A Decomposition Formula for Third-Order Real Antisymmetric Matrices

Luca Pettinari
Alumnus of Polytechnic University of Marches
Bratislava, April 2022
lalb.pettinari@gmail.com

Abstract

A decomposition formula for an antisymmetric matrix $\mathbf{A}_{\omega} \in \mathcal{A}_{3}(\mathbb{R})$ is provided, where its axial vector is expressed as $\omega=\mathrm{M} \boldsymbol{\nu}$, with M symmetric and $\boldsymbol{\nu} \in \mathbb{R}^{3}$. The proof is based mainly on vector projection through Frobenius inner product. In the end, a vectorial identity involving cross product is proved as a corollary of the decomposition formula.

Keywords Antisymmetric Matrices • Cross Product • Frobenius Inner Product

1 Introduction

Let $\mathcal{A}_{3}(\mathbb{R})=\left\{\mathbf{A} \in \mathcal{M}_{3}(\mathbb{R}): \mathbf{A}=-\mathbf{A}^{\mathrm{T}}\right\}$ be the set of third-order real antisymmetric matrices, where $\mathcal{M}_{3}(\mathbb{R})$ is the vector space of square real matrices of order 3 . Then \mathcal{A}_{3} is a vector subspace of \mathcal{M}_{3}. In fact, given two antisymmetric matrices $\mathbf{A}_{1}, \mathbf{A}_{2} \in \mathcal{A}_{3}$, it is easy to show the closure with respect to sum:

$$
\mathbf{A}_{1}+\mathbf{A}_{2}=-\mathbf{A}_{1}^{\mathrm{T}}-\mathbf{A}_{2}^{\mathrm{T}}=-\left(\mathbf{A}_{1}+\mathbf{A}_{2}\right)^{\mathrm{T}}
$$

Similarly, for any given $\lambda \in \mathbb{R}$, we can show the closure with respect to multiplication by a scalar:

$$
\lambda \mathbf{A}_{1}=-\lambda \mathbf{A}_{1}^{\mathrm{T}}=-\left(\lambda \mathbf{A}_{1}\right)^{\mathrm{T}}
$$

Proposition 1.1 \mathcal{A}_{3} has canonical base $\mathcal{B}=\left\{\mathbf{E}_{1}, \mathbf{E}_{2}, \mathbf{E}_{3}\right\}$, where:

$$
\mathbf{E}_{1}=\left[\begin{array}{rrr}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \quad \mathbf{E}_{2}=\left[\begin{array}{rrr}
0 & 0 & 1 \\
0 & 0 & 0 \\
-1 & 0 & 0
\end{array}\right] \quad \mathbf{E}_{3}=\left[\begin{array}{rrr}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & -1 & 0
\end{array}\right]
$$

Proof: Any $\mathbf{A} \in \mathcal{A}_{3}$ can be expressed as a linear combination of $\mathbf{E}_{1}, \mathbf{E}_{2}, \mathbf{E}_{3}$. In fact:

$$
\mathbf{A}=\left[\begin{array}{ccc}
0 & a_{12} & a_{13} \\
-a_{12} & 0 & a_{23} \\
-a_{13} & -a_{23} & 0
\end{array}\right]=a_{12} \mathbf{E}_{1}+a_{13} \mathbf{E}_{2}+a_{23} \mathbf{E}_{3}
$$

therefore $\mathcal{A}_{3}=\operatorname{Span}\left(\mathbf{E}_{1}, \mathbf{E}_{2}, \mathbf{E}_{3}\right)$. Now consider the two following linear combinations:

$$
\begin{aligned}
& \mathbf{A}=\gamma_{1}^{\prime} \mathbf{E}_{1}+\gamma_{2}^{\prime} \mathbf{E}_{2}+\gamma_{3}^{\prime} \mathbf{E}_{3} \\
& \mathbf{A}=\gamma_{1}^{\prime \prime} \mathbf{E}_{1}+\gamma_{2}^{\prime \prime} \mathbf{E}_{2}+\gamma_{3}^{\prime \prime} \mathbf{E}_{3}
\end{aligned}
$$

By definition, we know that any antisymmetric matrix $\mathbf{A} \in \mathcal{A}_{3}$ is such that $\mathbf{A}=-\mathbf{A}^{\mathrm{T}}$, therefore $\mathbf{A}+\mathbf{A}^{\mathrm{T}}=0$. In light of this, we can write:

$$
\begin{aligned}
\mathbf{A}+\mathbf{A}^{\mathrm{T}} & =\left(\gamma_{1}^{\prime} \mathbf{E}_{1}+\gamma_{2}^{\prime} \mathbf{E}_{2}+\gamma_{3}^{\prime} \mathbf{E}_{3}\right)+\left(\gamma_{1}^{\prime \prime} \mathbf{E}_{1}+\gamma_{2}^{\prime \prime} \mathbf{E}_{2}+\gamma_{3}^{\prime \prime} \mathbf{E}_{3}\right)^{\mathrm{T}}= \\
& =\left(\gamma_{1}^{\prime}-\gamma_{1}^{\prime \prime}\right) \mathbf{E}_{1}+\left(\gamma_{2}^{\prime}-\gamma_{2}^{\prime \prime}\right) \mathbf{E}_{2}^{\prime}+\left(\gamma_{3}^{\prime}-\gamma_{3}^{\prime \prime}\right) \mathbf{E}_{3}=0
\end{aligned}
$$

The latter is satisfied if and only if $\gamma_{i}^{\prime}=\gamma_{i}^{\prime \prime}$ for $i=1,2,3$, which means that there is a unique linear combination to express \mathbf{A}, hence $\left\{\mathbf{E}_{1}, \mathbf{E}_{2}, \mathbf{E}_{3}\right\}$ is a set of linearly independent vectors. Therefore, $\mathcal{B}=\left\{\mathbf{E}_{1}, \mathbf{E}_{2}, \mathbf{E}_{3}\right\}$ is a base of \mathcal{A}_{3}.

An immediate consequence of this is that $\operatorname{dim}\left(\mathcal{A}_{3}\right)=3$. Antisymmetric matrices are useful to express cross products in terms of matrix-vector products. In fact, given two vectors $\mathbf{a}, \mathbf{b} \in \mathbb{R}^{3}$, their cross product $\mathbf{a} \times \mathbf{b}$ can be expressed as:

$$
\begin{equation*}
\mathbf{a} \times \mathbf{b}=\mathbf{A}_{\mathbf{a}} \mathbf{b} \tag{1}
\end{equation*}
$$

where $\mathbf{A}_{\mathbf{a}}$ is antisymmetric. Given $\left(a_{1}, a_{2}, a_{3}\right)$ the coordinates of a, the matrix $\mathbf{A}_{\mathbf{a}}$ reads as follows:

$$
\mathbf{A}_{\mathbf{a}}=\left[\begin{array}{ccc}
0 & a_{3} & -a_{2} \tag{2}\\
-a_{3} & 0 & a_{1} \\
a_{2} & -a_{1} & 0
\end{array}\right]
$$

Given any antisymmetric matrix, it is always possible to associate it with a vector $\mathbf{a} \in \mathbb{R}^{3}$, which is called axial vector. Let us now consider the following set of antisymmetric matrices:

$$
\mathbf{X}_{1}=\left[\begin{array}{rrr}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & -1 & 0
\end{array}\right] \quad \mathbf{X}_{2}=\left[\begin{array}{rrr}
0 & 0 & -1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right] \quad \mathbf{X}_{3}=\left[\begin{array}{rrr}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Similarly to the last result, it can be easily shown that $\mathcal{B}^{\prime}=\left\{\mathbf{X}_{1}, \mathbf{X}_{2}, \mathbf{X}_{3}\right\}$ is a basis of \mathcal{A}_{3}, and that given an axial vector $\boldsymbol{\omega}=\left(\omega_{1}, \omega_{2}, \omega_{3}\right)$, it is always possible to write its associated antisymmetric matrix $\mathbf{A}_{\boldsymbol{\omega}}$ simply as:

$$
\begin{equation*}
\mathbf{A}_{\boldsymbol{\omega}}=\omega_{1} \mathbf{X}_{1}+\omega_{2} \mathbf{X}_{2}+\omega_{3} \mathbf{X}_{3} \tag{3}
\end{equation*}
$$

Definition 1.1 Given two real square matrices of order $n \mathbf{A}, \mathbf{B}$, the Frobenius inner product is a bilinear form $\langle\cdot, \cdot\rangle_{F}: \mathcal{M}_{n}(\mathbb{R}) \times \mathcal{M}_{n}(\mathbb{R}) \rightarrow \mathbb{R}$ defined as:

$$
\langle\mathbf{A}, \mathbf{B}\rangle_{F}=\operatorname{Tr}\left(\mathbf{A}^{\mathrm{T}} \mathbf{B}\right)
$$

The norm induced by this product is given by:

$$
\|\mathbf{A}\|_{F}=\sqrt{\langle\mathbf{A}, \mathbf{A}\rangle_{F}}
$$

Proposition 1.2 $\mathcal{B}^{\prime}=\left\{\mathbf{X}_{1}, \mathbf{X}_{2}, \mathbf{X}_{3}\right\}$ is an orthogonal basis with respect to the Frobenius inner product.

Proof: We have to prove that $\left\langle\mathbf{X}_{i}, \mathbf{X}_{j}\right\rangle_{F}=0$, for $i, j=1,2,3, i \neq j$. It is straightforward to see that multiplying each row of $\mathbf{X}_{i}^{\mathrm{T}}$ with the correspondent column of \mathbf{X}_{j} (i.e. first row with first column, second row with second column, and so on), one gets a null-diagonal matrix, hence the product is identically zero for any $i \neq j$, proving the statement.

To conclude with, we can report the following theorem on vector projection [1] applied to antisymmetric matrices expressed with respect to $\mathcal{B}^{\prime}=\left\{\mathbf{X}_{1}, \mathbf{X}_{2}, \mathbf{X}_{3}\right\}$.

Theorem 1.1 Given $\mathbf{C} \in \mathcal{A}_{3}(\mathbb{R})$ and the orthogonal basis $\mathcal{B}^{\prime}=\left\{\mathbf{X}_{1}, \mathbf{X}_{2}, \mathbf{X}_{3}\right\}$ with respect to the Frobenius inner product, it holds that:

$$
\mathbf{C}=c_{1} \mathbf{X}_{1}+c_{2} \mathbf{X}_{2}+c_{3} \mathbf{X}_{3}
$$

where

$$
\begin{equation*}
c_{i}=\frac{\left\langle\mathbf{C}, \mathbf{X}_{i}\right\rangle_{F}}{\left\langle\mathbf{X}_{i}, \mathbf{X}_{i}\right\rangle_{F}} \tag{4}
\end{equation*}
$$

are called Fourier's coefficients.

2 Decomposition Formula

Theorem 2.1 Given two axial vector $\boldsymbol{\nu}, \boldsymbol{\omega} \in \mathbb{R}^{3}$, where $\boldsymbol{\omega}$ is expressible as $\boldsymbol{\omega}=\mathbf{M} \boldsymbol{\nu}$ with \mathbf{M} symmetric, the following equality holds:

$$
\begin{equation*}
\mathbf{A}_{\boldsymbol{\omega}}=\operatorname{Tr}(\mathbf{M}) \mathbf{A}_{\nu}-2 \operatorname{Asym}\left(\mathbf{M} \mathbf{A}_{\nu}\right) \tag{5}
\end{equation*}
$$

where $\mathbf{A}_{\nu}, \mathbf{A}_{\boldsymbol{\omega}}$ are the antisymmetric matrices associated to the axial vectors $\boldsymbol{\nu}, \boldsymbol{\omega}$ respectively, and $\operatorname{Asym}\left(\mathbf{M} \mathbf{A}_{\nu}\right)$ is the antisymmetric part of $\mathbf{M A}_{\nu}$.

Proof: Consider the following antisymmetric matrix $\mathbf{A}_{\boldsymbol{\omega}}$, where $\boldsymbol{\omega}=\mathbf{M} \boldsymbol{\nu}$ and \mathbf{M} is symmetric. We know that we can express $\mathbf{A}_{\boldsymbol{\omega}}$ through (3). Being ν_{i} and $m_{i j}$ for $i, j=1,2,3$ the components of respectively $\boldsymbol{\nu}$ and \mathbf{M}, we have:

$$
\begin{aligned}
\mathbf{A}_{\boldsymbol{\omega}}= & \omega_{1} \mathbf{X}_{1}+\omega_{2} \mathbf{X}_{2}+\omega_{3} \mathbf{X}_{3}= \\
& \left(m_{11} \nu_{1}+m_{12} \nu_{2}+m_{13} \nu_{3}\right) \mathbf{X}_{1}+ \\
& \left(m_{12} \nu_{1}+m_{22} \nu_{2}+m_{23} \nu_{3}\right) \mathbf{X}_{2}+ \\
& \left(m_{13} \nu_{1}+m_{23} \nu_{2}+m_{33} \nu_{3}\right) \mathbf{X}_{3}
\end{aligned}
$$

Introducing $\sigma_{i j}=1-\delta_{i j}$, i.e. a tensor whose components are 0 on the diagonal ($i=j$) and 1 elsewhere, and recalling that $m_{j i}=m_{i j}$ for the symmetry of M, we can express the last equality in Einstein's notation as:

$$
\begin{equation*}
\mathbf{A}_{\boldsymbol{\omega}}=m_{j j} \nu_{j} \mathbf{X}_{j}+\sigma_{i j} m_{i j} \nu_{i} \mathbf{X}_{j} \tag{6}
\end{equation*}
$$

Now consider the following quantity:

$$
\mathbf{B}=\sigma_{i j} m_{i i} \nu_{j} \mathbf{X}_{j}
$$

Adding and subtracting it to (6), one has:

$$
\begin{equation*}
\mathbf{A}_{\boldsymbol{\omega}}=\underbrace{\left(m_{j j} \nu_{j}+\sigma_{i j} m_{i i} \nu_{j}\right) \mathbf{X}_{j}}_{\text {(1) }}+\underbrace{\left(\sigma_{i j} m_{i j} \nu_{i}-\sigma_{i j} m_{i i} \nu_{j}\right) \mathbf{X}_{j}}_{\text {(II) }} \tag{7}
\end{equation*}
$$

Let us show that (1) corresponds to $\operatorname{Tr}(\mathbf{M}) \mathbf{A}_{\boldsymbol{\nu}}$. In fact:

$$
\begin{gathered}
\left(m_{j j} \nu_{j}+\sigma_{i j} m_{i i} \nu_{j}\right) \mathbf{X}_{j}=\sum_{j=1}^{3}\left(m_{j j} \nu_{j}+\sum_{i=1}^{3} \sigma_{i j} m_{i i} \nu_{j}\right) \mathbf{X}_{j}= \\
=\left(m_{11} \nu_{1}+\nu_{1} \sum_{i=1}^{3} \sigma_{i 1} m_{i i}\right) \mathbf{X}_{1}+\left(m_{22} \nu_{2}+\nu_{2} \sum_{i=1}^{3} \sigma_{i 2} m_{i i}\right) \mathbf{X}_{2}+\left(m_{33} \nu_{1}+\nu_{3} \sum_{i=1}^{3} \sigma_{i 3} m_{i i}\right) \mathbf{X}_{3}= \\
=\left(m_{11}+m_{22}+m_{33}\right) \nu_{1} \mathbf{X}_{1}+\left(m_{11}+m_{22}+m_{33}\right) \nu_{2} \mathbf{X}_{2}+\left(m_{11}+m_{22}+m_{33}\right) \nu_{3} \mathbf{X}_{3}= \\
=\operatorname{Tr}(\mathbf{M})\left(\nu_{1} \mathbf{X}_{1}+\nu_{2} \mathbf{X}_{2}+\nu_{3} \mathbf{X}_{3}\right)=\operatorname{Tr}(\mathbf{M}) \mathbf{A}_{\nu}
\end{gathered}
$$

where the last step is obtained using (3). We now need to characterize (II), call it $\mathbf{C}=\left(\sigma_{i j} m_{i j} \nu_{i}-\sigma_{i j} m_{i i} \nu_{j}\right) \mathbf{X}_{j}$. First of all, let us observe that we can remove $\sigma_{i j}$. In fact, for $i=j$, the term $m_{i j} \nu_{i}-m_{i i} \nu_{j}=0$, hence we can simply put:

$$
\begin{equation*}
\mathbf{C}=\left(m_{i j} \nu_{i}-m_{i i} \nu_{j}\right) \mathbf{X}_{j} . \tag{8}
\end{equation*}
$$

We want to find out who \mathbf{C} is. Since $\operatorname{Tr}(\mathbf{M}) \mathbf{A}_{\nu}$ is antisymmetric, \mathbf{C} must be forcedly antisymmetric in order to enforce (6) and have $\mathbf{A}_{\boldsymbol{\omega}} \in \mathcal{A}_{3}(\mathbb{R})$. Let us observe from (8) that the components of \mathbf{C} are obtained from some linear operation between \mathbf{M} and $\boldsymbol{\nu}$. We cannot choose $\mathbf{C}=\mathbf{A}_{\mathbf{M} \nu}$ because it already appears at the left-hand member of (7), so a hint
for \mathbf{C} would be:

$$
\mathbf{C}=\lambda \operatorname{Asym}\left(\mathbf{M} \mathbf{A}_{\nu}\right)
$$

with λ opportunely chosen. Observe that this intuition makes sense since the components of \mathbf{C} would consist of a sum of addenda where each of them is a product of some $m_{i j}$ multiplying some ν_{i} (eventually with a shifted sign), as predicated by (8). In addition, taking the antisymmetric part will ensure the requirement of antisymmetry of \mathbf{C}. Also this choice is well-defined because:

$$
\left(\mathbf{M} \mathbf{A}_{\nu}\right)^{\mathrm{T}}=\mathbf{A}_{\boldsymbol{\nu}}^{\mathrm{T}} \mathbf{M}^{\mathrm{T}}=-\mathbf{A}_{\boldsymbol{\nu}} \mathbf{M}
$$

which means $\mathbf{M A}_{\nu}$ is neither symmetric nor antisimmetryc. Moreover:

$$
\begin{aligned}
\operatorname{Asym}\left(\mathbf{M A}_{\nu}\right) & =\frac{1}{2}\left[\mathbf{M} \mathbf{A}_{\boldsymbol{\nu}}-\left(\mathbf{M} \mathbf{A}_{\nu}\right)^{\mathrm{T}}\right]=\frac{1}{2}\left[\mathbf{M} \mathbf{A}_{\boldsymbol{\nu}}+\mathbf{A}_{\boldsymbol{\nu}} \mathbf{M}\right]= \\
& =\frac{1}{2}\left[\mathbf{A}_{\boldsymbol{\nu}} \mathbf{M}+\mathbf{M} \mathbf{A}_{\nu}\right]=\frac{1}{2}\left[\mathbf{A}_{\boldsymbol{\nu}} \mathbf{M}-\mathbf{M}^{\mathrm{T}} \mathbf{A}_{\boldsymbol{\nu}}^{\mathrm{T}}\right]= \\
& =\frac{1}{2}\left[\mathbf{A}_{\boldsymbol{\nu}} \mathbf{M}-\left(\mathbf{A}_{\boldsymbol{\nu}} \mathbf{M}\right)^{\mathrm{T}}\right]=\operatorname{Asym}\left(\mathbf{A}_{\boldsymbol{\nu}} \mathbf{M}\right)
\end{aligned}
$$

In order to show this intuition is actually true, we will take $\mathbf{C}=\lambda \operatorname{Asym}\left(\mathbf{M} \mathbf{A}_{\nu}\right)$, project it on $\mathcal{B}^{\prime}=\left\{\mathbf{X}_{1}, \mathbf{X}_{2}, \mathbf{X}_{3}\right\}$, and check if the projection coefficients are actually corresponding to the components of \mathbf{C} as expressed in (8). Before continuing, we need to introduce the following lemma.

Lemma 2.1 Given a symmetric matrix \mathbf{M} and an axial vector $\boldsymbol{\nu}$ with associated antisymmetric matrix \mathbf{A}_{ν}, it holds that:

$$
\begin{equation*}
\left\langle\mathbf{A}_{\boldsymbol{\nu}} \mathbf{M}+\mathbf{M} \mathbf{A}_{\boldsymbol{\nu}}, \mathbf{X}_{i}\right\rangle_{F}=2\left\langle\mathbf{A}_{\boldsymbol{\nu}} \mathbf{M}, \mathbf{X}_{i}\right\rangle_{F} \quad i=1,2,3 \tag{9}
\end{equation*}
$$

where $\mathbf{X}_{i} \in \mathcal{B}^{\prime}$.

Proof: Calculate $\left\langle\mathbf{A}_{\nu} \mathbf{M}, \mathbf{X}_{i}\right\rangle_{F}$ first:

$$
\left\langle\mathbf{A}_{\boldsymbol{\nu}} \mathbf{M}, \mathbf{X}_{i}\right\rangle_{F}=\operatorname{Tr}\left(\left(\mathbf{M} \mathbf{A}_{\boldsymbol{\nu}}\right)^{\mathrm{T}} \mathbf{X}_{i}\right)=\operatorname{Tr}\left(\mathbf{A}_{\boldsymbol{\nu}}^{\mathrm{T}} \mathbf{M}^{\mathrm{T}} \mathbf{X}_{i}\right)=-\operatorname{Tr}\left(\mathbf{A}_{\boldsymbol{\nu}} \mathbf{M} \mathbf{X}_{i}\right)
$$

By the commutation property of the trace operator applied to a matrix product, for real square matrices we have $\operatorname{Tr}(\mathbf{A B})=\operatorname{Tr}(\mathbf{B A})$, which allows us to express the Frobenius inner product of two matrices alternatively as:

$$
\langle\mathbf{A}, \mathbf{B}\rangle_{F}=\langle\mathbf{B}, \mathbf{A}\rangle_{F}=\operatorname{Tr}\left(\mathbf{B}^{\mathrm{T}} \mathbf{A}\right)=\operatorname{Tr}\left(\mathbf{A} \mathbf{B}^{\mathrm{T}}\right)
$$

Therefore, considering $\left\langle\mathbf{M A}_{\nu}, \mathbf{X}_{i}\right\rangle_{F}$:

$$
\left\langle\mathbf{M} \mathbf{A}_{\nu}, \mathbf{X}_{i}\right\rangle_{F}=\operatorname{Tr}\left(\mathbf{A}_{\nu} \mathbf{M} \mathbf{X}_{i}^{\mathrm{T}}\right)=-\operatorname{Tr}\left(\mathbf{A}_{\boldsymbol{\nu}} \mathbf{M} \mathbf{X}_{i}\right)=\left\langle\mathbf{A}_{\boldsymbol{\nu}} \mathbf{M}, \mathbf{X}_{i}\right\rangle_{F}
$$

Therefore:

$$
\left\langle\mathbf{A}_{\nu} \mathbf{M}+\mathbf{M} \mathbf{A}_{\nu}, \mathbf{X}_{i}\right\rangle_{F}=\left\langle\mathbf{A}_{\nu} \mathbf{M}, \mathbf{X}_{i}\right\rangle_{F}+\left\langle\mathbf{M} \mathbf{A}_{\nu}, \mathbf{X}_{i}\right\rangle_{F}=\left\langle\mathbf{A}_{\nu} \mathbf{M}, \mathbf{X}_{i}\right\rangle_{F}+\left\langle\mathbf{A}_{\nu} \mathbf{M}, \mathbf{X}_{i}\right\rangle_{F}=2\left\langle\mathbf{A}_{\nu} \mathbf{M}, \mathbf{X}_{i}\right\rangle_{F}
$$

which proves the lemma.
Now we can use this lemma to compute the Fourier's coefficients of $\mathbf{C}=\lambda \operatorname{Asym}\left(\mathbf{M A}_{\nu}\right)$ along $\mathbf{X}_{1}, \mathbf{X}_{2}, \mathbf{X}_{3}$. We have that:

$$
\mathbf{C}=\lambda \operatorname{Asym}\left(\mathbf{M} \mathbf{A}_{\nu}\right)=\frac{\lambda}{2}\left[\mathbf{A}_{\nu} \mathbf{M}+\mathbf{M} \mathbf{A}_{\nu}\right]
$$

and

$$
\begin{equation*}
c_{i}=\frac{\left\langle\mathbf{C}, \mathbf{X}_{i}\right\rangle_{F}}{\left\langle\mathbf{X}_{i}, \mathbf{X}_{i}\right\rangle_{F}}=\frac{\lambda}{2} \frac{\left\langle\mathbf{A}_{\boldsymbol{\nu}} \mathbf{M}+\mathbf{M} \mathbf{A}_{\boldsymbol{\nu}}, \mathbf{X}_{i}\right\rangle_{F}}{\left\langle\mathbf{X}_{i}, \mathbf{X}_{i}\right\rangle_{F}}=\lambda \frac{\left\langle\mathbf{A}_{\boldsymbol{\nu}} \mathbf{M}, \mathbf{X}_{i}\right\rangle_{F}}{\left\langle\mathbf{X}_{i}, \mathbf{X}_{i}\right\rangle_{F}} \tag{10}
\end{equation*}
$$

It is easy to calculate that $\left\langle\mathbf{X}_{i}, \mathbf{X}_{i}\right\rangle_{F}=\left\|\mathbf{X}_{i}\right\|_{F}^{2}=2$ for $i=1,2,3$. In fact, take $i=1$:

$$
\left\langle\mathbf{X}_{1}, \mathbf{X}_{1}\right\rangle_{F}=\operatorname{Tr}\left(\left[\begin{array}{rrr}
0 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{rrr}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & -1 & 0
\end{array}\right]\right)=\operatorname{Tr}\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=2
$$

It is easy to show that also for \mathbf{X}_{2} and \mathbf{X}_{3}, allowing us to rewrite 10) as:

$$
c_{i}=\frac{\lambda}{2}\left\langle\mathbf{A}_{\nu} \mathbf{M}, \mathbf{X}_{i}\right\rangle_{F}
$$

which we need to explicit for $i=1,2,3$. Consider $i=1$:

$$
\begin{gather*}
c_{1}=\frac{\lambda}{2}\left\langle\mathbf{A}_{\nu} \mathbf{M}, \mathbf{X}_{1}\right\rangle_{F}= \\
=\frac{\lambda}{2} \operatorname{Tr}\left(\left[\begin{array}{ccc}
0 & \nu_{3} & -\nu_{2} \\
-\nu_{3} & 0 & \nu_{1} \\
\nu_{2} & -\nu_{1} & 0
\end{array}\right]\left[\begin{array}{ccc}
m_{11} & m_{12} & m_{13} \\
m_{12} & m_{22} & m_{23} \\
m_{13} & m_{23} & m_{33}
\end{array}\right]\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & -1 & 0
\end{array}\right]\right)= \\
=\frac{\lambda}{2} \operatorname{Tr}\left(\left[\begin{array}{ccc}
0 & \nu_{3} & -\nu_{2} \\
-\nu_{3} & 0 & \nu_{1} \\
\nu_{2} & -\nu_{1} & 0
\end{array}\right]\left[\begin{array}{ccc}
0 & m_{13} & -m_{12} \\
0 & m_{23} & -m_{22} \\
0 & m_{33} & -m_{23}
\end{array}\right]\right)= \\
=\frac{\lambda}{2}\left(-m_{13} \nu_{3}+m_{33} \nu_{1}-m_{12} \nu_{2}+m_{22} \nu_{1}\right)= \\
=\frac{\lambda}{2}\left[\left(m_{22}+m_{33}\right) \nu_{1}-m_{12} \nu_{2}-m_{12} \nu_{3}\right] \tag{11}
\end{gather*}
$$

In a similar way, we can find out that:

$$
\begin{align*}
c_{2} & =\frac{\lambda}{2}\left[\left(m_{11}+m_{33}\right) \nu_{2}-m_{12} \nu_{1}-m_{23} \nu_{3}\right] \tag{12}\\
c_{3} & =\frac{\lambda}{2}\left[\left(m_{11}+m_{22}\right) \nu_{3}-m_{13} \nu_{1}-m_{23} \nu_{2}\right] \tag{13}
\end{align*}
$$

Now, let us write explicitly the coordinates \mathbf{C} as expressed in 8. Still using Einstein's notation, it reads:

$$
\mathbf{C}=\underbrace{\left(m_{i 1} \nu_{i}-m_{i i} \nu_{1}\right)}_{=c_{1}} \mathbf{X}_{1}+\underbrace{\left(m_{i 2} \nu_{2}-m_{i i} \nu_{2}\right)}_{=c_{2}} \mathbf{X}_{2}+\underbrace{\left(m_{i 3} \nu_{2}-m_{i i} \nu_{3}\right)}_{=c_{3}} \mathbf{X}_{3}
$$

Marking summation explicitly and using $m_{i j}=m_{j i}$, we have:

$$
\begin{align*}
& c_{1}=\sum_{i=1}^{3} m_{i 1} \nu_{i}-m_{i i} \nu_{1}=-\left(m_{22}+m_{33}\right) \nu_{1}+\left(m_{12} \nu_{2}+m_{13} \nu_{3}\right) \tag{14}\\
& c_{2}=\sum_{i=1}^{3} m_{i 2} \nu_{i}-m_{i i} \nu_{2}=-\left(m_{11}+m_{33}\right) \nu_{2}+\left(m_{12} \nu_{1}+m_{23} \nu_{3}\right) \tag{15}\\
& c_{3}=\sum_{i=1}^{3} m_{i 3} \nu_{i}-m_{i i} \nu_{3}=-\left(m_{11}+m_{22}\right) \nu_{3}+\left(m_{13} \nu_{1}+m_{23} \nu_{2}\right) \tag{16}
\end{align*}
$$

Thus, (14), (15) and (16) coincide with (11), (12) and (13) respectively for $\lambda=-2$. This allows us to finally express \mathbf{C} as:

$$
\mathbf{C}=-2 \operatorname{Asym}\left(\mathbf{M A}_{\nu}\right)
$$

Therefore, putting all together in (7), it yields:

$$
\mathbf{A}_{\boldsymbol{\omega}}=\operatorname{Tr}(\mathbf{M}) \mathbf{A}_{\boldsymbol{\nu}}-2 \operatorname{Asym}\left(\mathbf{M} \mathbf{A}_{\nu}\right)
$$

Since it is always possible to associate an antisymmetric matrix to the axial vector $\boldsymbol{\omega}$ and viceversa, this formula holds as long as the axial vector is expressible as a matrix-vector product through \mathbf{M} and $\boldsymbol{\nu}$ (\mathbf{M} symmetric). From this decomposition formula, we can immediately deduce the following result.

Corollary 2.1 Given $\mathbf{a}, \mathbf{b} \in \mathbb{R}^{3}$ and a symmetric matrix \mathbf{M}, the following relationship is true:

$$
\begin{equation*}
\mathbf{M}(\mathbf{a} \times \mathbf{b})=\operatorname{Tr}(\mathbf{M}) \mathbf{a} \times \mathbf{b}-\mathbf{a} \times \mathbf{M} \mathbf{b}+\mathbf{b} \times \mathbf{M a} \tag{17}
\end{equation*}
$$

Proof: Consider $\boldsymbol{\nu} \equiv \mathbf{a}$ and $\boldsymbol{\omega}=\mathrm{Ma}$. Then, using (5), we have:

$$
\begin{align*}
\mathbf{A}_{\mathbf{M a}} & =\operatorname{Tr}(\mathbf{M}) \mathbf{A}_{\mathbf{a}}-2 \operatorname{Asym}\left(\mathbf{M} \mathbf{A}_{\mathbf{a}}\right)=\operatorname{Tr}(\mathbf{M}) \mathbf{A}_{\mathbf{a}}-\left[\mathbf{M} \mathbf{A}_{\mathbf{a}}-\left(\mathbf{M} \mathbf{A}_{\mathbf{a}}\right)^{\mathrm{T}}\right]= \\
& =\operatorname{Tr}(\mathbf{M}) \mathbf{A}_{\mathbf{a}}-\mathbf{M} \mathbf{A}_{\mathbf{a}}+\mathbf{A}_{\mathbf{a}}^{\mathrm{T}} \mathbf{M}^{\mathrm{T}}=\operatorname{Tr}(\mathbf{M}) \mathbf{A}_{\mathbf{a}}-\mathbf{M} \mathbf{A}_{\mathbf{a}}-\mathbf{A}_{\mathbf{a}} \mathbf{M} \tag{18}
\end{align*}
$$

Applying b to both members of 18 , one gets:

$$
\mathbf{A}_{\mathbf{M a}} \mathbf{b}=\operatorname{Tr}(\mathbf{M}) \mathbf{A}_{\mathbf{a}} \mathbf{b}-\mathbf{M} \mathbf{A}_{\mathbf{a}} \mathbf{b}-\mathbf{A}_{\mathbf{a}} \mathbf{M} \mathbf{b}
$$

Using (2), we can write further:

$$
(\mathbf{M a}) \times \mathbf{b}=\operatorname{Tr}(\mathbf{M}) \mathbf{a} \times \mathbf{b}-\mathbf{M}(\mathbf{a} \times \mathbf{b})-\mathbf{a} \times(\mathbf{M} \mathbf{b})
$$

If we reorganize the members and rewrite $(\mathbf{M a}) \times \mathbf{b}=-\mathbf{b} \times(\mathbf{M a})$, we obtain exactly:

$$
\mathbf{M}(\mathbf{a} \times \mathbf{b})=\operatorname{Tr}(\mathbf{M}) \mathbf{a} \times \mathbf{b}-\mathbf{a} \times \mathbf{M} \mathbf{b}+\mathbf{b} \times \mathbf{M a}
$$

3 Conclusion

In the previous section, we have shown how a generic antisymmetric matrix of axial vector $\boldsymbol{\omega}$ can be decomposed. While it is always trivial to associate any $\mathbf{A} \in \mathcal{A}_{3}(\mathbb{R})$ with a vector of $\boldsymbol{\omega} \in \mathbb{R}^{3}$, it is not obvious how to find \mathbf{M} and $\boldsymbol{\nu}$ such that $\boldsymbol{\omega}=\mathbf{M} \boldsymbol{\nu}$, under the symmetry constraint of \mathbf{M}. Future work may consist of showing the existence of the couple $(\mathbf{M}, \boldsymbol{\nu})$ for any given $\boldsymbol{\omega} \in \mathbb{R}^{3}$. Moreover, on the basis of that, one could seek for an optimal procedure of determining a three-dimensional vector $\boldsymbol{\omega}$ from 9 degrees of freedom (6 accounting for \mathbf{M}, and 3 for $\boldsymbol{\nu}$). Finally, given the vectorial form of equation (17), one could investigate its prospective applications in fields like Vector Calculus, Differential Geometry and Mechanics.

References

[1] M. Abate and C. De Fabritiis. Geometria analitica con elementi di algebra lineare. Collana di istruzione scientifica. Serie di matematica. McGraw-Hill Education, 2015.

