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Abstract

In the past, theorems have shown that individuals can implement a (formal) power series method to
derive solutions to algebraic ordinary differential equations, or AODEs. First, this paper will give
a quick synopsis of these “bottom-up" approaches while further elaborating on a recent theorem
that established the (modified) generating function technique, or [m]GFT, as a powerful method
for solving differentials equations. Instead of building a (formal) power series, the latter method
uses a predefined set of (truncated) Laurent series comprised of polynomial linear, exponential,
hypergeometric, or hybrid rings to produce an analytic solution. Next, this study will utilize the
[m]GFT to create several analytic solutions to a few example AODEs. Ultimately, one will find
[m]GFT may serve as a powerful "top-down" method for solving linear and nonlinear AODEs.

1.) Introduction

AODEs use differential algebra to define differential equations with only one independent variable
[1]. Numbers theory and computer-based algebra are extensively utilized and supported by this
field. Finally, AODEs have many formulations, such as differential Galois theory and modules (i.e.,
M, D, etc.).

Most methods for solving AODEs involve a “bottom-up" approach regarding a formal power series.
In other words, an individual tries to establish an analytic solution by finding a pattern within
the leading coefficient of a solitary power series [2]. If the value turns out to be a combinatorial
number, then the power series becomes formal [3]. This process often involves enacting many
iterations, making the "bottom-up" means of acquiring an analytic solution very time-consuming
[2,3].

This article will consider a new “top-down" approach for finding solutions to AODEs. It is well-
known that (formal) power series can form a new analytic function [4]. For instance, GFT, which
incorporates a set of Laurent series of product ring-based formal power series or generating functions,
can be used to discover analytic solutions to both linear and nonlinear partial differential equations
[5]. This method might be the pinnacle of power series methods to develop new functions; hence,
[m]GFT is viewed as a “top-down" means for solving differential equations, such as AODEs, since
it uses preformed generating functions to find analytic solutions.

There are several sections in this paper. Section two will have a more thorough discourse on methods
and theorems which implement a "bottom-up" basis for deriving analytic solutions to AODEs. On
the other hand, the theorem explaining why [m]GFT, an effective “top-down" instrument in solving
nonlinear partial differential equations, will be further elucidated and expanded upon to show it as
a method for finding solutions AODEs in section three. Section four will show the application of
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[m]GFT on a few examples of AODEs. Finally, the conclusion, or section five, will gleam a terse
description and beneficial facets of [m]GFT.

2.) (Formal) Power Series and their solutions to AODEs

Consider the following power series, also known as a Taylor series:

y(x) =
∑∞

n=0 an(x− x0)n.

If x0, or the center of the series, was equal to null or zero, then the above expression is considered
a Maclaurin series. Some coefficients an of a power series incorporated a division by factorial n. It
was the main purgative for an individual to define the value of this coefficient for each serial term
[6]. Also, the Cauchy-Hadamard theorem stated that power series converged at specific values [7,8]:
when a series was deemed convergent, it formed an analytic function [9].

There were many algorithms and methods for establishing power series solutions to various differen-
tial equations via iterative or “bottom-up" means. For instance, N. Thieu Vo and associates devised
an algorithm that helped an individual iteratively access each coefficient of a prospective power
series solution to an AODE [10]. Building an analytic solution via single power series is generally
time-consuming, but others in the field are finding ways to accelerate the process [11].

3.) The Generating Function Technique Revisited

The central theorem that established the GFT as a method for solving (nonlinear) PDEs claimed
that a (truncated) Laurent series of formal power series derived analytic solutions to many (non-
linear) differential equations [5]. The theorem suggested that formal power series within the set
of (truncated) Laurent series are polynomial rings. Upon applying the polynomial rings within a
differential equation, an individual would form a free ideal ring whose generators were necessary
to form algebraic equations. Setting these algebraic equations to zero, then solving for as many
coefficients and constants as possible would allow the individual to establish analytic solutions to
many differential equations.

Definition 3.1. The predefined set of (truncated) Laurent series of generating functions served as
the general solution to an AODE of interest and was a symmetric (Lie) algebra.

Definition 3.2. The auxiliary function fl, in the primary expression defining the general solution
y, was a polynomial ring based upon the dependent variable, or intermediate, x. The dependent
variable x was linearized, exponentiated, or hypergeometric transformed.

Definition 3.3. The multiplication of auxiliary functions fl established a polynomial product ring.

The general solution y of [m]GFT was defined as follows:

y(x) =∑2
i=1

∑ps,b
j=−ps,a

(
a (i, j)

(∑∞
k=0 2Sk(0)

i (
∏
l fl(x))

k
)j

+ b(i, j)
(∑∞

k=0 2Ck(0)
i (
∏
l fl(x))

k
)j)

,

where fl is the l -th auxiliary function, Skand Ckwere the square root of the Fibonacci and Chebyshev
U combinatorial numbers about zero, respectively. Note:
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Sk (0) = sin

(
πk

2

)
,

and

Ck (0) = cos

(
πk

2

)
.

The other coefficients accompanying each formal power series or generating function were a(i, j) and
b(i, j). The set of Laurent series, which was truncated by the specific powers ps,a and ps,b, of formal
power series or generating functions were used in the general solution were "complete" polynomial
rings.

Note: the general solution y with a Frobenius adjustment [18] was:

y(x) = xr
2∑
i=1

ps,b∑
j=−ps,a

a (i, j)
 ∞∑
k=0

2Sk(0)
i

(∏
l

fl(x)

)kj

+ b(i, j)

 ∞∑
k=0

2Ck(0)
i

(∏
l

fl(x)

)kj .

For this paper’s purpose, we defined the auxiliary function fl as a linearized, exponentiated, or
hypergeometric transformed (truncated) Laurent polynomial ring Ll; thus, there were at least two
levels of (truncated) Laurent structures in the general solution. The Laurent polynomial ring Ll
was defined as:

Ll(x) = αl(0) + x2αl(2) +
αl(−2)
x2

+ xαl(1) +
αl(−1)
x

,

or

Ll(x) = αl(0) + x3/2αl(3) +
αl(−3)
x3/2

+ x2αl(4) +
αl(−4)
x2

+ xαl(2) +
√
xαl(1) +

αl(−1)√
x

+ αl(−2)
x ,

where αl was a coefficient/constant. This algebraic entity, which added to the topology of the space
of future analytic solutions to an AODE that was derived using [m]GFT [12,13], were possibly
truncated. (Note: the former auxiliary function Ll was used in the rest of this section and for
deriving solutions to the example AODEs given in the next section of this study since it possessed
a significantly lower computational cost than its counterpart.) The auxiliary function fl of the
predefined formal power series or generating function was either linearized (l = 1), exponentiated
(l = 2), the hypergeometric transformed (l = 3), or a combination of at least two of the three last
states. Thus:

f1 (x) = L1 (x) ,

f2 (x) = eL2(x),

and

f3 (x) =1 F1 (β1;β2;L3 (x)) .

If the auxiliary function f1 were only in the predefined formal power series, then the resultant general
solutions would be comprised of polynomial linear rings. If the auxiliary function f2 were only in
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the predefined formal power series, then the resultant general solution would be made of polynomial
exponential rings. It was important to note that the paper introducing GFT only considered (a
variation of) the auxiliary function f2 with a truncated Laurent polynomial ring L2 (x) [5]. If the
auxiliary function f3 were only in the predefined formal power series, then the resultant general
solution would consist of polynomial hypergeometric rings. Finally, if at least two of the three
auxiliary functions f1, f2, and f3 were in the predefined formal power series, then the resultant
general solution would be comprised of polynomial hybrid rings. It was important to note the
multiplication of at least two of the three auxiliary functions f1, f2, and f3 established a product
ring. Since one considered the composition of formal power series as a set of polynomial rings, (s)he
could claim each completed polynomial ring was a symmetric algebra [14].

Lemma and definition 3.4. Plugging the set of (truncated) Laurent series of polynomial rings
described above into an AODE of interest and possibly considering some hypergeometric function
contiguous relations established Hopf algebras.

Lemma 3.5. Multiplying the Hopf algebras with the multiplicative inverse of the greatest common
(zero) divisor, followed by parsing the resultant principal integral/ideal domain or free ideal ring by
the generators of the transformed AODE of interest, that were associated with auxiliary functions
f1, f2, and f3, produced algebraic equations.

Substituting the general solution into AODEs established Hopf algebras known to be skewed poly-
nomial rings called noncommutative principal ideal rings, or RPI [15]. Sometimes the Hopf alge-
bras did not become apparent until an individual considered hypergeometric function contiguous
relations. When an individual multiplied the transformed AODEs with its common denomina-
tor/multiplicative inverse of the greatest common (zero) divisor, or (RGCD)

−1, (s)he obtained a
particular product ring, called a principal integral/ideal domain, or RPID [16]. In other words, the
numerator of a principal ideal ring was a principal ideal domain.

RPI = RPIDRGCD

RPI(RGCD)
−1 = RPIDRGCD(RGCD)

−1

RPI(RGCD)
−1 = RPID

A principal integral/ideal domain was also known as a free ideal ring or fir [17]. Also, it was neces-
sary to note that if one considered the auxiliary function f3 was present in the general solution, (s)he
had to include the contiguous relations of the hypergeometric function after plugging in the gen-
eral solution into the AODE. For example, the derivatives of1F1 (β1;β2;L3 (x)) in the transformed
AODE were converted to expressions involving1F1 (β1;β2;L3 (x)) and1F1 (β1; 1 + β2;L3 (x)) before
proceeding.

A set of generators parsed the principal integral/ideal domain or free ideal ring into many symmetric
algebraic equations. The gathering of linearized, exponentiated, and/or hypergeometric transformed
(truncated) Laurent polynomial ring of variable/intermediate x, like 〈x, eL2(x),1 F1 (β1;β2;L3 (x)) ,

1F1 (β1; 1 + β2;L3(x))〉, may serve as the generator set for the RPID produced from some AODEs.
(For instance, the parsing of a RPID may have only used part of the entire possible generator set,
like

〈
xp, eL2(x)

〉
.) It was important to state the generator

〈
eL2(x)

〉
was able to be expanded to its

individual exponential terms and itself. For instance,
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〈
e
α2(−1)+x(α2(0)+α2(1)x)

x

〉
=
〈
e
α2(−1)

x , eα2(0), eα2(1)x, e
α2(−1)+x(α2(0)+α2(1)x)

x

〉
.

The generator set was used to derive more algebraic equations by parsing the product ring RPID
[5]. These algebraic objects were also likely symmetric.

Corollary 3.6. By setting the algebraic equations derived from the product ring discussed above to
null or zero, an individual should be able to define at least one set of coefficients/constants properly.
After plugging these coefficients/constants into the set of (truncated) Laurent series of polynomial
rings described in definition 3.1, the last item may become an analytic solution to the AODE of
interest.

One exploited the algebraic equations for the values of the coefficients/constants a, b, αl, β1, and
β2 whenever possible after setting all the algebraic equators equal to null or zero. Using computer
mathematics software, like Mathematica®, individuals derived sets of known coefficients/constants
that yielded analytic solutions to AODEs.

It was important to note that when the AODE contained variable coefficients and inhomogeneous
components that were either exponential or trigonometric functions, an individual had to limit the
auxiliary function fl as an exponentiated expression of the independent variable x, or let l = 2.

Mathematica® was used to derive solutions to the following AODEs. Thus, one was able to follow
most of the work in this paper by examining the Mathematica® spreadsheet.

4.) Examples

This study section will consider and solve three examples AODEs found within the Kamke set [18].
The first equation, ODE No. 29, in the paper is as follows:

F
(
x, y, y

′
)
= y

′
(x)− xy(x)2 − 3xy(x) = 0.

By setting the domain of ps of the general solution between [0,2], then plugging it into the above
equation, one obtains a significant expression involving the variable x. Next, (s)he times the com-
mon denominator/multiplicative inverse of the expression’s greatest common (zero) divisor with the
original equation/principal ideal ring to derive a product ring or free ideal ring. The following genera-

tor set,

〈
x, eα2(0)+x(α2(1)+α2(2)x),

1F1 (β1;β2;α3 (0) + x (α3 (1) + xα3 (2))) ,1 F1 (β1; 1 + β2;α3(0) + x (α3(1) + xα3(2)))

〉
,

creates one hundred fifty-nine algebraic equations. After setting these algebraic equations to null
or zero, one derives two hundred seventy-nine sets of coefficients/constants, thus possible analytic
solutions. The expression below is an example of an analytic solution derived for AODE given
above:

y (x) = − 3α1(0)e
α2(0)+

3x2

2
1 F1 (β1;β2;α3(0))

α1(0)e
α2(0)+

3x2

2
1 F1 (β1;β2;α3(0)) + i

Another AODE from the Kamke set is ODE No. 1115:
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F
(
x, y, y

′
, y′′
)
= xy

′′
(x)− (3x− 2)y

′
(x) + (3− 2x)y(x) = 0.

By setting the domain of ps of the predefined set of (truncated) Laurent series consisting of formal
power series also between [-1,0], then plugging it into the above equation, one obtains a significant
expression involving the variable x. Again, (s)he times the common denominator/multiplicative
inverse of the expression’s greatest common (zero) divisor and the equation itself to derive a product
ring or free ideal ring. The following generator set,〈

x, e
α2(−1)+x(α2(0)+α2(1)x)

x ,

1F1

(
β1;β2;

α3(−1)
x + α3 (0) + xα3 (1)

)
,1 F1

(
β1; 1 + β2;

α3(−1)
x + α3(0) + xα3(1)

) 〉 , yields thirty-
six algebraic equations. After solving the coefficients/constants, one derived twenty-seven sets of
possible solutions. The following is an example of an analytic solution derived by [m]GFT for the
above AODE:

y (x) = a (1,−1)1 F1

(
1− 6√

17
; 2;
√
17x

)
eα2(0)− 1

2(
√
17−3)x.

Next, the ODE No. 1700 from the Kamke set is considered:

F
(
x, y, y

′
, y′′
)
= y(x)y

′′
(x)− y′(x)2 + 1 = 0.

By setting the ps domain of the general solution again between [-1,0], then plugging it into the
above equation, one produces a significant expression involving the variable x. Again, (s)he multi-
plies the common denominator/multiplicative inverse of the greatest common (zero) divisor of the
expression and the equation itself to derive a product ring or free ideal ring. The following generator
set,

〈
x, eα2(1)x,1 F1 (β1;β2;xα3(1)) ,1 F1 (β1; 1 + β2;xα3(1))

〉
, establishes one hundred thirty-seven

algebraic equations. These sets of coefficients/constants generate thirty-one different results. An
example of an analytic solution derived by [m]GFT for the above AODE is as follows:

y(x) = (a(1,−1)+a(2,−1))e
x√

a(2,−1)2−a(1,−1)2

2α1(0)
+ 1

2α1(0)(a(1,−1)− a(2,−1))e
− x√

a(2,−1)2−a(1,−1)2 .

The final AODE from the Kamke set is ODE No. 1483:

F
(
x, y, y

′
, y
′′
, y(3)

)
= 2xy(3)(x)− 4(v + x− 1)y

′′
(x) + (6v + 2x− 5)y

′
(x) + (1− 2v)y(x) = 0.

By setting ps of the general solution with the Frobenius correction to negative unity or -1, then
plugging it into the above equation, one produces a significant expression involving the variable
x. Again, (s)he multiplies the common denominator/multiplicative inverse of the greatest com-
mon (zero) divisor of the expression and the equation itself to derive a product ring or free ideal

ring. The following generator set,

〈
x, xr, eα2(1)x,1 F1 (β1;β2;xα3 (1)) ,

1F1 (β1; 1 + β2;xα3(1))

〉
, creates eighteen alge-

braic equations. These sets of coefficients/constants generate fifteen different results. An example
of an analytic solution derived by [m]GFT for the above AODE is as follows:

y(x) = α1(0)a(1,−1)x2v1 F1

(
v + 1

2 ; 2v + 1;x
)
.

6



5.) Conclusion

Unlike many "bottom-up" methods that build analytic solutions from solitary (formal) power series,
[m]GFT uses a set of (truncated) Laurent series of predefined polynomial linear, exponential, hy-
pergeometric, or hybrid rings to establish analytic solutions to differential equations. Once applied
to differential equations, like AODEs, it also establishes Hopf symmetric algebras. Finally, [m]GFT
is not only a powerful tool for solving (nonlinear) partial differential equations but also possesses
excellent potential to find analytic solutions to many linear and nonlinear differential equations,
unlike other methods.
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