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Abstract

We argue that the current Proof of Work based consensus algorithm of
the Bitcoin network suffers from a fundamental economic discrepancy be-
tween the real-world transaction costs incurred by miners and the wealth
that is being transacted. Put simply, whether one transacts 1 satoshi or
1 bitcoin, the same amount of electricity is needed when including this
transaction into a block. The notorious Bitcoin blockchain problems such
as its high energy usage per transaction or its scalability issues are, ei-
ther partially or fully, mere consequences of this fundamental economic
inconsistency. We propose making the computational cost of securing the
transactions proportional to the wealth being transfered, at least tem-
porarily.

First, we present a simple incentive based model of Bitcoin’s secu-
rity. Then, guided by this model, we augment each transaction by two
parameters, one controlling the time spent securing this transaction and
the second determining the fraction of the network used to accomplish
this. The current Bitcoin transactions are naturally embedded into this
parametrized space. Then we introduce a sequence of hierarchical block
structures (HBSs) containing these parametrized transactions. The first
of those HBSs exploits only a single degree of freedom of the extended
transaction, namely the time investment, but it allows already for trans-
actions with a variable level of trust together with aligned network fees
and energy usage. In principle, the last HBS should scale to tens of thou-
sands timely transactions per second while preserving what the previous
HBSs achieved.

We also propose a simple homotopy based transition mechanism which
enables us to relatively safely and continuously introduce new HBSs into
the existing blockchain.

Our approach is constructive and as rigorous as possible and we at-
tempt to analyze all aspects of these developments, al least at a conceptual
level. The process is supported by evaluation on recent transaction data.
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1 Introduction

Arguably, in 2008 a new era of finance began. In a groundbreaking paper [16],
Satoshi Nakamoto described a pure peer-to-peer payment system of Bitcoin.
He presented an elegant and rather simple way how to prevent double spending
in decentralized distributed networks without a trusted party using a Proof of
Work (PoW) concept from [1].

The Bitcoin payment system, despite being extremely well thought out and
elegant, could not grow up, at least yet, to the very expectations of its creators.

Let us read Satoshi Nakamoto’s statement from Section 1 of [16], arguing
against financial institution mediation: “. . . The cost of mediation increases
transaction costs, limiting the minimum practical transaction size and cutting
off the possibility for small casual transactions,. . . ”.

Unfortunately, looking at the current transaction costs on the main Bitcoin
network or its available transaction throughput, it is obvious that Bitcoin suffers
from the same symptoms but caused by a different illness. Let us paraphrase the
Bitcoin scalability problem in a sentence similar to Satoshi Nakamoto’s one: The
costs of requiring that all transactions should be equal and all of them seen by
all the nodes in the network increases transaction costs, limiting the transaction
throughput and cutting off the possibility for small casual transactions.

The limited transaction throughput is arguably the primary technological
hurdle of Bitcoin’s use as means of payment. And the high transaction costs
are the main economical hurdle. But as indicated above, these are mere effects
of uniformity and inflexibility of Bitcoin transactions, which do not respect
economic realities and consequently cannot map to many real world situations.
Put simply, if we require that each transaction is seen, signed and stored by
everybody, the system has to be costly, slow and almost impossible to scale.

This paper is about, to our best knowledge, an innovative path of possible
practical extensions of Bitcoin’s PoW based consensus algorithm and its proto-
col, starting form the definition of its transaction. We need to relax and expand
the notion of a Bitcoin transaction and also of its block and network structure,
all those aspects, in order to resolve its scalability issues.

In Section 2 we first discuss the concepts of trust and risk, focusing on
their multi-scale nature, which is in strong contrast to flat security guaranties
and costs of the current Bitcoin implementation. This fundamental discrep-
ancy essentially locks the Bitcoin development in a suboptimal state and pre-
vents further innovation. In the followings sections we gradually annihilate this
inconsistency, while preserving Bitcoin’s simplicity to a maximal possible de-
gree. Importantly, transactions would still be saved in an adapted multi-layered
blockchain and secured by the mainnet and not a distinctively separate second
layer technology such as Lightning Network [2].

In preparatory Section 3, we discuss security, fees and electric power con-
sumption of Bitcoin transactions and the alignment of these three aspects. We
conclude the section by definition of a 2-parameter family of extended transac-
tions. In Section 4 we propose a sequence of hierarchical block structures (HBSs)
containing those parametrized transactions. Starting from the first HBS pre-
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sented in Section 4.1, users can choose a level of security which they require to
transact and this in a transparent and simple way to grasp. And the costs will
be proportional to this level of trust. Sections 4.2 and 4.3 are devoted to the
scaling of on-chain transaction capacity. Some supporting material is presented
in Appendix A and cited when needed. Particularly, alternative consensus al-
gorithms are shortly discussed in Section A.3. For reproducibility of results,
almost all algorithms used in this publication are published on github [19] and
for completeness also presented in Appendix B.

Finally, let us note that while the ideas that are presented in this paper are
certainly widely applicable outside of Bitcoin’s realm, their possible applications
in different contexts are left for the reader.

2 Rigidity of Bitcoin’s trust model

2.1 Distributed trust model avoids systemic risks

Bitcoin allows for direct peer-to-peer online payments without an all-knowing
trusted party(ies). In essence, the trust is distributed in the network among its
participants, particularly among its mining nodes. The information exchange
among the participants is governed by Bitcoin’s protocol and its rules. Due to
its distributed nature, Bitcoin avoids all kinds of systemic risks, e.g. it cannot
be easily globally censored and it does not have a single point of failure and it
is permissionless, it is anyone can join and leave network at any time.

2.2 At individual level risks are countless

All sorts of other risks remain. For example, the Bitcoin offers irreversible
transactions. This is an advantage for sellers, not so much for buyers. Satoshi
Nakamoto, being aware of it, proposed routine escrow mechanisms to protect
buyers [16]. But an escrow agent (e.g. implemented via multisig) is a trusted
third party. Or imagine that you buy a property and pay in bitcoins. The
ownership of the property and/or the coins can be disputed by either party or
even a third party at any moment, i.e. the parties are exposed to legal risk and
the judiciary might become a trusted party. Further, we all are susceptible to
5$ wrench attacks. Last but not least, humans are fallible and we often loose
access to private keys.

The above mentioned risks are mostly local, either transaction specific risks
having to do with the fact that their underlying contracts relate to values in
physical world or any other risks at individual level having to do with our sheer
existence in real world and our own fallibility.

Altogether, as the scale goes from global to local, both trust and risks be-
come concentrated when making transactions. As individuals, we have to be
and are prepared to face a myriad of foreseen and unforeseen circumstances.
Based on risks we face and our abilities to mitigate them, trust we have in our
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counterparty and taking into account transaction costs and rewards, we either
decide to transact or not.

2.3 Relaxing trust model of consensus algorithm?

The main recurrent costs for bitcoin miners are electric energy bills, see Ap-
pendix A.5. Since the hashing time is linearly proportional to size of data being
hashed, see Algorithm 4, it seems natural to compute fees based on transaction
size, as it is currently done. And indeed, purely from the miners’ perspective,
whether a transaction moves 100 BTC or 1 Satoshi, it does not matter if their
bit size is the same. Is this not a problem? Should not moving a fortune cost
more then paying few cents?

In our opinion, it clearly should. Otherwise, small payments will become
clearly impossible as Bitcoin transitions from issuance system where miners
are paid mainly by rewards to a system based on transactions fees, and this
regardless whether they could be included into a block given the size constraints
or not. The second but not secondary issue is that currently those transacting
smaller amounts actually pay fees for security of those transacting bigger ones,
promoting a rising inequality.

We think that this discrepancy between transaction fees and wealth being
transfered is probably the most fundamental problem, stopping the Bitcoin
network from becoming a general payment system as envisioned by Satoshi
Nakamoto. So, how to cut the Gordian knot?

A solution becomes almost evident, if one aims for a transaction fee per byte
φ proportional to the wealth being transfered v. Then, at least conceptually,
arbitrarily small payments become possible. And it clearly makes system at
once more honest. A direct consequence of this aim is that the security of
transactions has to be proportional to the wealth being transfered as well, at
least temporarily. Otherwise a difficulty would arise how to pay the miners for
their work.

And indeed, from the user risk/reward perspective described in the previous
section is Bitcoin’s current consensus protocol rather too coarse, idealistic and
rigid. It simply does not allow a user to choose an appropriate costs/risk ratio.
The transactions are public and every full node has to be aware of all the
transactions ever included in the blockchain. Either a user accepts this absolute
security and pays all the mining nodes for their work the corresponding price
and bears the consequences (e.g. a long confirmation time) or he opts to not
transact. The second option is a rational choice in many practical circumstances.
Again, a successful general online payment system has to allow for inexpensive
quick micro payments.

In the next sections, we will include level of trust in the payment system
as one of the risks and network fee as one of the costs in individual’s decision
space, with some safe defaults which are keeping wealth being transfered and
safety proportional.
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3 Extending transaction space

The Bitcoin system can be seen as a state-transition machine [4]. Its state s
consists essentially of all ownership records of all existing coins and it can be
changed only according to the Bitcoin protocol by applying the corresponding
state transition function τB . This function is a very handy abstraction, which
allows one to effectively hide whole the Bitcoin protocol complexity under one
symbol. It takes old state so, a transaction t and evaluates as

τB(so, t) =

{
sn if t is compliant,
(so, e) if t is not compliant,

(1)

where sn is the new state and e is a returned error in the case of noncom-
pliant t. Any transaction t is essentially a set of instructions created by the
owner of unspent bitcoins, called Unspent Transaction Outputs (UTXOs), how
to allocate those coins. As the name clearly suggests, UTXOs are outputs of
previous transactions that have not yet been inputs of any already existing
valid transaction. Each full node computes its UTXO set independently by
validating all transactions in the blockchain. It recurrently applies Equation
(1) starting from bitcoins created as mining rewards in a coinbase transaction.
Consequently, UTXOs are a derived representation of a current state s which is
actually recorded in the blocks.

The main goal of this section is to define a concept of an extended Bitcoin
transaction. Before we actually do so in Section 3.3, we describe a simple
incentive based economic model of Bitcoin transactions, focusing first on the
aspect of security in Section 3.1 and then discussing transaction fees in Section
3.2.

3.1 Transaction security

As explained in Appendix A.6, the long term investments of miners to acquire
highly specialized non-repurposable hashing hardware can be seen as their main
incentive to act honestly and keep the Bitcoin network running smoothly [13].
Any loss of trust would negatively impact the BTC market prize, decreasing the
future returns of the miners.

Consequently, the security of Bitcoin transactions is proportional to miner
commitment c[B], which in turn is proportional to the total hashrate of the
network hB in H/s. Under the assumption of linearity we can stipulate that:1

c[B] := γ[B s/H] · hB [H/s], (2)

where γ > 0 is for simplicity assumed being a real constant. Since we do not
know its value, the equation (2) is only qualitatively interesting. E.g. the
dimension Bs/H of γ tells us that the miners are committed, if their BTC
gains per one hash are high and the “time horizon” of value extraction is long.

1Occam’s razor.
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From now on, the square brackets in formulas are exclusively used to present
dimensions of variables, with an exception of a closed interval.

The miners have to find a nonce for their block such that its hash is smaller
than a predefined target determined by the difficulty ∆ [7]. The difficulty is
adjusted every 2016 blocks, i.e. approximately every 2 weeks, with the goal to
achieve average block time of 10 minutes. Time, the difficulty ∆ and the total
Bitcoin network hashrate hB fulfill this equation

hB

[
H

s

]
=

1

65535

248∆[H]

600s
≈ 232∆[H]

600s
. (3)

The difficulty ∆ is usually presented as being dimensionless quantity, but it
actually represents the number of hashes computed by all Bitcoin miners in one
block time, on average, divided by 232.

Just another ingredient of the “security soup” is the realization that hashing
time th is linearly proportional to bitsize b(m) of a hashed message m, see
Algorithm 4. We can write:

th(m)[s] := η
[ s

b

]
· b(m)[b], (4)

where variable η represents the time necessary to sign one bit of information.
Let us call it time investment. In the case of signing by all Bitcoin miners, the
corresponding ηB can be estimated easily from block size b(B) in bits:

η̂B

[ s

b

]
=

600s

b(B)[b]
, (5)

where b(B) depicts the average block size and subscript B means we consider
the whole Bitcoin network. From now on, x will depict the sample mean value
of x and x̂ a general estimator of x. From block size limit of e.g. 1MB, we
obtain a lower bound on ηB of approximately 7.15× 10−5.

We propose the following simple incentive based Bitcoin security model:

Definition 1 A security s(t) of transaction t with output value v(t) is defined
as

s(t)

[
H

B

]
:=

h(t)[H/s] · th(t)[s]

v(t)[B]
, (6)

where h(t)[H/s] is the hashrate used to sign t in time th(t).

This definition is intuitively very easy to understand. The security is propor-
tional to the hashing resources used and to the time they are employed to
compute the transaction signature. And it is inversely proportional to the value
transfered since it is the eventual gain from the double spending attack targeting
this transaction.

Using (4) we obtain for the security sB of current Bitcoin transactions:

sB(t) =
hB · ηB · b(t)

v(t)
. (7)
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which leads to an average per block B security

sB(t)|t∈B =
hB · ηB
|B|

∑
t∈B

b(t)

v(t)
, (8)

where |B| represents the cardinality of set B, i.e. here the number of transactions
in B.

Definition 1 describes the security from the point of view of individual trans-
actions. Currently, transactions with diverse output values v are included into
the same block. Following the developments, security per block B can be con-
sistently defined as:

sB(B) :=
hB · th(B)

v(B)
=
hB · ηB · b(B)

v(B)

(5)
≈ hB · 600s

v(B)
· b(B)

b(B)

(3)
≈ 232∆

v(B)
, (9)

which sheds more light on relation between security and difficulty. The numera-
tor of (9) is an equivalent of difficulty, up to multiplication by a constant. When
the total output value v(B) per block B rises in time, difficulty ∆ has to rise
at least proportionally to preserve security. Based on the alignment of (9) with
(6), we can define the transaction difficulty δ(t) of a transaction t accordingly:

δ(t)[H] := h(t) · th(t)
(4)
= h(t) · η(t) · b(t) (10)

The current security per block sB(B) can be estimated as

ŝB(B) =
232∆

v(B)
, (11)

where average output value per block v(B) can be computed from real blockchain
data, see e.g. Section 4.1.2.

Further, we can write (9) as

sB(B) =
hB · ηB ·

∑
t∈B b(t)∑

t∈B v(t)
=
hB · ηB · b(t)

v(t)
, (12)

i.e. in terms of the average transaction where the sample is the whole block
B. For a message with average size and output values, we can conclude by
comparing (6) and (12) that the current block-based bitcoin security is identical
to the individual one according to Definition 1.

However, if e.g. an average sized transaction has a much higher output value
than the average one is, the current block-based security may be insufficient.
On the contrary, if e.g. an average sized transaction has a much lower output
value than the average one is, this security may be an overkill. Let us make the
following assumption:

Assumption 1 If one transacts, he expects the same security s(t) regardless of
transaction value v(t).
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This formally under the validity of model (6) means that there exists a c ∈ R+

such that transaction difficulty δ(t) = c · v(t) for all admissible transactions
t, implying s(t) = c. This c is certainly at least time dependent, but it is
independent on individual transactions t.

3.2 Transaction fees

Currently, Bitcoin users pay fees that are only proportional to transaction size
b(t). From the perspective of miners, this fee scheme is an optimal one. Their
main running costs are payments for electric power consumption used to hash
blocks of transactions. In Equation (66) all the other variables except b(t) are
transaction invariant. First, all the transactions are included in a block hashed
by all the miners with their combined hash rate hB . Second, blocks are created
on average every 10 minutes.

However from the usefulness perspective, as already informally argued in
Section 2.3, the current fee scheme based only on b(t) is far from optimal. We
will look for an optimal fee scheme(s) from both user and miner perspectives in
a relaxed setting where strict Bitcoin constraints on hash rate and hashing time
are removed.

In (10), the definition of transaction difficulty δ(t), both the hashing time
th(t) = η(t) · b(t) and hash rate h(t) are transaction dependent variables by
design. Following (66), δ(t) multiplied by energy efficiency e of mining hardware
gives us energy consumption of a transaction. Thus in any case, to fairly cover
miner costs, users should pay transaction fees f proportional to δ(t):

f [B] ∝ δ(t)[H]. (13)

In effect, users then still pay fees proportional to transaction size b(t) but also
proportional to variable hashing capacity used h(t) and its employment time,
determined by η(t).

The transaction difficulty δ(t) is the numerator of (6), which defines the
security of individual transactions s(t). Thus s(t), except being proportional to
the long term miner commitment c through h(t), is also proportional to the
energy used to sign the transaction, i.e. to the main running cost of miners,
making it a rather robust concept. The more electrical energy is used to sign a
transaction, the more of it is needed to double spent it.

Finally, if we want to adapt the Bitcoin ecosystem to be conformant to
Assumption 1, we have to find mappings th(t) = η(t) ·b(t) and h(t) and constant
c ∈ R+ such that transaction difficulty δ(t) = th(t) · h(t) = c · v(t) for all
admissible transactions. Assumption 1 thus implies that the transaction fees f
should be always proportional to the transaction value v(t) :

f [B] ∝ v(t)[B]. (14)

3.3 Definition of the extended transaction

Now, we are ready to introduce our main vehicle of change. Let us extend the
Bitcoin transaction t by two-parameters:
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Definition 2 te(. . . , λ, η) is an extended Bitcoin transaction, where λ ∈ (0, 1]
determines the fraction of all mining nodes which include this transaction into
their blocks and the time investment η defined in (4) determines how long these
miners on average look for an admissible hash of this transaction.

The current Bictoin transactions t are naturally embedded in the extended
transaction “space”. We have te(. . . , 1, ηB) = t(. . . ), i.e. the current Bitcoin
transactions are included into blocks by all the available mining nodes and it
takes the nodes on average 10 minutes to sign the blocks with the time in-
vestment ηB estimated in (5). This can be immediately expressed in difficulty
language using (3):

ηB ≈
232∆

hB · b(B)
(15)

How to understand Definition 2 in a situation when t 6= te? For example
te(. . . , 0.5, ηB) is a transaction mined by only a half of all mining nodes and
the hashing difficulty is reduced by factor two which essentially means that the
resulting hash can have a one less leading zero since

ηB ≈
232(∆/2)

(hB/2) · b(B)
.

On average, a block containing such transactions will be created in the same
time as current Bitcoin blocks under the constraint that the block size does not
change.

Two extra parameters of the extended transaction te control two degrees of
freedom of its difficulty defined in (10):

δ(te) = h(te) · η(te) · b(te) = λ(te)hB · η(te) · b(te), (16)

i.e. the hashing resources used and the time invested to sign te.
We would like to recall that both the security s(te) and the transaction fees

f(te) are quite naturally proportional to δ(te), see (6) and (13) respectively.
Thus, by controlling λ and η we control transaction security and at the same
time offer transaction fees proportional to this security. This is indeed not by
coincidence but by respecting the Bitcoin economic realities while deriving the
Bitcoin incentive based model presented in the previous sections. It also means
that the model does not suffer from some obvious inconsistencies. From now on
we use notation t instead of te since we will only consider extended transactions.

4 Hierarchical block structures (HBSs)

In the subsequent sections, we will employ the concept of extended transaction
t from Definition 2 to suggest modifications of the Bitcoin block structure that
allow users to transact with different levels of security, while aiming costs pro-
portional to this security. Of course, users will be free to override any defaults
and to transact using an increased level of security if they are prepared to pay
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. . . {t(. . . , 1, η0)}

{t(. . . , 1, η1)}

{t(. . . , 1, η2)}

. . .

{t(. . . , 1, ηL−1)}

{t(. . . , 1, η0)}

{t(. . . , 1, η1)}

{t(. . . , 1, η2)}

. . .

{t(. . . , 1, ηL−1)} . . .

Figure 1: Blockchain of blocks with different security levels. Each sub-block
represents a current Bitcoin block with a different hashing difficulty.

higher fees or to decrease the default security, if they feel that a lower one is
sufficient and thus pay even less. Based on freedom of choice, a “marketplace
of trust” should emerge quite naturally.

The first proposition in Section 4.1 would require minimal changes to the
current Bitcoin ecosystem. Its further evolutions in Sections 4.2 and 4.3 lead to
both more usability, complexity and more disruption of Bitcoin’s status quo.

4.1 Single virtual computer

In this section we still assume that all transactions are seen by all mining and
full nodes, i.e. Bitcoin network remains acting as a single “homogeneous” state-
transition machine. Consequently, the scalability issues will remain unresolved.
But we achieve the first necessary condition for Bitcoin to potentially become a
successful general on-chain payment system: the ability to transact at different
security levels and pay proportional fees.

We consider only transactions t signed by all miners, i.e. λ(t) = 1 for any
admissible extended transaction t, which trivially implies h(t) = λ(t)hB = hB .
The only degree of freedom of the extended transaction t we will tune here is
the time investment η.

Let T denote the current average block time resulting from the difficulty
∆. In this section, instead of mining just one block in T , we propose mining a
sequence of blocks containing transactions with different levels of security. As
depicted in Figure 1, the blocks with L ∈ N+ different security levels governed
by time investments ηl, l = 0, . . . , L−1 are periodically repeating, forming imag-
inary super-blocks. In each super-block the lowest block contains transactions
which require a minimal security ηL−1 and the highest block the transactions
which require the maximal security η0 and η is monotonically decreasing in l,
i.e.

ηl+1 < ηl ∀l ∈ {0, . . . , L− 2}. (17)
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4.1.1 Desing methodology

We approach the design of our first Bitcoin evolution prototype in two steps:

1. We segment Bitcoin transactions waiting in the mempool T for confirma-
tion according to their output values per bit β, i.e. we handle the ratio

β(t) :=
v(t)

b(t)
(18)

occurring in (6). Then we will assign them into individual security level
sub-blocks from Figure 1.

2. Then we determine variable ηl for each level l = 0, . . . , L − 1 such that
security complies with Assumption 1.

There certainly exists no single best way how to accomplish those tasks but
we will present our best candidate and it is up to the Bitcoin community to
eventually refine it, fill in details or alternatively propose a different solution
altogether.

The developments are guided by performance on recent transaction data of
the Bitcoin network, also because any eventual candidate for next Bitcoin pro-
tocol has to allow for smooth transition from the current state. One can employ
Algorithm 5 from Appendix B to create a random sample of approximately 500
recent blocks starting from block height 650000 and ending with 700000. Our
set is published on github [19], where the reader also finds the majority of code
used for this article.

4.1.2 Segmentation of transactions

To illustrate the current distribution of aggregated output transaction values
per bit β(t) of Bitcoin network, we employed Algorithm 6 to plot a histogram
of

lg (β(t)) ,

where lg(·) := log10(·), together with the fitted log-normal probability density
function, this resulting in Figure 2.

The distribution of β(t) is certainly not perfectly log-normal, but rather
skewed to the right side with a long tail. One can only speculate why but two
factors seem to be in play. First, as already explained, Bitcoin is not usable for
everyday transactions, certainly not on chain. Second, high β(t) transactions
do not pay fair fees to miners for their work 2. I.e. low-value transactions
are discouraged (or impossible) and high-value ones encouraged. E.g. if a
whale moves 10000B to a cold storage, it can cost less than 10−6% to do so.
Nevertheless, the log-normal parametrization is already sufficiently accurate and
the distribution of β(t) should become more log-normal and symmetric if Bitcoin
becomes more useful for everyday payments on chain.

2The author is not involved in mining business.
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Figure 2: Distribution of per transaction aggregated output values plus the
corresponding log-normal distribution

Altogether, we propose segmenting the unconfirmed Bitcoin transactions
waiting in the mempool T into L ∈ N+ lists corresponding to individual levels
from Figure 1 based on their lg (β(t)) values. The following simple algorithm
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can be employed:

Algorithm 1: A candidate for segmentation of a transaction set into sub-
sets.

Data: L,N ∈ N+; a set of transaction tuples T = {(ti, βi)}i∈I ,
I = {i|i = 0, . . . , N − 1}, where ti are some unique transaction
identifiers and βi the corresponding transacted values per bit.

Result: L sets Ti, such that T = ∪Ti and ∀i, j ∈ I : Ti ∩ Tj = ∅
1 T = sort set T in descending order of βi;
2 for i← 0 to L− 1 do
3 Ti = {};
4 end
5 SL = (lg(β0)− lg(βN−1))/L (or SL = (dlg(β0))e − blg(βN−1c)/L);
6 C = lg(β0)− SL; l = 0;
7 for i← 0 to N − 1 do
8 if lg(βi) < C then
9 l = l + 1;

10 end
11 Tl = Tl ∪ {(ti, βi)};
12 end

The code is practically self-explanatory. The interval between the minimal
lg(βN−1) and the maximal lg(β0) is uniformly divided into L subintervals and
a transaction t is assigned to set T0 if

lg(β(t)) ∈ [lg(β0)− SL, lg(β0)]

and to Tl for l ∈ {1, . . . , L− 1} if

lg(β(t)) ∈ [lg(β0)− (l + 1)SL, lg(β0)− lSL).

The transactions are thus segmented based only on β values and not on the
frequency of their occurrence. We could instead compute L-quantiles of lg(β(t))
for our set of transactions t. Then all sets Tl for l ∈ {0, . . . , L− 1} would
have similar cardinalities. However, it is much easier for a user to understand
mapping between the security levels and the transaction values/costs when the
interval [lg(β0), lg(βL−1)] is uniformly divided. Also, this choice is more forward
looking, which becomes clear in the next sections.

A Python implementation of Algorithm 1 is presented in Algorithm 7 in
Appendix B. We employ it to segment our Bitcoin transaction dataset. The
results, obtained by running Algorithm 8, are presented in Table 1.

Let us discuss the results a little bit. We have divided our dataset containing
almost 950k transactions from 493 blocks into only 6 levels, so that Table 1 fits
on page. One immediately recognizes how extreme this segmentation really is.

Only 615 transactions, it is less than 0.1%, move more than 71% of all the
transacted wealth, which on average represents barely more than 1 transaction
per block. However, together they only pay fees in the hundreds of USD.
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l 0 1 2 3 4 5

|Tl| 615 24967 220097 571652 130420 1861

min(β(t)) 3e+07 4.4e+05 6.4e+03 9.3e+01 1.4 0.02

max(β(t)) 2.1e+09 3e+07 4.4e+05 6.4e+03 9.3e+01 1.4

β(t) 3.6e+08 2.3e+06 6.3e+04 1.3e+03 4.5e+01 0.73

min(v(t)) 5.4e+10 6.8e+08 9.6e+06 7.6e+04 2.1e+03 3.1e+02

max(v(t)) 6e+12 6.6e+11 1.6e+11 7.4e+09 1.2e+08 3e+05

v(t) 8.7e+11 6.4e+09 2.3e+08 6.9e+06 2.6e+05 3.7e+03∑
v(t) 5.3e+14 1.6e+14 5.1e+13 3.9e+12 3.4e+10 6.9e+06

Table 1: Distribution of transaction values after segmentation: L = 6

On the other side of the spectrum in level 5 are few, almost 2k transactions,
which move on average 3700 sats, at current exchange rate BTCUSD less then 2
USD. This is significantly less them our estimate of electricity costs per transac-
tion of 14.3 USD from Appendix A.4. We can argue based on this observation,
that costs are a limiting factor for inclusion of transactions into the blockchain.
And it is indeed a rational choice to exclude them within the current set-up of
Bitcoin blockchain.

4.1.3 Determining time investments

Let {Tl}l∈L, where L := {0, . . . , L − 1}, be any segmentation of mempool of
Bitcoin transactions by Algorithm 1. By Bl we depict the sub-blocks of Figure
1, such that Bl ⊂ Tl. All transactions within a segment Tl enjoy the same miner
effort if included in a block Bl, i.e. η(t) = ηl for all t ∈ Tl and l ∈ L. Using (6)
and (10) we obtain:

s(t)|Tl =
hB · ηl
|Tl|

∑
t∈Tl

b(t)

v(t)
. (19)

Further, all transaction t in each Tl, l ∈ L have by construction similar
output values per bit β(t) = v(t)/b(t). Consequently, we may substitute in the
average value β(t)|Tl of β(t) and we obtain

s(t)|Tl ≈
hB · ηl
β(t)|Tl

, (20)

which is a simple formula containing only hB and ηl and average values of s and
β per segment Tl.

Under Assumption 1 we strive to secure the same security regardless of
transaction value per bit β, which translates to:

s(t)|Tk = s(t)|Tl ∀ k, l ∈ L, (21)
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i.e. Assumption 1 is satisfied in a per sub-block fashion. Using 20 we obtain
practically the final condition which allows us to determine the time investments
ηl, l ∈ L of the individual sub-blocks:

hB · ηk
β(t)|Tk

=
hB · ηl
β(t)|Tl

∀ k, l ∈ L, (22)

i.e. we look for a unknown cη ∈ R+ such that

ηl

[ s

b

]
= cη

[
s

B

]
· β(t)|Tl

[
B

b

]
∀l ∈ L, (23)

where cη plays the role of c from the last lines of Section 3.1 under the specific
circumstances of this section. It belongs to the only one factor of difficulty δ we
control here: the time investment η. It is common to all levels l ∈ L and its unit
(i.e. s/B) helps us to understand that it essentially represents computational
time invested to secure one B of transacted wealth.

Assume for a moment that a transition from a current block to a new multi-
block is possible, so to say, at once. We can easily compute cη from current
global difficulty ∆. First, based on the definition of transaction difficulty (10),
we spread the current hashrate in the correct way among the sub-blocks {Bl}l∈L
from Figure 1 while achieving the same expected block creation time of 600s for
the super-blocks by asking that:

hB
∑
l∈L

ηl
∑
t∈Bl

b(t) = 232∆. (24)

Thus it holds

600s
(3)
=

232∆

hB
=
∑
l∈L

ηl · b(Bl)
(23)
≈ cη

∑
l∈L

β(t)|Bl
· b(Bl), (25)

where the last relation is only approximation, since blocks {Bl} are chosen from
mempool’s segmentation {Tl} by miners. It can be expected that miners will
prefer the transactions paying higher fees per bit in each sub-block Bl, which
should be correlated to the value β(t) being transacted. One could redefine
(23) by using blocks instead of the mempool segmenation, but no mathematical
trick can cover the fact that miners are responsible for creation of valid blocks
and distributions of transactions in {Bl}l∈L can potentially differ from those in
mempool segmentation {Tl}l∈L.

Assume further, that β(t)|Bl
can be approximated as

β(t)|Bl
≈ v(t)|Bl

b(t)|Bl

(26)

with a sufficient accuracy. Then we can continue simplifying (25) as follows:

cη
∑
l∈L

β(t)|Bl
· b(Bl) ≈ cη

∑
l∈L

v(t)|Bl

b(t)|Bl

|Bl
· b(t)|Bl

|Bl| = cη
∑
l∈L

v(Bl), (27)
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i.e.

cη ≈
600s∑
l∈L v(Bl)

=
232∆

hB
∑
l∈L v(Bl)

. (28)

We can choose (25) or (28) to determine cη, depending on the accuracy of
(26). The second expression explains very clearly what cη represents: the ratio
of expected super-block creation time 600s to the total transacted value of this
super-block v({Bl}l∈L), i.e. in short time of all miners to wealth of all users.

The relation (28) also suggests how the computation of cη should be imple-
mented in practice. Its expression contains difficulty ∆, unknown and variable
total hash rate of Bitcoin network hB plus again variable total transacted value
v({Bl}l∈L). Just like in the case of ∆, cη can be computed only probabilistically.
There is no reason to change what is working very well. We propose adjusting
cη every 2016 blocks with the goal to achieve average super-block time of 10
minutes.

Now, we can return back to relation (23) with an already determined cη.
Purely theoretically, one could directly use (23) to calculate ηl for each new
super-block. However β(t)|Bl

can fluctuate a lot, especially at the higher levels,
see e.g. level 0 in Table 1, where we have only 615 transaction in 493 blocks, i.e.
sometimes level 0 may be even empty. Second, since η controls difficulty of the
sub-blocks, which are essentially normal Bitcoin blocks, all the attacks possible
when adjusting difficulty per block (and potentially more) would be possible
[17]. Indeed, difficulty is fundamentally a security mechanism and so are all the
time investments {ηl}|l∈L. Thus we again propose updating them in the same
fashion as difficulty of normal blocks is updated - every 2016 blocks:

ηl =
cη

2016

2015∑
i=0

β(t)|Bl,i
∀l ∈ L, (29)

where Bl,i, i = 0, . . . , 2015 for each l ∈ L are the last 2016 sub-locks in the
blockchain.

Let us compute cη and ηl for our dataset of transactions, using function
compute_c_eta_and_eta from Algorithm 9. The estimate for cη based on (25)
reads

ĉη ≈ 0.036
s

B
(30)

and

η̂ ≈ (0.13, 8.2× 10−4, 2.3× 10−5, 4.7× 10−7, 1.6× 10−8, 2.6× 10−10) (31)

with the values representing time in seconds spent by all the miners to secure
one bit of information. These values are corresponding to levels from Table
1. When we compare them with the corresponding estimated value of time
investent for current Bitcoin blocks η̂B ≈ 7.15× 10−5 using (5), we see that
the transactions in the first 2 sub-blocks would enjoy higher immediate security
guaranties than nowadays. Looking at Table 1, it concerns transactions starting
from v = 6.8B. On the other hand, a complex transaction even moving as much
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as v = 1600B could be included in a sub-block l = 2 and pay fees more than 3
times lower than today, see (34).

Based on (31), we can estimate the time required to sign the individual levels
for an average block as

t̂l ≈ η̂l · b(Bl) (32)

and thus using function compute_time_per_level from Algorithm 9 we get:

t̂ ≈ (429, 124, 44.5, 2.85, 0.0247, 5.89× 10−6). (33)

Here we have to, for the first time, distinguish two possibilities: whether
miners are expected to broadcast each sub-block Bl, l ∈ L or they should work
on sub-blocks independently from each other and broadcast only the final multi-
block. When miners broadcast the sub-blocks, transactions are verifiable sooner
than when they only broadcast the finalized multi-blocks. However since the
difference between the mining times of two successive sub-blocks belonging to
a same level l ∈ L is on average 10 minutes, the confirmation will practically
never be immediate and the upper bound is on average 10 minutes even if the
next sub-block Bl is able to contain all waiting l−level transactions. From
the usability point of view, there is thus no significant difference between these
options. Since in this section we consider that all the transactions are seen by all
the miners (and full nodes), one might better opt to broadcast only the finalized
blocks. If we were able to transition from a current block to a multi-block at
once, this would allow us to preserve the current broadcasting implementation
and to introduce a high number of levels L.

However, to be able to scale PoW in the next sections, starting from Section
4.2, we have to broadcast the individual sub-locks. One observes in (33) that for
the current distribution of transaction output values v, more then 4 levels of sub-
blocks are practically unthinkable, since the last sub-blocks would be created in
fractions of a second and broadcasting them safely takes certainly much longer.
Technically, based on our understanding of state of the art, three levels are
certainly possible. E.g. Ethereum’s blockchain has 15 seconds block time. The
fourth level might be a challenge. One may consider a hybrid approach such
that the last sub-blocks are mined in a sequence and only then broadcasted
together, here e.g. sub-blocks Bl, l ∈ {2, 3, 4, 5}. This is very easy to implement,
namely miners broadcast only when sufficient work has been done.

But why are the mining times for the last sub-blocks in (33) so small? The
transition from a single block to a multi-level block is a classical example of
the chicken and egg problem. Since transactions t with small v(t) on-chain are
expensive, they are rare.

4.1.4 Value transfer downstream

Whatever form the broadcasting scheme takes, we propose the following iterative
approach to gradually increase the number of possible levels L. First, introduce
a viable number of initial levels - e.g. three. As argued in Section 3.2, users
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should pay fees proportional to difficulty δ(t), which in settings of this section
equals

δ(t) = hB · ηl · b(t)

for a transaction t from a block Bl, l ∈ L. It is, the fees per bit φl at level l ∈ L
should be proportional to ηl:

φl

[
B

b

]
∝ ηl, (34)

which under validity of Assumption 1 is also proportional to the average value
per bit transacted within the block Bl, see (23).

Looking at (31), transactions of a second sub-block B1 should thus pay
0.13/8.2× 10−4 ≈ 159-times less φ and those within a third sub-block B2 ap-
proximately 5650-times less than transactions in a first sub-block B0, whatever
the corresponding absolute values would be. These relative differences represent
strong economic incentives to choose a lower level blocks over a higher level one.
Moreover, if accepted by miners, a high value transaction belonging normally
e.g. in a highest 0-level block can be included in a lower lever block and user
can choose to wait for a confirmation with a number of 0−level blocks. These
two forces would certainly move a lot more wealth from higher levels to lower
levels, filling those in and consequently allowing to increase the number of levels
L. A mechanism for automatic adaptation of L with some save maximum of e.g.
163 can be included into protocol. In essence, one could e.g. ask that the last
sub-block time is at least a predefined constant tmin(block):

tL−1 ≈ ηL−1 · b(BL−1) > tmin(block). (35)

4.1.5 Block rewards

If sub-blocks Bl, l ∈ L are never broadcasted, only the final multi-block, no
changes to reward scheme are necessary. The new multi-block takes the place
of the current Bitcoin block.

If sub-blocks are broadcasted, it is necessary to distribute block rewards r
among the individual levels in a multi-block from Figure 1. First, the expecta-
tion that at most 21M of coins will ever exist should be preserved. To comply,
it is sufficient to apply the current block reward scheme at the multi-block level,
since we aim at the same average multi-block creation time of 600s . This re-
ward then should be split among the individual sub-block based on their average
creation time. We propose assigning rewards

rl :=
t̂l∑
l∈L t̂l

r (36)

for each l ∈ L, where t̂l are estimators of average time to mine sub-block Bl,
see (32), computed at the same time and in the same way as time investments

3From 21000000 B to 1 sat in lg-scale.
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. . . block multi-block block multi-block block . . .

Figure 3: New hybrid blockchain with multi level blocks included between the
normal Bitcoin blocks.

ηl, l ∈ L are computed in (29), i.e.

t̂l := nl · b(Bl) ≈
ηl

2016

2015∑
i=0

b(Bl,i) ∀l ∈ L, (37)

where again Bl,i, i = 0, . . . , 2015 for each l ∈ L are the last 2016 sub-locks in
the blockchain.

4.1.6 How to transition from block to multi-block?

When switching from the current Bitcoin block structure to the multi-layered
solution of Figure 1, continuous operation has to be ensured. This is not a
trivial task and it has to be carefully planned and its full treatment is outside
of the scope of this publication. Nevertheless, in our view, it should be done
in a maximally not intrusive way where new functionality is a possibility, not a
dictate. Here, we present such an approach on conceptual level.

Bitcoin represents among other important things a breakthrough innovation,
store of accumulated trust and even a promise of a better future for mankind.
Naturally, its development is less agile and more conservative and careful than
those of other relatively never blockchains. For this reason, what we propose
in this paper is a stepwise and systematic road map of metamorphosis, which
makes all the three main parties, i.e, users, miners and developers, comfortable
enough to undergo the transition, in our view a vital one.

Consequently, we propose working in an additive fashion. The first elemental
idea is presented in Figure 3. New multi-blocks are included between the current
Bitcoin blocks. Initially, the current system remains practically intact. The new
multi-blocks form a small seed which will compete in usefulness with the old
implementation. We are persuaded that if given chance, it will grow in time
and overtake the old blocks due to its superior economic and from Section 4.2
also technical properties.

Mathematically speaking, we are constructing a homotopy from an old sys-
tem to a new one, i.e. instead of the state transition function (1) we will consider
the following one:

τλ = (1− λ)τo + λτn, (38)

where τo is the current state transition function, τn is the new one representing
the hypothetical Bitcoin blockchain with multi-blocks only and λ is a real pa-
rameter from interval (0, 1) which “measures” to which degree the old blocks and
to which degree the new multi-blocks are used for transactions. This homotopy
is the second elemental idea.
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In the beginning, only old blocks are used, i.e. λ = 0. If new multi-blocks
succeed and all transactions employ them, λ = 1. Here, parameter λ is controlled
predominately by users and then by miners since they decide on the inclusion
of transactions into blocks. Thus, if multi-blocks did not represent a winning
formula for users and miners and indeed also developers in the beginning of the
road, they could never succeed.

The reader can immediately see that this homotopy mechanism can be used
to relatively safely and democratically introduce any new functionality. A dis-
advantage in our case is that the Bitcoin software has to support two or more
block versions, at least temporarily. If λ reaches almost 1, users might be the-
oretically forced to transfer values to new blocks within a transition period of
e.g. few years. Then support for old blocks could be deprecated. However,
this would be a rather harsh measure. Consequently, the system should most
probably remain backward compatible. Also, once even a single multi-block is
non-empty, it caries some information about the Bitcoin state s and the state
transition function τn can not be easily disposed of. Again, values would have
to be first transfered to old blocks. In short, Equation (38) is certainly no tool
for experimentation and only worthy candidates τn should be considered.

Assume that one old block and multi-block pair is created on average every
10 minutes. Then

λ =
tn

600s
, (39)

where tn is average time necessary to mine new multi-blocks. In practice, even
if initially tn is almost zero, since the first multi-block contains only header and
no transactions, one has to reserve a positive time for the block propagation.
Based on Figure 4 of a rather dated paper [10], we have to expect at least 1ms/B
for propagation of en empty Bitcoin block to 90 percentile of the network, i.e
approximately 80ms for a header of 80B and potentially much more.

Let us apply Algorithm 1 to obtain the corresponding segmentation for L =
2. What would be tn if the transactions for l = 0 stayed in old blocks and those
from l = 1 moved to new multi-block, here with one level only? The results are
presented in Table 2. In comparison to Table 1 we added a b(t)-row to illustrate
that small transaction are actually more “rich”. And we added ηl- and tl-rows
which are computed according to Algorithm 9. Otherwise, the table is generated
in the same way as Table 1.

Even if the second segment T1 of “the mempool” T contains more transac-
tions and is bigger, under the validity of Assumption 1, the transactions included
within it enjoy the same security by using the hash rate hB of the Bitcoin net-
work for less then 2 seconds out of 600s, particularly tn ≈ 1.92s. And they
should pay fees approximately η0/η1 ≈ 1120 times lower on average then those
transactions in T0. Maybe more importantly, the energy usage per transaction
is also approximately 1120-times lower. It means, that a small investment of
miners time, i.e. approximately 1.92/598 = .32%, represents the capacity to
sign more than two thirds of all the transactions while still providing an ade-
quate security and decreasing energy consumption of small value transactions
three fold. We hope, that the huge potential effect on the ability of the Bitcoin
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l 0 1

|Tl| 245679 703933

b(Tl) 5.33e+02 6.66e+02

min(β(t)) 6.39e+03 0.0197

max(β(t)) 2.08e+09 6.39e+03

β(t) 1.2e+06 1.07e+03

min(v(t)) 9.65e+06 3.06e+02

max(v(t)) 6e+12 7.4e+09

v(t) 3.04e+09 5.61e+06∑
v(t) 7.46e+14 3.95e+12

ηl 0.000281 2.52e-07

tl 5.98e+02 1.92

Table 2: Distribution of transaction values after segmentation: L = 2

network to serve small regular transactions on-chain is obvious.
Is it necessary to motivate somehow the use of new multi-blocks? The short

answers is no. First, it is reasonable to assume that transaction fees and environ-
mental concerns on its own would be sufficient motivation to employ multi-block
for small casual transactions. With growing confidence, higher and higher val-
ues would be transacted. If found desirable, the natural economic incentives
which promote value transfer described in Section 4.1.4 could be strengthened.
E.g. those users using multi-blocks could enjoy a higher security tn+ ε for some
ε > 0. However, since transaction fees are determined by market forces, such
measures would be probably ineffective.

Whether an equilibrium with a λ < 1 would be found or the current blocks
would stopped to be used altogether, i.e. λ would eventually reach 1, is a difficult
question to answer. The answer depends on too many unknowns, among them
on implementation details. We may only speculate that eventually the current
blocks would probably survive and work as a bank for high value transactions,
since (6) is only a model and in reality the relation between δ(t) and v(t) is
very likely non-linear. E.g. those making high-value transactions are maybe
prepared to accept a higher risk or are only making transactions between two
wallets they own and thus double-sending is of no concern or they are maybe
able to wait longer for confirmation. On the other hand miners would realize
this and they would include also transaction paying less than a “fair” linear-
model based value into standard blocks.4 But most importantly sub-blocks are
essentially current Bitcoin blocks and one of them is the highest in hierarchy.
Thus the standard block preceding a multi-block can be seen as the highest level
sub-block for l = −1 and λ is then merely a degree-of-freedom parameter which
has to be found to balance the two state transition functions: τo and τn.

To summarize, we propose:

4The same reasoning applies to relations among sub-blocks of a multi-block.
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• Introducing multi-blocks between the standard blocks as depicted in Fig-
ure 3.

• Adapting the consensus algorithm to accommodate the state transition
function (38), where λ is defined by (39), where tn could be computed at
the same time and in the same way as ηl, l ∈ L are computed in (29), i.e.
by averaging the multi-block time through last 2016 blocks.

• Propagating the whole multi-blocks only which allows us to introduce from
the beginning practically any number of levels L, where L ≈ 16 seems to
offer good granularity.

• Dividing the block reward r honestly between τo and τn, i.e. λr goes to
miner finding the next multi-block and (1− λ)r to miner finding the next
standard Bitcoin block.

The l.h.s. of Equation (25) contains tn instead of 600s. All the formulas to
compute cη and η etc. are adapted accordingly.

4.2 Sharding levels

In Section 4.1 we introduced our first hierarchical block structure (HBS), de-
picted in Figure 1. It employed the concept of extended transaction t, see
Definition 2, but only those signed by all the miners and seen by all the full
nodes, i.e. λ(t) = 1 which implies h(t) = hB . We showed that by varying time
investment η, see (4), this HBS allows us to successfully align three things:
transaction security, fees and electric energy consumption. This was all possible
because we have recognized and already partially employed the fact that all
transactions are not equal. Namely, that some of them move fortunes and some
of them only pennies. But since the constraint h(t) = hB remained untouched,
so did the scalability, as it is succinctly expressed in Section 1.

Assume for a moment that the constraint h(t) = hB remained untouched
and we simply allowed the new multi-blocks from Figure 3 to have flexible size.
They could indeed accommodate more transactions. But to propagate big blocks
costs time [10] and the bigger their size, the more difficult it becomes to run a
full node, promoting the type of centralization we really want to avoid.

As discussed in Appendix A.6, it is not the centralization of mining but that
of control which is problematic. Miners and developers, even if they are indeed
privileged, merely serve the user base of the Bitcoin community. And users cast
they votes every day by buying or selling coins. This type of control is obvi-
ously fully independent on blockchain implementation including its consensus
algorithm. But the second voting mechanism, the choice to run or not a full
node or its specific software version has to be preserved. Altogether, simply
increasing multi-blocks size is not the way to scale.

What we however can do is to distribute hashing capacity and to adapt
the concept of a full node. The underlying motivation is simple. Again, when
one does high-stake transactions, he will try to avoid all risks. Let us take
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. . . {t(1, η0)}

{t(0.5, η1)} {t(0.5, η1)}

{t(0.25, η2)} {t(0.25, η2)} {t(0.25, η2)} {t(0.25, η2)} . . .

Figure 4: Sharding of individual levels for L = 3.

as an example a private property transaction. Buying e.g. a house without
professional legal support is probably unthinkable for most people. But when
paying for ice-cream we sometimes not even count change. The difference in due
diligence simply stems from different values of those transactions. Which aspect
matters to us the most here is how transactions are validated and recorded.
Private property ownership together with the supporting documents are usually
recorded in at least a county register, i.e. in a centralized database, sometimes
even a publicly searchable one. On the other hand who knows a lot about your
last ice cream transaction paid in cash?

This observation implies for Bitcoin transactions t that we should require
those with the highest value per bit β(t) to be signed by all miners and validated
and recorded by everybody, i.e. all nodes. But those with lower values can be
mined by only a fraction of the global hashrate hB and validated and recorded
by only some fraction of the “full” nodes.

We can build directly on the work presented in Section 4.1, where β(t) de-
creases as the level index l ∈ L increases, i.e., in effect, also the required due
diligence decreases. Thus we can exploit the first degree of freedom of an ex-
tended transaction t, see Definition 2, i.e. λ, and split the individual levels in
Figure 1. More accurately, we split the mining work, it is the transactions wait-
ing in the mempool for confirmation among the mining nodes in the network.
The validation work is split as well. The highest level for l = 0 is not split at
all. The transactions within the corresponding blocks are worked on by all the
mining nodes and seen by all the full nodes. It behaves as a current bitcoin
block.

One possible realization of the corresponding HBS is depicted for L = 3 in
Figure 4. Here, we have employed a binary tree structure but any number of
children per a non-leaf node c is possible. For simplicity but without any loss
of generality we assume that c = 2 except when otherwise noted.

Formally, we still map the transactions from T based on their β and/or
based on what users desire to one-dimensional space with the main parameter
being l ∈ L. The individual sub-blocks Bl,s, s ∈ {0, . . . , 2l−1} for a certain level
l ∈ L are principally equivalent to each other with respect to security, since they
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employ the same time investment ηl.
Even if the idea is simple, the set up is much more complex than that of

Section 4.1. And to reach any form of consensus in the community will be
probably an equally complex and challenging process. Nevertheless, we again
suggest introducing any new functionality using the homotopy mechanism from
Section 4.1.6, which makes the transition process a rather safe one. It is even
possible that the development of this section and Section 4.1 can be aggregated
to avoid a two stage transition process.

4.2.1 Distribution of hashing resources and its security

First, in the HBS from Figure 4, we assume implicitly that the hashrate hB
can be uniformly divided among the shards. This can be a problem especially
for a higher number of levels L, when some of the biggest miners can have
capacity higher then is necessary to sign a single shard Bl,s. We expect that
such sophisticated miners have no problem to split their mining power among
the individual shards if necessary.

Moreover, nowdays hashing capacity is mostly concentrated into mining
pools. These again sophisticated actors would have to accommodate their busi-
ness model and to distribute the hashing power according to the new multi-layer
sharded block structure.

We propose assigning miners to shards Bl,s, s ∈ {0, . . . , 2l − 1} based on a
hash of their IP address or any other similar unique network identifier. One can
take e.g. few leading bits/bytes of this hash to assign them a shard to work on.
For convenience, we define an abstract shard function s which does precisely
this:

s(l,hash(IP )) : (l, IP )→ s. (40)

A Python implementation of (40) is presented in Algorithm 10. A miner
obtains not only a shard sl at level l but a branch (s0, s1, s2, . . . , sl), s0 = 0 of the
tree HBS, he should be working on or better to which he belongs. This branch is
such that each Bi,si is a parent sub-block of shard Bi+1,si+1

for i ∈ {0, . . . , l−1}.
The probabilities to belong to a certain shard at any level i ∈ {0, . . . , l} are
uniformly distributed.

Even if an attacker achieves more than 50% hashrate for a particular shard
Bl,s for a sufficiently high level l ∈ L, his ability to double spent is very limited.
After broadcasting its block, miners from a higher level l−1 are already includ-
ing the hash of its block into their block secured by a much higher accumulative
hashrate. To counterfeit any block later is also impossible, since after broad-
casting it is available to all miners from level l − 1 and also full nodes keeping
records of this part of the tree HBS. In the end, the whole multi-block from
Figure 4 is secured by cumulative hashrate of the whole network hB when the
corresponding root block B0,0 is mined. Consequently, the whole tree would be
at least as secure as the current Bitcoin implementation.

One can also consider an attacker having enough hashrate to theoretically
double spend at a certain level l, but to attack at a lower level l + 1. Such
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attacks are in our view highly unlikely since, simply put, monetary rewards are
exponentially decreasing function of l and one time only at level l+1. This is in
sharp contrast to continuously flowing block rewards and transaction fees at the
level l at which the miner normally operates, together with a possible crushing
affect on the BTC market price.

To further strengthen security, the function (40) may be randomized. The
hash can include a random string determined e.g. during assemble of a previous
multi-block by all the miners in a distributed fashion, so that the shards assigned
by (40) are always different and not fixed. The following algorithm to generate
such a global nonce comes to mind:

Algorithm 2: An algorithm for generation of a global random nonce.

Data: L ∈ N+;
Result: A random nonce R0,0 saved at the root block B0,0.

1 while 1 do // an abstract loop corresponding to multi-blocks

2 for l← L− 1 to 0 do
3 for s← 0 to 2l − 1 do // non-blocking

4 if miner should mine Bl,s then
5 · · ·
6 if l = L− 1 then
7 Rl,s = hash(rand())
8 end
9 if l < L− 1 then

10 broadcasting and validating blocks Bl+1,2s, Bl+1,2s+1

11 Rl,s = hash(rand(), Rl+1,2s, Rl+1,2s+1)

12 end
13 Add Rl,s to the header of Bl,s
14 mine Bl,s
15 · · ·
16 end

17 end

18 end

19 end

The generation of this random nonce is local as each miner of a block Bl,s for
some 0 ≤ l < L− 1, s ∈ 0, . . . , 2l − 1 needs to know only the lower level nonces
from two children blocks Bl+1,2s and Bl+1,2s+1. But the result R0,0 is available
to everybody, since B0,0 is mined by all the miners and validated and recorded
by all the full nodes. Instead of (40) we use

s(l,hash(IP,R0,0)) : (l, IP )→ s. (41)

Admittedly, a sophisticated attacker can own a range of IPs and to route
traffic always through one which maps to a fixed shard s, and to e.g. become a
miner with more then 50% hashrate for this shard. However, information about
IPs is publicly available and it is quite easy to propose countermeasures. E.g.
it is more costly to control static IPv4 addresses with different 2 or 3 leading
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bytes. I.e., to create a distribution of IPs which seems randomly chosen is
difficult. Altogether, this measure substantially increases costs to perform any
attack where concentration of hashing resources in a shard is necessary, however
unlikely they are based on the previous reasoning in this section.

4.2.2 How to assign transactions to individual shards?

We again propose using a variation of function (40) to assign transactions t, i.e.
work, to individual shards s ∈ {0, . . . , 2l − 1} for some l ∈ L, particularly

s(l,hash(i(t))) : (l, i(t))→ s, (42)

where input i(t) of transaction t is a single Unspent Transaction Output(UTXO)
of some previous transaction.

The tree hierarchical block structure (HBS) from Figure 4 that we consider
in this section does not allow us to support classical Bitcoin transactions with
multiple inputs, only at the highest level block B0,0. Why? Since the whole
point of sharding the sub-blocks Bl, l ∈ L is to allow for independent signing of
transactions and their validation in the individual shards Bl,s, s ∈ 0, . . . , 2l − 1,
the mapping between UTXOs and transactions has to be unique. Otherwise,
an attacker can double spend its UTXOs in possible multiple sub-blocks from
set {Bl,s}. Namely, he could create different non-disjoint subsets S1 and S2 of
UTXOs he controls, such that s(l,hash(S1)) 6= s(l,hash(S2)) and those would
be assigned to different shards s1, s2 ∈ {0, . . . , 2l}. The UTXOs in S1∩S2 would
be then double spent.

To aggregate multiple UTXOs in one transaction is still possible within the
HBS of Section 4.1. Or indeed, one classical Bitcoin transaction with multiple
inputs can be substituted by a set of simple one input transactions transacting
to the same output(s). Altogether, we pay at most a small loss of convenience
for possibility to scale on-chain transaction capacity.

4.2.3 Distributed computation on tree HBS

Let us now adapt the important formulas from Section 4.1 to the new HBS, since
many of them require some revision. First, sub-blocks Bl,s from level l ∈ L for
any shard s ∈ {0, . . . , 2l − 1} employ hashrate

hl :=
hB
2l

(43)

and consequently transactions within those blocks enjoy, instead of (19), the
following security:

s(t)|Tl =
hB · ηl
2l|Tl|

∑
t∈Tl

b(t)

v(t)
. (44)
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By repeating the derivation from Section 4.1.3 we get the formula for time
investments of individual levels under validity of Assumption 1:

ηl

[ s

b

]
= 2lcη

[
s

B

]
· β(t)|Tl

[
B

b

]
∀l ∈ L, (45)

where again cη ∈ R+ and the interpretation of this variable does not change. We
see that since hash power of miners is divided among the shards Bl,s for l > 0,
2l−times more time than in Section 4.1 has to be invested to compute a hash-
signature of those blocks to achieve the same security for transactions inside
them. When we compare the exponential grow 2l with exponential decrease of
β(t)|Tl for a sufficiently small L (e.g. see Table 1), we see that (17) still holds.

The corresponding match to relation (24) is

hB
∑
l∈L

ηl
2l

2l−1∑
s=0

∑
t∈Bl,s

b(t) = 232∆, (46)

which leads, instead of (25), to

600s
(3)
=

232∆

hB
=
∑
l∈L

ηl
2l

2l−1∑
s=0

b(Bl,s)
(45)
≈ cη

∑
l∈L

2l−1∑
s=0

β(t)|Bl,s
· b(Bl,s). (47)

But how do we compute cη, since information about β(t)|Bl,s
and b(Bl,s) for

each admissible (l, s)-pair is not available to every miner? We have to work in
a distributed fashion as it is already done in Algorithm 2. Assume, that we
again want to compute cη based on the last 2016 multi-blocks as it was done in
Section 4.1.3. Then we have

cη ≈
600s∑

l∈L

2l−1∑
s=0

1

2016

2015∑
i=0

β(t)|Bl,s,i
· b(Bl,s,i)

, (48)

where Bl,s,i, i ∈ 0, . . . , 2015 are the last 2016 shards for any admissible pair
(l, s). Each miner belonging to shard (l, s) should compute the average “output
value” for his proposition block

vl,s :=
1

2016

2015∑
i=0

β(t)|Bl,s,i
· b(Bl,s,i). (49)

A miner one level above him will control the computation during validation of
the children blocks and only then include the hash of this block into the header
of its block. We suggest to use recurrent relation for average

vl,s,i =
i

i+ 1
vl,s,i−1 +

1

i+ 1
β(t)|Bl,s,i

· b(Bl,s,i) (50)
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to obtain an on-line estimate vl,s,i of vl,s for each i ∈ {0, . . . , 2015} with any
finite initial condition vl,s,−1 <∞. Now we are ready to present the distributed
Algorithm 3 to compute cη, see Appendix B.

Since information is distributed among the nodes of tree HBS, not only cη but
any variable dependent on such information has to be computed in a distributed
way as it is done in Algorithm 3. The same is true for time investments ηl, l ∈ L.
For those, instead of (29) we have

ηl =
cη

2016 · 2l
2l−1∑
s=0

2015∑
i=0

β(t)|Bl,s,i
∀l ∈ L, (51)

i.e. each ηl is dependent on information from the all shards s ∈ {0, . . . , 2l}.
Those are connected only via the root node of the tree and thus ηl can only
be computed by applying a reduce to the sum of β(t)|Bl,s,i

through shards s
using intermediate results saved in the higher levels {0, . . . , l − 1} of the tree
HBS. The average through recent multi-blocks for i ∈ {0, . . . , 2015} can be again
facilitated via an on-line update analogical to (50). Final ηl, l ∈ L will be saved
in the root block B0,0 as a vector and updated at the same time as cη is updated
in Algorithm 3. Since root blocks are available to everybody, so are {ηl}. Details
of the algorithm are left on reader as an exercise.

Let us now reassess cη and ηl for our dataset of transactions. First, even if
the calculation of cη changes, the value remains the same, i.e. (30) still holds.
By comparing (23) with (45) we see that the updated estimate η̂tree of η reads

η̂tree,l = 2lη̂l ∀l ∈ L, (52)

where η̂ is the estimate from (31).
Second, since the sub-blocks Bl, l ∈ L from Section 4.1 are here divided to

2l shards Bl,s for s ∈ {0, . . . , 2l − 1}, those are thus on average 2l-times smaller
and (32) implies that 2l from (52) cancels out and time to sign a shard Bl,s
is still given by (33). In consequence, the hurdles to broadcast the shards are
neither lower nor higher at the first sight then those with sub-blocks in Section
4.1. But since the shards are 2l-times smaller, it takes in principle 2l-times less
time to broadcast them. While we ignored latency issues etc., the situation is
clearly significantly better, namely exponentially so.

4.2.4 Reward and transaction fees

Again, as argued in Section 3.2, users should pay fees proportional to transaction
difficulty δ(t). Per shard Bl,s, l ∈ L, s ∈ {0, . . . , 2l − 1}, the available hashrate
is given by (43). On the other hand we have derived that the time investment
η under validity of Assumption 1 satisfies (45). Altogether, for any l ∈ L, 2l

cancel out and the difficulty δ(t1) for a transaction t1 in Bl,s is identical to the
difficulty δ(t2) for a transaction t2 in Bl from Section 4.1, i.e. fees should not
change. Indeed, the fees per bit φl at level l ∈ L should be proportional to

φl

[
B

b

]
∝ hB

2l
ηl

(45)
= cη · β(t)|Tl , (53)
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which is, under validity of Assumption 1, identical to what users should pay,
according to (34), for space in sub-blocks Bl, l ∈ L.

For distribution of rewards r, we build on the approach presented in Section
4.1.5. If the whole network hashrate hB is uniformly divided among 2l-shards
for each level l ∈ L, we have that for each s ∈ {0, . . . , 2l − 1}

rl,s :=
t̂l

2l
∑
l∈L t̂l

r, (54)

where t̂l are estimators of average time to mine sub-blocks Bl,s given by

t̂l ≈ η̂l · b(Bl,s)|s∈{0,...,2l−1} (55)

and computed in the same distributed way as time investment estimators η̂l, l ∈
L are computed starting from (51). Since t̂l, l ∈ L need to be available to
everybody, they have to be saved in a root block B0,0. Because the estimates η̂l
of ηl should already be saved therein, it is equivalently possible to save estimates
of b(Bl,s)|s∈{0,...,2l−1} for l ∈ L and t̂l can be computed using (55). Analogically
to (51), we can write

b(Bl,s)|s∈{0,...,2l−1} ≈
1

2016 · 2l
2l−1∑
s=0

2015∑
i=0

b(Bl,s,i) ∀l ∈ L. (56)

Again, (56) can be computed using on-line update analogical to (50).

4.2.5 Sharding validation and storage: minimal “full” node.

Without distribution of both transaction validation and storage, the recent de-
velopments of this section would be in essence meaningless. All aspects of the
Bitcoin ecosystem have to be adapted to achieve scalability on-chain.

Our core distribution approach for validation and storage is very similar to
that of mining. As β(t) decreases as the level index l ∈ L increases, we propose
that a decreasing fraction of “full” nodes validates and stores transactions, pro-
portionally to hashrate h used to sign those transactions. Looking at Figure 4,
it means, that all the nodes validate and store transaction for l = 0, a half of
the nodes for l = 1 and in general

1

2l
(57)

of all the nodes validate and store transaction for level l ∈ L. This defines a
notion of a minimal full node (MFN). But nodes may choose to support a bigger
part of the tree HBS, even the whole one.

Of course, the fraction of network nodes (57) has to be large enough to
ensure virtually 100% availability of any record. This gives us an upper bound
on number of possible levels. Currently, there are more then 14000 reachable
Bitcoin nodes, which means that level l = 7 is supported by more then 100 nodes.

29



Thus L = 8 seems certainly feasible. To achieve e.g. L = 16 with 100 nodes
per a leaf shard B15,s for any s ∈ {0, . . . , 215 − 1} would require approximately
100 · 215 ≈ 3.3M modes. Currently, this number seems illusory, but we will
show that running a MFN becomes easier as L grows, which together with the
obvious increase of three HBS blockchain usability should promote widespread
use of decentralized finance.

We propose assigning parts of the HBS tree to candidate MFNs again based
on shard function (40), see also Algorithm 10. The MFNs should validate and
store all sub-blocks mined within their branch. This ensures that probabilis-
tically all parts of the tree HBS are uniformly covered with respect to both
validation and storage.

When a MFN has to validate transactions included in a shard Bl,s, l ∈ L, s ∈
{0, . . . , 2l − 1} from the branch assigned to him by (40), they refer to UTXOs
saved in a certain previous shard of any previous tree HBS. Thus, it has to
receive from the network other sub-blocks not belonging to its branch to be able
to validate those transactions. What is the number of those sub-blocks? Let
us assume for simplicity that one multi-block tree contains on average N ∈ N+

transactions and those are uniformly divided among the shards. Then one shard
Bl,s for any admissible pair (l, s) contains simply

N

2L − 1
(58)

transactions, where 2L− 1 is the number of Bl,s−shards in the binary tree HBS
with L levels. To validate any of those transactions, the MFN has to download
one historical branch up to some level k < L from the network, where k is the
security level of this historical transaction. It means that it has to download,
validate and store at least temporarily up to

Nk

2L − 1
<

NL

2L − 1
(59)

historical shards per one own shard Bl,s. For all L-shards directly assigned to a
MFN, it has to download, store and validate up to

NL2

2L − 1
(60)

extra shards. Altogether, the ratio of all the shards which any MFN has to
control to the alternative of storing the whole tree HBS is bounded by

r(N,L) :=
NL2

(2L − 1)2
+

L

(2L − 1)
. (61)

The scalability of MFN sharding is depicted in Figure 5 generated by running
Algorithm 11. The solid line represents the ratio (61) plotted as a function of L
for N = 4200, which is approximately the number of 250B legacy transactions
savable in a current 1MB Bitcoin block. For a still feasible L = 10 the above
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Figure 5: Sharding efficiency: result of running Algorithm 11

expression already evaluates to a number smaller then 1. This corresponds
to approximately 4200/(210 − 1) ≈ 4 transactions per a shard Bl,s for some
admissible pairs (l, s).

Of course, the goal is to scale the on-chain capabilities of Bitcoin network, i.e.
to increase N. Expression (61) is minimized for N = 2L − 1, which represents a
hypothetical tree HBS where each node, i.e sub-block Bl,s, l ∈ L, s ∈ {0, . . . , 2l−
1}, contains on average just 1 transaction. For N < 2L−1 some sub-blocks Bl,s
have to be empty. Even if this represents an intriguing possibility which should
be further analyzed, we consider here only the case N ≥ 2L−1. The dashed line
plots the ratio (61) for N = 2L−1 as a function of L. We see that e.g. for already
L = 15 we achieve r ≈ 0.007, which means that a MFN has to download less
than 1% of total multi-block capacity. The dash-dotted line in Figure 5 depicts
the corresponding theoretical capacity of the network in number of transaction
per second, under assumption of average multi-block time of 600s. E.g. for
L = 20 we would achieve approximately 1750 transactions per second, which is
close to the average number of VISA network transactions per second.

4.2.6 Information routing on tree HBS

The last aspect we shortly comment on is the question of information routing
within the network. It is a rather complex problem whose full treatment lies
outside of the scope of this conceptual publication. Nevertheless, the commu-
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nication has to be scaled as well, otherwise it would be a bottleneck. It seems
wise to employ the natural topology of tree HBS.

Let us image e.g. that a node wants to broadcast a transaction that should
be signed at a certain level l, 0 < l ≤ L−1. By computing (42) for its transaction
the broadcasting node identifies a branch (s0, s1, . . . , sl) of the tree HBS to which
this transaction belongs. From its routing table, it can identify a safe number of
nodes which belongs to the corresponding shard s1 based on (40) at level l = 1.
Those nodes should have a sufficient knowledge about their part of the tree
HBS, saved in their routing table. They will then broadcast the transaction to
the right nodes from shard s2 at level l = 2. Those can broadcast it among them
and route to those from s3 at l = 3 etc. It is, the communication happens along
the corresponding branch of tree HBS. The broadcasting node should receive
a confirmation that at least one mining node or a desirable number of them
working at level l is aware of the corresponding transaction.

The routing table may or may not be distributed. E.g. we estimated in
Section 4.2.5 that we need 3.3M modes for L = 16 at a minimum of 100 nodes
per a leaf shard. A routing table would then have a size proportional to ap-
proximately 13MB for 4B per an IP address, which is arguably not problematic.
However, with e.g. billions of nodes in mind, it is still sensible to consider a
non-distributed routing table? If a node knows n random peers, probability
that all those do not belong to a certain shard at level l is given by

p(n) =

(
1−

(
1

2

)l)n
, (62)

which yields that it has to know at least

n =
lg(1− q)

lg
(

1−
(
1
2

)l) (63)

nodes to be sure that with probability q = 1− p at least one of n nodes belongs
to the considered shard. Then the broadcasting node could communicate with
this node directly with a high probability, without using the briefly proposed
schema above. E.g. for p = 1× 10−10, L = 16 and the lowest level l = L − 1
one gets “only” n ≈ 754500. However for p = 1× 10−10, L = 24 and the lowest
level l = L− 1 one gets more than 193M nodes. And worse, for unsatisfactory
p = 0.1, L = 24 and the lowest level l = L − 1 one gets still more than 19M
nodes. To conclude, a distributed routing table is a must for a high number of
levels L. But we think that all aspects of any next evolutions of Bitcoin network
should be implemented as efficiently as possible from day one. Of course, taking
into account all criteria, such as security and simplicity etc. A communication
scheme which exploits the tree HBS topology fully is desirable.

4.3 Concurrent levels

In Section 4.2 we proposed a tree hierarchical block structure (HBS), depicted
in Figure 4, which could theoretically allow us to scale Bitcoin blockchain to
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thousands of on chain-transactions per second, while building on and respecting
previous developments in Section 4.1, where, recalling again, we successfully
align three things: transaction security, fees and electric energy consumption.
Moreover all processes including mining, validation and storing of blocked trans-
actions are distributed and nodes has to handle only a small fraction of the full
state s.

However, at least one significant issue remains unresolved. Among any too
sets of confirmed transactions recorded in sub-blocks Bl,s, s ∈ {0, . . . , 2l − 1}
of two successive “multi-blocks” at any level l ∈ L, there lie all sub-blocks of
the current multi-block for higher levels {l− 1, l− 2, . . . , 0} and the next multi-
block for lower levels {L−1, L−2, . . . , l+1}. Confirmation times of those sets of
transactions differ on average by multi-block creation time T , which we assumed
to be equal to the current block time of 600s. Consequently, a user has to wait
at most 10 minutes for its transaction to be included in a sub-block Bl,s even
if the tree HBS from Section 4.2 has enough capacity to store all the waiting
transactions. In short, transactions are not timely.

There exist few ways how to mitigate this problem. Obviously, transactions
which need to be really quick can employ some off-chain mechanism such as
Lightning Network [2]. While we fully recognize the importance of “perpen-
dicular” approaches, we would still prefer an on-chain solution, if one can be
found.

The obvious direct approach is to decrease T to few seconds, e.g. T =
5s. Based on behavioral research [11], tolerable waiting time for information
retrieval is 2s and 10s is about the limit for keeping user’s attention focused.
These “multi-block” times are very short and push the tree HBS from Section
4.2 to uncharted waters. Surely, if the number of transactions per second is kept
constant, size reduction of sub-blocks Bl,s, l ∈ L, s ∈ {0, . . . , 2l − 1}, would be
proportional to reduction in T. However, it is an open question how efficiently
can all the aspects of state transition (1) be rescaled, especially with regards to
information synchronization within the network. It is entirely possible that this
approach can lead to an acceptable solution. A fine treatment of this possibility
is however outside of scope of this publication. In the forthcoming text we
propose a more systematic solution with has a far higher potential of success.

Let us recall that Bitcoin transactions t are in essence signed by expenditure
of computation resources, expressed by hash rate h(t), for a certain time, ex-
pressed by time investment η(t) defined in (4). Transaction security can only be
controlled by controlling those two degrees of freedom (DOFs), see Section 3.3,
particularly Equation (16). The tree HBS from Section 4.2 depicted in Figure 4
has been the first HBS we proposed in this paper which is designed to simulta-
neously employ those two DOFs. While it certainly does not represent a unique
possibility with respect to this, it is a natural extension of the multiblock idea
from Section 4.1. So how to achieve timeliness of transactions while keeping this
tree HBS or altering it only minimally and thus preserve everything we have
achieved so far?

The answer is concurrency. One has to relax the sequential dependence in
Figure 4.2. A transaction t at a level l ∈ L should not wait for all sub-blocks of
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. . . Bl,sl,i Bl,sl,i+1 . . .

. . . Bl+1,2sl,j Bl+1,2sl,j+1 Bl+1,2sl,j+2 . . .

. . . Bl+1,2sl+1,k Bl+1,2sl+1,k+1 Bl+1,2sl+1,k+2 . . .

Figure 6: Concurrent chains at levels l, l + 1 ∈ L and some branch sl ∈
{0, . . . , 2l − 1}.

the current multi-block for higher levels {l−1, l−2, . . . , 0} and of the next multi-
block for lower levels {L− 1, L− 2, . . . , l+ 1} from its branch {s0, s1, . . . , sL−1}
to be mined. It should be included in a block Bl,sl as quickly as possible.

The idea is presented visually in Figure 6. It depicts in the middle one
blockchain containing l−level blocks Bl,sl,i for a level l ∈ {0, . . . , L − 2} and
i = 0, 1, . . . surrounded by its two corresponding l + 1 blockchains, one con-
taining blocks Bl+1,2sl,j for j = 0, 1, . . . and the other blocks Bl+1,2sl+1,k for
k = 0, 1, . . . . Each of those blockchains corresponds to one node of the tree HBS
depicted for L = 3 in Figure 4, namely the nodes determined by coordinate
pairs (l, sl), (l + 1, 2sl) and (l + 1, 2sl + 1). The tree HBS with L levels has
together at most 2L + 1 nodes, i.e. we obtain the same amount of concurrent
blockchains. As displayed in Figure 6, those blockchains still to a great extend
respect the hierarchical topology of the underlying tree HBS from Section 4.2
and they are certainly not independent. For example, hashes of lower level
blocks are included into higher level proposition blocks after performing of all
necessary controls to avoid double spending etc.

What changes? We allow each blockchain (l, s), l ∈ L, s ∈ {0, . . . , 2l − 1}
to grow without its blocks immediately being checked and signed by higher
levels l − 1, . . . , 0. In essence it means, that validation by mining higher level
sub-blocks/shards is postponed in time. And we also allow multiple blocks in
a chain (l, s) to be created without all their hashes being included in a higher
level block. This does not substantially alter the tree HBS topology. A sequence
of such blocks can be merely seen as a single larger block, see dashed blocks in
Figure 6. But it allows us to increase timeliness because very small blocks can
be added to a chain (l, s) if necessary.

Practically all results from Section 4.2 apply to this concurrent setup without
a change or only with slights modifications. We lose the strict order of shards
Bl,s within tree HBS from Figure 4 but concurrent blockchains are one-to-one
mapped to individual nodes (l, s) of this tree HBS, while its hierarchy is still
enforced even if more loosely. Thus this loss of strict sub-block order has only
temporal implications for the finality of state s when the situation is compared
with the setup of Section 4.2.

In the end, any finality of Bitcoin transactions is only probabilistic and thus
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prone to subjective perception, see Section 2. Nowadays, users often wait for
multiple confirmations till they consider a transaction settled and this partially
irrespective of the wealth being transacted. In doing so they follow classical
Byzantine fault tolerance model [16]. It seems that they have no other choice.
At least at first glance, see A.6, this is the model governing the security of
current Bitcoin blocks. All transaction within those share the same risks and
guaranties. If one wants to double spend even a single transaction, he has to
implicitly attack all transactions in the corresponding block. This is completely
different from situation in HBSs starting already from Section 4.1, supported by
our simple incentive based security model from Section 3.1. Users have a choice
to pick a level of security that they find appropriate based mainly on wealth
being transacted. Naturally, the notion of finality is fluid as well.

If one pays for an ice-cream or receives the payment for icecream, he is
probably satisfied with the transaction being included in a low lever block for
a certain low enough l ≤ lmax, where lmax is the minimal security level both
transacting parties can initially accept. They would not wait till this transaction
is confirmed by creation of a highest level block B0,0. E.g. the seller would accept
the very small risk that finally a longer chain may be found, not referring to their
transaction. As he currently accepts e.g. the risk that a very small percentage
of coins are counterfeits.

On the other hand, if one receives a payment e.g. in a property transaction,
he would require a much lower lmax, such that at least a 2−lmax− fraction of
nodes validate and store the data and he would consider the transaction settled
only when for the corresponding block Bl,s there exists a hashpath up to the
root level l = 0 within the graph obtained by repeating Figure 6 for all pairs
(l, s), l ∈ L, s ∈ {0, . . . , 2l − 1}. And even wait till a higher number of root level
blocks B0,0 is added to the blockchain (0, 0), similarly to the current practice.

4.3.1 Running a MFN node

While for an L level tree HBS, there are at most 2L + 1 concurrent blockchains,
each minimal full node (MFN), defined in Section 4.2.5, directly handles, i.e.
validates and stores, only L of them, those contained in its branch of the tree
HBS {s0, s1, . . . , sL−1}, determined by (40). For a MFN the problem is linear in
L. The ratio of transaction information necessary to fulfill its duties with respect
to all information contained in all 2L + 1 concurrent blockchains is estimated in
(61).

Today CPUs have mostly at least 4 cores, many supporting hyper-threading,
meaning that up to L = 8 each blockchain can be theoretically easily mapped
onto a single hardware supported thread. In practice, modern CPU can easily
handle 3 or 4 IO intensive threads per core, which leads to L = 12 if one core is
reserved for operating system only.

How many transactions does a MFN process and then has to store? As-
sume that n transactions per second are uniformly divided among the 2L − 1
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concurrent blockchains. Then a MFN has to validate and store

sMFN =
nL

2L − 1
(64)

transactions per second and needs to download for each of them at most one
chain composed of maximally L sub-blocks for validation purposes, see Section
4.2.5. A minimal amount of communication is achieved if each of those sub-
blocks contains just one transaction. For this optimal case we obtain that the
number of transactions per second one MFN has to download is bounded by

dMFN =
nL2

2L − 1
+ L. (65)
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Figure 7: An upper bound of minimal download per day in MB of a single MFN:
result of running Algorithm 12

Clearly, the requirement for storage (64) are monotonically decreasing func-
tion of L ≥ 1. In Figure 7, there is estimated daily download in megabytes
for different values of n, starting from 1700t/s which is close to the average
number of VISA network transactions per second. This figure is generated by
running Algorithm 12 which of course employs relation (65). We assume an
average transaction size of 250B. We see that to minimize communication, a
certain minimal L has to be reached, such that the linear term in (65) starts to
dominate.
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Figure 8: L = argmin(dMFN (L, n)) for different transaction throughputs per
second n and corresponding storage per one MFN per day: result of running
Algorithm 13

Moreover, for each n ∈ N+ there exist one minimum of (65). By running Al-
gorithm 13 we compute those optimal L for different transaction throughputs n.
And we compute the corresponding storage per day for single MFN using (64).
The result is presented in Figure 8. By employing those L, we obtain per day
downloads in range from approximately 300MB for L = 13 to approximately
530MB for L = 24. It means that theoretically a 52kbits/s connection is suffi-
cient (neglecting upload). Moreover, the per day MFN storage is monotonically
decreasing function of n for L values minimizing the connection throughput,
dropping from merely ∼ 2.9MB for L = 13 to ∼ 1.4MB for L = 24.

The scaling potential should be now obvious. It could be possible to run a
MFN node for L = 13 which needs a little bit more then 1GB of transaction
storage per year and can run on a 2G wireless connection. By scaling further,
the storage actually drops to approximately 500MB per year for L = 24 and the
2G connection is still sufficient, neglecting latency issues.

5 Conclusion

In this paper, we have argued that a solution to the problem of the Bitcoin
on-chain scaling lies outside of the comfort zone of the current concept of its
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blockchain, see e.g. Appendix A.5. Nowadays, transactions requiring completely
different security guaranties, considering the monetary values they move, are
included into the same block. They are signed by the aggregate hashrate of all
the participating miners and validated and stored by all the full nodes. Within
these constraints, a scaled up Bitcoin blockchain simply cannot be found.

We have proposed a multi-scale approach, where extended Bitcoin transac-
tions t having two tunable parameters are uniquely assigned to a certain shard
Bl,s, s ∈ {0, . . . , 2l− 1} of the network at a certain level l ∈ L. The default level
l assigned to a transaction is controlled by its output value per bit β, but l can
be freely chosen by the user. The lower l, the higher the number of hashes used
to secure t and more expensive it becomes to double spend. On the contrary,
both electric energy consumption and fees decrease as l grows.

The sub-blocks Bl,s are organized in a (binary) tree topology with coordi-
nates (l, s). The transactions t are uniquely assigned to individual nodes/branch-
es of this tree by a shard function s, see (42). This function is an essential
concept, which facilitates probabilistic assignment of not only transactions t to
nodes (l, s) of the tree, but also miners and other participants to those nodes,
see (40) and Section 4.2.5. Metaphorically, transactions meet their miners and
minimal full nodes (MFNs) at coordinates (l, s) with uniform probabilities in s.
A MFN is an updated version of full node. It validates and stores only trans-
actions along its branch (s0, s1, . . . , sL−1) assigned to it by (40). Consequently,
the state s is distributed among all MFNs.

We have suggested that an efficient information exchange scheme among
the participants should fully utilize the (binary) tree topology. In Section 4.2
this topology is strictly enforced, see Figure 4, but in Section 4.3 only loosely,
see Figure 6. In the latter, we essentially have 2L + 1 interlocked concurrent
blockchains. This constitutes our final scaling proposal which achieves all objec-
tives. It offers thousands of timely transactions per second with a variable level
of trust together with aligned network fees and energy usage. And the state s
is distributed in a way which allows practically anybody to participate and run
a MFN.

Many results in this paper are based on a simple security model (6) together
with Assumption 1. While 6 is certainly only a rough approximation of the
reality and the expectations of some or even all the users can differ from those
in Assumption 1, it is of no concern. The solution found in Section 4.3 is
sufficiently flexible and self correcting. First, the users are free to choose an
appropriate security level l ∈ L. Second, miners may or may not include those
transactions into their proposition blocks at the fees offered by the users. A
true equilibrium between costs and guaranties will be found by market forces.

The Bitcoin elites, at first sight, have no economic incentive to support the
changes proposed in this publication that include aiming for fees proportional to
transaction value v(t). Some of them are certainly satisfied with the current role
of BTC as a store of value, volatile but a store of value nevertheless. But other
crypto plutocrats may recognize that without resolving inconsistency between
the costs and fees as block rewards decrease, not only will B never become
a universal mean of payment, but it will become progressively insecure and
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eventually at risk of becoming extinct, see [13]. The implications for the store
of value proposition are obvious.

Actually, mathematically speaking, there exists at least one very early adopt-
er that could find this contribution significant. The one who wrote:
“Craig Steven Wright is a liar and a fraud. He doesn’t have the keys used to
sign this message.

The Lightning Network is a significant achievement. However, we need to con-
tinue work on improving on-chain capacity.

Unfortunately, the solution is not to just change a constant in the code or to
allow powerful participants to force out others.

We are all Satoshi”
We are highly optimistic about the Bitcoin future. The community will

certainly recognize the economic discrepancies described in this paper and build
upon the solutions proposed. In the end, Bitcoin ecosystem is as democratic
as one can hope it to be. If developers suggest solutions and users choose to
support them, the elites have to bend the knee or risk their fortune to evaporate,
see Section 2.4 of [13]. There is more then enough time for discussions, solutions
and implementations of them. But complacency and postponement are never
good tendencies. It is better to start right now or others will take the lead.
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[2] Ferenc Béres, István A. Seres, and András A. Benczúr. A Cryptoeconomic
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A On Bitcoin, its economics, energy consump-
tion and scaling

A.1 In short, how Bitcoin works?

Bitcoin transactions are stored in blocks of a predefined maximal size. Each
subsequent block contains a hash of a previous block, thus proving that its
creator accepts all the transactions recorded in this and all the earlier blocks.
Consequently, the blocks form a blockchain. Mining nodes in the network com-
pete to create a next valid block of transactions by finding in parallel and with
a minimal amount of coordination a nonce for their proposition block such that
its hash is smaller than a predefined number which determines the difficulty of
finding such a hash. This difficulty is regularly adjusted, reflecting any change
of the compound computational power of all the nodes, such that the block
creation has a specified expected speed (e.g. one 1 MB block per 10 minutes).
When a hash for a certain block is found that fulfills the difficulty criterion and
thus proving that the set amount of computational time has been spent to secure
the transactions contained in the block, this block is added to the blockchain.
The creator of the block then obtains a certain amount of newly minted bitcoin
called block reward, this being the main incentive to take part in signing of the
transactions.

A.2 Deflationary nature

Some argue that Bitcoin’s technological constraints such as its scalability issues
are a secondary problem to its ultimately deflationary nature. They claim that
bitcoin’s appreciation in market value discourages people from using it for pay-
ments. It is a reasonable hypothesis, since, its finite supply is caped at 21M
and ultimately it should be a deflationary coin. Its inflation rate is governed by
block reward which halves every 210000 mined blocks, i.e. about every 4 years.
It was initially 50 bitcoins (BTC), currently being 6.25 BTC. Bitcoin was pro-
grammed to be better in scarcity than gold. And there are other aspects that
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make it superior to gold, e.g. its divisibility or its zero mass which implies prac-
tically zero costs holding the asset. Even the most influential people in finance
now recognize or at least admit that BTC shows some gold-like properties and
behavior. Let us quote Federal Reserve Chairman Jerome Powell talking about
cryptoassets and bitcoin in particular: “. . . There are also not particularly in use
as means of payment. It’s more a speculative asset that’s essentially a substitute
for gold, rather than for the dollar.. . . ” [5].

Inflationary fiat/crypto currencies are definitely easier to be disposed of when
paying for goods or services. If BTC’s value rises when it is still inflationary
due to the ongoing minting process, what will happen when this stops?

But rather than focusing on the question whether BTC is the new gold,
we focus in this paper on what Bitcoin was meant to be and it clearly has
not yet become: a successful general payment system. Without removing the
existing technological hurdles, we will never really know if people are or will
ever be prepared to use BTC for daily payments and in this way to potentially
spread real wealth to others, maybe being even “slightly” altruistic. In the
end, it is difficult to assess whether a deflationary monetary system could work,
especially because societies are used to practically constant presence of inflation.
Philosophically speaking, human life time is similarly deflationary. Each day we
have one day less of it.

A.3 Current state of blockchain affairs

There exist more than 5000 blockchain based cryptoassets at the time of writing
this article, precise number not being important. Most of them are merely tokens
utilizing one of a handful of public blockchain implementations which support
smart contracts. The pioneering one is Ethereum [4], the number two player
with still less than a half of Bitcoin’s market cap. They together represent more
than 60% of more than 2 trillion USD invested in public blockchains.

The Ethereum project extends in a very meaningful way Bitcoin’s codebase
and builds a truly programmable blockchain. Bitcoin itself is a virtual machine
evaluating small programs but limited by design. Arguably, its Taproot upgrade
from November 2021 expands substantially its smart contract abilities, poten-
tially reducing Ethereum’s significant usefulness advantage in this domain [6].
Both Bitcoin and Ethereum use PoW based consensus algorithms but Ethereum
ecosystem is long planned to switch to Proof of Stake (PoS) based one [3].

Proof of Stake based consensus algorithms, among others, are proposed as
alternatives to PoW to mitigate some of its shortcomings, mainly its negative
ecological impact. In short, the blocks are created by validators that are chosen
randomly with probability proportional to their staked holdings of the under-
lining coin. They are rewarded for creating a valid block and/or punished for
misbehaving by loosing a part of or the whole stake. The idea is simple and
intriguing at first but a complex one to apply at a closer look: see e.g. [9] for
critical counterarguments. It suffices to note that the Ethereum network is still
running on PoW even after more than 5 years of PoS development.

Among PoS based blockchain platforms, Cardano clearly stands out. Its
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market capitalization rose from roughly 1 billion USD in 2020 to approxi-
mately 100 billion USD in 2021, becoming the number tree player in the public
blockchain market. This may be to a great extent a speculation move into a
limited smart contract enabled PoS blockchain space, driven by the rising need
for an environmentally friendly blockchain technology. Nevertheless, Cardano
has in our view a unique selling proposition since its development is guided by
evidence-based methods and its consensus algorithm Ouroboros is formally ver-
ified under different models in a sequence of peer-reviewed scientific papers, see
[14] and the references wherein.6

The practical evidence that PoS can be implemented robustly enough to
secure values is indeed comparatively limited. PoW is much more battle tested
and clearly wins with respect to its simplicity which helps to build trust. More-
over, Bitcoin and Ethereum are much more then just their consensus algorithms,
supporting in return the PoW momentum. Only time will tell whether PoS wins
similar levels of market approval, this almost certainly being dependent on the
success of Ethereum’s transition to PoS.

A.4 Bitcoin energy consumption

The power efficiency e of modern commercially available ASIC miners is approx-
imately 30 J/TH. Given the current approximate total hashrate hB of 1.20e8
TH/s, corresponding to 1.2M of modern Antminers S19j Pro, we arrive at the
power of 3.6 GW, equivalent to 3− 4 conventional nuclear rectors.

It is equivalent to 3.6e6 kWh. At electricity price p e.g. 0.1$ per kWh,
we arrive at one hour energy costs of 360000$. Since one block is mined on
average every 10 minutes, energy costs per block are cca 60000$. For a legacy
transaction which size b(t) equals to 250B, costs are

≈ 250B

10242B
· 60000$ = 14.3$

if blocks are assumed to be fully filled. Altogether, a general formula for trans-
action electric energy consumption tec is

tec[kWh] := e[J/TH] · hB [TH/s] · 600s

3.6e6
· b(t)[B]

10242B
(66)

and the cost per transaction cpt is then simply

cpt[$] := tec[kWh] · p[$/kWh].

Certainly, these are lower estimates, since not all the hardware used to mine
bitcoin is recent and it does not include all the indirect energy use. Nevertheless,
this simple estimate yields that Bitcoin network uses approximately 32TWh of
electricity per year - far less than normally estimated.

6It is up to a competent reader to independently evaluate whether the models and their
assumptions are realistic.
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But indeed, because of the block reward, even mining on older hardware is
profitable. We may obtain an upper estimate of Bitcoin energy use, if we know
the average price of electric energy used for mining and assume that miners are
rational and stop mining when it starts to be unprofitable.

Let BTCUSD be the bitcoin exchange rate with USD, φ the transaction fee
per bit and r the block reward. The total block reward tr is

tr[$] = r[B] · BTCUSD + 10242B · 8φ[$/b].

For a rational miner

tr[$] > p[$/kWh] · E[kWh/block], (67)

where E is the total electrical energy consumption of the Bitcoin network to
mine a block which we estimated above as

E ≈ e[J/TH]hB [TH/s]
600s

3.6e6
.

From inequality (67) we get an upper bound on electric energy consumption
based on the market prices. Currently the φ is stabilized under 0.001875 $/b and
BTCUSD is above 40k. Consequently, the network total consumption should
not be higher then

E[kWh/block] <
6.25 · 40000 + 8 · 0.001875 · 10242

0.1
≈ 2.66GWh

for the electricity price of 0.1 $/kWh. This leads to the upper bound of ap-
proximately 140 TWh per year. This is much closer to the other estimates.
Nevertheless, we think that the real consumption is much lower, since electric
energy is the main cost of mining and professional miners have all incentives to
use as efficient hardware as possible.

It is important to note that transaction costs are normally relatively small
with respect to the block reward. Even during its historical maximum of
φ ≈ 0.03 $/b, the block reward was a bigger chunk of total reward, even if
comparable.

As the block reward (i.e. the inflation rate) of bitcoin will decrease, the
electricity consumption should be governed more end more by transaction fees
only and per transaction it should be at least a few magnitudes lower, if we
want the Bitcoin network to succeed.

A.5 Mining economics and scaling

Mining is a very competitive business and we assume that the majority of miners
does not behave altruistically but they rationally maximize their profits. Their
financial incentive to sign transaction is composed of two parts: block rewards
and transaction fees.
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The cost structure of bitcoin mining is complex. Nevertheless, except all the
initial investments to start a mining business, including the equipment acqui-
sition costs, the electric energy consumption is the main production cost, e.g.
denominated in USD.

To enlighten the peculiar nature of Bitcoins minting scheme we can employ a
simple mind experiment: Let us imagine for a moment we fix the whole Bitcoin
ecosystem including the energy consumption and its USD denominated price
p[$/kWh], only halving the block reward in BTC. For miners to recuperate the
block reward loss, the transaction fees and/or the market price of BTC have to
increase.

Let us now further assume that the BTC market price will stagnate at pre-
ceding levels after such a hypothetical halving. Then there exists an immediate
pressure to increase the transaction fee per byte to recuperate the USD denom-
inated loss.

Conversely, let us now assume that the market price of BTC rises propor-
tionally after this hypothetical halving, i.e. it at least doubles since the inflation
rate is halved. Then there is no increased pressure to hike the transaction fees,
since the USD dominated reward of miners is at least preserved. Nevertheless,
the transaction fee at least doubles in USD denominated terms.

In both cases, the halving is making bitcoin payment system more expensive
and thus less competitive. In reality, a mix of the above two extremal possi-
bilities happens. Both the BTC market price rises, even if very non-linearly,
and the transaction fees rise as well. Moreover, eventual more than doubling
of BTC market price incentives old miners to increase capacity and new miners
to join, increasing the overall energy consumption of the Bitcoin network and
rising the environmental concerns.

If the transaction throughput rose at least proportionally, i.e. if it at least
doubled after each halving, it could be argued that real costs per transaction
are preserved. But it would be desirable that utilization increases quicker or
even dramatically, such that the energy usage per transaction tec, estimated in
Equation (66), could drop significantly as well.

According to Equation (66), tec can be reduced by reducing the total hash
rate hB , by increasing the power efficiency e of mining equipment, by increasing
the block generation speed, by decreasing the transaction size or finally by
increasing the block size. Let us shortly analyze the individual possibilities.

First, any uneven, substantial reduction of hB theoretically negatively im-
pacts Bitcoin’s network security, since potential attack abilities of some miners
increase. This is certainly not desirable, so if at all possible, only a smooth,
even and slow hB decrease could be promoted.

On the other hand, incentives to increase the power efficiency e of mining
hardware are innate and e also rises at a steady pace.

One successfully implemented Bitcoin Improvement Proposal (BIP) which
inter alia also decreased transaction size is Segregated Witness [15].

Further, the most direct way how to decrease tec and at the same time to
allow for quick/instant payments is to generate new blocks more frequently.
Moreover, it is proven practically possible by Ethereum’s implementation of
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PoW, where new blocks are generated approximately once every 15 seconds 7

This would only require to distribute the reward into multiple block inside the
current 10 minute interval, so that the Bitcoin’s inflation rate is preserved.

The last obvious possibility is to increase maximum size of blocks. It is a
very sticky issue on which some very intelligent people disagree [8]. In short, the
supporters of a block size increase emphasize an on-chain medium of exchange
function. The main argument against is that larger blocks would make full nodes
more expensive to operate and this would lead to further centralization which
weakens Bitcoin’s values proposition. Actually, the same counterargument can
be employed against the above mentioned increase in block generation frequency.

We agree that the decentralized nature of Bitcoin is the most sacred property
of Satoshi Nakamoto’s invention and should be preserved at all costs. We explain
in the next Section that even if centralization of mining is partially inevitable, it
is indeed crucial to promote running full Bitcoin nodes and thus any substantial
increase in block size or generation speed is problematic.

Inevitably, any viable scaling idea has to represent a substantial evolution of
blockchain technology as we know it. One such an off-chain approach is Lighting
Network [2]. In this paper we propose an on-chain solution.

A.6 On centralization of mining

First, we postulate that centralization is practically inevitable in any system
where an increase in efficiency leads to a corresponding increase in profits. This
is certainly true for bitcoin mining. The actors who are first able to exploit the
inefficiencies of such a system, acquire more wealth which in turn allows then to
extract more of the inefficiency. As inefficiency potential is diminishing in time,
the first players have an enormous advantage.

In natural real world systems, the external conditions often change, so new
inefficiencies and opportunities to exploit them emerge. Bitcoin is however a
man-made system governed by strict rules of its protocol which can be changed
only by consensus and thus rather stable and consequently it supports inertia,
resulting naturally in centralization of mining, mainly due to economies of scale.

This kind of centralization is not a problem in isolation, even if it seems
to be the case according to classical Byzantine fault tolerance (BFT) analysis,
established for Bitcoin’s consensus protocol already in [16]. Satoshi Nakamoto
however only estimated the probability of successful double-spending attack.
For a more detailed analysis see [18], where the correct probabilistic model is
employed. Moreover, the paper briefly discusses economics of double spending as
well. Finally, a rigorous mathematical treatment of Bitcoin’s BFT probabilistic
model is presented in [12].

However, the bitcoin mining is already centralized to such an extend that
BFT is insufficient to ensure its security. E.g. only the five biggest known
mining pools control together more than 50% of hashrate. BFT implies that a
majority attacker can easily double-spend, censor transactions and even claim

7They are however much smaller.
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all block rewards for himself. Had it been rational to execute these attacks,
it would have been rather easy for these players to organize. But it is against
their best interest as already recognized in [16]:“If a greedy attacker is able to
assemble more CPU power than all the honest nodes, he would have to choose
between using it to defraud people by stealing back his payments, or using it to
generate new coins. He ought to find it more profitable to play by the rules, such
rules that favour him with more new coins than everyone else combined, than
to undermine the system and the validity of his own wealth.”

This observation is well established in [13], where a simple but therefore a
robust cost-reward based Bitcoin security model is presented. The main con-
clusion is that miners are committed to preserve trust in Bitcoin network, since
their long-term infrastructure investments are non-repurposable due to their
high level of specialization. Any loss of trust normally results in BTC price
plummeting, affecting the margins significantly. Following the estimates in the
paper, at the current issuance of 6.25 BTC per block only a 5% sustainable
market price drop would result in almost a 10K BTC loss for an attacker with
60% hashrate majority.

We point out that the authors in [13] did not analyze a sophisticated attacker
which hedges against BTC market drop by e.g. a short position in bitcoin
futures. However, such an attack is prohibitively expensive since e.g. Interactive
Brokers apply for short bitcoin futures (BRR) positions margins of 150% of daily
settlement price. Moreover the liquidity of bitcoin futures is limited with open
interest currently around 1.5 billion USD. If deep bitcoin derivatives markets
develop, such attacks become more probable. Arguably, Bitcoin’s ecosystem
inclusion into the current financial system may represent its biggest existential
threat.

So if the mining centralization is currently not an existential problem, which
type of decentralization is necessary to be preserved? Blocks created by the
miners are ultimately validated by Bitcoin users running full nodes. If a majority
of these users is against the blocks proposed by the miners or their behavior in
general, they can organize off-chain to suspend Nakamoto consensus. For details
and precedents from Bitcoin’s history, see again [13]. This is the ultimate circuit
breaker. Imagine e.g. a last-resort capital punishment scenario when the users
would change the hashing algorithm “overnight”, rendering the special mining
equipment practically immediately useless. This ability has to be preserved at
all costs. It requires that many users have to be able to run full-node Bitcoin
clients. More precisely, the Bitcoin users have to be able to validate transactions
included into the blocks. This together with the ability of users to sell their
bitcoins, secures a healthy functioning of Bitcoin’s network.

B Algorithms
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Figure 9: Linearity of hashing time: result of running Algorithm 4
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Algorithm 3: An algorithm to compute cη in tree HBS from Figure 4.

Data: L ∈ N+; multi-block index number i ∈ N, i = 0.
Result: Every 2016 blocks, a new cη will be available and recorded in

B0,0.
1 while 1 do // an abstract loop corresponding to multi-blocks

2 for l← L− 1 to 0 do
3 for s← 0 to 2l − 1 do // non-blocking

4 . . . ;
5 if miner should mine Bl,s,i then
6 if l < L− 1 then
7 broadcasting and validating blocks Bl+1,2s,i, Bl+1,2s+1,i

while also checking vl+1,2s,i and vl+1,2s+1,i;

8 end
9 . . . ;

// block assemblage

10 vl,s,i ← use (50);
11 sl,s,i = vl,s,i;
12 if l < L− 1 then
13 sl,s,i = sl,s,i + sl+1,2s,i + sl+1,2s+1,i;
14 end
15 add vl,s,i and sl,s,i to block header;
16 if i = 2015 ∧ l = 0 then
17 cη = 600s/sl,s,i;
18 add cη to header;

19 end
20 mine Bl,s,i;
21 . . . ;

22 end

23 end

24 end
25 i = i+ 1;
26 i = i mod 2016;

27 end
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Algorithm 4: Hashing time scales linearly with size.

import hashlib

import time

import os

import matplotlib.pyplot as plt

plt.rcParams[’pgf.texsystem’]= ’pdflatex’

n = 100

x = range(n)

y = []

for i in x:

m = os.urandom(i*1024**2)

time_b = time.time()

hashlib.sha256(m).hexdigest()

time_e = time.time()

y.append(time_e - time_b)

fig = plt.subplots()

plt.plot(x,y)

plt.xlabel("size[MB]")

plt.ylabel("time[s]")

plt.savefig(’hash_time.pgf’)
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Algorithm 5: Prepares Bitcoin transaction dataset for analysis.
import os

from blockchain_parser.blockchain import Blockchain

import random

import pandas as pd

columns_blk = [’block_height’, ’block_hash’, ’version’,\

’previous_block_hash’, ’merkle_root’, ’timestamp’,\

’bits’, ’nonce’, ’difficulty’]

types_blk = [’uint32’, ’str’, ’uint32’, ’str’, ’str’,\

’uint32’, ’uint32’, ’uint32’, ’float’]

dtypes_blk = {c: t for (c, t) in zip(columns_blk, types_blk)}

columns_tx = [’block_height’, ’txid’, ’hash’, ’version’, ’n_inputs’,\

’n_outputs’, ’is_segwit’, ’is_coinbase’, ’size’, ’output_value’]

types_tx = [’uint32’, ’str’, ’str’, ’uint32’, ’uint32’,\

’uint32’, ’bool’, ’bool’, ’uint32’, ’uint64’]

dtypes_tx = {c: t for (c, t) in zip(columns_tx, types_tx)}

blk_df = pd.DataFrame(columns = columns_blk)

blk_df = blk_df.astype(dtype = dtypes_blk)

tx_df = pd.DataFrame(columns = columns_tx)

tx_df = tx_df.astype(dtype = dtypes_tx)

blockchain = Blockchain(os.path.expanduser(’.../btc/blocks’))

bx_list = []

for blk in blockchain.get_ordered_blocks(\

os.path.expanduser(’.../btc/blocks/index’),\

start = 650000, end = 700000):

if (random.random() > 0.01):

continue

h = blk.header

df = pd.DataFrame([[blk.height, blk.hash, h.version,\

h.previous_block_hash, h.merkle_root, h.timestamp,\

h.bits, h.nonce, h.difficulty]], columns = columns_blk)

blk_df = blk_df.append(df)

tx_list = []

for tx in blk.transactions:

sum_out = 0

for tout in tx.outputs:

sum_out = sum_out + tout.value

tx_list.append([blk.height, tx.txid, tx.hash, tx.version,\

tx.n_inputs, tx.n_outputs, tx.is_segwit, tx.is_coinbase(),\

tx.size, sum_out])

tx_df = tx_df.append(pd.DataFrame(tx_list, columns = columns_tx))

tx_df.reset_index(drop = True, inplace = True)

blk_df.reset_index(drop = True, inplace = True)

tx_df.to_hdf(’transactions.h5’, key=’tx_df’, mode=’w’)

blk_df.to_hdf(’transactions.h5’, key=’blk_df’)
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Algorithm 6: Algorithm to plot graph in Figure 2.

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

plt.rcParams[’pgf.texsystem’]= ’pdflatex’

T = pd.read_hdf(’transactions.h5’, ’tx_df’)

T = T[T[’output_value’] > 0]

vpb = T[’output_value’]/(8*T[’size’])

count, bins, ignored = plt.hist(np.log10(vpb),\

bins = 100, density = True)

mu = np.sum(np.log10(vpb))/len(vpb)

sigma = np.sqrt(np.sum((np.log10(vpb) - mu)**2)/(len(vpb)-1))

x = np.linspace(min(bins), max(bins), 100)

pdf = (np.exp(-(x - mu)**2 / (2 * sigma**2))

/ (sigma * np.sqrt(2 * np.pi)))

plt.plot(x, pdf, linewidth = 1.5, color = ’r’)

plt.xlabel(r’\lg($\beta(t)$)’)

plt.ylabel(’density’)

plt.savefig(’tx_vpb.pgf’)

plt.show()
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Algorithm 7: A Python implementation of Algorithm 1.

import numpy as np

import pandas as pd

def segment_transactions(L, T, key):

T = T.sort_values(ascending = False, by = key)

M = T[key].values[0]

m = T[key].values[-1]

S_L = (np.log10(M)-np.log10(m))/L

#S_L = (np.ceil(np.log10(M))-np.floor(np.log10(m)))/L

indx = [0]*(L+1)

indx[0] = 0

s = T[key]

C = np.log10(M) - S_L; l = 0

for r, v in enumerate(s):

if np.log10(v) < C:

l = l+1

indx[l] = r

C = C - S_L

indx[L] = len(s)

Ts = []

for l in range(L):

Ts.append(T[indx[l]:indx[l+1]])

return Ts

if __name__ == "__main__":

tx_df = pd.read_hdf(’transactions.h5’, ’tx_df’)

tx_df.reset_index(drop = True, inplace = True)

tx_df = tx_df[tx_df[’output_value’] > 0]

tx_df[’vpb’] = tx_df[’output_value’]/(8*tx_df[’size’])

Ts = segment_transactions(6, tx_df, ’vpb’)
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Algorithm 8: Algorithm to obtain latex code of Table 1.

def generate_latex_table(Ts):

text = """\def\\arraystretch{1.1}

\\begin{table}

\\begin{tabular}{|"""

text += ’c|’*(len(Ts)+1)+"""}

\hline

$l$"""

for i in range(len(Ts)):

text += f’ & {i}’

text +="\\\ \hhline{|"

text += ’=|’*(len(Ts)+1)+"""}

$|\mathcal{T}_l|$"""

for i in range(len(Ts)):

text += f’ & {len(Ts[i])}’

text += """ \\\ \hline

min($\\beta(t)$)"""

for i in range(len(Ts)):

text += f’ & {Ts[i]["vpb"].min():.2}’

text += """ \\\ \hline

max($\\beta(t)$)"""

for i in range(len(Ts)):

text += f’ & {Ts[i]["vpb"].max():.2}’

text += """ \\\ \hline

$\overline{\\beta(t)}$"""

for i in range(len(Ts)):

text += f’ & {Ts[i]["vpb"].mean():.2}’

text += """ \\\ \hline

min($v(t)$)"""

for i in range(len(Ts)):

text += f’ & {Ts[i]["output_value"].min():.2}’

text += """ \\\ \hline

max($v(t)$)"""

for i in range(len(Ts)):

text += f’ & {Ts[i]["output_value"].max():.2}’

text += """ \\\ \hline

$\overline{v(t)}$"""

for i in range(len(Ts)):

text += f’ & {Ts[i]["output_value"].mean():.2}’

text += """ \\\ \hline

$\sum v(t)$"""

for i in range(len(Ts)):

text += f’ & {Ts[i]["output_value"].sum():.2}’

text += """ \\\ \hline

\end{tabular}

\caption{...}

\label{...}

\end{table}"""

return text
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Algorithm 9: Functions to estimate cη, {ηl} and time investment per
level for our example dataset. Input Ts is obtained by Algorithm 7.

def compute_c_eta_and_eta(Ts, num_blocks = 493):

s = 0

for l in range(len(Ts)):

s += Ts[l][’vpb’].mean()*8*Ts[l][’size’].sum()

c_eta = 600*num_blocks*10**8/s

eta = []

for l in range(len(Ts)):

eta.append(c_eta*Ts[l][’vpb’].mean()/10**8)

return c_eta, eta

def compute_time_per_level(eta, Ts, num_blocks = 493):

t = []

for l in range(len(Ts)):

t.append(eta[l]*8*Ts[l][’size’].sum()/num_blocks)

return t

Algorithm 10: A python implementation of shard function (40).

def shardf(l, string):

b = hashlib.sha256(bytes(string, ’utf-8’)).digest()

shifts = []

for r in range(l//8+1):

shifts = shifts + [int(i) for i in f’{b[r]:08b}’]

shards = [0]*(l+1)

for i in range(l):

if shifts[i] == 0:

shards[i+1] = 2*shards[i]

else:

shards[i+1] = 2*shards[i]+1

return shards[l], shards
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Algorithm 11: Algorithm to plot graph in Figure 5.

import numpy as np

import matplotlib.pyplot as plt

plt.rcParams[’pgf.texsystem’]= ’pdflatex’

def ratio_blocks_mfn_vs_full(N, L):

return N*L**2/(2**L-1)**2 + L/(2**L-1)

n_trans = 4200

L = 25

x = range(1, L)

y1 = [np.log10(ratio_blocks_mfn_vs_full(n_trans,i)) for i in x]

y2 = [np.log10(ratio_blocks_mfn_vs_full(2**i-1,i)) for i in x]

y3 = [np.log10((2**i-1)/600) for i in x]

fig, ax = plt.subplots()

ax.axhline(y = 0, color = ’k’, linewidth = 1)

ax.plot(x, y1, label = ’$\lg(r), N = 4200$’, linestyle = ’-’)

ax.plot(x, y2, label = ’$\lg(r), N = 2^L-1$’, linestyle = ’--’)

ax.plot(x, y3, label = ’$\lg((2^L-1)/600)$’, linestyle = ’-.’)

ax.legend()

plt.xlabel(’L’)

plt.savefig(’sharding_efficiency.pgf’)

56



Algorithm 12: Algorithm to plot graph in Figure 7.

import numpy as np

import matplotlib.pyplot as plt

plt.rcParams[’pgf.texsystem’] = ’pdflatex’

def d_MFN_day(L, n):

return (n*L**2/(2**L-1) + L)*86400*250/1024**2

n_1 = 1700

n_2 = 10000

n_3 = 50000

L = 30

x = range(1, L)

y1 = [np.log10(d_MFN_day(i, n_1)) for i in x]

y2 = [np.log10(d_MFN_day(i, n_2)) for i in x]

y3 = [np.log10(d_MFN_day(i, n_3)) for i in x]

fig, ax = plt.subplots()

ax.plot(x, y1, label = f’$\lg(d_{{MFN}}(day)), n = {n_1}$’,\

linestyle = ’-’)

ax.plot(x, y2, label = f’$\lg(d_{{MFN}}(day)), n = {n_2}$’,\

linestyle = ’--’)

ax.plot(x, y3, label = f’$\lg(d_{{MFN}}(day)), n = {n_3}$’,\

linestyle = ’-.’)

ax.legend()

plt.xlabel(’L’)

plt.ylabel(’$\lg(\mathrm{MB})$’)

plt.savefig(’download_mfn.pgf’)
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Algorithm 13: Algorithm to plot graph in Figure 8.

import numpy as np

from scipy import optimize

import matplotlib.pyplot as plt

plt.rcParams[’pgf.texsystem’]= ’pdflatex’

def s_MFN_day(L, n):

return n*L/(2**L-1)*86400*250/1024**2

def d_MFN(L, n):

return n*L**2/(2**L-1) + L

n_range = range(100, 50000, 100)

res = [optimize.minimize(d_MFN, 10, args = [n])\

for n in n_range]

suc = [(r[’success’]) for r in res]

if all(suc):

print(’OK!’)

L_argmin = [L[’x’][0] for L in res]

s_mfn = [s_MFN_day(L, n) for L, n in zip(L_argmin, n_range)]

fig, ax = plt.subplots(2, 1)

ax[0].plot(n_range, L_argmin, label =\

’$\mathrm{argmin}(d_{MNF}(L, n))$’, linestyle = ’-’)

ax[1].plot(n_range, s_mfn, label = ’$s_{MNF}(day)$’\

, linestyle = ’-’)

ax[0].legend()

ax[1].legend()

ax[1].set_xlabel(’n’)

ax[0].set_ylabel(’L’)

ax[1].set_ylabel(’MB’)

plt.savefig(’optimal_L_mfn.pgf’)
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