=                    (4) 

where Y  is an indicator function that is equal to one if Y is true and zero otherwise. 

Although the DTA is very intuitive, it has the disadvantage that it explicitly involves the 

default time/jump. We are very unlikely to have complete information about a firm’s default point, 
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which is often inaccessible. Usually, valuation under the DTA is performed via Monte Carlo 

simulation.  

The DPA relies on the probability distribution of the default time rather than the default 

time itself. The survival and the default probabilities for the period ( t , tt + ) are given by 

( ) tthtthtttptp −−=+= )(1)(exp),(:)(ˆ               (5a) 

( ) tthtthtttqtq −−=+= )()(exp1),(:)(ˆ               (5b) 

The binomial default rule considers only two possible states: default or survival. For the 

one-period ),( ttt +  economy, at time tt + the asset either defaults with the default probability 

),( tttq +  or survives with the survival probability ),( tttp + . The survival payoff is equal to 

the market value )( ttV +  and the default payoff is a fraction of the market value: 

)()( ttVtt ++ . Under a risk-neutral measure, the value of the asset at t is the expectation of all 

the payoffs discounted at the risk-free rate and is given by 

( )    ( ) tt ttVttyEttVtqttpttrEtV FF )()(exp)()(ˆ)()(ˆ)(exp)( +−++−=                 (6) 

where ( ) )()()(1)()()( tctrtthtrty +=−+=   denotes the risky rate and ( ))(1)()( tthtc −=  is called 

the (short) credit spread.  

Similarly, we have 

( ) ttttVtttyEttV +++−=+ F)2()(exp)(                    (7) 

Note that ( )tty − )(exp  is ttF + -measurable. By definition, an ttF + -measurable random 

variable is a random variable whose value is known at time tt + . Based on the taking out what 

is known and tower properties of conditional expectation, we have 
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By recursively deriving from t forward over T and taking the limit as t  approaches zero, 

the risky value of the asset can be expressed as 













−=  t

T

t
TVduuyEtV F)()(exp)(            (9) 

 In theory, a default may happen at any time, i.e., a risky contract is continuously defaultable. 

This Continuous Time Risky Valuation Model is accurate but sometimes complex and expensive. 

For simplicity, people sometimes prefer the Discrete Time Risky Valuation Model that assumes 

that a default may only happen at some discrete times. A natural selection is to assume that a default 

may occur only on the payment dates.  

For a derivative contract, usually its payoff may be either an asset or a liability to each 

party. Thus, we further relax the assumption and suppose that  may be positive or negative. 

In the case of , the survival value is equal to the payoff 
TX  and the default payoff 

is a fraction of the payoff 
TX . Whereas in the case of 0TX , the contract value is the payoff 

itself, because the default risk of party B is irrelevant for unilateral risky valuation in this case. 

Therefore, we have 

Proposition 1: The unilateral risky value of the single-payment contract in a discrete-time setting 

is given by 

 tFTXTtFEtV ),()( =      (10a) 

where 

( ) )(1),(11),(),( 0 TTtqTtDTtF
TX −−= 

    (10b) 

Here ),( TtF  can be regarded as a risk-adjusted discount factor. Proposition 1 says that the 

unilateral risky valuation of the single payoff contract has a dependence on the sign of the payoff. 

If the payoff is positive, the risky value is equal to the risk-free value minus the discounted potential 

loss. Otherwise, the risky value is equal to the risk-free value. 

Proposition 2: The unilateral risky value of the multiple-payment contract is given by 

TX

0TX
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where 0
Tt =  and 

( ) )(1),(11),(),( 110))((11 11 +++++ −−=
++ jjjTVXjjjj TTTqTTDTTF

jj
        (11b) 

The risky valuation in Proposition 2 has a backward nature. The intermediate values are 

vital to determine the final price. For a discrete time interval, the current risky value has a 

dependence on the future risky value. Only on the final payment date mT , the value of the contract 

and the maximum amount of information needed to determine the risk-adjusted discount factor are 

revealed. The coupled valuation behavior allows us to capture wrong/right way risk properly where 

counterparty credit quality and market prices may be correlated. This type of problem can be best 

solved by working backwards in time, with the later risky value feeding into the earlier ones, so 

that the process builds on itself in a recursive fashion, which is referred to as backward induction.  

For an intuitive explanation, we can posit that a defaultable contract under the unilateral 

credit risk assumption has an embedded default option (see Sorensen and Bollier (1994)). In other 

words, one party entering a defaultable financial transaction actually grants the other party an 

option to default. If we assume that a default may occur at any time, the default option is an 

American style option. American options normally have backward recursive natures and require 

backward induction valuations.  

The similarity between American style financial options and American style default 

options is that both require a backward recursive valuation procedure. The difference between them 

is in the optimal strategy. The American financial option seeks an optimal value by comparing the 

exercise value with the continuation value, whereas the American default option seeks an optimal 

discount factor based on the option value in time. 

The unilateral CVA, by definition, can be expressed as 

( )  =

−

= +−=−=
m

i ti

i

j jji

F XTTFTtDEtVtVtCVA
1

1

0 1),(),()()()( F       (12) 
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Proposition 2 provides a general form for pricing a unilateral defaultable contract. 

Applying it to a particular situation in which we assume that all the payoffs are nonnegative, we 

derive the following corollary: 

Corollary 1: If all the payoffs are nonnegative, the risky value of the multiple-payments contract is 

given by 

( )  =

−

= +=
m

i ti

i

j jj XTTFEtV
1

1

0 1),()( F     (13a) 

where 0
Tt =  and 

( ) )(1),(1),(),( 1111 ++++ −−= jjjjjjj TTTqTTDTTF                 (13b) 

The proof of this corollary is easily obtained according to Proposition 2 by setting 

( ) 0)( 11 + ++ jj TVX , since the value of the contract at any time is also nonnegative. 

The CVA in this case is given by 

( )( )  =

−

= ++ −−−=−=
m

i ti

i

j jjji

F XTTTqTtDEtVtVtCVA
1

1

0 11 ))(1)(,(11),()()()( F   (14) 

 

2. Two-Way CVA 

Two counterparties are denoted as A and B. The binomial default rule considers only two 

possible states: default or survival. Therefore, the default indicator jY  for party j (j=A, B) follows 

a Bernoulli distribution, which takes value 1 with default probability jq  and value 0 with survival 

probability jp , i.e.,  jj pYP == }0{  and jj qYP == }1{ . The marginal default distributions can be 

determined by the reduced-form models. The joint distributions of a bivariate Bernoulli variable 

can be easily obtained via the marginal distributions by introducing extra correlations. 

Consider a pair of random variables ( AY , BY ) that has a bivariate Bernoulli distribution. 

The joint probability representations are given by 

ABBABA ppYYPp +==== )0,0(:00      (15a) 
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ABBABA qpYYPp −==== )1,0(:01      (15b) 

 ABBABA pqYYPp −==== )0,1(:10      (15c) 

 ABBABA qqYYPp +==== )1,1(:11      (15d) 

where 
jj qYE =)( ,

jjj qp=2 ,   BBAAABBAABBBAAAB pqpqqYqYE  ==−−= ))((:  where AB  

denotes the default correlation coefficient and  
AB  denotes the default covariance. 

 

Table 1. Payoffs of a bilaterally defaultable contract 

 

State 0,0 == BA YY  0,1 == BA YY  1,0 == BA YY  1,1 == BA YY  

Comments A & B survive A defaults, B survives A survives, B defaults A & B default 

Probability 00p  
10p  

01p  
11p  

Payoff 

0TX  TX  
TB X  

TB X  
TAB X  

0TX  TX  
TA X  

TA X  
TAB X  

 

Suppose that a financial contract that promises to pay a TX  from party B to party A at 

maturity date T, and nothing before date T where tT  . The payoff TX  may be positive or 

negative, i.e. the contract may be either an asset or a liability to each party. All calculations are 

from the perspective of party A. 

At time T, there are a total of four ( 422 = ) possible states shown in Table 1. The risky 

value of the contract is the discounted expectation of the payoffs and is given by the following 

proposition. 

Proposition 3: The bilateral risky value of the single-payment contract is given by 

  ( ) tt FF TAXBXT XTtkTtkTtDEXTtKEtV
TT

),(1),(1),(),()( 00  +==   (16a) 

where 
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We may think of ),( TtK as the risk-adjusted discount factor. Proposition 3 tells us that the 

bilateral risky price of a single-payment contract can be expressed as the present value of the payoff 

discounted by a risk-adjusted discount factor that has a switching-type dependence on the sign of 

the payoff. 

Using a similar derivation as in Proposition 2, we can easily extend Proposition 3 from 

one-period to multiple-periods. Suppose that a defaultable contract has m cash flows. Let the m 

cash flows be represented as iX  with payment dates iT , where i = 1,…,m. Each cash flow may be 

positive or negative. The bilateral risky value of the multiple-payment contract is given by 

Proposition 4: The bilateral risky value of the multiple-payment contract is given by 

( )  =

−

= +=
m

i ti

i

j jj XTTKEtV
1

1

0 1),()( F     (17a) 

where 0
Tt =  and 

( )),(1),(1),(),( 10))((10))((11 1111 ++++++ ++++
+= jjATVXjjBTVXjjjj TTkTTkTTDTTK

jjjj
     (17b) 

where ),( 1+jjA TTk and ),( 1+jjB TTk  are defined in Proposition 3. 

Proposition 4 says that the pricing process of a multiple-payment contract has a backward 

nature since there is no way of knowing which risk-adjusted discounting rate should be used 

without knowledge of the future value. Only on the maturity date, the value of the contract and the 

decision strategy are clear. Therefore, the evaluation must be done in a backward fashion, working 

from the final payment date towards the present. This type of valuation process is referred to as 

backward induction.  

There is a common misconception in the market. Many people believe that the cash flows 

of a defaultable financial contract can be priced independently and then be summed up to give the 
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final risky price of the contract. We emphasize here that this conclusion is only true of the financial 

contracts whose payoffs are always positive. In the cases where the promised payoffs could be 

positive or negative, the valuation requires not only a backward recursive induction procedure, but 

also a strategic selection of different discount factors according to the market value in time. This 

coupled valuation process allows us to capture correlation between counterparties and market 

factors. 

 The bilateral CVA of the multiple-payment contract can be expressed as 

  ( )   =

−

= +−=−=
m

i ti

i

j jjtii

F XTTKEXTtDEtVtVtCVA
1

1

0 1),(),()()()( FF      (18) 

 

3. Numerical Results 

In this section, we present some numerical results for CVA calculation based on the theory 

described above. First, we study the impact of margin agreements on CVA. The testing portfolio 

consists of a number of interest rate and equity derivatives. The number of simulation scenarios (or 

paths) is 20,000. The time buckets are set weekly 

For risk-neutral simulation, we use a Hull-White model for interest rate and a CIR (Cox-

Ingersoll-Ross) model for hazard rate scenario generations a modified GBM (Geometric Brownian 

Motion) model for equity and collateral evolution. The results are presented in the following tables. 

Table 2 illustrates that if party A has an infinite collateral threshold =AH  i.e., no collateral 

requirement on A, the CVA value increases while the threshold BH  increases. Table 3 shows that 

if party B has an infinite collateral threshold =BH , the CVA value actually decreases while the 

threshold AH  increases. This reflects the bilateral impact of the collaterals on the CVA. The 

impact is mixed in Table 4 when both parties have finite collateral thresholds. 

 

Table 2. The impact of collateral threshold BH  on the CVA 
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Collateral Threshold BH  10.1 Mil 15.1 Mil 20.1 Mil Infinite ( ) 

CVA 19,550.91 20,528.65 21,368.44 22,059.30 

 

Table 3. The impact of collateral threshold AH  on the CVA 

 

Collateral Threshold AH  10.1 Mil 15.1 Mil 20.1 Mil Infinite ( ) 

CVA 28,283.64 25,608.92 23,979.11 22,059.30 

 

Table 4. The impact of the both collateral thresholds on the CVA 

 

Collateral Threshold BH  10.1 Mil 15.1 Mil 20.1 Mil Infinite ( ) 

Collateral Threshold AH  10.1 Mil 15.1 Mil 20.1 Mil Infinite ( ) 

CVA 25,752.98 22,448.45 23,288.24 22,059.30 

 

Next, we examine the impact of wrong way risk. Wrong way risk occurs when exposure to 

a counterparty is adversely correlated with the credit quality of that counterparty, while right way 

risk occurs when exposure to a counterparty is positively correlated with the credit quality of that 

counterparty. Wrong/right way risk, as an additional source of risk, is rightly of concern to banks 

and regulators. 

Some financial markets are closely interlinked, while others are not. For example, CDS 

price movements have a feedback effect on the equity market, as a trading strategy commonly 

employed by banks and other market participants consists of selling a CDS on a reference entity 

and hedging the resulting credit exposure by shorting the stock. On the other hand, Moody’s 

Investor’s Service (2000) presents statistics that suggest that the correlations between interest rates 

and CDS spreads are very small.  
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 To capture wrong/right way risk, we need to determine the dependency between 

counterparties and to correlate the credit spreads or hazard rates with the other market risk factors, 

e.g. equities, commodities, etc., in the scenario generation. 

We use an equity swap as an example. Assume the correlation between the underlying 

equity price and the credit quality (hazard rate) of party B is  . The impact of the correlation on 

the CVA is show in Table 5. The results say that the CVA increases when the absolute value of the 

negative correlation increases. 

 

Table 5. The impact of wrong way risk on the CVA 

 

Correlation   0 -50% -100% 

CVA 165.15 205.95 236.99 

 

4. Conclusion 

This article presents a framework for pricing risky contracts and their CVAs. The model 

relies on the probability distribution of the default jump rather than the default jump itself, because 

the default jump is normally inaccessible. We find that the valuation of risky assets and their CVAs, 

in most situations, has a backward recursive nature and requires a backward induction valuation.  

An intuitive explanation is that two counterparties implicitly sell each other an option to 

default when entering into an OTC derivative transaction. If we assume that a default may occur at 

any time, the default options are American style options. If we assume that a default may only 

happen on the payment dates, the default options are Bermudan style options. Both Bermudan and 

American options require backward induction valuations.  

Based on our theory, we propose a novel cash-flow-based framework (see appendix) for 

calculating bilateral CVA at the counterparty portfolio level. This framework can easily incorporate 

various credit mitigation techniques, such as netting agreements and margin agreements, and can 
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capture wrong/right way risk. Numerical results show that these credit mitigation techniques and 

wrong/right way risk have significant impacts on CVA.  

 

Appendix 

A. Proofs 

 Proof of Proposition 1: Under the unilateral credit risk assumption, we only consider the 

default risk when the asset is in the money. Assume that a default may only occur on the payment 

date. Therefore, the risky value of the asset at t is the discounted expectation of all possible payoffs 

and is given by 
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TT
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00
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 (A1a) 

where  

( ) )(1),(11),(),( 0 TTtqTtDTtF
TX −−= 

   (A1b) 

Proof of Proposition 2: Let 0Tt = . On the first payment day, let )( 1TV  denote the risky 

value of the asset excluding the current cash flow 1X . According to Proposition 1, the risky value 

of the asset at t is given by 

( ) tF)(),()( 1110 TVXTTFEtV +=     (A2a) 

where 

( ) ( ) )(1),(11),(),( 0)(1010 11
TTtqTTDTTF XTV −−= +

   (A2b) 

Similarly, we have 

( ) 
1

)(),()( 22211 TTVXTTFETV F+=     (A3) 

 Note that ),( 10 TTF  is 
1TF -measurable. According to the taking out what is known and 

tower properties of conditional expectation, we have 
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 By recursively deriving from 2T  forward over mT , where mm XTV =)( , we have 
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Proof of Proposition 3: We assume that a default may only occur on the payment date. At 

time T, there are four possible states: 1) both A and B survive, 2) A defaults but B survives, 3) A 

survives but B defaults, and 4) both A and B default. The joint distributions of A and B are given 

by (15). Depending on whether the payoff is in the money or out of the money at T, we have 
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