A note on rings in which each element is a sum of two idempotents

Santosh Kumar Pandey
Dept. of Mathematics, Sardar Patel University (SPUP),
Vigyan Nagar-342037, Jodhpur, India.
E-mail: skpandey12@gmail.com

Abstract

In this paper we consider a result on rings in which each element is a sum of two idempotents appeared in [1] and we improve the result by providing a counterexample.

Key-words: idempotent, Boolean ring.
MSC 2020: 16U40, 16E50

Introduction

Rings in which each element is a sum of two idempotents have been studied in [1-2]. In this note we consider an important result appeared in [1] and we provide an important observation on this result. We improve this result by providing a counterexample.

As per [1, Proposition 6.1] the following are equivalent for a ring R.
(1) Every element of R is a sum of two idempotents.
(2) $R \cong R_{1} \times R_{2}$, here $\operatorname{ch}\left(R_{1}\right)=2$ and every element of R_{1} is a sum of two idempotents, and R_{2} is zero or a subdirect product of Z_{3} 's.

In this note each ring R is a unital and associative ring. It may be noted that an element $a \in R$ is called idempotent if $a^{2}=a$ and R is called Boolean if $a^{2}=a$ for each $a \in R$ [1-2].

In the next section we provide an example which serves as a counterexample for the above result of [1].

2. Observation

$$
\text { Let } R=\left\{\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right),\left(\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right),\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
2 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & 2
\end{array}\right)\right\} .
$$

One may verify that R is a commutative ring of characteristic three under addition and multiplication of matrices modulo three.

We note that

$$
\begin{aligned}
& \left(\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)+\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
& \left(\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)+\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \\
& \left(\begin{array}{ll}
2 & 0 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)+\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \\
& \left(\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)+\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) \text { etc. }
\end{aligned}
$$

Thus each element of R is a sum of two idempotents.
Let $R \cong R_{1} \times R_{2}$. It may be noted that since R is a ring of order nine and its characteristic is three and therefore the characteristic of R_{1} can never be two.

Therefore this example serves as a counterexample for the above result of [1].

References

[1] Zhiling Ying, Tamer Kosan, Yiqiang Zhou, Rings in which every element is a sum of two tripotents, Canad. Math. Bull., 59 (3), 661-672, 2016.
[2] Y. Hirano, H. Tominaga, Rings in which every element is the sum of two idempotents, Bull. Austral. Math. Soc., 37(2), 161-164), 1988.

Statements and Declaration:

The author declares that there is no competing interest and this is an original work of this author. Also no funds, grants were available for this research.

Note: This article is available under the following license.
Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)

