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Abstract. First in this paper we will prove the Kakeya maximal function

conjecture in a special case when tube intersections behave like line intersec-

tions. This paper highlights how different tube intersections can be than line
intersections. However, we show that the general case can be deducted from

the line like case.

1. Introduction

A line li is defined as

li := {y ∈ Rn|∃a, x ∈ Rn and t ∈ R s.t y = a+ xt}
We define the δ-tubes as δ neighbourhoods of lines:

T δ
i := {x ∈ Rn||x− y| ≤ δ, y ∈ li}.

The order of intersection is defined as the number of tubes intersecting in an in-
tersection. We define A ≲ B to mean that there exists a constant Cn depending
only on n such that A ≤ CnB. We say that tubes are δ-separated if their angles
are δ-separated. Moreover, let f ∈ L1

loc(Rn). For each tube in B(0, 1) define a as
it‘s center of mass. Define the Kakeya maximal function as
f∗
δ : Sn−1 → R via

f∗
δ (ω) = sup

a∈Rn

1

T δ
ω(a) ∩B(0, 1)

∫
T δ
ω(a)∩B(0,1)

|f(y)|dy.

In this paper any constant can depend on dimension n. In study of the Kakeya
maximal function conjecture we are aiming at the following bounds

(1.1) ||f∗
δ ||p ≤ Cϵδ

−n/p+1−ϵ||f ||p,
for all ϵ > 0 and some n ≤ p ≤ ∞. A very important reformulation of the problem
by Tao is the following. A bound of the form (1.1) follows from a bound of the
form

(1.2) ||
∑
ω∈Ω

1B(0,1)1Tω(aω)||p/(p−1) ≤ Cϵδ
−n/p+1−ϵN1/p′

δ(n−1)/p′
,

for all ϵ > 0, and for any set of N ≤ δ1−n δ-separated of δ-tubes. See for example
[3] or [2]. It’s enough to consider the case p = n and the rest of the cases will follow
via interpolation [3, 2]. Let us define

E2k := {x ∈ Rn|2k ≤
N∑
i=1

1Ti(x)1B(0,1)(x) ≤ 2k+1}.
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We will prove that

Theorem 1.1. Let there be a N ≲ δ1−n δ-separated δ-tubes. Assume that for k > 0
it holds that

E2k =

∼2k⋂
j=1

Tij ,

Then we have

||
∑
ω∈Ω

1B(0,1)1Tω(aω)||n/(n−1) ≤ Cn(log (
1

δ
)(n−1)/n(Nδn−1)(n−1)/n.

It is a fact that the intersection of each pair of different lines contains only one
point. So this paper emphasis the difference between line and tube intersections
and it can be said that we first prove the Kakeya maximal function conjecture in a
line like case. However, we have the general case also.

Corollary 1.2. Let there be a N ≲ δ1−n δ-separated δ-tubes. Then we have

||
∑
ω∈Ω

1B(0,1)1Tω(aω)||n/(n−1) ≤ Cn log (
1

δ
)(n−1)/n(Nδn−1)(n−1)/n.

One of our results is the following: a generalization of a lemma of Corbóda.

Lemma 1.3. [A generalization of a lemma of Corbóda] For δ-separated tube inter-
sections of order 2k > 1 it holds that

|
2k⋂
i=1

Ti| ≲ δn−12−k/(n−1).

It‘s not hard to check that the above bound is essentially tight.

2. Previously known results

We will use the following bound for the pairwise intersections of δ-tubes:

Lemma 2.1 (Corbòda). For any pair of directions ωi, ωj ∈ Sn−1 and any pair of
points a, b ∈ Rn ∩B(0, 1), we have

|T δ
ωi
(a) ∩ T δ

ωj
(b)| ≲ δn

|ωi − ωj |
.

A proof can be found for example in [2].
For any (spherical) cap Ω ⊂ Sn−1, |Ω| ≳ δn−1, δ > 0, define its δ-entropy Nδ(Ω)

as the maximum possible cardinality for an δ-separated subset of Ω.

Lemma 2.2. In the notation just defined

Nδ(Ω) ∼
|Ω|
δn−1

.

Again, a proof can essentially be found in [2].
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3. A proof of the generalization of the lemma of Corbóda

Let us define

E2k := {x ∈ Rn|2k ≤
N∑
i=1

1Ti(x)1B(0,1)(x) ≤ 2k+1}.

Let us suppose that 2k = δ−β , 0 < β ≤ n − 1, and let‘s suppose that tube Tω′

intersecting Tω∩E2k has it‘s direction outside of a cap of size ∼ δn−1−β on the unit
sphere. Then the angle between Tω and Tω′ is greater than ∼ δ1−β/(n−1). Thus by
lemma 1.3 the intersection

(3.1) |
2k⋂
i=1

Ti| ≤ |Tω ∩ Tω′ ∩ E2k | ≤ |Tω ∩ Tω′ | ≲ δn−1+β/(n−1) ≤ δn−12−k/(n−1).

Thus, we can suppose that the directions in the intersection E2k ∩ Tω ∩ Tω′ belong
to a cap of size ∼ δn−1+β . If we δ - separate the cap via lemma 2.2 we get that the
cap can contain at most ∼ 2k tube-directions. However, the cap contains at least
2k tube directions. Thus, for any tube Tω in the intersection there exists a tube
Tω′ , such that the angle between Tω and Tω′ is ∼ δ1−β/(n−1) and the inequality
(3.1) is valid. Thus we proved the lemma 1.3.

4. The proof of the line like case

We defined

E2k := {x ∈ Rn|2k ≤
N∑
i=1

1Ti
(x)1B(0,1)(x) ≤ 2k+1}.

We have for k > 0 that

E2k =

M⋃
i=1

∼2k⋂
j=1

Tij .

The number M is just the number of distinct intersections of given order. The case
k = 0 is trivial for our purposes and we omit that. We assume the special case that

(4.1) E2k ∩ Tl ∩ Tm ⊂
∼2k⋂
j=1

Tij ,

for l ̸= m. We then say that the intersection Tl ∩ Tm is point like, because the
above holds for tubes replaced by lines. However it’s relatively easy to construct
examples of situations where (4.1) does not hold. For example, some kind of a
”double hairbrush” where we would have two handles intersecting a lot with a
small angle ∼ δ. Then we would have

2⋃
i=1

∼2k⋂
j=1

Tij ⊂ E2k

and not

E2k =

∼2k⋂
j=1

Tj ,
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which is implied by (4.1). Now, via standard dyadic decomposition∑
k

(2k)n/(n−1)|E2k | ∼ ||
∑
ω∈Ω

1B(0,1)1Tω(aω)||
n/(n−1)
n/(n−1)

It suffices to proof that

(4.2) |E2k | ≲ 2−kn/(n−1)Nδn−1.

We use Fubini to deduct

(4.3)

(2k)3|E2k | ∼
∫
E

2k

(

N∑
i=1

1B(0,1)1Ti
)3 =

N∑
i=1

N∑
j=1

N∑
l=1

∫
1B(0,1)1Ti

1Tj1Tl

∼
N∑
i=1

N∑
j=1

N∑
l=1

|B(0, 1) ∩ Ti ∩ Tj ∩ Tl ∩ E2k |

Now, for each two different tubes Ti and Tj there are only ∼ 2k tubes such that
|B(0, 1) ∩ Ti∩, . . . , T2k ∩ E2k | ≠ 0. So in the following we use the condition (4.1):
(4.4)
N∑
i=1

N∑
j=1

N∑
l=1

|B(0, 1) ∩ Ti ∩ Tj ∩ Tl ∩ E2k |

≲ δn−1N + C

N∑
i=1

N∑
j=1

|B(0, 1) ∩ Ti ∩ Tj ∩ E2k |

+

∼2k∑
l=1,l ̸=i,l ̸=j

N∑
i=1,i̸=j,i ̸=l

N∑
l=1,l ̸=i,l ̸=j

|B(0, 1) ∩ Ti ∩ Tj ∩ E2k ∩ Tl|

≲ δn−1N + 2kδn−1N +

∼2k∑
l=1,l ̸=i,l ̸=j

N∑
i=1,i̸=j,i ̸=l

N∑
j=1,j ̸=i,l ̸=j

|B(0, 1) ∩ Ti ∩ Tj ∩ E2k ∩ Tl|.

In the above

N∑
i=1

N∑
j=1

|B(0, 1) ∩ Ti ∩ Tj ∩ E2k | ∼ (2k)2|E2k | ≲ 2kδn−1N,

where we used that∑
k

2k|E2k | ∼ ||
N∑
i=1

1Ti
||1 =

N∑
i=1

|Ti| ∼ δn−1N.

Next we can sum Tj away and obtain

(4.5)

=

∼2k∑
i=1,i̸=j,i ̸=l

N∑
j=1,j ̸=i,l ̸=j

N∑
l=1,l ̸=i,l ̸=j

|B(0, 1) ∩ Ti ∩ Tj ∩ E2k ∩ Tl|

≲
∼2k∑

i=1,i̸=l

N∑
l=1,l ̸=i

2k|B(0, 1) ∩ Ti ∩ E2k ∩ Tl|.
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This ”summing away” is based on linearity of the integral:

∼2k∑
i=1

N∑
l=1

N∑
j=1

|B(0, 1) ∩ Ti ∩ Tj ∩ E2k ∩ Tl|

=

∼2k∑
i=1

N∑
l=1

N∑
j=1

∫
B(0,1)∩Ti∩Tl∩E

2k

1Tj

=

∼2k∑
i=1

N∑
l=1

∫
B(0,1)∩Ti∩Tl∩E

2k

N∑
j=1

1Tj

≲
∼2k∑
i=1

N∑
l=1

∫
B(0,1)∩Ti∩Tl∩E

2k

2k

=

∼2k∑
i=1

N∑
l=1

2k|B(0, 1) ∩ Ti ∩ E2k ∩ Tl|

Now, it follows from the lemma 1.3 that we have

(4.6) |B(0, 1) ∩ Ti ∩ Tl ∩ E2k | ≲ 2−k/(n−1)δn−1,

for i ̸= l. Thus, the claim (4.2), follows from the equations (4.3), (4.4), (4.5) and
(4.6).

5. The proof the general case

We divide each δ-tube to L parallel δ′-tubes overlapping small amount. So we
have

|E2k | ∼ |{x ∈ Rn|2k ≤
N∑
i=1

L∑
j=1

1T δ′
ij
1B(0,1) ≤ 2k+1}|.

Now, we define

E′
j2k := {x ∈ Rn|2k ≤

N∑
i=1

1Tijδ
′1B(0,1) ≤ 2k+1}.

Thus,
L∑

j=1

|E′
j2k | ∼ |E2k |.

We make δ′ so small that we have point like intersections, in other words

E′
2k ∩ T δ′

l ∩ T δ′

m ⊂
2k⋂
j=1

T δ′

ij .

This ”thinning technique” is always possible.

It holds that limi→∞ T
1/i
l ∩ T

1/i
m ∩ E

1/i

2k
⊂ x, for l ̸= m. So there exists i such that

T
1/i
l ∩ T 1/i

m ∩
M⋃
j=1

∼2k⋂
k=1

T
1/i
jk =

∼2k⋂
j=1

T
1/i
j ,

because the intersections are disjoint for 1/i < δ. Taking the minimum of i over all
M intersections gives the desired δ′ < 1/i.
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Remark 5.1. With the easy thinning technique just defined we get rid of the small
angle counterexamples to (4.1).

So we have
|E′

2k | ≲ 2−kn/(n−1)Nδ
′(n−1)

via previous theorem 1.1. And we have

|E2k | ∼
L∑

j=1

|E′
j2k | ≲ 2−kn/(n−1)NLδ

′(n−1) ∼ 2−kn/(n−1)Nδn−1,

which proves the corollary 1.2.
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