
General Solutions of Ordinary
Differential Equations and Division by
Zero Calculus - New Type Examples

Saburou Saitoh
Institute of Reproducing Kernels,

saburou.saitoh@gmail.com

May 3, 2022

Abstract: We examined many examples of the relation between general
solutions with singular points in ordinary differential equations and division
by zero calculus, however, here we will introduce a new type example that
was appeared from some general solution of an ordinary differential equation.

David Hilbert:
The art of doing mathematics consists in finding that special case which

contains all the germs of generality.
Oliver Heaviside:
Mathematics is an experimental science, and definitions do not come first,

but later on.
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1 A new type example
We examined many examples of the relation between general solutions in
ordinary differential equations with singular points and division by zero cal-
culus (see, in particular [3]), however, here we will introduce a new type
example that was appeared from some general solution of an ordinary differ-
ential equation.

We recall that for the ordinary differential equation with constants a and
b

(aey + bx)
dy

dx
= 1, (1.1)

we obtain the general solutions for any constant C

x = Ceby +
a

1− b
ey, b ̸= 1 (1.2)

and for b = 1
x = Cey + ayey (1.3)

([2], page 165, 38).
The problem is:
How to derive the solution (1.3) from the general solution (1.2) by the

division by zero calculus?
We wonder how to derive (1.3) from (1.2).
We recall that for the ordinary differential equation with a constant A

y′′ = Axn, (1.4)

we obtain the general solution with constants Cj, for n ̸= −1,−2

y =
Axn+2

(n+ 1)(n+ 2)
+ C1x+ C2. (1.5)

For n = −2, we obtain

y = A log x+ C1x+ C2 (1.6)

and for n = −1

y = A

∫
log xdx+ C1x+ C2 = Ax(log x− 1) + C1x+ C2 (1.7)
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([2], page 307, 1). Now we can obtain (1.6) and (1.7) from (1.5) directly by
the division by zero calculus. We obtained many and many examples. See
the references.

However, for the function
a

1− b
ey, (1.8)

by the division by zero calculus we obtain the formal result for b = 1

−a
∂ey

∂b
|b=1. (1.9)

This will be a mysterious formula. Therefore, we wonder how to obtain
(1.3).

2 Result
For the function

1

1− b
ey, (2.1)

we will consider in this way

1

1− b
ey =

ey − eby

1− b
+

1

1− b
eby. (2.2)

Note that
ey − eby

1− b
|b=1 = yey. (2.3)

Therefore, if we can include the constant
a

1− b
(2.4)

to the general constant C, then we can obtain the desired result (1.3).
Indeed, from the identity

x = Ceby +
a

1− b
ey =

(
C + a

1

1− b

)
eby + a

ey − eby

1− b
, (2.5)

by the division by zero 1/0 = 0, we obtain the desired result (1.3).
Note that for the function
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1

1− b
eby (2.6)

we apply the division by zero 1/0 = 0 separately in the terms

1

1− b
(2.7)

and
eby. (2.8)

We do not consider the division by zero calculus for (2.6). We gave a reason-
able interpretation for the natural derivation of (1.3) from (1.2).

Could we consider the problem in the following way?
From the identity

x =

(
C + a

1

1− b

)
eby + a

ey − eby

1− b
(2.9)

= Ceby + a
ey − eby

1− b
,

by putting b = 1 we have the desired result, by changing any constant C.
However, in this logic we have a delicate problem, because its C is depending
on b. However, we will feel some here.

3 Conclusion
This example (1.2) shows that the formula (1.9) is not almighty, we have
some delicate case for the division by zero calculus.

4 Essence of division by zero calculus
We state the essence of division by zero calculus.

For any Laurent expansion around z = a,

f(z) =
−1∑

n=−∞

Cn(z − a)n + C0 +
∞∑
n=1

Cn(z − a)n, (4.1)
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we will define
f(a) = C0. (4.2)

For the correspondence (4.2) for the function f(z), we will call it the
division by zero calculus. By considering derivatives in (4.1), we can
define any order derivatives of the function f at the singular point a; that
is,

f (n)(a) = n!Cn.

However, we can consider the more general definition of the division by
zero calculus.

For a function y = f(x) which is n order differentiable at x = a, we will
define the value of the function, for n > 0

f(x)

(x− a)n

at the point x = a by the value

f (n)(a)

n!
.

For the important case of n = 1,

f(x)

x− a
|x=a = f ′(a). (4.3)

In particular, the values of the functions y = 1/x and y = 0/x at the origin
x = 0 are zero. We write them as 1/0 = 0 and 0/0 = 0, respectively.
Of course, the definitions of 1/0 = 0 and 0/0 = 0 are not usual ones in the
sense: 0 · x = b and x = b/0. Our division by zero is given in this sense and
is not given by the usual sense as in stated in [1, 3, 4, 5].

In particular, note that for a > 0[
an

n

]
n=0

= log a.

This will mean that the concept of division by zero calculus is important.
Note that

(xn)′ = nxn−1

and so (
xn

n

)′

= xn−1.
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Here, we obtain the right result for n = 0

(log x)′ =
1

x

by the division by zero calculus.
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