
Learned Data Augmentation using VQ-Vae

Abstract:

In this paper, I propose a simple and easily reproducible method to enhance

and extend datasets from as few as 1000 images to as much as 10000 or in

essence as many as the user requires. My approach combines a proper latent

space modeling of the VAE which is then modified using a process called

vector quantization. With these techniques along with enhancing model

parameterization and training a simple convolutional neural network can

achieve accuracies of up to 93% on synthetic data which proves extremely

helpful especially when handling datasets with very few images.

Introduction:

Machine learning is one of the largest and fastest-growing fields in computer science and

is also one of the most data-intensive fields with industry-acceptable models requiring

close to an excess of millions of images. Models like GPT-3 and BERT which are the

current flagships for natural language processing were trained on hundreds of billions of

words with BERT-Base taking over 4 days to train on 4 TPUs[1], keep in mind that TPUs

are specifically built to train machine learning models, in comparison, it can take over 7

days to train BERT-Base on 8 gpus[2]. The main takeaway is that machine learning

models require extremely large amounts of data and a long time to train. The time factor

of machine learning cannot be easily overcome without improvements in hardware or

cloud computing or additional computational libraries such as JAX which can

significantly speed up matrix calculations and the data factor can be tackled using linear

transformations such as crops, resizes, or random noise generation. While these methods

are effective in their own right they do not tackle the inherent problem of a lack of data.

Linear transformations are the same image just modified to a certain extent providing no

real advantage to the lack of data; they just provide a solution to the problem of
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overfitting. To tackle the problem of data, researchers have been trying methods of

learned data augmentation for years[3][4] however most of these methods utilize

generative adversarial neural networks which requires a ton of computational resources

or utilize a variational autoencoder which is not a effective as vq-vaes at making

meaningful representations from the latent space. Visuals differences will be discussed

towards the end of the paper.

Variational Autoencoders:

Variational autoencoders were first introduced in 2013[5] by Diederik P. Kingma and

Max Welling. Variational Autoencoders attempt to reproduce the original X data from a Z

or a latent space that exists in a lower-dimensional space than that of the original data. It

is compressed by the Encoder the equation which can be written by,

where                                          represents the sample

distribution often represented as either a Gaussian noise or a Bernoulli distribution. The

decoder is another neural net. Its input is the representation z, it outputs the parameters to

the probability distribution of the data, and has weights and biases ϕ. Taking for example

the mnist dataset, let’s say the handwritten number images are black and white and

represent each pixel as 0 or 1. The probability distribution of a single-pixel can be then

represented using a Bernoulli distribution. The decoder gets as input the latent

representation of a digit z and outputs 784 (in the case of 28x28 images) Bernoulli

parameters, one for each of the 784 pixels in the image. The decoder then takes in the

latent space and tries to return the latent space to the original data that was passed into the

encoder but because all the data cannot be contained within the reduced/compressed data



the decoder often produces certain variations in the reconstructed image which in this

case is extremely favorable due to the need for increased data.

Vector Quantised Variational Autoencoders:

Vector Quantised variational autoencoders or VQ-VAE’s for short were first introduced in

2013[6] in a paper titled “Neural Discrete Representation Learning”. VQ-Vae provides

multiple advantages over methods such as basic Variational Autoencoders or even GANs

in the sense that the use of a VQ-Vae would prevent “posterior collapse” a phenomenon

that occurs due to an extremely powerful decoder in the Vae causing certain latents to be

ignored. This poses a major problem especially when dealing with data generations

because the ignored latents cause data to be lost forming an incorrect image from the

latent space. To explain the magnitude of this issue let’s take an example. In the case of

medical imaging (CT scans, pneumonia identification, etc.) if the decoder suffers from

posterior collapse it becomes useless as a means to produce meaningful representations of

the data. This could pose a major issue, especially for medical data when the accuracy of

the model could save a patient’s life meaning the data the model reproduces must be

accurate enough to allow an identifier model, such as a convolutional neural network, to

be able to replicate that accuracy. However, VQ-Vaes’ utilize a discrete latent space

which leads to the issue of running backpropagation with the model not being able to run

back propagations through the latent space. This issue is resolved by using a method

called straight to gradient which copies the gradients over from the decoder to the

encoder thereby bypassing the “codebook” vector that the VQ-Vae produces. As

aforementioned, this is what produces the error with backpropagation as the latent space

is non-differentiable and gradients cannot be pushed through the bottleneck which is

resolved with the previously mentioned process by copying gradients over.

Experiments Run:



To explore how much of an advantage a VQ-VAE really has over other models such as a

GAN or a VAE I trained each variation of the most popular generator models to serve as a

baseline to compare to the VQ-VAE. Let’s delve into the results

The results produced by a deep convolutional generative adversarial neural network

(DCGAN). Utilizes Convolutional neural networks for better image classification by the

discriminator.

Results after 25 epochs

(baseline no of epochs for

each model)

Results after 550 epochs of

training.



These results truly illustrate how costly it is to implement a generative adversarial

network that can produce meaningful data representations. It would take approximately

5000 epochs to produce images that even closely resemble that of the original data which

is not taking into account the amount of data that we have access to.

Results produced after 25 epochs of training for a variational autoencoder. Not bad but

not nearly a adequate representation to deal with the data deficit.

Now for the vector quantized variational autoencoder:



The results after 30 epochs of training. Absolutely stunning. It was able to produce a

representation that almost replicated the model directly except for a little noise in the

reconstructed image. Let’s take a look at another example.

While this is truly amazing we do need to test the method further. Creating a meaningful

representation from numeric values with little to no complexity cannot be compared to



the complexity of an image such as a brain or a CT scan of human lungs . So let’s test the

method further with the pneumonia dataset from kaggle[7].

Pretty good, especially for only 500 epochs. Also important to consider the fact that the

original representation also was quite noisy meaning the reconstructed image might be

less accurate but the representation does contain the important features as the original

image. It would be much better if we ran the model for 5000 epochs or 10000 but

considering the wide array of use cases it might be better to let the model train for

430,000 updates as Dall-E was trained for including of course higher computationally

effective devices such as GPUs and TPUs. The deconstructed image and the latent space

showing how powerful the encoder network is after only 500 epochs.



As an experiment I wanted to utilize a dataset with a wide variety of scenes and lighting

effects[8] to see if maybe the model might reconstruct an image with major differences

caused because of the wide variety of images between the original images in the dataset.

The best representation after 300 epochs. Almost no differences is cloud positioning and

mountain shape. Even the lighting seems to match! Slight difference in height of

mountain however.



The worst representation. Image has the same general shape but is extremely noisy.

Ways to advance the model:

As always there are always multiple methods to improve the model. In this case it is

possible to use PixelCNN as a encoder. PixelCNN is an extremely powerful

convolutional neural network and it is possible to use the feature extraction functionality

of the CNN to make a meaningful representation of the data hence making it much easier

for the decoder to remap the original image. It is also possible to use some form of

manifold sampling in a low sample setting size as proposed here[9].

Conclusion:

In conclusion I propose a method to extend a dataset with relatively few images 4000 or

more to an extremely large amount of data that can, in theory, be extended infinitely but

that introduces the problem of dilution of the image leading to excessive loss of features

but at least a minimum of two times the amount of data. I also proposed ways that the

reader can utilize to effectively improve upon the given baseline of VQ-VAE.
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