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Abstract. In this paper we will prove the Kakeya maximal function conjec-

ture in a special case when tube intersections behave like points. We achieve
this by showing there exist large essentially disjoint tube-subsets.
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1. Introduction

A line li is defined as

li := {y ∈ Rn|∃a, x ∈ Rn and t ∈ R s.t y = a+ xt}

We define the δ-tubes as δ-neighborhoods of lines:

T δ
i := {x ∈ Rn||x− y| ≤ δ, y ∈ li}.

The order of intersection is defined as the number of tubes intersecting in an in-
tersection. We define A ≲ B to mean that there exists a constant Cn depending
only on n such that A ≤ CnB. We say that tubes are δ-separated if their angles
are δ-separated. Moreover, let f ∈ L1

loc(Rn). For each tube in B(0, 1) define a as
it‘s center of mass. Define the Kakeya maximal function as
f∗
δ : Sn−1 → R via

f∗
δ (ω) = sup

a∈Rn

1

T δ
ω(a) ∩B(0, 1)

∫
T δ
ω(a)∩B(0,1)

|f(y)|dy.

In this paper any constant can depend on dimension n. In study of the Kakeya
maximal function conjecture we are aiming at the following bounds

(1.1) ||f∗
δ ||p ≤ Cϵδ

−n/p+1−ϵ||f ||p,
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for all ϵ > 0 and some n ≤ p ≤ ∞. A very important reformulation of the problem
by Tao is the following. A bound of the form (1.1) follows from a bound of the
form

(1.2) ||
∑
ω∈Ω

1B(0,1)1Tω(aω)||p/(p−1) ≤ Cϵδ
−n/p+1−ϵN1/p′

δ(n−1)/p′
,

for all ϵ > 0, and for any set of N ≤ δ1−n δ-separated of δ-tubes. See for example [2]
or [1]. It’s enough to consider the case p = n and the rest of the cases will follow
via interpolation [1, 2]. Let us define

E2k := {x ∈ Rn|2k ≤
N∑
i=1

1Ti
(x)1B(0,1)(x) ≤ 2k+1}.

We will prove the following theorem.

Theorem 1.1. Let Ω be a set of N ≲ δ1−n δ-separated δ-tubes. Moreover assume
that for all k > 0, l ̸= m, it holds that

Tl ∩ Tm ∩ E2k =

2k⋂
j=1

Tjlm.

Here Tl and Tm are any δ-separated tubes with respect to Ω. Then we have

||
∑
ω∈Ω

1B(0,1)1Tω(aω)||n/(n−1) ≤ Cn(log (
1

δ
)(n−1)/n(Nδn−1)(n−1)/n.

It is a fact that the intersection of each pair of different lines contains only one
point and our conditions hold with tubes replaced by lines. But the author of this
paper emphasis the difference between line and tube intersections and it can be
said that we prove the Kakeya maximal function conjecture only in a line like case.
One of our results is the following: a generalization of a lemma of Corbóda.

Lemma 1.2. [A generalization of a lemma of Corbóda] For δ-separated tube inter-
sections of order 2k > 1 it holds that

|
2k⋂
i=1

Ti| ≲ δn−12−k/(n−1).

It‘s not hard to check that the above bound is essentially tight.

2. Previously known results

We will use the following bound for the pairwise intersections of δ-tubes:

Lemma 2.1 (Corbòda). For any pair of directions ωi, ωj ∈ Sn−1 and any pair of
points a, b ∈ Rn ∩B(0, 1), we have

|T δ
ωi
(a) ∩ T δ

ωj
(b)| ≲ δn

|ωi − ωj |
.

A proof can be found for example in [1].
For any (spherical) cap Ω ⊂ Sn−1, |Ω| ≳ δn−1, δ > 0, define its δ-entropy Nδ(Ω)

as the maximum possible cardinality for an δ-separated subset of Ω.
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Lemma 2.2. In the notation just defined

Nδ(Ω) ∼
|Ω|
δn−1

.

Again, a proof can essentially be found in [1].

3. A proof of the generalization of the lemma of Corbóda

Let us define

E2k := {x ∈ Rn|2k ≤
N∑
i=1

1Ti(x)1B(0,1)(x) ≤ 2k+1}.

Let us suppose that 2k = δ−β , 0 < β ≤ n − 1, and let‘s suppose that tube Tj

intersecting Ti∩E2k has it‘s direction outside of a cap of size ∼ δn−1−β on the unit
sphere. Then the angle between Tj and Ti is greater than ∼ δ1−β/(n−1). Thus by
lemma 1.2 the intersection

(3.1) |
2k⋂
i=1

Ti| ≤ |Ti ∩ Tj ∩ E2k | ≤ |Ti ∩ Tj | ≲ δn−1+β/(n−1) ≤ δn−12−k/(n−1).

Thus, we can suppose that the directions in the intersection E2k ∩ Ti ∩ Tj belong
to a cap of size ∼ δn−1+β . If we δ - separate the cap via lemma 2.2 we get that the
cap can contain at most ∼ 2k tube-directions. However, the cap contains at least
2k tube directions. Thus, for any tube Ti in the intersection there exists a tube Tj ,

such that the angle between Ti and Tj is ∼ δ1−β/(n−1) and the inequality (3.1) is
valid. Thus we proved the lemma 1.2.

4. The proof of the line like case

We defined

E2k := {x ∈ Rn|2k ≤
N∑
i=1

1Ti(x)1B(0,1)(x) ≤ 2k+1}.

We have for k > 0 that

E2k =

M⋃
i=1

∼2k⋂
j=1

Tij .

The number M is just the number of distinct intersections of given order. The
cases k < 2 are trivial for our purposes and we omit them. We assume the special
case that

(4.1) E2k ∩ Tl ∩ Tm ⊂
∼2k⋂
j=1

Tij ,

for l ̸= m. We then say that the intersection Tl∩Tm is point like, because the above
holds for tubes replaced by lines.

Example 4.1. The following is a basic example of a case when our asumptions are
not fulfilled. Let us assume that we have a standard hairbrush on R3. We have
an unit length handle with ∼ 2k-tubes (orthogonal with respect to the handle)
intersecting the handle. The intersections should be δ-spaced on the handle. So
there could be δ−1-intersections on the handle. So if we have almost parallel δ-tube
intersecting the handle, then we see that (4.1) is not fulfilled.
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Via standard dyadic decomposition∑
k

(2k)n/(n−1)|E2k | ∼ ||
N∑
i=1

1B(0,1)1Ti ||
n/(n−1)
n/(n−1)

So it suffices to proof that

(4.2) |E2k | ≲ 2−kn/(n−1)Nδn−1.

We use Fubini to deduct

(2k)2|E2k | ∼
∫
E

2k

(

N∑
i=1

1Ti)
2 =

N∑
i=1

N∑
j=1

∫
1Ti1Tj

∼
N∑
i=1

N∑
j=1

|Ti ∩ Tj ∩ E2k |.

Next, we show a very useful technique to reduce to essentially disjoint sets. By
essential disjointness we mean that the possible orders of intersections are very low
e.g bounded my a small constant.

First, we sum the other index away and rearrange so that each intersection is
summed only ∼ (2k)2-times:

N∑
i=1,i̸=j

N∑
j=1

|Ti ∩ Tj ∩ E2k |

∼ 2k
N∑
i=1

|Ti ∩ E2k | ∼ 2k
N∑

i=1,i̸=j

Mi∑
j=1

|Ti ∩ Tj ∩ E2k |.

∼ (2k)2
N/2k∑

i=1,i̸=j

Mi∑
j=1

|Ti ∩ Tj ∩ E2k |

So in the above the summands over j are disjoint for each i. We see that as many
as ∼ N/2k of the sets E2k ∩ Ti are essentially disjoint: meaning that the order of
intersections is very low. We sum over each intersection once and obtain

(4.3)

N/2k∑
i=1,i̸=j

Mi∑
j=1

|Ti ∩ Tj ∩ E2k |

∼
N/2k∑
i=1

|E2k ∩ Ti|

∼ |E2k |.
In the last sum above each intersection is still summed over once. This means that

the sets Ti ∩ E2k are essentially disjoint in the above sum
∑N/2k

i=1 |E2k ∩ Ti|.
We define

E′
2k := E2k ∩

N/2k⋃
i=1

Ti.

On the other hand essentially E2k ⊂
⋃N/2k

i=1 Ti, by (4.3). Thus,

|E′
2k | ∼ |E2k |.



A PROOF OF THE LINE LIKE KAKEYA MAXIMAL FUNCTION CONJECTURE 5

The above reduction is the reduction to essentially disjoint tubes!

Remark 4.2. It’s well worth noticing that any N tubes contain ∼ N/2k essentially
disjoint tubes, if there is a bound 2k for the order of intersections!

We wan’t to show that

|E′
2k | ≲ 2−kn/(n−1)δn−1N.

When we make our reduction to the essentially disjoint tubes for each Ti we
choose some N/2k tubes which to spare.

Remark 4.3. An interesting fact is that if we have

N/2k∑
i=1

|Ti ∩B(0, 1) ∩ E2k | ∼
N/2k∑
i=1

|Ti ∩B(0, 2k/(n−1)) ∩ E2k |.

Now we would have 2k/(n−1)-long δ−tubes T ′
i and T ′

j , but the size or the position
of the intersections does not change.

Now, for each Ti we can choose the tubes ”dividing” Tj disjoint and essentially
parallel to Ti. For each Ti the tubes Tj can be parallel but still δ-separated with
respect to Ti. It’s clear that we need only bounded many these kind of tubes to
cover Ti. We get from from the generalized lemma of Córdoba 1.2 and from the fact
that the intersection is point like, that the intersection is essentially contained in a
2−k/(n−1)-long δ-tube. So we get from the point like condition (4.1) and from the
generalized lemma of Córdoba 1.2 that

2kn/(n−1)|E2k | ∼ 2kn/(n−1)

N/2k∑
i=1

|Ti ∩B(0, 1) ∩ E2k |

∼ 2kn/(n−1)

N/2k∑
i=1

∼1∑
j=1,i̸=j

|Ti ∩ Tj ∩ E2k |

≲ 2kn/(n−1)

N/2k∑
i=1

∼1∑
j=1,j ̸=i

|Ti ∩ Tj ∩B(xj , 2
−k/(n−1))|

≲ 2kn/(n−1)N/2k|Ti ∩ Tj ∩B(xj , 2
−k/(n−1))|

≲ N2−k2kn/(n−1)δn−12−k/(n−1)

≲ Nδn−1.

Thus, we are done proving the theorem (1.1).
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