Summation of multiple times of a geometric series and its binomial series

Chinnaraji Annamalai
School of Management, Indian Institute of Technology, Kharagpur, India
Email: anna@iitkgp.ac.in
https://orcid.org/0000-0002-0992-2584

Abstract

This paper presents a binomial series of summation of multiple times of a geometric series. This will be useful for the researchers who are involving to solve the scientific problems.

MSC Classification codes: 05A10, 40A05 (65B10)
Keywords: binomial series, mixed geometric series, binomial coefficient

Summation of multiple times of a geometric series:
$\sum_{i_{1}=0}^{n} \sum_{i_{2}=i_{1}}^{n} \sum_{i_{3}=i_{2}}^{n} \ldots \ldots . . \sum_{i_{r}=i_{r-1}}^{n} x^{i_{r}}=\sum_{i=0}^{n} V_{i}^{r} x^{i}$
The left side of Equ.(1) is the summation of multiple times of a geometric series[1-5] and the right side of Equ.(1) is a binomial series derived from the computation of multiple times of a geometric series. Here, the optimized combination [1-5] is shown below:
$V_{r}^{n}=\frac{(r+1)(r+2) \cdots \cdots(r+n)}{n!}=\frac{(n+1)(n+2)) \cdots \cdots(n+r)}{r!}=V_{n}^{r}$,
i.e., $\quad V_{r}^{n}=\prod_{i=1}^{n} \frac{r+i}{n!}=\prod_{i=1}^{r} \frac{n+i}{r!}=V_{n}^{r} \quad(n, r \in N)$,
where $N=\{0,1,2,3, \cdots \cdots\}, V_{r}^{n}$ is a binomial coefficient, and n ! is the factorial of n.

Some results [1,2] of the optimized combination are provided below:
i). $\quad V_{n}^{0}=V_{0}^{n}=1(n \geq 1 \& n \in N)$, where V_{n}^{0} alaway implies V_{0}^{n}, i.e., $V_{n}^{0} \Rightarrow V_{0}^{n}$.
Note that $V_{r}^{n}=V_{n}^{r}=(n+r) C_{r}=(n+r) C_{n}=\frac{(n+r)!}{n!r!}$ and $V_{0}^{0}=1$.
ii). $\quad V_{r}^{n}=V_{n}^{r}(n, r \geq 1 \& n, r \in N) \& V_{n}^{0}=V_{0}^{n}$.

When substituting $r=1$, Equ. (1) becomes the summation of two times of a geometric series,

$$
\begin{aligned}
& \sum_{i_{1}=0}^{n} \sum_{i_{2}=i_{1}}^{n} x^{i_{2}}=\sum_{i_{2}=0}^{n} x^{i_{2}}+\sum_{i_{2}=1}^{n} x^{i_{2}}+\sum_{i_{2}=2}^{n} x^{i_{2}}+\cdots+\sum_{i_{2}=n}^{n} x^{i_{2}}=1+2 x+3 x^{2}+\cdots+(n+1) x^{n} . \\
& 1+2 x+3 x^{2}+\cdots+(n+1) x^{n}=\sum_{i=0}^{n}(i+1) x^{i}=\sum_{i=0}^{n} V_{i}^{1} x^{i} .
\end{aligned}
$$

When substituting $r=2$, Equ. (1) becomes the summation of three times of a geometric series,
$\sum_{i_{1}=0}^{n} \sum_{i_{2}=i_{1}}^{n} \sum_{i_{3}=i_{2}}^{n} x^{i_{3}}=\sum_{i_{2}=0}^{n} \sum_{i_{3}=i_{2}}^{n} x^{i_{3}}+\sum_{i_{2}=1}^{n} \sum_{i_{3}=i_{2}}^{n} x^{i_{3}}+\sum_{i_{2}=2}^{n} \sum_{i_{3}=i_{2}}^{n} x^{i_{3}}+\cdots+\sum_{i_{2}=n}^{n} \sum_{i_{3}=i_{2}}^{n} x^{i_{3}}=\sum_{i=0}^{n} V_{i}^{2} x^{i}$.
Similarly, if the above process continues upto r times, the $r^{\text {th }}$ equation becomes as follows:
$\sum_{i=0}^{n} V_{i}^{r} x^{i}=\sum_{i_{1}=0}^{n} \sum_{i_{2}=i_{1}}^{n} \sum_{i_{3}=i_{2}}^{n} \ldots \ldots \ldots \sum_{i_{r}=i_{r-1}}^{n} x^{i_{r}}$
If substituting $r=0$, Equ. (2) becomes the actual geometric series,
$\sum_{i=0}^{n} V_{i}^{0} x^{i}=\sum_{i_{1}=0}^{n} x^{i_{1}}=1+x+x^{2}+x^{3}+\cdots+x^{n}\left(\because V_{0}^{0}=V_{i}^{0}=v_{0}^{i}=1, i \in N\right)$.

References:

[1] Annamalai C (2020) "Combinatorial Technique for Optimizing the combination", The Journal of Engineering and Exact Sciences - jCEC, Vol. 6(2), pp 0189-0192.
[2] Annamalai C (2019) "A Model of Iterative Computations for Recursive Summability", Tamsui Oxford Journal of Information and Mathematical Sciences - Airiti Library, Vol. 33(1), pp 75-77.
[3] Annamalai C (2019) "Recursive Computations and Differential and Integral Equations for Summability of Binomial Coefficients with Combinatorial Expressions", International Journal of Scientific Research in Mechanical and Materials Engineering, Vol. 4(1), 6-10.
[4] Annamalai C (2018) "Annamalai's Computing Model for Algorithmic Geometric Series and its Mathematical Styructures", Journal of Mathematics and Computer Science, Vol.3(1), pp 1-6.

