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ABSTRACT 

Convertible bond is issued mainly by start-up or small companies. It is susceptible to credit risk. 

This paper presents a model for valuing convertible bonds by taking credit risk into account. Testing results 

show that model prices fluctuate randomly around market prices, indicating the model is quite accurate. 

Convertible bond arbitrage usually employs delta-neutral hedging where an arbitrageur buys a convertible 

bond and sells the underlying equity at the current delta. Delta neutral hedging removes small directional 

risks and makes a profit on an explosive upside or downside breakout if the position’s gamma is kept 

positive. Thus, delta neutral hedging is great for uncertain stocks that are expected to make large breakouts 

in either direction. 
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1. Introduction 

A company can raise capital in financial markets either by issuing equities, bonds, or hybrids (such 

as convertible bonds). From an investor’s perspective, convertible bonds with embedded optionality offer 

certain benefits of both equities and bonds.  

There is a rich literature on the subject of convertible bonds. Arguably, the first widely adopted 

model among practitioners is the one presented by Goldman Sachs (1994) and then formalized by 

Tsiveriotis and Fernandes (1998). The Goldman Sachs’ solution is a simple one factor model with an equity 

binomial tree to value convertible bonds. 

Tsiveriotis and Fernandes (1998) argue that in practice one is usually uncertain as to whether the 

bond will be converted, and thus propose dividing convertible bonds into two components: a bond part that 

is subject to credit risk and an equity part that is free of credit risk.  

Grimwood and Hodges (2002) indicate that the Goldman Sachs model is incoherent because it 

assumes that bonds are susceptible to credit risk but equities are not. Ayache et al (2003) conclude that the 

Tsiveriotis-Fernandes model is inherently unsatisfactory due to its unrealistic assumption of stock prices 

being unaffected by bankruptcy. To correct this weakness, Davis and Lischka (1999), Andersen and Buffum 

(2004), Bloomberg (2009), and Carr and Linetsky (2006) etc., propose a jump-diffusion model to explore 

defaultable stock price dynamics.  

Although we agree that under a risk-neutral measure the market price of risk and risk preferences 

are irrelevant to asset pricing (Hull, 2003) and thereby the expectation of a risk-free1 asset grows at the risk-

free interest rate, we are not convinced that the expected rate of return on a defaultable asset must be also 

equal to the risk-free rate. We argue that unlike market risk, credit risk actually has a significant impact on 

asset prices.  

Because of their hybrid nature, convertible bonds attract different type of investors. Especially, 

convertible arbitrage hedge funds play a dominant role in primary issues of convertible debt. In fact, it is 

 
1 Here, risk-free means free of credit risk, but not necessarily of market risk 
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believed that hedge funds purchase 70% to 80% of the convertible debt offered in primary markets. A 

prevailing belief in the market is that convertible arbitrage is mainly due to convertible underpricing (i.e., 

the model prices are on average higher than the observed trading prices) (see Ammann et al (2003), Calamos 

(2011), Choi et al (2009), Loncarski et al (2009), etc.). 

We model both equities and bonds as defaultable in a consistent way. When a firm goes bankrupt, 

the investors who take the least risk are paid first. Secured creditors have the best chances of seeing the 

value of their initial investments come back to them. Bondholders have a greater potential for recovering 

some their losses than stockholders who are last in line to be repaid and usually receive little, if anything.  

Valuation under our risky model can be solved by common numerical methods, such as, Monte 

Carlo simulation, tree/lattice approaches, or partial differential equation (PDE) solutions. The PDE 

algorithm is elaborated in this paper, but of course the methodology can be easily extended to tree/lattice 

or Monte Carlo. 

The most important parameter to be determined is the volatility input for valuation. A common 

approach in the market is to use the at-the-money (ATM) implied Black-Scholes volatility to price 

convertible bonds. However, most liquid stock options have relatively short maturates (rarely more than 8 

years). As a result, some authors, such as Ammann et al (2003), Loncarski et al (2009), Zabolotnyuk et al 

(2010), have to make do with historical volatilities.  

The empirical results show that the model prices fluctuate randomly around the market prices, 

indicating the model is quite accurate. Our empirical evidence does not support a systematic underpricing 

hypothesis.  

 It is useful to examine the basics of the convertible arbitrage strategy. A typical convertible bond 

arbitrage employs delta-neutral hedging, in which an arbitrageur buys a convertible bond and sells the 

underlying equity at the current delta (see Choi et al (2009), Loncarski et al (2009), etc.).  

We study the sensitivities of convertible bonds and find that convertible bonds have relatively large 

positive gammas, implying that convertible arbitrage can make a profit on a large upside or downside 

movement in the underlying stock price.  
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The rest of this paper is organized as follows: The model is presented in Section 2. Section 3 

elaborates the PDE approach; Section 4 discusses the empirical results. The conclusions are provided in 

Section 5. Some numerical implementation details are contained in the appendices. 

 

2 Model 

Convertible bonds can be thought of as normal corporate bonds with embedded options, which 

enable the holder to exchange the bond asset for the issuer’s stock. Despite their popularity and ubiquity, 

convertible bonds still pose difficult modeling challenges, given their hybrid nature of containing both debt 

and equity features. 

Three sources of randomness exist in a convertible bond: the stock price, the interest rate, and the 

credit spread. As practitioners tend to eschew models with more than two factors, it is a legitimate question: 

How can we reduce the number of factors or which factors are most important? Grimwood and Hodges 

(2002) conduct a sensitivity study and find that accurately modeling the equity process appears crucial. 

This is why all convertible bond models in the market capture, at a minimum, the dynamics of the 

underlying equity price.  

We consider a filtered probability space (  , F ,  
0ttF , P ) satisfying the usual conditions, 

where   denotes a sample space, F  denotes a  -algebra, P  denotes a probability measure, and  
0ttF  

denotes a filtration.  

The risk-free stock price process can be described as 

)()()()()( tdWtSdttStrtdS +=               (1) 

where )(tS  denotes the stock price, )(tr  denotes the risk-free interest rate,   denotes the volatility, 

)(tW  denotes a Wiener process. 

 The expectation of equation (1) is 

( ) dttStrtdSE t )()()( =F                (2) 
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where  tE F•  is the expectation conditional on the tF . 

 Next, we turn to a defaultable stock. The defaultable stock process proposed by Davis and Lischka 

(1999), Andersen and Buffum (2004), and Bloomberg (2009), etc., is given by 

( ) )()()()(ˆ)()()()( tdUtStdWtSdttSthtrtdS −−− −++=              (3) 

where )(tU  is an independent Poisson process with 1)( =tdU  with probability dtth )(  and 0 otherwise, 

)(th  is the hazard rate or the default intensity,  

 The expectation of equation (3) is given by 

( ) ( ) dttStrdtthtSdttSthtrtdSE t )()()()()()()()( =−+=F             (4) 

The jump-diffusion model was first proposed in the context of market risk, which naturally exhibits 

high skewness and leptokurtosis levels and captures the so-called implied volatility smile or skew effects. 

Ederington and Lee (1993) find that the markets tend to have overreaction and underreaction to the outside 

news.  

However, we wonder whether it is appropriate to propagate the jump-diffusion model directly from 

the market risk domain to the credit risk domain, as credit risk actually impacts the valuation of assets. This 

is why financial institutions are required by regulators to report CVA.  

The world of credit modeling is divided into two main approaches: structural models and reduced-

form (or intensity) models. The structural models regard default as an endogenous event, focusing on the 

capital structure of a firm. The reduced-form models do not explain the event of default endogenously, but 

instead characterize it exogenously as a jump process.  

It is well-known that the survival probability from time t to s in this framework is defined by 







−== 

s

t
duuhZtsPstp )(exp),|(:),(                   (6) 

 The default probability for the period (t, s) in this framework is given by 







−−=−== 

s

t
duuhstpZtsPstq )(exp1),(1),|(:),(               (7) 
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We consider a defaultable asset that pays nothing between dates t and T. Let )(tV  and )(TV  denote 

its values at t and T, respectively. Risky valuation can be generally classified into two categories: the default 

time approach (DTA) and the default probability (intensity) approach (DPA).  

The DTA involves the default time explicitly. If there has been no default before time T (i.e., T ), 

the value of the asset at T is )(TV . If a default happens before T (i.e., Tt  ), a recovery payoff is made 

at the default time   as a fraction of the market value2 given by )(V  where   is the default recovery 

rate and )(V  is the market value at default. Under a risk-neutral measure, the value of this defaultable 

asset is the discounted expectation of all the payoffs and is given by 

( ) tTT VtDTVTtDEtV F|1)(),(1)(),()(  +=                    (8) 

where Y  is an indicator function that is equal to one if Y is true and zero otherwise, and ),( tD  denotes the 

stochastic risk-free discount factor at t for the maturity   given by 





−=  duurtD

t


 )(exp),(      (9) 

The DPA relies on the probability distribution of the default time rather than the default time itself. 

We divide the time period (t, T) into n very small time intervals ( t ) and assume that a default may occur 

only at the end of each very small period. In our derivation, we use the approximation ( ) yy +1exp  for 

very small y. The survival and default probabilities for the period ( t , tt + ) are given by 

( ) tthtthtttptp −−=+= )(1)(exp),(:)(ˆ               (10) 

( ) tthtthtttqtq −−=+= )()(exp1),(:)(ˆ               (11) 

The binomial default rule considers only two possible states: default or survival. For the one-period 

( t , tt + ) economy, at time tt + the asset either defaults with the default probability ),( tttq +  or 

 
2 Here we use the recovery of market value (RMV) assumption.  
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survives with the survival probability ),( tttp + . The survival payoff is equal to the market value 

)( ttV +  and the default payoff is a fraction of the market value: )()( ttVtt ++ . Under a risk-neutral 

measure, the value of the asset at t is the expectation of all the payoffs discounted at the risk-free rate and 

is given by 

( )    ( ) tt ttVttyEttVtqttpttrEtV FF )()(exp)()(ˆ)()(ˆ)(exp)( +−++−=                 (12) 

where ( ) )()()(1)()()( tctrtthtrty +=−+=   denotes the risky rate and ( ))(1)()( tthtc −=  is called the (short) 

credit spread.  

Similarly, we have 

( ) ttttVtttyEttV +++−=+ F)2()(exp)(                   (13) 

Note that ( )tty − )(exp  is ttF + -measurable. By definition, an ttF + -measurable random 

variable is a random variable whose value is known at time tt + . Based on the taking out what is known 

and tower properties of conditional expectation, we have 

( ) 
( ) ( )  

( ) ti

ttt

t

ttVttityE

ttVtttyEttyE

ttVttyEtV

F

FF

F

)2())(exp

)2()(exp)(exp

)()(exp)(

1

0
++−=

++−−=

+−=

 =

+                  (14) 

By recursively deriving from t forward over T and taking the limit as t  approaches zero, the 

risky value of the asset can be expressed as 













−=  t

T

t
TVduuyEtV F)()(exp)(            (15) 

 Under a risk-neutral measure the market price of risk and risk preferences are irrelevant to asset 

pricing (Hull, 2003) and thereby the expectation of a risk-free asset grows at the risk-free interest rate. 

However, credit risk actually has a significant impact on asset prices.  

In asset pricing theory, the fundamental no-arbitrage theorems do not require expected returns to 

be equal to the risk free rate, but only that prices are martingales after discounting under the numeraire.  
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If a company files bankruptcy, both bonds and stocks go into a default status. In other words, the 

default probabilities for both of them are the same (i.e., equal to the firm’s probability of default). But the 

recovery rates are different because the stockholders are the lowest priority in the list of the stakeholders in 

the company, whereas the bondholders have a higher priority to receive a higher percentage of invested 

funds.  

According to equation (15), we propose a risky model that embeds the probability of the default 

jump rather than the default jump itself into the price dynamics of an asset. The stochastic differential 

equation (SDE) of a defaultable stock is defined as 

( ) )()()()()()()())(1)(()()( tdWtSdttStytdWtSdttStthtrtdS s  +=+−+=                  (16) 

where s  is the recovery rate of the stock and ( ))(1)()()( tthtrty s−+=  is the risky rate. 

For most practical problems, zero recovery at default (or jump to zero) is unrealistic. For example, 

the stock of Lehman Brothers fell 94.3% on September 15, 2008 after the company filed for Chapter 11 

bankruptcy.  

Equation (16) is the direct derivation of equation (15). The formula allows different assumptions 

concerning recovery on default. In particular, 0=s  represents the situation where the stock price jumps 

to 0, and 1=s  corresponds to the risk-free case. The expectation of equations (16) is 

( ) ( ) dttStthtrtdSE st )())(1)(()()( −+=F                 (17) 

  

3. PDE Algorithm 

The defaultable stock price process is given by 

( ) )()()()()()()())(1)(()()()( tdWtSdttSttdWtSdttStthtqtrtdS s  +=+−+−=              (18) 

where )(tq  is the dividend and ))(1)(()()()( tthtqtrt s −+−= . 

The valuation of a convertible bond normally has a backward nature since there is no way of 

knowing whether the convertible should be converted without knowledge of the future value. Only on the 
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maturity date, the value of the convertible and the decision strategy are clear. If the convertible is certain to 

be converted, it behaves like a stock. If the convertible is not converted at an intermediate node, we are 

usually uncertain whether the continuation value should be treated as a bond or a stock, because in backward 

induction the current value takes into account the results of all future decisions and some future values may 

be dominated by the stock or by the bond or by both.  

 Suppose that ),( tSG  is some function of S and t. Applying Ito Lemma, we have 

dW
S

G
Sdt

S

G
S

t

G

S

G
SdG




+












+




+




= 

2

2
22

2

1
    (19) 

 Since the Wiener process underlying S and G are the same, we can construct the following portfolio 

so that the Wiener process can be eliminated. 

S

G
SGX



−=       (20) 

 Therefore, we have 

dt
S

G
S

t

G
dS

S

G
dGdX 












+




=




−=

2

2
22

2

1
              (21) 

In contrast to all previous studies, we believe that the defaultable equity should grow at the risky 

rate of the equity including dividends, whereas the equity part of the convertible bond should earn the risky 

rate of the equity excluding dividends, i.e., 

( ) ( ) dt
S

G
S

t

G
dXSdt

S

G
hqrGdthr ss 












+




==




−+−−−+

2

2
22

2

1
)1()1(              (22) 

 So that the PDE of the equity component is given by 

( ) ( ) 0)1()1(
2

1
2

2
22 =−+−




−+−+




+




Ghr

S

G
Shqr

S

G
S

t

G
ss     (23) 

Similarly applying Ito Lemma to the bond part of the convertible ),( tSB , we obtain 

dW
S

B
Sdt

S

B
S

t

B

S

B
SdB




+












+




+




= 

2

2
22

2

1
    (24) 

 Let us construct a portfolio so that we can eliminate the Wiener process as follows 
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S

B
SBY



−=       (25) 

 Thus, we have 

dt
S

B
S

t

B
dS

S

B
dBdY 












+




=




−=

2

2
22

2

1
            (26) 

The defaultable equity should grow at the risky rate of the equity including dividends, while the 

bond part of the convertible bond grows at the risky rate of the bond. Consequently, we have  

( ) ( ) dt
S

B
S

t

B
dYSdt

S

B
hqrBdthr sb 












+




==




−+−−−+

2

2
22

2

1
)1()1(         (27) 

where b  is the recovery rate of the bond. 

 The PDE of the bond component is 

( ) ( ) 0)1()1(
2

1
2

2
22 =−+−




−+−+




+




Bhr

S

B
Shqr

S

B
S

t

B
bs      (28) 

 The final conditions at maturity T can be generalized as 

( ) 


 +

=
otherwise

CNPPSifS
G

pcTT

T
,0

,max,min, 
   (29) 

( )  ( ) 


 ++

=
otherwise

CNPPSifCNPP
B

pcTpc

T
,0

,max,min,,max,min 
    (30) 

where N denotes the bond principal, C denotes the coupon, cP  denotes the call price, pP  denotes the put 

price and   denotes the conversion ratio. The final conditions tell us that the convertible bond at the 

maturity is either a debt or an equity. 

 The upside constraints at time ],0[ Tt   are 

( ) 













==

==

==

==

elseBBGG

PLifelsePBG

PLifelsePBG

LPPSifBSG

tttt

ctctt

ptptt

tpctttt

~
,

~

~
,0

~
,0

~
,max,min0, 

          (31) 

where 
ttt GBL

~~~
+=  is the continuation value of the convertible bond, 

tB
~

 is the continuation value of the 

bond component and 
tG

~
 is the continuation value of the equity component.  

  



 10 

4. Empirical results 

 This section presents the empirical results. We use two years of daily data from September 10, 2010 

to September 10, 2012, i.e., a total of 522 observation days. This proprietary data are obtained from an 

investment bank.  

We only consider the convertibles outstanding during the period and with sufficient pricing 

information. As a result, we obtain a final sample of 164 convertible bonds and a total of 164 × 522 = 

85,608 observations.  

As of September 10, 2012, the sample represents a family of convertible bonds with maturities 

ranging from 2 months to 36.6 years, and has an average remaining maturity of 4.35 years. The histogram 

of contracts on September 10, 2012 for various maturity classes is given in Figure 1.  

Convertible bond prices observed in the market will be compared with theoretical prices under 

different volatility assumptions. The sample is segmented into two sets according to maturities: a short-

maturity class (0 ~ 8 years) and a long-maturity class (> 8 years).  

 

Figure 1. Maturity distribution of convertible bonds 

This histogram splits the total number of convertible bonds of the sample into different classes according 

to the maturity of each convertible bond. The x-axis represents maturities in years and the y-axis represents 

the number of convertibles in each class. The n maturity class covers contracts with maturities ranging from 

n-1 years to n years. 
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Table 1. Convertible bond examples 

We hide the issuer names according to the security policy of the investment bank, but everything else is 

authentic. In the market, either a conversion price or a conversion ratio is given for a convertible bond, 

where conversion ratio = (face value of the convertible bond) / (conversion price). 

Convertible bond Case 1 (a 7-year convertible) Case 2 (a 20-year convertible) 

Issuer X company Y company 

Principal of bond 100 100 

Annual coupon rate 2.625 5.5 

Payment frequency Semiannual Semiannual 

Issuing date June 9, 2010 June 15, 2009 

Maturity date June 15, 2017 June 15, 2029 

Conversion price 30.288 13.9387 

Currency USD USD 

Day count 30/360 30/360 

Business day convention Following Following 

Put price - 100 at June 20, 2014 
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 Let valuation date be September 10, 2012. An interest rate curve is the term structure of interest 

rates, derived from observed market instruments that represent the most liquid and dominant interest rate 

products for certain time horizons.  

 

Table 2: A list of instruments used to build a USD interest rate curve 

This table displays the closing prices as of September 10, 2012. These instruments are used to construct an 

interest rate curve. 

Instrument Name Price 

September 19, 2012 LIBOR 0.6049% 

September 2012 Eurodollar 3 month 99.6125 

December 2012 Eurodollar 3 month 99.6500 

March 2013 Eurodollar 3 month 99.6500 

June 2013 Eurodollar 3 month 99.6350 

September 2013 Eurodollar 3 month 99.6200 

December 2013 Eurodollar 3 month 99.5900 

March 2014 Eurodollar 3 month 99.5650 

2 year swap rate 0.3968% 

3 year swap rate 0.4734% 

4 year swap rate 0.6201% 

5 year swap rate 0.8194% 

6 year swap rate 1.0537% 

7 year swap rate 1.2738% 

8 year swap rate 1.4678% 

9 year swap rate 1.6360% 

10 year swap rate 1.7825% 

12 year swap rate 2.0334% 

15 year swap rate 2.2783% 

20 year swap rate 2.4782% 

25 year swap rate 2.5790% 

30 year swap rate 2.6422% 
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 The equity information and recovery rates are provided in Table 3. To determine hazard rates, we 

need to know the observed market prices of corporate bonds or CDS premia, as the market standard practice 

is to fit the implied risk-neutral default intensities to these credit sensitive instruments. The corporate bond 

prices are unfortunately not available for companies X and Y, but their CDS premia are observable as shown 

in Table 4.  

 Unlike other studies that use bond spreads for pricing (see Tsiveriotis and Fernandes (1998), 

Ammann et al (2003), Zabolotnyuk et al (2010), etc.), we perform risky valuation based on credit 

information extracted from CDS spreads.  

 

Table 3. Equity and recovery information 

This table displays the closing stock prices and dividend yields on September 10, 2012, as well as the 

recovery rates 

 Company X Company Y 

Stock price 34.63 23.38 

Dividend yield 2.552% 3.95% 

Bond recovery rate 40% 36.14% 

Equity recovery rate 2% 1% 

 

Table 4. CDS premia 

This table displays the closing CDS premia as of September 10, 2012. 

Name Company X Company Y 

6 month CDS spread 0.00324 0.01036 

1 year CDS spread 0.00404 0.01168 

2 year CDS spread 0.00612 0.01554 

3 year CDS spread 0.00825 0.01924 

4 year CDS spread 0.01027 0.02272 

5 year CDS spread 0.01216 0.02586 

7 year CDS spread 0.01388 0.02851 

10 year CDS spread 0.01514 0.03003 
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15 year CDS spread 0.01544 0.03064 

20 year CDS spread 0.01559 0.03101 

 

 The most important input parameter to be determined is the volatility for valuation. A common 

approach in the market is to use ATM implied Black-Scholes volatilities to price convertible bonds. For the 

5-year outstanding convertible bond (case 1 in Table 1), we find the ATM implied Black-Scholes volatility 

is 31.87%, and then price the convertible bond accordingly.  

For the 17-year outstanding convertible bond (case 2 in Table 1), however, most liquid stock 

options have relatively short maturates (rarely more than 8 years). Therefore, some authors, such as 

Ammann et al (2003), Loncarski et al (2009), Zabolotnyuk et al (2010), have to make do with historical 

volatilities.  

  

Table 5. Model prices vs. market prices 

This table shows the differences between the model prices and the market prices of the convertible bonds 

under different volatility assumptions, where Difference = (Model price) / (Market observed price) – 1. The 

convertible bonds are defined in Table 1. 

 Case 1 (a 7-year convertible) Case 2 (a 20-year convertible) 

Type of volatility ATM implied Black-Scholes volatility Annualized historical volatility 

Value of volatility 31.87% 18.07% 

Model price 134.32 171.58 

Market observed price 134.88 169.77 

Difference -0.42% 1.07% 

 

We repeat this exercise for all contracts on all observation dates. For any short-maturity convertible 

bond, we use the ATM implied Black-Scholes volatility for pricing, whereas for any long-maturity 

convertible bond, we perform valuation via the historical volatility. The results are presented in Tables 6.  

 

Table 6. Underpricing statistics for different maturity classes 
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An observation corresponds to a price snapshot of a convertible bond at a certain valuation date. 

Underpricing is referred to as the model price minus the market price.  

Maturity Observations 
Underpricing 

Mean (%) Std (%) Max (%) Min (%) 

≤ 8 years 82998 -0.13 1.37 0.79 -1.08 

> 8 years 2610 1.67 2.03 2.24 0.58 

  

Next, our sample is partitioned into subsamples according to the moneyness of convertibles. The 

moneyness is measured by the ratio of the conversion value to the equivalent straight bond value or the 

investment value.  

 

Table 7. Underpricing statistics for different moneyness classes 

The moneyness is measured by dividing the conversion value through the associated straight bond value. 

An observation corresponds to a snapshot of the market used to price a convertible bond at a certain 

valuation date. 

Moneyness Observations 
Underpricing 

Mean (%) Std (%) 

< 0.5 5794 0.72 2.23 

0.5 – 0.7 10595 -0.87 2.37 

0.7 – 0.9 19850 0.51 1.64 

0.9 – 1.1 14737 0.45 1.12 

1.1 – 1.3 14379 -0.55 1.89 

1.3 – 1.5 11631 -0.42 2.04 

> 1.5 8622 -0.62 1.72 

 

From Tables 7, it can be seen that the model prices fluctuate randomly around the market prices 

(sometimes overpriced and sometimes underpriced), indicating the model is quite accurate. Empirically, 

we do not find support for presence of a systematic underpricing as indicated in previous. 
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 In a typical convertible bond arbitrage strategy, the arbitrageur entails purchasing a convertible 

bond and selling the underlying stock to create a delta neutral position. The number of shares sold short 

usually reflects a delta-neutral or market neutral ratio. It is well known that delta neutral hedging not only 

removes small directional risks but also is capable of making a profit on an explosive upside or downside 

breakout if the position’s gamma is kept positive.  

  We calculate the delta and gamma values for the two deals described in table 1. The Greek vs. spot 

equity price graphs are plotted in Figures 2~ 5. It can be seen that the deltas increase with the underlying 

stock prices in Figures 2 and 4. At low market levels, the convertibles behave like their straight bonds with 

very small deltas.  

 

Figure 2. Delta vs spot price graph for a 7-year convertible bond 

This graph shows how the delta of the 7-year convertible bond (described in Table 1) changes as the 

underlying stock price changes.  

 

 

Figure 3. Variation in gamma vs. spot price for a 7-year convertible bond 

This graph shows how the gamma of the 7-year convertible bond (described in Table 1) changes as the 

underlying stock price changes.  
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Figure 4. Delta plotted against changing spot price for a 20-year convertible bond 

This graph shows how the delta of the 20-year convertible bond (described in Table 1) changes as the 

underlying stock price changes.  

 

 

Figure 5. Gamma variation with spot price for a 20-year convertible bond 
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This graph shows how the gamma of the 20-year convertible bond (described in Table 1) changes as the 

underlying stock price changes.  

 

 

The gamma diagrams in Figures 3 and 5 have a frown shape. The gammas are the highest when the 

convertibles are at-the-money. It is intuitive that when the stock prices rise or fall, profits increase because 

of favorably changing deltas  

 

5. Conclusion 

This paper aims to price hybrid financial instruments (e.g., convertible bonds) whose values may 

simultaneously depend on different assets subject to credit risk in a proper and consistent way. The 

motivation for our model is that if a company goes bankrupt, all the securities (including the equity) of the 

company default.  

Our study shows that risky asset pricing is quite different from risk-free asset pricing. In fact, the 
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hybrid framework to value risky equities and debts in a unified way. The model relies on the probability 
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distribution of the default jump rather than the default jump itself. As such, the model can achieve a high 

order of accuracy with a relatively easy implementation. 

Empirically, we do not find evidence supporting a systematic underpricing hypothesis. We also 

find that convertible bonds have relatively large positive gammas, implying that convertible arbitrage can 

make a significant profit on a large upside or downside movement in the underlying stock price. 

 

Appendix 

In this section, we describe the numerical method used to solve discrete forms of (23) and (28). Let 
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 The equations (A1) and (A2) can be approximated using Crank-Nicolson rule. We discretize the x 

to be equally spaced as a grid of nodes 0 ~ M. At the maturity, TG  and TB  are determined according to 

(29) and (30). At any time i+1, the boundary conditions are 
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