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The situation with regard to the derivative notion in quaternionic analysis seems somewhat confused (see, for 

example, references in [6]. It has even led R. Penrose to say [1, p.201], "…quaternions  are not really so 

mathematically "nice" as they seem at first sigh. They are relatively poor "magicians"; and, certainly, they are no 

match for complex numbers in this regard. The reason appears to be that there is no satisfactory quaternionic 

analogue of the notion of a holomorphic function." The most popular approach to the quaternionic holomorphic 

functions problem  is shortly represented in [2]. Since then little has changed.  Now we’d like to consider an 

essence of simpler approach, allowing to call into question the above statement of R. Penrose. 

 

Theory of quaternionic differentiability and quaternionic holomorphic functions can be built on principles fully 

similar (essentially adequate) to ones of complex holomorphic functions. 

   The general definition of a derivative can be based on the following main idea, viz.: each point of any real line 

is at the same time a point of some plane and 3D space as a whole, and therefore any characterization of 

differentiability (and its relations) at a point must be the same regardless of whether we think of that point as a 

point on the real axis or a point in the complex plane, or a point in three-dimensional space. It follows that a 

quaternionic derivative of a quaternionic function  𝜓(𝑝) must be defined similar to complex derivative in the 

plain as a limit of a difference quotient of ∆𝜓(𝑝) by ∆𝑝 when ∆𝑝 converges to zero along any direction in the 

quaternionic space, where  𝜓(𝑝) = 𝜓1(𝑥, 𝑦, 𝑧, 𝑢) + 𝜓2(𝑥, 𝑦, 𝑧, 𝑢)𝑖 + 𝜓3(𝑥, 𝑦, 𝑧, 𝑢)𝑗 + 𝜓4(𝑥, 𝑦, 𝑧, 𝑢)𝑘 is a 

quaternionic function of real components 𝑥, 𝑦, 𝑧, 𝑢 of an independent quaternionic variable 𝑝 = 𝑥 + 𝑦𝑖 + 𝑧𝑗 +
𝑢𝑘. The functions 𝜓1(𝑥, 𝑦, 𝑧, 𝑢), 𝜓2(𝑥, 𝑦, 𝑧, 𝑢), 𝜓3(𝑥, 𝑦, 𝑧, 𝑢), 𝜓4(𝑥, 𝑦, 𝑧, 𝑢) are real-valued quantities  and 𝑖, 𝑗. 𝑘 

are the base quaternions of the quaternion space ℍ.  

   Using the Cayley–Dickson construction (doubling procedure) [5, p.42] we have 

                                   𝑝 = 𝑎 + 𝑏 ∙ 𝑗 ⊂ ℍ,    𝜓(𝑝) = 𝜙1(𝑎, 𝑏, 𝑎,̅ �̅�) + 𝜙2(𝑎, 𝑏, 𝑎,̅ �̅�) ∙ 𝑗 ⊂ ℍ,       

where  

                                                              𝑎 = 𝑥 + 𝑦𝑖,  𝑏 = 𝑧 + 𝑢𝑖,                                                                            (1) 

                                        𝜙1(𝑎, 𝑏, 𝑎,̅ �̅�) = 𝜓1 + 𝜓2𝑖,   𝜙2(𝑎, 𝑏, 𝑎,̅ �̅�) = 𝜓3 + 𝜓4𝑖   

are compex quantities, the “∙” and overbar signs denote, respectively, quaternionic multiplication and complex (or 

quaternionic if needed) conjugation.  

   Since the quaternion algebra is a noncommutative algebra with division, there can exist the left and the right 

definitions of a quaternionic derivative [2, p.19]: 

                                            𝜓𝑙𝑒𝑓𝑡
′ = lim

∆𝑝→0
[(∆𝑝)−1 ∙ {𝜓(𝑝 + ℎ) − 𝜓(𝑝)}],      

                                            𝜓𝑟𝑖𝑔ℎ𝑡
′ = lim

∆𝑝→0
[{𝜓(𝑝 + ℎ) − 𝜓(𝑝)} ∙ (∆𝑝)−1].    

Each of them by itself is incomplete (may be called "non-essentially adequate"), since each of underlying 

algebras, viz.: with only the "left" or only the "right" multiplication does not represent all arbitrary rotations of 

vectors in 3D space. In other words, we have to refuse to consider only the left or only the right approach 

(regarding another as equivalent [2, p.19]) when defining a quaternionic derivative. The left and the right 

derivatives should be considered only together. 



   In complex analysis each holomorphic function is considered as the complex potential [3, p. 328; 8, p.1].  The 

derivative of it represents some unambiguous planar steady state vector field (electrical field, fluid flow et al ) and 

vice versa, that is, the derivative is unambiguous. Given this, the quaternionic derivative must also correspond 

some unambiguous steady state vector field in dimension more than 2 and hence must be also unambiguous [8]. 

Thus we are forced  to require the equality of the left and right derivatives, i.e. 

                                                                             𝜓𝑙𝑒𝑓𝑡
′ = 𝜓𝑟𝑖𝑔ℎ𝑡

′   

in an initial domain of definition 𝐺4 ⊂ ℍ to associate the quaternionic derivative with physical reality. It is 

reasonable forced requirement. 

  At that the limit of the difference quotient is required to be independent not only of directions to approach a 

limiting point  ∆𝑝 = 0  (as in complex analysis), but also of the manner of quaternionic division: on the left or on 

the right. Such an independence for a derivative can be called the "independence of the way of its computation".  

Based on that it is possible to introduce the following 

Definition 1. A single-valued quaternionic function 𝜓(𝑝) ∶ 𝐺4 → ℍ is quaternionic-differentiable at a point 𝑝 ∈

𝐺4 ⊂ ℍ  if there exists a limiting value of the difference quotient  
𝛥𝜓

𝛥𝑝
  as ∆𝑝 → 0 ,  and  this value is independent 

of the way of its computation [4, p.13]. 

Definition 2. A quaternionic function is said to be a quaternionic holomorphic (briefly, ℍ-holomorphic) function 

at a point 𝑝, if it has a quaternionic derivative independent of a way of its computation in some open connected 

neighborhood 𝐺4 ⊂ ℍ of a point 𝑝 ∈ ℍ [4, p.14].  

   In the Cayley–Dickson doubling form the Definition 1 leads to the following formulation of the necessary and 

sufficient conditions for 𝜓(𝑝) to be  ℍ-holomorphic [4, p.21; 7, p.15]:    

Definition 3. It is assumed that the constituents 𝜙1(𝑎, 𝑏, 𝑎,̅ �̅�) and 𝜙2(𝑎, 𝑏, 𝑎,̅ �̅�) of a quaternionic function  𝜓(𝑝) =

𝜓(𝑎, 𝑏) = 𝜙1 + 𝜙2𝑗 possess continuous first-order partial derivatives with respect to 𝑎, 𝑎, 𝑏, and 𝑏 in some open 

connected neighborhood 𝐺4 ⊂ ℍ of a point 𝑝 ∈ 𝐺4. Then a function  𝜓(𝑝) is said to be ℍ-holomorphic and denoted 

by 𝜓𝐻(𝑝) at a point 𝑝, if and only if the functions 𝜙1(𝑎, 𝑏, 𝑎,̅ �̅�) and 𝜙2(𝑎, 𝑏, 𝑎,̅ �̅�) satisfy in 𝐺3 ⊂ 𝐺4 the following 

quaternionic generalization of Cauchy-Riemann's  equations:  

                                                      {
1)  (𝜕𝑎𝜙1| = (𝜕𝑏𝜙

2
|,    2)  (𝜕𝑎𝜙2| = −(𝜕𝑏𝜙

1
|,

3)  (𝜕𝑎𝜙1| = (𝜕𝑏𝜙2|,   4) (𝜕𝑎𝜙2| = −(𝜕𝑏𝜙1|.
                                            (2) 

   Here 𝜕𝑖 , 𝑖 = 𝑎, 𝑎, 𝑏, 𝑏, denotes the partial derivative with respect to 𝑖. The brackets (. . | with the closing vertical 

bar indicate that the transition 𝑎 = 𝑎  = 𝑥 (to 3D space) has been already performed in expressions enclosed in 

brackets. Thus, ℍ -holomorphy conditions (2) are defined so that during the check of the quaternionic holomorphy 

of any quaternionic function we have to do the transition 𝑎 = 𝑎  = 𝑥 in already calculated expressions for the 

partial derivatives of the functions 𝜙1 and  𝜙2. However, this doesn’t mean that we deal with triplets  

in general, since the transition 𝑎 = 𝑎  = 𝑥 (or 𝑦 = 0) cannot be initially done for quaternionic variables and 

functions. Any quaternionic function remains the same 4-dimensional quaternionic function regardless of whether 

we check its holomorphy or not. Simply put, the ℍ-holomorphic functions are 4-dimensional quaternionic 

functions whose derivatives met equations (2) after the transition to 3D space. In other words, they are those 

quaternionic functions (in ℍ space), whose the left and right derivatives become equal after the transition to 3D 

space. That's not surprising, since  unambiguous  conservative physical fields represented by derivatives exist just 

in 3D space.    

   Example 1. The quaternionic function 𝜓(𝑝) = 𝑝2 = 𝑝 ∙ 𝑝 = (𝑎 + 𝑏 ∙ 𝑗) ∙ (𝑎 + 𝑏 ∙ 𝑗) = 𝜙1(𝑎, 𝑏, 𝑎,̅ �̅�) +

𝜙2(𝑎, 𝑏, 𝑎,̅ �̅�) ∙ 𝑗.  By the direct quaternionic multiplication we obtain the following expressions for the components 

of the Cayley–Dickson doubling form: 

  

                                              𝜙1(𝑎, 𝑏, 𝑎,̅ �̅�) = 𝑎2 − 𝑏�̅� ,   𝜙2(𝑎, 𝑏, 𝑎,̅ �̅�) = (𝑎 + �̅�)𝑏.  

Correspondingly, the complex conjugate functions are 𝜙1
̅̅̅̅ (𝑎, 𝑏, 𝑎,̅ �̅�) = �̅�2 − �̅�𝑏 and  𝜙2

̅̅̅̅ (𝑎, 𝑏, 𝑎,̅ �̅�) = (�̅� + 𝑎)�̅�. 



   When obtaining the components 𝜙1(𝑎, 𝑏, 𝑎,̅ �̅�) and 𝜙2(𝑎, 𝑏, 𝑎,̅ �̅�), we took into account that 𝑗𝛼 = 𝛼𝑗 for any 𝛼 ∈

ℂ [5, p. 42] and  𝑗2 = −1.                             

   Now we calculate the partial derivatives:  

𝜕𝑎𝜙1 = 2𝑎,   𝜕𝑏𝜙
2

= �̅� + 𝑎,  𝜕𝑎𝜙2 = 𝑏,  𝜕𝑏𝜙
1

= −𝑏 for equations (2-1,2) and 𝜕𝑏𝜙2 = 𝑎 + �̅�,  𝜕𝑎𝜙2 = 𝑏,  

𝜕𝑏𝜙1 = −𝑏 for equations (2-3,4). By subsituting 𝑎 = 𝑥 and  𝑎 = 𝑥 into expressions for calculated partial 

derivatives we have   

                                          {
1)  (𝜕𝑎𝜙1| = (𝜕𝑏𝜙

2
| = 2𝑥,    2)  (𝜕𝑎𝜙2| = −(𝜕𝑏𝜙

1
| = 𝑏,

3)  (𝜕𝑎𝜙1| = (𝜕𝑏𝜙2| = 2𝑥,   4) (𝜕𝑎𝜙2| = −(𝜕𝑏𝜙1| = 𝑏
 

in coordinates 𝑥, 𝑧, 𝑢 of 3D space. We see that equations (2) are fulfilled and the (4-dimensional!) quaternionic 

function 𝜓𝐻(𝑝) = 𝑝2 is ℍ-holomorphic. 

   Example 2. The quaternionic function 𝜓(𝑝) = 𝑒𝑝 = 𝜙1 + 𝜙2 ∙ 𝑗, where 𝑒 is the base of the natural logarithm. 

We represent the quaternion variable 𝑝 =  𝑥 + 𝑦𝑖 + 𝑧𝑗 + 𝑢𝑘 as a sum of real and imaginary parts: 𝑝 = 𝑥 + 𝑣𝑟, 

where 𝑣 = √𝑦2 + 𝑧2 + 𝑢2  is a real-valued function,  𝑟 =
𝑦𝑖+𝑧𝑗+𝑢𝑘

√𝑦2+𝑧2+𝑢2 
 can be considered as a purely imaginary unit 

quaternion. Since  𝑟2 = −1 as well as  𝑥 and 𝑣 are real-valued, the quaternionic formula 𝑝 = 𝑥 + 𝑣𝑟 is 

algebraically equivalent to the complex formula  𝑧 = 𝑥 + 𝑦𝑖. Then, using the quaternionic analogue of Euler's 

formula: 𝑒𝑣𝑟 = cos 𝑣 + 𝑟sin 𝑣, where  𝑟 =
𝑦𝑖+𝑧𝑗+𝑢𝑘

√𝑦2+𝑧2+𝑢2 
=

𝑦𝑖

𝑣
+

𝑧𝑗+𝑢𝑘

𝑣
=

𝑦𝑖

𝑣
+

(𝑧+𝑢𝑖)

𝑣
∙ 𝑗, we have  

:                                     𝜓(𝑝) = 𝜙1 + 𝜙2 ∙ 𝑗 = 𝑒𝑝 = 𝑒(𝑥+𝑣𝑟) = 𝑒𝑥𝑒𝑣𝑟 = 𝑒𝑥(cos 𝑣 + 𝑟sin 𝑣)  

                                                 = 𝑒𝑥 (cos 𝑣 +
𝑦𝑖 sin 𝑣

𝑣
 ) + 𝑒𝑥 (𝑧+𝑢𝑖) sin 𝑣

𝑣
∙ 𝑗 , 

whence  𝜙1 = 𝑒𝑥 (cos 𝑣 +
𝑦𝑖 sin 𝑣

𝑣
 ),  𝜙2 = 𝑒𝑥 (𝑧+𝑢𝑖) sin 𝑣

𝑣
 .  

Using relations 𝑏 = 𝑧 + 𝑢𝑖 and  𝑥 =
𝑎+𝑎

2
 , 𝑦 =

𝑎−𝑎

2𝑖
, following from (1), we obtain the expressions for 𝜙1 and 

𝜙2 as functions of 𝑎, 𝑎, 𝑏, 𝑏:  

                                                   𝜙1 = 2𝛽 cos 𝑣 +
𝛽(𝑎−𝑎) sin 𝑣

𝑣
,  𝜙2 =

2𝛽𝑏 sin 𝑣

𝑣
  , 

where 

                       𝛽 =
𝑒

𝑎+𝑎
2

2
, |𝑝| = √𝑥2 + 𝑦2 + 𝑧2 + 𝑢2 = √𝑎𝑎 + 𝑏𝑏, 𝑣 =

√4|𝑝|2−(𝑎+𝑎)2

2
                              (3) 

are real-valued. 

   The partial derivatives of the functions 𝜙1 and 𝜙2 in the case of 𝜓(𝑝) = 𝑒𝑝 are the following: 

                                         𝜕𝑎𝜙1 = 𝛽 [cos 𝑣 +
(𝑎−𝑎+1) sin 𝑣

𝑣
−

(𝑎−𝑎)2(𝑣 cos 𝑣−sin 𝑣)

4𝑣3 ];  

                                         𝜕𝑏𝜙2 =  𝜕𝑏𝜙
2

= 𝛽 [
2sin 𝑣

𝑣
+

𝑏𝑏(𝑣 cos 𝑣−sin 𝑣)

𝑣3 ] ; 

                                         𝜕𝑎𝜙2 = − 𝜕𝑏𝜙1 = 𝛽𝑏 [
sin 𝑣

𝑣
−

(𝑎−𝑎)(𝑣 cos 𝑣−sin 𝑣)

2𝑣3 ] ;               

                                         𝜕𝑎𝜙2 = − 𝜕𝑏𝜙
1

= 𝛽𝑏 [
sin 𝑣

𝑣
+

(𝑎−𝑎)(𝑣 cos 𝑣−sin 𝑣)

2𝑣3 ]. 

Performing the transition 𝑎 = 𝑎 = 𝑥 and taking into consideration that 𝑏𝑏 = |𝑏|2, and the relations  𝑣 = |𝑏| 

and  𝛽 =
𝑒𝑥

2
   are true after the transition,  we obtain as follows: 

                 1)  (𝜕𝑎𝜙1| = (𝜕𝑏𝜙
2

| =
𝑒𝑥(cos|𝑏|+|𝑏|−1 sin|𝑏|)

2
 ;   2)  (𝜕𝑎𝜙2| = − (𝜕𝑏𝜙

1
| =

𝑒𝑥𝑏|𝑏|−1 sin|𝑏|

2
 ; 

                 3)  (𝜕𝑎𝜙1| = (𝜕𝑏𝜙2| =
𝑒𝑥(cos|𝑏|+|𝑏|−1 sin|𝑏|)

2
 ;   4)  (𝜕𝑎𝜙2| = − (𝜕𝑏𝜙1| =

𝑒𝑥𝑏|𝑏|−1 sin|𝑏|

2
.  

We see that equations (2) hold and the function 𝜓𝐻(𝑝) = 𝑒𝑝 is ℍ-holomorphic. 

Quaternionic derivative. It was proved [4, p.30; 6, p.18] that the quaternionic generalization of the complex 

derivatives has the following expression for the full quaternionic derivatives (uniting the left and right derivatives) 

of the 𝑘′th  order: 

                                                           𝜓𝐻
(𝑘)(𝑝) = 𝜙1

(𝑘)
+ 𝜙2

(𝑘)
∙ 𝑗,                           

where  the constituents 𝜙1
(𝑘)

 and 𝜙2
(𝑘)

 are expressed as follows: 

                                  𝜙1
(𝑘)

= 𝜕𝑎𝜙1
(𝑘−1)

+ 𝜕𝑎𝜙1
(𝑘−1)

,  𝜙2
(𝑘)

= 𝜕𝑎𝜙2
(𝑘−1)

+ 𝜕𝑎𝜙2
(𝑘−1)

;                  

𝜙1
(𝑘−1)

 and 𝜙2
(𝑘−1)

 are the constituents of the (𝑘 − 1)′th derivative of 𝜓
𝐻

(𝑝), represented in the Cayley–Dickson doubling 

form as 𝜓(𝑝)(𝑘−1) = 𝜙1
(𝑘−1)

+ 𝜙2
(𝑘−1)

∙ 𝑗, 𝑘 ≥ 1; and 𝜙1
(0)

= 𝜙1(𝑎, 𝑏),  𝜙2
(0)

= 𝜙2(𝑎, 𝑏), 𝑘 = 1.                

. If a quaternion function 𝜓𝐻(𝑝) is once ℍ-differentiable in 𝐺4, then it possesses full derivatives of all orders in 𝐺4, each one 

ℍ- differentiable [4, p.31]. 

   The first derivative of the considered in Example 1 function 𝜓𝐻(𝑝) = 𝑝2 is the following: 



                                𝜓
𝐻

(1)
(𝑝) = (𝑝2)(1) = 𝜙1

(1)
+ 𝜙2

(1)
∙ 𝑗 = (𝜕𝑎𝜙1 + 𝜕𝑎𝜙1) + (𝜕𝑎𝜙2 + 𝜕𝑎𝜙2) ∙ 𝑗 

                                                = (2𝑎 + 0) + (𝑏 + 𝑏) ∙ 𝑗 = 2𝑎 + 2𝑏 ∙ 𝑗 = 2𝑝. 

   For the first derivative of the considered in Example 2  function 𝜓𝐻(𝑝) = 𝑒𝑝 we have  as follows: 

                                           𝜕𝑎𝜙1 = 𝛽 [
(𝑣 cos 𝑣−sin 𝑣)

𝑣
+

(𝑎−𝑎)2(𝑣 cos 𝑣−sin 𝑣)

4𝑣3 ], 

                    𝜓
𝐻

(1)
(𝑝) = (𝑒𝑝)(1) = 𝜙1

(1)
+ 𝜙2

(1)
∙ 𝑗 = (𝜕𝑎𝜙1 + 𝜕𝑎𝜙1) + (𝜕𝑎𝜙2 + 𝜕𝑎𝜙2) ∙ 𝑗 

           = {𝛽 [cos 𝑣 +
(𝑎−𝑎+1) sin 𝑣

𝑣
−

(𝑎−𝑎)2(𝑣 cos 𝑣−sin 𝑣)

4𝑣3 ] + 𝛽 [
(𝑣 cos 𝑣−sin 𝑣)

𝑣
+

(𝑎−𝑎)2(𝑣 cos 𝑣−sin 𝑣)

4𝑣3 ]} 

                              + {𝛽𝑏 [
sin 𝑣

𝑣
−

(𝑎−𝑎)(𝑣 cos 𝑣−sin 𝑣)

2𝑣3 ] + 𝛽𝑏 [
sin 𝑣

𝑣
+

(𝑎−𝑎)(𝑣 cos 𝑣−sin 𝑣)

2𝑣3 ]} ∙ 𝑗 

                                           = 2𝛽 cos 𝑣 +
𝛽(𝑎−𝑎) sin 𝑣

𝑣
+

2𝛽𝑏 sin 𝑣

𝑣
∙ 𝑗 = 𝑒𝑝. 

We see that the expressions for the first full quaternionic derivatives of the functions  𝜓𝐻(𝑝) = 𝑝2 and  𝜓𝐻(𝑝) = 𝑒𝑝 are 

similar to corresponding ones in real and complex analysis.. The same there is for the derivatives of higher orders [4, p. 33]. 

   Some properties of ℍ-holomorphic functions. It was established that the class [7, p.22] of  ℍ-holomorphic functions 

possesses the remarkable properties, some of them are the  following:  

1) Each ℍ-holomorphic function 𝜓𝐻(𝑝) can be constructed (without change of a functional dependence form) from its 

complex holomorphic analog 𝜓𝐶(𝜉) by replacing a complex variable 𝜉 ∈ 𝐺2 ⊂ 𝐶 as a whole in an expression for 𝜓𝐶(𝜉) by 

a quaternionic variable 𝑝 ∈ 𝐺4 ⊂ ℍ, where 𝐺4 is defined (except, possibly, at certain singularities) by the relation 𝐺4 ⊃ 𝐺2 

in the sense that 𝐺2 exactly follows from 𝐺4 upon the transition from 𝑝 to 𝜉 [4, p.28 ; 7, p.15]. 

2) All expressions for the full quaternionic derivatives of the H-holomorphic functions and rules for their 

differentiation are the same ones as the expressions and rules for corresponding derivatives of complex 

holomorphic analogs [4, p.33; 7, p.15, p.17]. For example, if the first derivative of the complex holomorphic 

function 𝜓𝐶(𝜉) = 𝜉3 is 3𝜉2, then the first derivative of the ℍ-holomorphic analog 𝜓𝐻(𝑝) = 𝑝3 is 3𝑝2.  

3) Algebraic properties of the H-holomorphic functions are fully similar (essentially adequate) to  ones of the 

complex holomorphic functions: the quaternionic multiplication of these quaternionic functions behaves as 

commutative [7, p.18], the left quotient equals the right one, the rules for differentiating sums, products, ratios, 

inverses, and compositions are the same as in complex analysis. One can just verify these properties, constructing 

ℍ-holomorphic functions from their complex holomorphic counterparts. 

4) The considered concept of quaternionic holomorphy allows us to investigate steady state vector fields in 3D 

space, each of them corresponds to  a ℍ-holomorphic function considered as a quaternionic potential [7, p. 23; 8, 

p. 7].   

Example 3. Here we show that the quaternionic multiplication of the quaternionic holomorphic functions 𝜓𝐻(𝑝) =
𝑝2 and  𝜓𝐻(𝑝) = 𝑒𝑝 behaves as commutative. Let the functions 𝑓 = 𝑓1 + 𝑓2 ∙ 𝑗 and 𝑔 = 𝑔1 + 𝑔2 ∙ 𝑗 be arbitrary 

quaternionic functions in the Cayley–Dickson construction. The quaternionic multiplication [5, p. 43; 7, p.18] of 

these functions can be writen as follows:  

                                     𝑓 ∙ 𝑔 = (𝑓1 + 𝑓2 ∙ 𝑗) ∙ (𝑔1 + 𝑔2 ∙ 𝑗) =  𝑅(𝑓 ∙ 𝑔) + 𝐼(𝑓 ∙ 𝑔) ∙ 𝑗,             

where                

                                          𝑅(𝑓 ∙ 𝑔) = 𝑓1𝑔1 − 𝑓2𝑔2̅̅ ̅ ,     𝐼(𝑓 ∙ 𝑔) = 𝑓2𝑔1̅̅ ̅ + 𝑓1𝑔2                                                  (4) 

are the designations of the parts of the quaternionic product. 

   Consider the quaternionic product  𝑝2 ∙ 𝑒𝑝. In this case we have (see Examples 1,2 ) 𝑓1 = 𝑎2 − 𝑏�̅� ; 𝑓2 = (𝑎 +

�̅�)𝑏; 𝑔1 = 2𝛽 cos 𝑣 +
𝛽(𝑎−𝑎) sin 𝑣

𝑣
 and 𝑔2 =

2𝛽𝑏 sin 𝑣

𝑣
. Subsituting these into (4) we obtain the following expressions: 

                 𝑅(𝑝2 ∙ 𝑒𝑝 ) = 𝑓1𝑔1 − 𝑓2𝑔2̅̅ ̅ = (𝑎2 − 𝑏�̅�)[2𝛽 cos 𝑣 +
𝛽(𝑎−𝑎) sin 𝑣

𝑣
] − (𝑎 + �̅�)𝑏

2𝛽�̅� sin 𝑣

𝑣
,  

                 𝐼(𝑝2 ∙ 𝑒𝑝 ) = 𝑓2𝑔1̅̅ ̅ + 𝑓1𝑔2 = (𝑎 + �̅�)𝑏 [2𝛽 cos 𝑣 +
𝛽(𝑎−𝑎) sin 𝑣

𝑣
 ] + (𝑎2 − 𝑏�̅�)

2𝛽𝑏 sin 𝑣

𝑣
, 

where (as well as in the sequel) it is taken into account that in accordance with (3) we have 𝛽 = �̅�,  𝑣 = �̅�.   



   Consider the quaternionic product  𝑒𝑝 ∙ 𝑝2. In this case we have  𝑓1 = 2𝛽 cos 𝑣 +
𝛽(𝑎−𝑎) sin 𝑣

𝑣
 , 𝑓2 =

2𝛽𝑏 sin 𝑣

𝑣
 ; 

𝑔1 = 𝑎2 − 𝑏�̅�,  𝑔2 = (𝑎 + �̅�)𝑏. Subsituting these into (4) we obtain the following expressions:                

 

                     𝑅(𝑒𝑝 ∙ 𝑝2) = 𝑓1𝑔1 − 𝑓2𝑔2̅̅ ̅ = [2𝛽 cos 𝑣 +
𝛽(𝑎−𝑎) sin 𝑣

𝑣
 ] (𝑎2 − 𝑏�̅�) −

2𝛽𝑏 sin 𝑣

𝑣
(�̅� + 𝑎)�̅�,   

                   𝐼(𝑒𝑝 ∙ 𝑝2) = 𝑓2𝑔1̅̅ ̅ + 𝑓1𝑔2 =
2𝛽𝑏 sin 𝑣

𝑣
(�̅�2 − �̅�𝑏) + [2𝛽 cos 𝑣 +

𝛽(𝑎−𝑎) sin 𝑣

𝑣
 ](𝑎 + �̅�)𝑏.   

   We see that  

                                                             𝑅(𝑝2 ∙ 𝑒𝑝 ) = 𝑅(𝑒𝑝 ∙ 𝑝2).  

   Now we verify that  𝐼(𝑝2 ∙ 𝑒𝑝 ) = 𝐼(𝑒𝑝 ∙ 𝑝2),  i.e. (𝑎 + �̅�)𝑏 [2𝛽 cos 𝑣 +
𝛽(𝑎−𝑎) sin 𝑣

𝑣
 ] + (𝑎2 − 𝑏�̅�)

2𝛽𝑏 sin 𝑣

𝑣
=

2𝛽𝑏 sin 𝑣

𝑣
(�̅�2 − 𝑏�̅�) + [2𝛽 cos 𝑣 +

𝛽(𝑎−𝑎) sin 𝑣

𝑣
 ](𝑎 + �̅�)𝑏.  

Opening the brackets and simplifying expressions, we obtain                              

   2𝑎2𝛽𝑏 sin 𝑣 + 𝛽�̅� (𝑎 + �̅�)𝑏sin 𝑣 − 𝛽𝑎 (𝑎 + �̅�)𝑏sin 𝑣 = 2�̅�2𝛽𝑏 sin 𝑣 + 𝛽𝑎 (𝑎 + �̅�)𝑏sin 𝑣 − 𝛽�̅� (𝑎 + �̅�)𝑏sin 𝑣, 

whence it follows that we have the identity  (𝑎2 + �̅�2)𝛽𝑏 sin 𝑣 = (�̅�2 + 𝑎2)𝛽𝑏 sin 𝑣, i.e  

                                                  𝐼(𝑝2 ∙ 𝑒𝑝 ) = 𝐼(𝑒𝑝 ∙ 𝑝2) 

is fulfilled. 

    Thus, it is shown that in principle non-commutative quaternionic multiplication behaves  as commutative  in the 

case  of quaternionic multiplication of the H-holomorphic functions 𝑝2and  𝑒𝑝. 

As shown above, quaternionic generalization (2) of complex Cauchy-Riemann's  equations is based on the 

requirement of unambiguousness of a quaternionic derivative, which is needed to investigate steady state vector 

fields in 3D space. It is not superfluous to note that the physical formulation of a problem played initially an 

important role  in the theory of complex-differentiable functions, and the so-called complex Cauchy-Riemann 

equations  were found [9] as early as in 1752 in d'Alembert's doctrine about planar fluid flow.   
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