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Abstract. Galois theory in the category of cyclic groups studies the automorphism
groups of the cyclic group extensions and the corresponding Galois connection. The
theory can be rephrased in dual terms of quotients, corresponding to extensions,
when viewed as covering maps.

The computation of Galois groups and stating the associated Galois connection
are based on already existing work regarding the automorphism groups of finite
p-adic groups.

The initial goals for developing such a theory were: pedagogical, to introduce
the basic language of Category Theory, while exposing the student to core ideas of
Galois Theory, but also targeting applications to the Galois Theory of cyclotomic
extensions, towards investigating some aspects of Abelian Class Field Theory and
Anabelian Geometry.
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1. Introduction

Galois Theory had a long evolution from its foundations set by Evariste Galois
in the 1800s and its Field Theory formulation by Artin in the 1940s, to its modern
days “descendents”, which includes Grothendieck’s Anabelian Geometry [2], Chasse
and Sweedler’s Hopf-Galois Theory [3] as well as work by G. C. Rota in the 1970s
[26, 27, 28] in the G-sets framework, as well as more recent investigations of lattices
of periods of group actions [29, 30].

In this article we will define the Galois Theory in the Category of cyclic groups,
as a stepping stone for relating cyclotomic extensions and primes (Galois group)
decomposition within the arithmetic realm, part of the theory of group acting on sets
and corresponding theory of periods.

While the emphasis is to generalize the scope of Galois Theory point of view, the
corresponding computations and results are based on prior work on automorphisms
of finite abelian groups [4, 5, 6, 7, 9, 8].

Part of the motivation for this work comes from the need to blend the use of Cate-
gory Theory with the usual set-oriented presentations of Abstract Algebra, covering
the transition from undergraduate to graduate studies in Mathematics.

An “invitation to Category Theory” is included, by introducing the category |CZ
of cyclic groups, and actual use of some foundational terms, in such a way that a
quick consultation of Wikipedia by the non-specialist would suffice in providing the
additional details.

Defining extensions in this category and the corresponding Galois groups, is fol-
lowed by an exposition of the associated Galois connection. Incidentally, this work
build on, and generalizes, the recent articles documenting the automorphism group
of finite abelian groups (refs here) ...

The dual picture of quotients associated to embedding, as a nice feature of this
abelian category, allows to put the two Galois Theories together, in the framework of
groups extensions (short exact sequences).

The action of Z on cyclic groups allows to present the theory of decomposition
of primes in this context belonging to Elementary Number Theory, as a preparation
with the more advanced treatment as part of Algebraic Number Theory.

Applications to cyclotomic extensions and prime decomposition are only sketched,
as a preview, to be documented in a follow-up article. The relation between Arith-
metic Galois Theory in category Z and classical Galois Theory, is provided by the
group ring and group of units functorial adjunction. It is only “announced”, being
left to the follow-up article.
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2. The Diophantine Line as the “Toy” Category Z

The two main examples of Galois connections occur in the original Galois The-
ory, within the classical context of field theory, and more recently after Poincare’s
development of Topology, in the Theory of Covering Spaces.

The two points of view are dual, representing in categorical parlance the case of
monomorphisms and that of epimorphisms [23]1.

2.1. Objects and Morphisms in Z. The objects of the category are the cyclic
groups Ob(Z) = {Z,Z/n}, where Z/nZ is abreviated as Z/n2

The morphisms are the (abelian) group homomorphisms, which since the groups
are cyclic, are determined by the image of the generator: Md : A → B,Md(x) = kx,
with A,B ∈ Ob(Z). For example M2 : Z/6 → Z/4 has the kernel isomorphisc to
Z/3 and the image (iso to) Z/2. Of course the only morphism from a torsion to a
free group is 0 : Z/3 → Z; the other direction, from free to torsion, we only have
quotients, e.g. M6 mod3 : Z → Z/3.

2.2. Mono, epi and duality. The extensions in this category are the monomor-
phisms Md : Z → Z and Md : Z/d → Z/n, n = d · d′. They correspond to the
subgroups of Z/n, which in turn correspond to the divisors of n. Correspondingly we
have a lattice of monomorphisms, subgroups or divisors, depending on the viewpoint
chosen.

Since our objects abelian, the category is abelian, and each extension is a Galois
extension (“normal”), representing the kernel of the corresponding quotient, of the
target group by its image, as a subgroup:

Z/d→ Z/n→ Z/d′, and Z → Z → Z/n.

Putting these together yields a short exact sequence, which is an instance of a more
general mono-epi duality: Pontriagin duality.

3. The Galois Theory in the Category of Abelian Groups

The only Galois objects in the sense of [3] considered here are the “tautological
ones”, where the group of automorphisms of on object acts on the corresponding
object.

3.1. Galois Objects and Galois Groups.

Definition 3.1. Given a Galois extension A→ B in Z, the associated Galois group
is:

Gal(A/B) = {φ ∈ AutAb(B)|φ|A = IdA,

1For an ample treatment, see [24] or [25].
2Z could be assimilated as Z/0, but we prefer to distinguish the free case from the torsion case.
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consisting of the automorphisms of B (in our category), that preserve A, and restrict
to A as identity (fix A, for short).

Remark 3.1. Such a subgroup of automorphisms of finite abelian groups were studied
by [4] and subsequent related articles [6] etc., as far back in time as 1969, but the
connection with Galois Theory was not made explicitly.

In our case of cyclic groups, where the “prime sectors are distinct, non-interacting
(no non-trivial homocyclic groups present), the determination of Galois groups is
easy.

In the free case Mn : Z → Z, Gal(Mn) = 1 (we prefer to indicate the extension
itself), is trivial.

In the torsion case, the Chinese Remainder Theorem reduces it to the case of
primary groups Z/pk.

3.2. On Abelian Groups and Their Symmetries. The brief description included
below will be accompanied by some suggested mental pictures, with physics-content
oriented yet totally optional, in order to facilitate the understanding of the facts.

3.2.1. The Structure of Abelian Groups. Finite abelian groups are direct sums A =
⊕pAp, of p − sectors (p-groups), thought of as capable of fundamental vibrations,
harmonics of a fundamental associated to the prime p.

Each p−sector is a product of homocyclic p-groups Hp(k;n) = Cn
pk

, thought of as a

“space-time block”, of space-width (rank) n, and “time-depth/resolution” k, common
to all the “strands” of the discrete space.

Remark 3.2. When there are at least two strands n > 1, permutations of the strands
may enter the picture, and a version of Cayley’s Theorem shows the possible com-
plexity of its automorphism group ([9], Th. 3.2, p.3):

Theorem 3.1. Let k > 1. Then every finite group G (Monster included!), is iso to
a subgroup of Aut(Cn

k ), for some n.

Remark 3.3. The presence of different “time-depth” summands in a p-sector of a
finite abelian group, adds additional complexity to the structure of the corresponding
automorphism group [7, 6, 8].

In fact Z/pk is a truncation of p-adic numbers, representing a k − th order de-
formation of its “tangent space”, the finite field Fp [32]. Mixing various orders of
deformation seams “artificial” anyways, and a full treatment of the p-adic case, in
the spirit of Hasse’s work, is probably beneficial for clarifying and simplifying the
theory.

Given an abelian group A, the following are important fully invariant subgroups:

A[pn] = {x ∈ A|pnx = 0}, pnA = {pnx|xinA}.
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Multiplication by p acts as a shift on each Cpe summand in Ap, hence pnA results
in “shifting the coefficients” of x to the “right”, towards higher powers (orders) of p.
Note that in spite of the apparent “grading” by the power of p, due to the possible
carry-over digit under addition or multiplication, the power/exponent is not a grading,
but rather defining a descending filtration ([4], p.24):

A ⊇ pA ⊇ p2A... ⊇ pλA = 0,

where λ is the maximum order of deformation / length of the cyclic p-summands
Cp

e3.
Similarly, A[pn] form an ascending filtration, “orthogonal” under multiplication to

the above one, where n can be visualized as the index of the leading non-zero p-adic
digit of one of its elements.

Example 3.1. For our cyclic case A = Z/pk, the two filtrations coincide are corre-
spond to lattice of its subgroups, which in turn correspond to the divisors of pk. This
can be also viewed as a tower, as follows:

0→ Z/p→ Z/p2 → ...→ Z/pk = A,

where at each step the image is the maximal non-trivial subgroup.

3.2.2. On the Structure of Automorphisms of Abelian groups. For our purpose in this
article, we will present the known results on automorphism groups presented in [8],
recast in the framework of Galois Theory introduced above.

To exemplify the main concepts and avoid technicalities, we will focus on the pri-
mary groups Z/pk, leaving the homocyclic group case to the interested reader to
document (see also [8], §4, p.564).

For a homocyclic group H, each “step” in the filtration determines the following
short exact sequence structure of the corresponding Galois group ([8], Lemma 3.1,
p.561):

0→ Hom(H, pH)
σ→ Aut(H)

ρ→ Aut(H[p])→ 0,

where the first map σ(φ) = 1 + φ4, and the second map ρ, is the restriction to the
fully invariant subgroup H[p].

Example 3.2. Apply the result to A = Z/pk. Since Hom(A, pA) ∼= Z/pk−1 and
H[p] ∼= Z/p, hence Aut(A[p]) ∼= Z/p − 1, applying the Chinese Remainder Theorem
to show the sequence splits, yields the well known fact [9], p.1:

Aut(Z/pk) = Z/(p− 1)pk−1.

3For a homocyclic summand Hp(k;n), λ = k.
4Hom(H, pH) plays the role of a Lie generator of the group element, the corresponding automor-
phism.
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3.3. Galois Groups of Primary Abelian Groups Z/pk. “Dissecting” the full
Galois group Aut(G) [8], §4, proceeds by “peeling” layer-by-layer, from the top, and
yielding the corresponding Galois connection.

For example, AutpG(G) is, with our notation, Gal(pG → G). Its structure results
from the following (loc. cit. Proposition 4.3, Lemma 4.4 and Proposition 4.5):

Proposition 3.1. Given A a finite abelian p-group, there is a short exact sequence:

0→ Gal(pG→ G)→ Aut(G)→ Aut(pG)→ 0,

where by the previous result:

0→ Hom(G/pG, pG)→ Gal(pG→ G)→ Aut(G/pG)→ 0.

If G[p] ⊂ pG then φ : G→ pG is epi, and:

Gal(pG→ G) = {1 + ξφ|ξ ∈ Hom(G/pG, pG)} ∼= Hom(G/pG, pG).

The restriction G[p] ⊂ pG excludes the “too short case” Fp summand of a homo-
cyclic group; this would require a separate study of G = G1⊕H, with G1 = F n

p (loc.
cit. p.565; Proposition 4.6).

The primary p-groups can be viewed as k-th order trunctions of p-adic integers:
Z/pk = {a0 + ...+ ak−1p

k−1|ai ∈ Fp 5.
In this case, iteration of the above “peeling procedure” of the Galois groups yields a

chain of fully invariant subgroups in Aut(G). Together with the sequence of fully in-
variant subgroups of G, allows to define a correspondence, called a Galois connection,
and explained next.

3.4. The Galois Connection. Recall that the Galois correspondence between sub-
groups of the Galois group and subextensions is called the Galois (antitone) connec-
tion [15], and constitutes the central result of Galois Theory [22].

Reinterpreting Remark 4.7 from [8], p.567, we have the following instance of an
antitonal Galois connection in the category of finite abelian groups.

Let G be a finite abelian p-group.

Definition 3.2. Let (N , <) the lattice of fully invariant subgroups pnG of G. Cor-
respondingly let (G = {Gal(pnG → G) = AutpnG(G)}, <) be the lattice of Galois
groups of the corresponding extensions.

Define the following two maps Gal : (N , <) < − > (G, <) : Fix:

Gal(K) = Gal(K → G), F ix(H) = {x ∈ G|φ(x) = x,∀φ ∈ H}.

A partial version of the main theorem of the Arithmetic Galois Theory in the
category of finite abelian groups Abfin, is the following.

Theorem 3.2. The two maps Fix and Gal form an antitonal Galois connection for
the chains of fully invariant subgroups pnG and corresponding Galois groups.

5These are in fact k-th order deformations of the finite field [32]; but we will not need this here.
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Remark 3.4. Note that the Galois connection between the two chains of subobjects
and subgroups of automorphisms (Galois groups) involves only the fully invariant
subgroups of a finite abelian p-group G.

3.5. The Cyclotomic Case. In view of our goals to relate Arithmetic Galois Theory
and field theory Galois Theory, including the understanding of prime decompositions,
we are particularly interested in the case where G is cyclic.

The above partial result on Galois connection in the category of abelian groups
specializes to the full Galois Theory in the category Z of cyclic groups, to be adressed
elsewhere.

4. Conclusions

Recall briefly our goals: pedagogical, to relate Category Theory, Abelian groups
and to present the foundations of Algebraic Class Field Theory.

The Categorical Theory framework emphasises mono vs. epi duality, objects and
their symmetries.

The novelty consists in showing why (and how) the Arithmetic / Algebraic Galois
Theories correspond: this is due to the group ring / group of units adjunction. This
adjunction will be documented elsewhere.
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