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Abstract

 This paper proves an inequality for the rank of matrices of a form resembling the one

of matrices for generalised eigenvectors.



Introduction and motivation:

A non-zero vector v ∈ F
n is said to be a generalised eigenvector of rank k of a

matrix A with eigenvalue λ iff k ∈ N is the least such that:

(A− λI)kv = 0

In this paper we will not look at the general case of such matrices but rather at

the matrices of the form (A− λI)k, where A is an upper triangular matrix and

prove an inequality regarding their rank.
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Let A ∈ Mn(F) be an upper triangular matrix whose characteristic polyno-

mial is PA(x) = (−1)n(x− λ1)
m1(x− λ2)

m2 ...(x− λn)
mn

Consider the matrices Ai := (A− λi) and Ãi := (A− λi)
mi

Theorem: rank(Ãi) ≥ n−mi

Proof:

Let us define the following terminology:

Let NZ(A) denote number of non-zero entries in the diagonal of A.

Let R(A) be the rank of A.

The outline of the proof is as follows: we will show the claim is true for Ai

by induction and then show it is also true for Ãi.

To show the claim holds for Ai it is enough to show that for any triangular ma-

trix A: R(A) ≥ NZ(A) since the diagonal entries of a triangular matrix are its

eigenvalues, which appear with multiplicities mi therefore, due to the fact that

n − mi ≤ NZ(Ai) (since 0 may be an eigenvalue), if we show R(A) ≥ NZ(A)

for all A, it follows that for Ai, R(Ai) ≥ n−mi

Base case: n=1: Trivial

Case: n=2: A is of the form: A =

(

a b

0 c

)

therefore there are only three

possible values for NZ(A), namely:

NZ(A)=2 ⇐⇒ a 6= 0 and c 6= 0, in which case R(A)=2 and the claim holds

NZ(A)=1 ⇐⇒ a 6= 0 and c = 0 or c 6= 0 and a = 0. In either case R(A)=1

and the claim still holds.

NZ(A)=0 ⇐⇒ a = c = 0. In which case R(A)=1 and the claim still holds.
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Inductive hypothesis: Assume the theorem holds for all triangular matri-

ces of up to size (n− 1). Let us consider a triangular matrix of size n, Tn, and

split it into two matrices as follows:

Tn = R+ T̃n−1, where R is a matrix which only has one row vector in the first

row, and T̃n−1 Is an n×n matrix with zeroes in the first row and column and an

upper triangular matrix of size n− 1 by n− 1 occupying the rest of the matrix:

( illustration of Tn )

We now recall the following lemma:

Lemma: Let A and B be matrices of the same size,R(A+B) ≤ R(A)+R(B)

with equality if and only if Image(A) ∩ Image(B) = {0}

The proof equality, which is what we are interested in, is not included in this

text but it follows intuitively by inspecting the proof of the inequality in the

first place.

Note: in the decomposition of Tn, Image(R) ∩ Image(T̃n−1) = {0}, hence

by our lemma, R(Tn) = R(R) +R(T̃n−1). Also, 0 ≤ R(R) ≤ 1 and R(T̃n−1) ≥

NZ(Tn−1) by the induction hypothesis. Note 0 ≤ NZ(R) ≤ 1 and NZ(Tn) =

NZ(Tn−1) +NZ(R).

Substituting into R(Tn) gives: R(Tn) ≥ NZ(R) +NZ(Tn−1) = NZ(Tn).

Thus proving the first part of the theorem.
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Recap: we have shown that for Ai = (A − λi), R(Ai) ≥ n − mi because

NZ(Ai) ≥ n − mi and R(A) ≥ NZ(A) for any matrix A. In particular, this

means R(Am
i ) ≥ NZ(A

m
i )

Hence it is enough to show that NZ(A
mi

i ) = NZ(Ai)

Because that would imply our final result. Namely:

R(Am
i ) ≥ NZ(A

m
i ) = NZ(Ai) ≥ n−mi

Claim: NZ(A
mi

i ) = NZ(Ai)

Proof:

Consider upper triangular matrices A and B of equal size, from the usual matrix

multiplication rules it follows that. (AB)ii =
∑n

j=1
(A)ij(B)ji which we can split

as follows:

(AB)ii =
∑n

j=1
(A)ij(B)ji =

∑i−1

j=1
(A)ij(B)ji + (A)ii(B)ii +

∑n

j=i+1
(A)ij(B)ji

It follows from the definition of upper triangular matrices that:
∑i−1

j=1
(A)ij(B)ji = 0 and

∑n

j=i+1
(A)ij(B)ji = 0. Thus: (AB)ii = (A)ii(B)ii.

In particular:

(AB)ii = 0 ⇐⇒ (A)ii = 0 or (B)ii = 0. Therefore: (A2)ii = 0 ⇐⇒ (A)ii = 0,

it follows inductively that: (Am)ii = 0 ⇐⇒ (A)ii = 0. Therefore we can

conclude that NZ(A
mi

i ) = NZ(Ai)

Conlcluding this claim and proving the theorem. �
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