Explicit Approximate Formula for the Critical Exponent in Orthogonal Class using the Multi-points Summation Method

Yoshiki Ueoka *† Osaka Japan

April 16, 2022

Abstract

I suggest a new explicit formula for dimensional dependence of the critical exponent of the Anderson transition considering high dimensional asymptotic behavior and using the multi-points summation method. Asymptotic expansion at infinite dimension is estimated from numerical data. Combining known asymptotic series at two dimension and infinite dimension using the multi-points summation method, I obtained useful approximation formula for the critical exponent in the Orthogonal class.

^{*}u.yoshiki.phys@gmail.com †independent

The Anderson transition [1, 2] is the quantum phase transition between localized state and extended state. At and near the critical point, universal phenomena is observed such as the value of the critical exponent v of the localization length. In previous studies, the critical exponents were estimated both numerically and analytically. In this paper, I give new approximate formula for the critical exponent for arbitrary dimensionality.

Asymptotic series at the lower critical dimension d = 2 is calculated by S. Hikami[3].

First, I perform high dimensional asymptotic expansion of the critical exponent. From previous numerical studies, I fit those data with following asymptotic series,

$$\nu \sim \nu_{\infty} \equiv \frac{1}{2} + \frac{a_1}{\epsilon} + \frac{a_2}{\epsilon^2} + \frac{a_3}{\epsilon^3} \tag{1}$$

Here, $\epsilon = d - 2$. In our previous study, only first term is considered[4].

By fitting numerical data of d = 2.22, 3, 4, 5, 6[5, 4, 6], I obtained

$$a_1 = 1.482 \pm 0.151$$

$$a_2 = -0.480 \pm 0.211$$

$$a_3 = 0.075 \pm 0.040$$
 (2)

Second, I perform the multi-points summation method for the critical exponent. A known asymptotic series at two dimension is

$$\nu \sim \nu_{\infty} \equiv \frac{1}{\epsilon} - \frac{9}{4}\zeta(3)\epsilon^2 + \frac{27}{16}\zeta(4)\epsilon^3 + O(\epsilon^4)$$
(3)

The multi-points summation method uses both asymptotic series in Eqns.(3) and (1) By subracting asymptotic terms at infinite dimension from the one at two dimension, I obtain

$$f(\epsilon) \equiv \nu_0 - \nu_\infty \tag{4}$$

Multiplying ϵ^3 , I obtain power series,

$$\epsilon^3 f(\epsilon) = 1.826\epsilon^6 - 2.705\epsilon^5 - 0.5\epsilon^3 - 0.482\epsilon^2 + 0.480\epsilon - 0.075$$
(5)

Then perform Padé approximant of order [1/5](t) (This order of Padé approximant gives best estimate. I also tried Borel Padé analysis, but just using Padé gives better estimate of the critical exponents.),

$$\epsilon^3 f(\epsilon) \simeq \frac{-0.075 + 0.354\epsilon}{1 + 1.681\epsilon + 4.347\epsilon^2 + 10.39\epsilon^3 + 27.47\epsilon^4 + 44.11\epsilon^5} \tag{6}$$

By multiplying $1/\epsilon^3$ and summing ν_{∞} , I obtain final approximate expression,

$$\nu \simeq \nu_{\infty} + \frac{1}{\epsilon^3} \cdot \frac{-0.075 + 0.354\epsilon}{1 + 1.681\epsilon + 4.347\epsilon^2 + 10.39\epsilon^3 + 27.47\epsilon^4 + 44.11\epsilon^5}$$
(7)

This formula is consistent with asymptotic series at two limit of $\epsilon \to 0$ and $\epsilon \to \infty$. In this respect, MPS is different from just fitting. For the sake of readability, it should be mentioned that the numbers are rounded to 4 significant digits.

Figure 1: dimensional dependence of the critical exponent v vs $\epsilon = d - 2$.

I plotted obtained expression in Fig.1 with numerical data[5, 4, 7]. Red curve is MPS. Green curve is our previous formula. Black curve is semi-classical theory[8]. Blue and Yellow curves are asymptotic series at two dimension and infinite dimension. The red curve for MPS and the yellow for asymptotic series at $d \rightarrow \infty$ curve almost overlap. Self-consistent theory of the Anderson transition[9] gives following formula,

$$\nu = \left\{ \frac{1}{\epsilon} (\epsilon < 2) \; \frac{1}{2} (\epsilon \ge 2) \right. \tag{8}$$

This formula gives far estimate from numerical data.

The values of the critical exponent at integer dimensions and spectral dimensions of real number are listed in Table.1 and 2.

d	<i>Eq.</i> (7)	Previous formula[4]	numerical estimate
3	1.580	1.460	$1.571 \pm .004[5]$
4	1.130	1.061	$1.156 \pm .014[4]$
5	0.944	0.891	$0.969 \pm .015[4]$
6	0.842	0.798	$0.78 \pm .06[7]$

Table 1: Estimated critical exponents for the orthogonal symmetry class for d = 3, 4, 5 and 6 obtained from Eq.(7).

These estimated values are almost consistent with numerical estimates.

d	Eq.(7)	Previous formula[4]	Refs.[6, 10, 11]
2.22	4.508	4.41	$4.402 \pm .18$
2.226	4.389	4.28	$2.82 \pm .05$
2.32	3.152	3.02	$2.59 \pm .19$
2.33	3.068	2.94	$2.92 \pm .14$
2.365	2.818	2.68	$2.27 \pm .06$
2.41	2.575	2.44	$2.50 \pm .21$
2.54	2.154	2.01	$2.24 \pm .31$

Table 2: Same as for Table 1 but for fractals with spectral dimension 2 < d < 3. Values of critical exponents in Ref. [6] were provided by M. Schreiber.

These estimated values are consistent with numerical estimates by 2σ except for some outliers.

I plotted obtained expression in Fig.2 for integer dimensions.

I plotted obtained expression in Fig.2 around d = 2.1.

From Fig.3, it is obvious that fitting extrapolation failed to describe asymptotic series near d = 2. On the other hand MPS succeeds to describe asymptotic series near d = 2.

I perform the MPS with asymptotic series obtained from high dimensional numerical results. Obtained formula almost agree with all numerical estimates except for outliers and consistent with asymptotic series at both d = 2 and $d = \infty$. This formula for dimensional dependence of the critical exponent in the Orthogonal class is the best formula obtained in the past.

References

- [1] P. W. Anderson: Phys. Rev. 109 (1958) 1492.
- [2] F. Evers and A. D. Mirlin: Rev. Mod. Phys. 80 (2008) 1355.
- [3] S. Hikami: Prog. Theor. Phys. Suppl. 107 (1992) 213.
- [4] Y. Ueoka and K. Slevin: Journal of the Physical Society of Japan 83 (2014) 084711.
- [5] T. Ohtsuki and K. Slevin: New Journal of Physics 16 (2014) 015012.
- [6] M. Schreiber and H. Grussbach: Phys. Rev. Lett. 76 (1996) 1687.
- [7] A. M. García-García and E. Cuevas: Phys. Rev. B 75 (2007) 174203.
- [8] A. M. García-García: Phys. Rev. Lett. 100 (2008) 076404.
- [9] D. Vollhardt and P. Wolfle: Self-Consistent Theory of Anderson Localization (Elsevier, Amsterdam, 1992).

Figure 2: dimensional dependence of the critical exponent v vs $\epsilon = d - 2$.

- [10] P. H. Song and D. Kim: Phys. Rev. B 55 (1997) 11022.
- [11] I. Travěnec and P. Markoš: Phys. Rev. B 65 (2002) 113109.

Figure 3: dimensional dependence of the critical exponent v vs $\epsilon = d - 2$.