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Abstract 

Is special relativity theory applicable to the universe, as this theory was developed for places with no 

gravity? Is Special Relativity compatible with General Relativity? 

 

Yes, both theories are compatible although there is a difference between Special Relativity (SR) and 

General Relativity (GR). 

SR relates to speed and time, it was developed by Einstein in 1905 and was based on works done by 

Newton, Lorentz, Maxwell, Michelson-Morley, and others.   GR was suggested by Einstein in 1916 

to generalize SR, by including acceleration. According to the equivalence principle, acceleration and 

gravity are equivalent. As the universe is full of celestial bodies gravity exists everywhere. 

SR is based on two main postulates: 

1. The laws of physics are invariant in all inertial frames of reference (that is, frames of 
reference with no acceleration or gravity). 

2. The speed of light in the vacuum is the same for all observers, regardless of the motion of the 
light source or observer. 

From postulate one of SR, it can be concluded that SR is applicable only in deep space, far away from 
any celestial body, where there is no gravity. Therefore, using SR to solve problems in the universe 
where gravity exists is not applicable. 

 

It should be noted that Einstein had the same claim on the validity of SR in presence of gravity. A quote 
from the collected papers of Albert Einstein Volume 7: The Berlin Years: Writings, 1918-1921 

https://einsteinpapers.press.princeton.edu/vol7-trans/156?highlightText=%22spatially%20variable%22 

“Second, this consequence shows that the law of the constancy of the speed of light no longer holds, 

according to the general theory of relativity, in spaces that have gravitational fields. As a simple 

geometric consideration shows, the curvature of light rays occurs only in spaces where the speed of light 

is spatially variable. From this, it follows that the entire conceptual system of the theory of special 

relativity can claim rigorous validity only for those space-time domains where gravitational fields 

(under appropriately chosen coordinate systems) are absent. The theory of special relativity, 

therefore, applies only to a limiting case that is nowhere precisely realized in the real world. 

Nevertheless, this limiting case 〈also〉 is of fundamental significance for the theory of general relativity; 

because of the fact from which we started, namely that no gravitational field exists near a free-falling 

observer, this very fact shows that in the vicinity of every world point the results of the theory of special 

relativity are valid (in the infinitesimal) for a suitably chosen local coordinate system.” 

 

https://en.wikipedia.org/wiki/Laws_of_physics
https://en.wikipedia.org/wiki/Invariant_(physics)
https://en.wikipedia.org/wiki/Inertial_frame_of_reference
https://en.wikipedia.org/wiki/Frame_of_reference
https://en.wikipedia.org/wiki/Frame_of_reference
https://en.wikipedia.org/wiki/Acceleration
https://en.wikipedia.org/wiki/Speed_of_light
https://en.wikipedia.org/wiki/Vacuum
https://einsteinpapers.press.princeton.edu/vol7-trans/156?highlightText=%22spatially%20variable%22


Nevertheless, SR has been validated, despite Einstein’s claim, for over a century by many experiments 
and is used in places that are influenced by gravity, e.g., in the vicinity of Earth.  

I will bring here the example of the global positioning system (GPS), which is used many million times a 
day by users all over the world. 

Fig 1- shows schematically the structure of the GPS.  The GPS is comprised of three different segments: 

the space segment, the control segment, and the user segment. The space segment includes 30+ 

navigation satellites circling Earth at an altitude of 20,000 km and a speed of 14,000km/h. The control 

segment is a ground station and the user segment e.g., cellular phone. 

It is shown that the reference frame direction of the satellite orbiting Earth is constantly changing 

relative to the reference frame of the ground station  

At the start of measurement, the reference frames of ground station G0 and satellite frame S0   are 

parallel. If the measurement time is big then the frames Gf and Sf are no longer parallel and are rotated 

by angle Φ. For example, if the measurement duration is one hour then Φ1=60deg and Φ2=30deg. Thus, 

the relative rotation Φ =Φ1- Φ2=30deg.   The smaller the measurement time, the smaller Φ, and the 

reference frames stay nearly parallel. 

 

 
Fig 1. – Global Positioning System 

 



According to Einstein, the rate of advance of two identical clocks placed one on the satellite and the 

other on the ground station, will differ due to the difference in the gravitational potential (GR) and the 

relative speed between them (SR).   From GR, it can be calculated that the orbiting clocks in the satellites 

tick slightly faster than the clock at the ground station, by about 45 microseconds per day. On the other 

hand, from SR calculations the orbiting clock ticks slower, about 7 microseconds per day. The net result 

is that time on a GPS satellite clock advances faster than a clock on the ground by about 38 

microseconds per day. If relativity compensation is not taken into account, it would cause navigational 

errors that accumulate to 10 km per day!    Note: a detailed calculation is given in Appendix A. 

Thus, my answer to the question of how SR is applicable in gravity fields, is that SR is applicable in 

limited cases where the measurement duration is “small enough” so that the change of references 

frame is negligible. The definition of “small enough” means that SR is an engineering approximation.  It 

will be accurate if the time of measurement is infinitesimal.  

An additional example of the usage of SR in the gravity field of Earth is the measurement of the 

atmospheric muon. This is also a case when the reference frames are inertial.  On the other hand, I claim 

that sometimes SR is used in such cases that result in absurdity. For example, the tween paradox, or the 

grandfather paradox. I claim that these paradoxes are not valid for SR because they are done during a 

long time where the frame references are not inertial.   

SR has been used to solve cases such as the Sagnac effect, Bradley stellar aberration, and the Michelson-

Morley experiment. I think that using SR for these cases is not valid. I claim that all these observations 

can be explained by another phenomenon. This is the frame-dragging of space by a spinning celestial 

body.  Frame dragging was predicted by GR and verified by the Gravity Probe A experiment.  

The dragging of space by a spinning celestial body was suggested by Stokes (and others), to explain the 

Bradley stellar aberration. However, observations showed that Stokes was wrong. Nevertheless, I accept 

Stokes’ proposal that space is dragged by any spinning celestial body. But it is not only space that is 

dragged by Earth but rather the entire universe being dragged by a universal spinning central neutron 

star. For a detailed description see:  

https://www.academia.edu/45575390/The_structure_of_the_Pivot_Universe   

 

 

 

Note: There is one experiment that was done by Hafele and Keating that I cannot explain by my previous 

assumptions.  Time dilation is not accumulated thus the time dilation between the two clocks, calibrated 

on the ground, one that flew around Earth and finally brought near the second clock that stayed on 

Earth must be zero. The final time dilation of the two clocks, as explained in the paragraph on GPS, has 

the same gravitational time delay and the same SR delay. 

 

 

https://www.academia.edu/45575390/The_structure_of_the_Pivot_Universe


Appendix A 

 

 

This appendix is a citation from: 

https://www.scienceofgadgets.com/post/how-relativistic-time-dilation-and-gps-are-related 

 

Time dilation due to velocity - SR 

 

 

 

 

 

 

 

 

 

 

Time dilation due to gravity - GR 

https://www.scienceofgadgets.com/post/how-relativistic-time-dilation-and-gps-are-related


 

The GPS satellite orbits about 20 000 kilometers above the Earth's surface. At this 

distance (r + h) from the center of mass of the Earth the clock onboard experiences a 

time dilation of 0.000015 seconds. 

 

So, we get a time difference of 45 microseconds (0.00006 - 0.000015 = 0.000045) per 

day between the time measured on Earth and the time measured on the satellite. From 

the first equation, we found that the clock on the fast-moving satellite lags behind the 

receiver's clock by 7 microseconds per day. Subtracting time dilation of 7 microseconds 



from 45 microseconds, we find that the receiver clock runs 38 microseconds slower per 

day than the clock onboard of GPS satellite (0.000045 - 0.000007 = 0.000038 sec = 38 

ms). 

 


